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Abstract

Organic nitrogen (ON) is an important yet poorly constrained component of aerosol
total nitrogen (TN), particularly over remote oceans. We quantified aerosol ON in 92
total suspended particulate samples collected across approximately 160° of latitude in
the marine atmospheric boundary layer (MABL) during Chinese Antarctic and Arctic
expeditions (2019-2024), using a newly developed method that simultaneously
determines ON and inorganic nitrogen. A significant latitudinal gradient was observed,
with significantly higher ON concentrations (expressed as N) in the Northern
Hemisphere (83.3£141.4 ng m™) than in the Southern Hemisphere (15.4+12.4 ng m™).
Regionally, coastal East Asia recorded the highest ON levels (164.6+179.1 ng m™)
but a lower ON/TN ratio (21.1£7.9%), indicating strong terrestrial and anthropogenic
influence. In contrast, the Arctic Ocean had lower ON concentrations (19.1+19.0 ng
m) but the highest ON/TN ratio (38.6+12.4%), suggesting dominant marine biogenic
sources. The Southern Ocean showed the lowest ON concentration (12.0+7.1 ng m™)
yet a relatively high ON/TN ratio (27.8+11.0%), also pointing to oceanic origins.
Near Antarctica, samples influenced by sea-ice air masses displayed markedly
elevated ON and ON/TN ratios. These increases were strongly correlated with sea ice
concentration and chlorophyll-a exposure, indicating enhanced biogenic emissions
from sea-ice-associated ecosystems. This study offers the first direct ON
measurements along a global MABL transect, revealing distinct latitudinal and
regional patterns, and emphasizing the combined roles of continental inputs and
marine sources. It also identifies sea-ice dynamics as a key factor influencing ON in
Antarctic regions, providing crucial data for improving atmospheric and climate

models.
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1. Introduction

Marine atmospheric boundary layer (MABL) aerosol particles contain significant
amounts of organic nitrogen (ON) and inorganic nitrogen (IN), both recognized as
major components of atmospheric particulate matter (Li et al., 2023). ON may
account for roughly 20-80% of total reactive nitrogen deposition to the surface ocean,
implying a potentially large, yet uncertain, role in marine nitrogen cycling and climate
(Altieri et al., 2016, 2021). ON affects climate and biogeochemistry by supplying
bioavailable nitrogen, modifying cloud condensation nuclei and ice-nucleating
particle populations, and contributing to aerosol light absorption. Hygroscopic ON
compounds (e.g., amino acids, amines, sugars) enhance water uptake and cloud
condensation nuclei (CCN) activity; some proteinaceous organics act as efficient ice
nuclei (Alsante et al., 2024; Chan et al., 2005). Marine alkylamines can form salts
with sulfuric acid, promoting new particle formation and growth, thereby linking ON
to aerosol number and radiative forcing (Almeida et al., 2013; Brean et al., 2021).
Nitrogen-containing chromophores (brown nitrogen) can dominate the absorptive
properties of organic aerosol regionally and contribute substantially to global
absorption by carbonaceous aerosol (Li et al., 2025).

However, ON remains poorly constrained due to analytical limitations (Baker et
al., 2017). Previous studies focused on the water-soluble fraction of aerosol ON
(WSON) inferred indirectly by subtraction IN from total nitrogen (TN) (ON = TN —
IN), while the water-insoluble organic nitrogen (WION) fraction has been largely
unquantified (Cornell, 1999; Mace et al., 2003). The subtraction approach is prone to
errors and artifacts, especially when TN and IN concentrations are similar, leading to
underestimation and large uncertainties in ON burdens and fluxes. A novel method
developed by Yu et al. (2021) addresses these limitations. Based on thermal evolution
and chemiluminescence detection, this approach measures aerosol IN and ON
simultaneously, eliminating subtraction-based biases and capturing both WSON and
WION.

Aerosol ON arises from diverse sources. Marine pathways include primary

3
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emissions via sea spray enriched with organic matter from the sea surface microlayer
and secondary formation from marine precursors (e.g., alkylamines) reacting with
acidic species (Facchini et al., 2008; Miyazaki et al., 2011a). Continental pathways
include long-range transport of organic emissions from fossil fuel combustion,
biomass burning, soils, and vegetation (Cape et al., 2011; Jickells et al., 2013; Luo et
al., 2018). Primary marine emissions inject large amounts of particulate matter
annually, carrying organic carbon and nitrogen from plankton, bacteria, and surface
films (Violaki et al., 2015a). Observations have shown that sea spray can carry
substantial ON and that WION can dominate ocean-influenced aerosol ON (Miyazaki
etal., 2011a).

