

3 Ningning Sun<sup>1,2</sup>, Xu Yu<sup>2,3</sup>, Jian Zhen Yu<sup>2,4\*</sup>, Bo Zhang<sup>1</sup>, Yilan Li<sup>1,5</sup>, Ye Hu<sup>1</sup>, Zhe Li<sup>1</sup>,  
4 Zhenlou Chen<sup>1</sup>, Guitao Shi<sup>1\*</sup>

<sup>5</sup> <sup>1</sup> Key Laboratory of Geographic Information Science (Ministry of Education), School  
<sup>6</sup> of Geographic Sciences and State Key Laboratory of Estuarine and Coastal Research,  
<sup>7</sup> East China Normal University, Shanghai, China

<sup>8</sup> <sup>2</sup> Division of Environment and Sustainability, Hong Kong University of Science &  
<sup>9</sup> Technology, Clear Water Bay, Kowloon, Hong Kong, China

10 <sup>3</sup> Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution  
11 Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and  
12 Equipment Technology, Joint International Research Laboratory of Climate and  
13 Environment Change, School of Environmental Science and Engineering, Nanjing  
14 University of Information Science and Technology, Nanjing, Jiangsu, China

<sup>15</sup> <sup>4</sup> Department of Chemistry, Hong Kong University of Science & Technology, Clear  
<sup>16</sup> Water Bay, Kowloon, Hong Kong, China

17 <sup>5</sup> Department of Chemistry, State University of New York College of Environmental  
18 Science and Forestry, Syracuse, NY, USA

19

20

21

22 \*Correspondence:

23 Jian Zhen Yu (jian.yu@ust.hk)

24 Guitao Shi (gtshi@geo.ecnu.edu.cn)

25 **Abstract**

26 Organic nitrogen (ON) is an important yet poorly constrained component of aerosol  
27 total nitrogen (TN), particularly over remote oceans. We quantified aerosol ON in 92  
28 total suspended particulate samples collected across approximately 160° of latitude in  
29 the marine atmospheric boundary layer (MABL) during Chinese Antarctic and Arctic  
30 expeditions (2019–2024), using a newly developed method that simultaneously  
31 determines ON and inorganic nitrogen. A significant latitudinal gradient was observed,  
32 with significantly higher ON concentrations (expressed as N) in the Northern  
33 Hemisphere ( $83.3\pm141.4 \text{ ng m}^{-3}$ ) than in the Southern Hemisphere ( $15.4\pm12.4 \text{ ng m}^{-3}$ ).  
34 Regionally, coastal East Asia recorded the highest ON levels ( $164.6\pm179.1 \text{ ng m}^{-3}$ )  
35 but a lower ON/TN ratio ( $21.1\pm7.9\%$ ), indicating strong terrestrial and anthropogenic  
36 influence. In contrast, the Arctic Ocean had lower ON concentrations ( $19.1\pm19.0 \text{ ng}$   
37  $\text{m}^{-3}$ ) but the highest ON/TN ratio ( $38.6\pm12.4\%$ ), suggesting dominant marine biogenic  
38 sources. The Southern Ocean showed the lowest ON concentration ( $12.0\pm7.1 \text{ ng m}^{-3}$ )  
39 yet a relatively high ON/TN ratio ( $27.8\pm11.0\%$ ), also pointing to oceanic origins.  
40 Near Antarctica, samples influenced by sea-ice air masses displayed markedly  
41 elevated ON and ON/TN ratios. These increases were strongly correlated with sea ice  
42 concentration and chlorophyll-a exposure, indicating enhanced biogenic emissions  
43 from sea-ice-associated ecosystems. This study offers the first direct ON  
44 measurements along a global MABL transect, revealing distinct latitudinal and  
45 regional patterns, and emphasizing the combined roles of continental inputs and  
46 marine sources. It also identifies sea-ice dynamics as a key factor influencing ON in  
47 Antarctic regions, providing crucial data for improving atmospheric and climate  
48 models.