While marine aerosol ON has been the subject of several studies, its sources in
remote oceanic regions remain a matter of debate. Some studies implicate continental
transport (e.g., dust, anthropogenic emissions), whereas others point to direct sea
spray emissions or secondary formation from marine-derived alkylamines (Altieri et
al., 2016; Lesworth et al., 2010; Zamora et al., 2011). Correlations between ON and
ocean biological proxies (e.g., chlorophyll-a) suggest in situ marine production,
particularly during phytoplankton blooms (Altieri et al., 2016; Dall’Osto et al., 2019).
Yet open-ocean and polar regions, where sea ice variability can strongly modulate
primary productivity and thus potentially influence ON emissions, remain sparsely
observed, limiting constraints on potential sea ice linked controls on ON, especially
for high latitudes (Altieri et al., 2016; Matsumoto et al., 2022). Around Antarctica in
particular, the paucity of direct ON measurements—especially of WION—Iimits
understanding of ON sources, seasonality, and impacts on high-latitude atmospheric
chemistry.

To address these gaps, we measured aerosol ON and IN using samples collected
during four Chinese Arctic and Antarctic research expedition campaigns, spanning
~160° of latitude from the Arctic to Antarctica. The dataset, determined by this newly
developed analyzer, enables evaluation of hemispheric and regional patterns,
assessment of controlling factors (e.g., continental influence, marine biological

activity), and explicit investigation of sea-ice—associated processes near Antarctica.
4
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The results provide observational constraints that can be used to refine the
representation of nitrogen cycling and atmosphere—ocean interactions in climate and

atmospheric chemistry models.
2. Methodology
2.1. Sample Collection

A total of 92 total suspended particulate (TSP) samples were collected during three
Chinese Antarctic research expeditions and one Arctic expedition aboard the
icebreaker R/V Xuelong. Sampling spanned a latitudinal range of approximately 160°
(86°N to 75°S), encompassing polar and mid-latitude marine regions. The Antarctic
samplings were conducted in October to November in 2019 (SP2019, 14 samples),
November 2021 to March 2022 (SP2021, 23 samples), and October 2023 to April
2024 (SP2023, 15 samples), while the Arctic campaign occurred in July to September
in 2021 (40 samples).

During the Antarctic campaigns, aerosols were collected using a high-volume air
sampler (HVAS, TISCH Environmental, USA; flow rate: 1.2 m* min™!) equipped with
pre-baked (500°C, 24 h) Whatman quartz filters (20.3 x 25.4 cm; Whatman Ltd., UK).
For Arctic sampling, a DIGITEL DHA-80 sampler (flow rate: 500 L min'!) with 14.2
cm diameter Whatman quartz filters were employed. Each sample represented a 48 h
integrated collection period, corresponding to 2—4° latitude traversed during ship
transits. To minimize contamination from ship emissions, a wind sector controller
restricted sampling to air masses within 120° of the ship’s heading. Filters were
handled using nitrile gloves and masks to avoid potential contamination.
Post-sampling, filters were folded with the collection surface inward, wrapped in
pre-cleaned aluminum foil, sealed in polyethylene bags, labeled with sampling time
and location, and stored at -20°C. Detailed protocols followed established
methodologies (Shi et al., 2021). Following expeditions, samples were transported to
the laboratory under frozen conditions and maintained at -20°C until analysis. The

sampling location for the Antarctic and Arctic campaigns are illustrated in Fig. 1.
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Figure 1. Total suspended particulate (TSP) aerosol sampling locations along the cruises path

from Shanghai, China to Antarctica and Arctic.
2.2. Chemistry Analysis for major ions, EC and OC

Major ions were quantified through ion chromatographic analysis of water extracts of
the aerosol samples. The extraction of filters in the laboratory followed protocols
comparable to those described in the previous study (Shi et al., 2021). Prior to
measurement, three-quarters of each filter was sectioned into small pieces using
acid-cleaned Teflon-coated scissors and transferred into high-purity Milli-Q water
(18.2 MQ). The suspensions were subjected to ultrasonic treatment for 30 min,
followed by continuous shaking at 120 rpm for 12 h to ensure thorough extraction of
water-soluble components. The extracts were subsequently filtered through 0.22 pm
polytetrafluoroethylene (PTFE) membranes prior to ion analysis. The concentrations
of the main ions (NOs3~, SO4>", Na', NH4*, K*, and Ca?") in the sample were
determined by an ion chromatograph (AQ1100, RFIC, equipped with a CS12 column
(2x250 mm) for cation analysis, AS11 column (2x250 mm) for anion analysis,
Thermo Scientific, USA), and the eluents of cation and anion were 18.00 mM

methylsulfonic acid (MSA) and potassium hydroxide (KOH), respectively. During
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sample analysis, the relative deviation of repeated assays (n = 5) of all ions is usually
less than 5%. We used the following formula to calculate non-sea salt SO4>~

(nssSO4%7), non-sea salt Ca?" (nssCa?") and non-sea salt K* (nssK*):

[nssSO4>] = [total SO4>] —0.253 x [Na*] (1)
[nssCa?*] = [total Ca?>"] —0.038 x [Na*] ()
[nssK*] = [total K] —0.037 x [Na*] 3)

where 0.252, 0.037, and 0.038 in the above expressions are the ratios of SO4*/Na*
(Quinby-Hunt and Turehian, 1983), Ca**/Na* (Anonymous, 1997), and K*/Na* (Keene
et al., 1986) in the sea water, respectively.