49

50 **1. Introduction**

51 Marine atmospheric boundary layer (MABL) aerosol particles contain significant  
52 amounts of organic nitrogen (ON) and inorganic nitrogen (IN), both recognized as  
53 major components of atmospheric particulate matter (Li et al., 2023). ON may  
54 account for roughly 20–80% of total reactive nitrogen deposition to the surface ocean,  
55 implying a potentially large, yet uncertain, role in marine nitrogen cycling and climate  
56 (Altieri et al., 2016, 2021). ON affects climate and biogeochemistry by supplying  
57 bioavailable nitrogen, modifying cloud condensation nuclei and ice-nucleating  
58 particle populations, and contributing to aerosol light absorption. Hygroscopic ON  
59 compounds (e.g., amino acids, amines, sugars) enhance water uptake and cloud  
60 condensation nuclei (CCN) activity; some proteinaceous organics act as efficient ice  
61 nuclei (Alsante et al., 2024; Chan et al., 2005). Marine alkylamines can form salts  
62 with sulfuric acid, promoting new particle formation and growth, thereby linking ON  
63 to aerosol number and radiative forcing (Almeida et al., 2013; Brean et al., 2021).  
64 Nitrogen-containing chromophores (brown nitrogen) can dominate the absorptive  
65 properties of organic aerosol regionally and contribute substantially to global  
66 absorption by carbonaceous aerosol (Li et al., 2025).

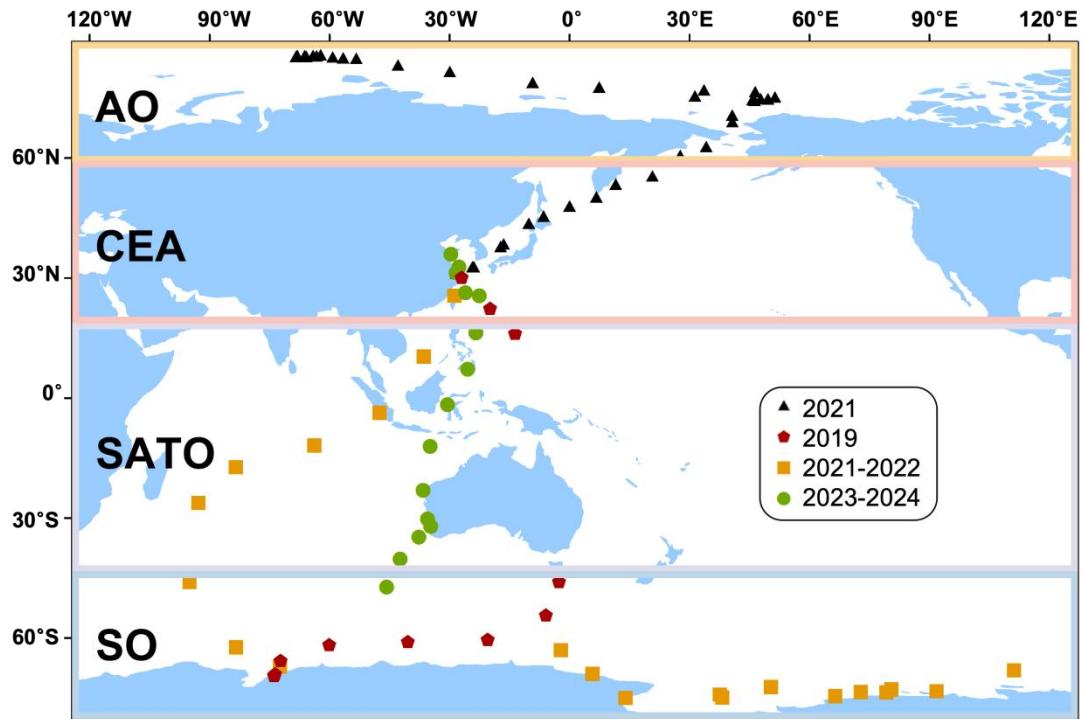
67 However, ON remains poorly constrained due to analytical limitations (Baker et  
68 al., 2017). Previous studies focused on the water-soluble fraction of aerosol ON  
69 (WSON) inferred indirectly by subtraction IN from total nitrogen (TN) ( $ON = TN -$   
70 IN), while the water-insoluble organic nitrogen (WION) fraction has been largely  
71 unquantified (Cornell, 1999; Mace et al., 2003). The subtraction approach is prone to  
72 errors and artifacts, especially when TN and IN concentrations are similar, leading to  
73 underestimation and large uncertainties in ON burdens and fluxes. A novel method  
74 developed by Yu et al. (2021) addresses these limitations. Based on thermal evolution  
75 and chemiluminescence detection, this approach measures aerosol IN and ON  
76 simultaneously, eliminating subtraction-based biases and capturing both WSON and  
77 WION.