OC and EC concentrations were determined using a Thermal/Optical Carbon
Analyzer (DRI, Model 2001, Atmoslytic Inc., USA) following the IMPROVE
protocol as implemented by Wu et al., (2024). OC and EC measurements were
conducted for aerosol filters collected during the 2021 Arctic and 2019 Antarctic

cruises.
2.3. ON measurement

Aerosol ON and IN were simultaneously measured using the recently developed
Aerosol Nitrogen Analyzer system, which enables sensitive quantification directly
from filter samples without pretreatment. Detailed descriptions of the method are
provided in Yu et al (2021). Briefly, the method detection limit is 96 ng N. Because
the detection limit scales inversely with the analyzed filter area, it can be readily
lowered by analyzing a larger aliquot. In this study, 4-6 ¢cm? of filter material was
typically analyzed for each sample, yielding a proportionally lower effective detection
limit and ensuring stable and reliable quantification for low-concentration marine
aerosol samples. Compared with traditional IC-based approaches, this analyzer
provides a clear advantage by determining IN and ON simultaneously on the same
filter aliquot, thereby avoiding the subtraction-based “difference method” (ON = TN —
IN) and the associated uncertainty propagation when TN and IN are similar in
magnitude.

The analyzer integrates a thermal aerosol carbon analyzer and a

7
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chemiluminescence NOx analyzer. Aerosol samples collected on quartz fiber filters
were thermally evolved under a programmed 6-step temperature protocol (150, 180,
300, 400, 500, and 800 °C) in a 1% 02/99% He carrier gas. The evolved materials
were catalytically oxidized to CO: and nitrogen oxides (NOy), with the C signal
monitored via methanator-FID detection and the N signal recorded through
chemiluminescence after converting NOy to NO. The C signal assists in
differentiating IN and ON components, as ON aerosols produce both C and N signals
while the IN fraction only yields an N signal. The programmed thermal evolution
facilitates separation of aerosol IN and ON due to their distinct thermal characteristics.
Specifically, IN and ON discrimination is achieved by jointly interpreting the C and N
thermograms: ON is identified by co-evolving C and N signals across the temperature
steps, whereas IN is characterized by N-only evolution without a corresponding C
signal. The separation of overlapping thermal features is further resolved using
multivariate curve resolution (MCR), which deconvolves the mixed thermograms into
source-like components based on their distinct thermal evolution patterns.
Quantification of IN and ON is achieved through multivariate curve resolution (MCR)

data treatment of the C and N thermograms using USEPA PMF (version 5.0).
2.4. Backward Trajectory Analysis

To study air mass origins, air mass backward trajectories have been calculated using
the Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model with
meteorological fields from the National Oceanic and Atmospheric Administration
(NOAA) air resources laboratory GDAS database. Five-day backward trajectories
were calculated in order to reveal the history of the air masses arriving at the sampling
site (Stein et al., 2015). Each trajectory originated at the vessel's real-time position
with an arrival height of 20 m, capturing boundary layer transport while minimizing
local ship influence. Air mass backward trajectories were simulated using the
HYSPLIT model with meteorological fields from the NOAA GDAS database to
reveal the transport history of air masses arriving at the vessel (Stein et al., 2015).

Given that the ship was continuously moving and each sample integrates air masses

8
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over approximately 2—4 degrees of latitude, we applied a nested strategy to account
for spatiotemporal variability. For the initial characterization of the entire dataset, a
representative sampling location was defined for each sample using the average
latitude and longitude of its start and end positions, with backward trajectories
simulated at 6 h intervals anchored to this midpoint to identify dominant air-mass
categories (Fig. 3). Subsequently, to precisely investigate the influence of sea ice on
ON in the Southern Ocean and Antarctic marginal regions (Section 4.2), a targeted
high-resolution analysis was performed on this subset of samples. For each Antarctic
sample, the actual cruise track was equally divided into 48 points corresponding to the
hourly intervals of the 48 h sampling period, and a 120 h backward trajectory was
calculated for each of these 48 coordinates (Fig. S3a and b).

To determine whether the backward trajectories of the MABL samples were
mainly influenced by the open ocean, sea-ice-covered regions, or the continental area,
we calculated the time-weighted residence-time ratios of air masses over sea ice (Rs),

open ocean (Ro), and the continental area (Rc) using the following equation:

Ns(Ng or N¢)

i1

RS(RO or Rc)= L T

ENtotal % e-(m)
i=1

&
xe 120

(4)

where Niotal denotes the total number of trajectory endpoints; Ns No and Nc represent
the numbers of endpoints located over sea ice, the open ocean, and the Antarctic ice
sheet, respectively. ti is the backward-trajectory time (in hours), and ti/120 is a
time-weighting factor (Zhou et al., 2021). This factor accounts for air-mass dispersion
during transport and aerosol removal by particle deposition; therefore, regions
associated with longer trajectory times exert weaker influences on the sampling site,
whereas nearby regions exert stronger influences. Accordingly, higher values of Rs,
Ro and Rc indicate greater influences from sea ice, the open ocean, and the Antarctic

ice sheet, respectively.
2.5. Potential Source Contribution Function (PSCF) analysis

Potential Source Contribution Function (PSCF) analysis was implemented to identify

source regions of ON observed during the sampling period (Ashbaugh et al., 1985). A
9
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higher PSCF value indicates a greater potential source contribution to the receptor site.
In our study, the PSCF domain was established within a grid cell encompassing all
backward trajectories. The cruises were discretized into 1° latitude x 1° longitude grid

cells. The PSCF value for cell ij was calculated as:
2 mj
2 njj

where, mj = total trajectory endpoints within cell ij; nj = subset of endpoints

PSCFU: (%)

associated with aerosol component concentrations exceeding the 75th percentile of
cruise measurements. To mitigate uncertainty in cells with sparse trajectory density, a

latitude-dependent weighting function (W) was applied:

1.0 when ,,>N2
W= {0.8 whenN1<,<N2 (6)
0 when »,<N1

where nj is the number of trajectories passing for each cell in the study period and
N1 =60*cos(latitude), and N2 =300*cos(latitude). The cosine factor is used to

account for the changing grid cell size with varying latitude.
2.6. Air-mass exposure to chlorophyll a

The Air-mass Exposure to Chlorophyll a (Chl-a) index (AEC) serves as a quantitative
metric to assess the influence of marine biogenic emissions on a target region through
air mass transport (Blazina et al., 2017; Choi et al., 2019). This approach is grounded
in the well-established correlation between ocean surface phytoplankton biomass and
marine biogenic emissions, particularly dimethyl sulfide (DMS), where Chl-a
concentration acts as a robust proxy for phytoplankton abundance (Siegel et al., 2013).
The AEC index estimates the integrated exposure of an air mass to oceanic DMS
source regions along its trajectory by accounting for both spatial distribution of Chl-a
and atmospheric vertical mixing dynamics (Zhou et al., 2023).

For each trajectory point, Chl-a concentrations (Chla;) were obtained from
satellite remote sensing products (Aqua-MODIS, OCI algorithm; 8-day composite, 4
km x 4 km resolution; https://oceancolor.gsfc.nasa.gov/13/) within a 20 km radius to
reduce the influence of missing/cloud-contaminated pixels and pixel-scale noise,

while remaining small enough to preserve local marine biological variability relevant
10
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to each trajectory point. The 20 km radius approach has been widely adopted in
previous studies to mitigate the uncertainty of trajectory endpoints and ensure robust
matching with satellite data coverage in previous research (Park et al., 2018; Zhou et
al., 2021, 2023). Trajectory endpoints over Antarctica, sea-ice-covered areas, or at
pressures < 850 hPa were assigned Chl-a = 0 because air masses at these altitudes are
generally decoupled from local ocean surface biological activity (Zhou et al., 2023).
Points without valid Chl-a data were excluded. The AEC for a single trajectory was

computed as:

Y
2113{) Chlajxe 20

AEC= 7)

where t; denotes time backward along the trajectory (hours), and n is the total number
of valid trajectory points. The time points when the air mass passed over the continent
or regions covered by sea ice were assigned a zero chlorophyll value. To ensure
robustness, trajectories with n < 90 (75% of 120 h data points at hourly resolution)
were discarded. For each sample, the final AEC value was derived from the arithmetic

mean of all valid trajectories during the sampling period (Yan et al., 2024).
2.7. Sea ice concentration

In this study, remote sensing data are utilized to illustrate the spatiotemporal
distribution of sea ice concentrations (SICs) in the Southern Ocean. For regional-scale
visualization of sea-ice extent (SIE) and SIC variability, we used the Sea Ice Index
(Version 3) distributed by the National Snow and Ice Data Center (NSIDC) (Fetterer
et al., 2017), which is derived from passive-microwave observations from DMSP
SSM/I and SSMIS sensors (Cavalieri et al., 1997).