78 Aerosol ON arises from diverse sources. Marine pathways include primary

79 emissions via sea spray enriched with organic matter from the sea surface microlayer  
80 and secondary formation from marine precursors (e.g., alkylamines) reacting with  
81 acidic species (Facchini et al., 2008; Miyazaki et al., 2011a). Continental pathways  
82 include long-range transport of organic emissions from fossil fuel combustion,  
83 biomass burning, soils, and vegetation (Cape et al., 2011; Jickells et al., 2013; Luo et  
84 al., 2018). Primary marine emissions inject large amounts of particulate matter  
85 annually, carrying organic carbon and nitrogen from plankton, bacteria, and surface  
86 films (Violaki et al., 2015a). Observations have shown that sea spray can carry  
87 substantial ON and that WION can dominate ocean-influenced aerosol ON (Miyazaki  
88 et al., 2011a).

89 While marine aerosol ON has been the subject of several studies, its sources in  
90 remote oceanic regions remain a matter of debate. Some studies implicate continental  
91 transport (e.g., dust, anthropogenic emissions), whereas others point to direct sea  
92 spray emissions or secondary formation from marine-derived alkylamines (Altieri et  
93 al., 2016; Lesworth et al., 2010; Zamora et al., 2011). Correlations between ON and  
94 ocean biological proxies (e.g., chlorophyll-a) suggest in situ marine production,  
95 particularly during phytoplankton blooms (Altieri et al., 2016; Dall’Osto et al., 2019).  
96 Yet open-ocean and polar regions, where sea ice variability can strongly modulate  
97 primary productivity and thus potentially influence ON emissions, remain sparsely  
98 observed, limiting constraints on potential sea ice linked controls on ON, especially  
99 for high latitudes (Altieri et al., 2016; Matsumoto et al., 2022). Around Antarctica in  
100 particular, the paucity of direct ON measurements—especially of WION—limits  
101 understanding of ON sources, seasonality, and impacts on high-latitude atmospheric  
102 chemistry.

103 To address these gaps, we measured aerosol ON and IN using samples collected  
104 during four Chinese Arctic and Antarctic research expedition campaigns, spanning  
105  $\sim 160^\circ$  of latitude from the Arctic to Antarctica. The dataset, determined by this newly  
106 developed analyzer, enables evaluation of hemispheric and regional patterns,  
107 assessment of controlling factors (e.g., continental influence, marine biological  
108 activity), and explicit investigation of sea-ice-associated processes near Antarctica.


109 The results provide observational constraints that can be used to refine the  
110 representation of nitrogen cycling and atmosphere–ocean interactions in climate and  
111 atmospheric chemistry models.