Sea-ice concentrations used here are derived from daily gridded
passive-microwave SIC products, which provide all-weather coverage and are widely
used for polar sea-ice monitoring. The SIC of each sample is calculated using the

following formula:
>N SIC

Ns

SIC= (8)

where SIC; represents the average sea ice density at the endpoint of the specified track.
11
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N represents the total number of trajectory endpoints located on the sea ice area. For
each trajectory endpoint, the SIC value was extracted by collocating the endpoint
latitude/longitude and the corresponding day with the daily SIC grid; the SIC; for each
sample was then calculated as the mean SIC across all sea-ice-covered endpoints (Ns).
Sea ice concentration data are from the AMSR2 dataset (Version 5.4. University of

Bremen, Germany. Index of /amsr2/asi_daygrid swath/s3125).
3. Results

Atmospheric ON concentrations (expressed as N, the same hereafter) exhibited
significant hemispheric differences (p < 0.001; Mann—Whitney U test; Table S1), with
values in the Northern Hemisphere (NH: 83.3 + 141.4 ng m>, N = 55) being
approximately five times higher than those in the Southern Hemisphere (SH: 15.4 +
12.4 ng m 3, N = 37). The ON/TN ratios showed broadly similar magnitudes between
hemispheres, with slightly higher in the NH (30.4 = 13.6%) compared to the SH (27.9
+ 10.6%). Samples from three Antarctic cruises—SP2019 (mean = 19.4 ng m3; range:
9.5-555.6 ng m>), SP2021 (mean = 20.4 ng m>; range: 1.3-81.3 ng m>), and
SP2023 (mean = 18.3 ng m?; range: 1.8-457.0 ng m>) showed no significant
variation (one-way ANOVA; p > 0.2), indicating that interannual variation was rather
minor. A clear latitudinal gradient in ON concentrations was observed along the
Antarctic-to-Arctic transect, with peak values in the 20-40° N zone and a gradual
decline toward both polar regions (Fig. 2a). Based on spatial distribution patterns, the
study transect can be divided into four regions (Fig. 1): (1) the Arctic Ocean region
(AO, north of ~60° N); (2) the Coastal East Asia region (CEA, 20—60° N); (3) the
Southeast Asia-Australia Tropical Ocean region (SATO, ~ 20° N—40° S); and (4) the
Southern Ocean region (SO, south of ~ 40° S).

The CEA region exhibited the highest ON concentrations (mean = 164.6 ng m™>)
but the lowest ON/TN ratio (mean = 21.1 + 7.9%). In contrast, the SO region showed
the lowest ON concentrations (mean = 12.0 ng m3; range: 1.8-32.3 ng m™>) and
higher ON/TN ratios (mean = 27.8 £ 11.0%). Notably, the AO region displayed the
highest ON/TN ratios (mean = 38.6 = 12.4%) despite relatively low ON

12
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concentrations (mean = 19.1 ng m™>; range: 5.2-32.2 ng m>). The ON/TN ratio in
SATO region (26.8 £ 10.0%) is similar to that of SO but with a lower ON
concentration (mean = 23.4 ng m3; range: 5.7-70.1 ng m>), which is much lower
than the CEA region, but higher than the high latitude two pole regions.

Since direct measurement data of total ON in global MABL are limited, WSON
data were summarized for comparison (Table 1). Overall, the previous results are
consistent with the spatial trends of ON in our study. WSON concentrations exhibit
significant spatial variation, generally higher in the NH than in the SH, highlighting
the substantial contribution of anthropogenic sources (Violaki et al., 2015b). In
addition, WSON concentrations tend to be higher closer to land, while in remote
ocean areas, WSON levels are generally lower. The reported ratios of WSON/WSTN
in previous studies vary significantly across different investigation sites. Moreover, in
remote marine environments, the WSON/WSTN ratio is relatively high, suggesting
that WSON plays a substantial role in the biogeochemical cycle of nitrogen within
these remote regions. It is important to note that most previous studies over the
remote ocean measured only WSON, without accounting for the WION. As a result,
the ON/TN ratios in this region were likely underestimated. Based on our comparison,
the total ON concentration in the Southern Ocean may have been underestimated by
approximately 40%, hinting the significant contribution of the insoluble organic
fraction that has been largely overlooked in earlier datasets due to measurement

method limitations.
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4. Discussion
4.1 Source identification of ON

ON in the MABL primarily originates from two main source pathways: marine
emissions and long-distance continental transport. Marine sources include primary
ON, predominantly associated with sea-spray particles enriched in biological material
from the ocean surface microlayer, and secondary ON. The latter not only derives
from marine precursors such as alkylamines that react with acidic species (Altieri et
al., 2016; Facchini et al., 2008), but also significantly involves the atmospheric
oxidation of marine-derived biogenic volatile organic compounds (BVOCs).
Specifically, isoprene and monoterpenes emitted from the ocean can react with
hydroxyl (OH) or nitrate radicals (NO3) to form secondary organic nitrates (Fisher et
al., 2016; Ng et al., 2017). Additionally, direct sea-to-air emissions of light alkyl
nitrates produced photochemically in the surface water contribute to the MABL ON
pool (Chuck et al., 2002). Continental sources involve the long-range transport of
organic emissions—including combustion byproducts, soil- and vegetation-derived
compounds, and biomass burning aerosols. It is important to note that these
continental inputs include both ON formed directly over land and ON produced from
continental precursors during transport (Duce et al., 2008; Li et al., 2025). This
transport can significantly influence remote ocean regions (Cape et al., 2011; Jickells
etal., 2013).

ON concentrations in the CEA region were the highest among all study regions,
with air masses spending 22.6% of their 5-day trajectories over continental areas (Fig.
3b). A significant correlation between ON and crustal elements such as nssCa®* (r =
0.75, p < 0.01; Fig. 4) likely suggests the influences of continental transport of
particles on the ON levels in this region (Xiao et al., 2016). A significant correlation
between ON and the anthropogenic tracer EC (r = 0.81, p < 0.01; Fig. 4) indicates that
fossil fuel combustion and biomass burning are important ON sources (Shubhankar
and Ambade, 2016; Wu and Yu, 2016). Similarly, the robust association between ON
and nssK™ (r = 0.78, p < 0.01; Fig. 4), a tracer of biomass burning, also supports
contributions from agricultural and residential biomass burning (Song et al., 2018).
Despite the high absolute ON concentrations, the relatively low ON/TN ratio (21.1%)
likely reflects disproportionately elevated IN emissions from intensive human

activities, particularly NH3z volatilization from agriculture and vehicular NOy
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emissions (Pavuluri et al., 2015). This interpretation aligns with emission inventories
that identify the CEA as a global nitrogen pollution hotspot, where ON is co-emitted
or formed from precursors that share common sources with EC and other
combustion-related pollutants, originating from incomplete combustion and industrial

processes (Deng et al., 2024).

|
0 8 16 24 32 >40
ON concentration (ng m-3)

Figure 3. 5-day air-mass backward trajectories with ON concentrations and ON/TN ratios
along the Chinese Arctic/Antarctic expedition voyage over the Arctic Ocean (a), the coastal

East Asia (b), the Southeast Asia-Australia Tropical Ocean (c), and the Southern Ocean (d).

The SATO region exhibits intermediate level of ON concentrations (mean = 23.4
+ 18.0 ng m™), lower than those influenced by anthropogenic activities in CEA but
higher than in polar regions. In this region, ON shows a significant positive
correlation with nssCa?" (Fig. 4; r = 0.76, p < 0.01), suggesting that terrestrial mineral

inputs (e.g., dust) influence ON levels, rather than purely marine sources. In addition,
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backward trajectory analysis showed that samples affected by continental air masses
have significantly higher ON concentrations than those exposed solely to marine air
(Fig. 3c), suggesting the influences of continental sources. However, ON does not
exhibit significant correlations with nssK* or with EC (p > 0.05), indicating that
combustion emissions may not be the primary drivers. These findings suggest that the
variability of ON in the SATO region results from a mixture of marine-terrestrial
interactions, primarily modulated by episodic terrestrial mineral influence rather than
continuous marine emissions. Notably, this region displays an elevated ON/TN ratio
(Fig. 2), primarily due to its very low IN levels—approximately 85% lower than in
the CEA region—which amplifies the relative contribution of ON within TN.

AO j08
1 0.6
0.4
=
0
3
SATO 0.z a
0.4
0.6
SO 0.8

Na* nssk” nssCa2+ EC

Figure 4. Spatial variations in the correlation coefficient between ON and chemical species

3T 34}

across four regions (with “**” indicating p < 0.01 and indicating p < 0.05).

In the AO region, ON concentrations were slightly lower than in the SATO
region and significantly lower than in the CEA region. In this area, ON exhibited a
significant positive correlation with Na*, which suggest the sea salts inputs (Fig. 4; r =
0.43, p < 0.01), and also showed significant correlations with nssK* (r = 0.61, p <
0.01). Its correlations with nssCa?" (r = 0.42) and EC (r = 0.42) were weaker but still
significant (p < 0.05). These patterns suggest that ON in the AO region may originate
not only from primary sea-salt aerosols but may also be linked to biomass burning.
However, the backward trajectory analysis shows no significant difference in ON

concentrations between air masses influenced by continental sources and those
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transported solely over the ocean (Fig. S1b; independent samples t-test, p = 0.16),
likely suggesting the limited role of terrestrial inputs in this region. Unlike the SATO
region, where ON showed no correlation with AEC (Fig. S2b; p > 0.05), ON
concentrations in the AO exhibited a strong positive correlation with the AEC (Fig.
S2a; p < 0.01), suggesting that marine biological activity is a key driver of ON
variability in this region (Creamean et al., 2022). Collectively, these results
demonstrate that the AO region is primarily governed by marine processes, with ON
derived from both sea-spray organic enrichment and biogenic aerosol precursors,
while terrestrial influences remain secondary (Nejgaard et al., 2022).

In the SO region, ON concentrations were the lowest among all regions (mean =
12.0 + 7.1 ng m?), yet the ON/TN ratio was relatively high (27.8 = 11.0%). Back
trajectory analysis indicates that air masses predominantly originated from the open
ocean and Antarctic continent (Fig. 3d), with minimal anthropogenic influence. ON
here exhibited a significant positive correlation with Na* (Fig. 4; r = 0.43, p < 0.01),
but no significant relationships with nssK*, nssCa?" or EC. While long-range transport
events may deliver stable continental tracers like EC to this remote region, the lack of
correlation between ON and these markers suggests that continental inputs are not the
primary driver of ON variability. This pattern, combined with the association with
Na" suggests that primary sea-salt emissions are an important pathway for ON in the
SO atmosphere (Matsumoto et al., 2022), likely through the incorporation of
marine-derived organic matter into sea-spray aerosols. Meanwhile, the absence of
associations with terrestrial tracers further supports the notion that ON in this remote
region is likely influenced more significantly by natural marine processes rather than

continental or anthropogenic sources (Altieri et al., 2016).
4.2 Role of sea-ice—associated biogenic processes in shaping Antarctic aerosol ON

Sea-ice and open-ocean environments create distinct conditions for the production and
emission of ON. While sea ice restricts direct air—sea exchange, it hosts specialized
microbial communities and accumulates organic matter within brine channels. During
melt and ice-edge retreat, this organic material is released into waters characterized by
high primary productivity (Arrigo et al., 2008). This biological intensification
enriches the surface microlayer and supplies precursors for aerosolization via sea
spray and secondary formation (Dall’Osto et al., 2017; DeMott et al., 2016; Galgani et
al., 2016; Wilson et al., 2015).
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Along the Antarctic coast, we classified samples into two groups based on
air-mass histories: open ocean (OO), influenced almost exclusively by open-ocean
trajectories, and sea ice (SI), with air masses residing over sea ice for extended
periods. SI samples exhibited significantly higher ON concentrations and ON/TN
ratios than OO samples (p < 0.001; Mann—Whitney U test; Fig. Sa, b). Multiple lines
of evidence point to sea-ice—associated biological processes as the driver of these
enhancements: (1) Strong positive correlations of ON with sea-ice concentration (SIC;
r = 0.86, p < 0.01) and with air-mass exposure to chlorophyll-a (AEC; r = 0.91, p <
0.01) in the SI group indicate that both ice cover and associated biological activity
elevate ON (Fig. 5c, d); (2) PSCF analysis identifies high-probability source regions
(PSCF > 0.8) over sea ice and its marginal zone for SI samples (Fig. S3c), consistent
with an ice-edge origin; and (3) In contrast, ON shows no significant correlation with
Na' (r=-0.22, p > 0.05) or with IN (p > 0.05) for SI samples (Fig. S4a,b), suggesting
that primary sea-salt emissions and purely abiotic inorganic pathways are not the

dominant contributors.

—
V)
~
—~
O
~

&40+ ** **
‘s 50 4
on
5 304 ‘ —~ o i
g 540_ ¢ s ¢
= z —e AN
2 20 £ 30 .
§ . . % * > <+
B 10 L. S 20 P I
Z . * 1 b
o b ¥ 10 ®
0_ * o
; ; 0 : ;
00 Sl 00 Sl
c d
(c) d,,,
60
0.20 1
50
3 40 0.18+ y=0.01x+0.04
~ O i =
O 4. D 016 r=0.92 p=0.01_
%) <"
°
201 0.14
10 y=5.59x-40.91
r=0.86 p=0.001 0.12
o4 ¢ 1
L S — olotrn—mrr+ 7 ———————
9 10 1 12 13 14 15 16 17 9 10 1" 12 13 14 15 16 17
ON Concentration (ng m™) ON Concentration (ng m™)

Figure 5. Comparison of measured ON concentrations (a) and ON/TN ratio (b) between SI

and OO aerosol samples (“**” indicating p < 0.01). And correlations between SIC (c), AEC
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(d) and ON concentration in SI aerosol samples. The sample sizes are n = 10 for panel (c) and
n = 6 for panel (d). These reduced sample sizes are due to unavailable satellite SIC/Chl-a data

along the trajectories, and in this study SIC or Chl-a is used only when = 75% of the

trajectory points have valid satellite values (see Sections 2.6 — 2.7).

These observations support a mechanistic pathway whereby organic matter
released from sympagic (ice-associated) communities during melt enriches the surface
microlayer and is transferred to the atmosphere via sea spray as ON-rich particles
(DeMott et al., 2016; Wilson et al., 2015). Concurrently, a portion of this organic
nitrogen is rapidly microbially degraded to volatile alkylamines (e.g., methylamines)
(Taubert et al., 2017), which then form aminium salts through acid—base reactions
with marine emissions-derived acids (e.g., H2SO4, MSA), contributing to both ON
and IN in SI conditions (Brean et al., 2021; Dawson et al., 2012; Fitzsimons et al.,
2023). This process results in the formation of both organic (amine salts, contributing
to ON) and inorganic nitrogen aerosol species (NHs" and NO3), which explains their
elevated levels in the SI group samples (Fig. S5). The elevated ON/TN ratios in SI
samples (31.0%) relative to OO samples (20.8%) further indicate a greater fractional
contribution of ON under sea-ice influence (Fig. 5b), consistent with reported releases
of organic species from the sympagic ecosystem during melt (Jang et al., 2023;
Mirrielees et al., 2024; Yan et al., 2020).

For OO samples, PSCF hotspots (PSCF > 0.8) shift toward the offshore Southern
Ocean (Fig. S3d), in line with trajectories dominated by open-ocean air masses. The
positive association between ON and oceanic residence time (r = 0.66, p < 0.01; Fig.
S6) suggests that, as sea-ice influence diminishes, ON variability becomes
increasingly governed by open-ocean biological processes and long-range marine
aerosol transport.

Overall, these results establish the ice-edge/sympagic environment as an
important regulator of Antarctic aerosol ON. Sea-ice dynamics modulate both the
magnitude (higher ON and ON/TN) and sources (biogenic enrichment and
amine-driven secondary formation) of ON, underscoring the need to represent

sea-ice—associated processes in polar atmospheric chemistry and climate models.
5. Conclusions and Implications

Taking advantage of a new analytical tool for ON and aerosol samples collected from
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three Antarctic and Arctic expeditions from 2019 to 2024, we quantified aerosol ON
and IN in 92 TSP samples spanning 160° of latitude in the MABL. This dataset
provides the first direct, subtraction-free ON measurements along a global-scale
marine transect, capturing both water-soluble and water-insoluble fractions.

We observed a pronounced hemispheric and latitudinal gradient in ON, with
substantially higher concentrations in the Northern Hemisphere (83.3 + 141.4 ng m™)
than in the Southern Hemisphere (15.4 + 12.4 ng m). Regionally, Coastal East Asia
exhibited the highest ON (164.6 + 179.1 ng m™) but a low ON/TN ratio (21.1%),
consistent with strong terrestrial and anthropogenic influences that elevate IN. The
Southeast Asia—Australia Tropical Ocean showed intermediate ON and a relatively
high ON/TN ratio due to low IN. The Arctic Ocean had lower ON but the highest
ON/TN ratio (38.6%), indicating prominent marine biogenic contributions. The
Southern Ocean showed the lowest ON (12.0 £ 7.0 ng m™) yet a relatively high
ON/TN ratio (27.8%), also suggestive of oceanic sources. Interannual variability
across the three Antarctic campaigns was minor.

Multiple lines of evidence, including correlations with tracers, back-trajectory
analysis, and PSCF, indicate that ON in CEA is dominated by continental inputs from
combustion and dust, whereas ON in AO and SO is primarily controlled by marine
processes. Along the Antarctic coast, air masses influenced by sea ice exhibited
significantly higher ON and ON/TN than those influenced by the open ocean, with
strong positive relationships to sea-ice concentration and air-mass exposure to
chlorophyll-a. These patterns point to sympagic and ice-edge biogenic
activity—through organic enrichment of sea spray and amine-driven secondary
formation—as key regulators of ON near Antarctica.

Comparison with prior WSON-only datasets suggests that earlier studies likely
underestimated total ON—by approximately 40% in the Southern Ocean—due to
omission of WION. Accounting for both soluble and insoluble phases is therefore
essential for constraining nitrogen deposition to the oceans and for representing ON’s
roles in atmospheric processes. Specifically, given that WION may significantly
influence cloud condensation nuclei activity and cloud droplet formation, overlooking
this fraction could lead to substantial uncertainties in assessing the radiative forcing
and climate effects of marine aerosols.

These findings fill a critical observational gap, establish robust hemispheric and

regional patterns of marine aerosol ON, and provide essential constraints for
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atmospheric chemistry and climate models. Future efforts should explicitly represent
ON sources, including sea-ice—associated biogenic processes and amine chemistry,
and expand year-round, size-resolved, and composition-resolved measurements paired
with isotopic and molecular tracers to refine source apportionment and evaluate model

parameterizations across regions and seasons.
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