112 **2. Methodology**

113 **2.1. Sample Collection**

114 A total of 92 total suspended particulate (TSP) samples were collected during three  
115 Chinese Antarctic research expeditions and one Arctic expedition aboard the  
116 icebreaker R/V *Xuelong*. Sampling spanned a latitudinal range of approximately 160°  
117 (86°N to 75°S), encompassing polar and mid-latitude marine regions. The Antarctic  
118 samplings were conducted in October to November in 2019 (SP2019, 14 samples),  
119 November 2021 to March 2022 (SP2021, 23 samples), and October 2023 to April  
120 2024 (SP2023, 15 samples), while the Arctic campaign occurred in July to September  
121 in 2021 (40 samples).

122 During the Antarctic campaigns, aerosols were collected using a high-volume air  
123 sampler (HVAS, TISCH Environmental, USA; flow rate: 1.2 m<sup>3</sup> min<sup>-1</sup>) equipped with  
124 pre-baked (500°C, 24 h) Whatman quartz filters (20.3 × 25.4 cm; Whatman Ltd., UK).  
125 For Arctic sampling, a DIGITEL DHA-80 sampler (flow rate: 500 L min<sup>-1</sup>) with 14.2  
126 cm diameter Whatman quartz filters were employed. Each sample represented a 48 h  
127 integrated collection period, corresponding to 2–4° latitude traversed during ship  
128 transits. To minimize contamination from ship emissions, a wind sector controller  
129 restricted sampling to air masses within 120° of the ship’s heading. Filters were  
130 handled using nitrile gloves and masks to avoid potential contamination.  
131 Post-sampling, filters were folded with the collection surface inward, wrapped in  
132 pre-cleaned aluminum foil, sealed in polyethylene bags, labeled with sampling time  
133 and location, and stored at -20°C. Detailed protocols followed established  
134 methodologies (Shi et al., 2021). Following expeditions, samples were transported to  
135 the laboratory under frozen conditions and maintained at -20°C until analysis. The  
136 sampling location for the Antarctic and Arctic campaigns are illustrated in Fig. 1.



137

138 Figure 1. Total suspended particulate (TSP) aerosol sampling locations along the cruises path  
 139 from Shanghai, China to Antarctica and Arctic.

140 **2.2. Chemistry Analysis for major ions, EC and OC**

141 Major ions were quantified through ion chromatographic analysis of water extracts of  
 142 the aerosol samples. The extraction of filters in the laboratory followed protocols  
 143 comparable to those described in the previous study (Shi et al., 2021). Prior to  
 144 measurement, three-quarters of each filter was sectioned into small pieces using  
 145 acid-cleaned Teflon-coated scissors and transferred into high-purity Milli-Q water  
 146 (18.2 MΩ). The suspensions were subjected to ultrasonic treatment for 30 min,  
 147 followed by continuous shaking at 120 rpm for 12 h to ensure thorough extraction of  
 148 water-soluble components. The extracts were subsequently filtered through 0.22 μm  
 149 polytetrafluoroethylene (PTFE) membranes prior to ion analysis. The concentrations  
 150 of the main ions ( $\text{NO}_3^-$ ,  $\text{SO}_4^{2-}$ ,  $\text{Na}^+$ ,  $\text{NH}_4^+$ ,  $\text{K}^+$ , and  $\text{Ca}^{2+}$ ) in the sample were  
 151 determined by an ion chromatograph (AQ1100, RFIC, equipped with a CS12 column  
 152 (2×250 mm) for cation analysis, AS11 column (2×250 mm) for anion analysis,  
 153 Thermo Scientific, USA), and the eluents of cation and anion were 18.00 mM  
 154 methylsulfonic acid (MSA) and potassium hydroxide (KOH), respectively. During

155 sample analysis, the relative deviation of repeated assays ( $n = 5$ ) of all ions is usually  
156 less than 5%. We used the following formula to calculate non-sea salt  $\text{SO}_4^{2-}$   
157 ( $\text{nssSO}_4^{2-}$ ), non-sea salt  $\text{Ca}^{2+}$  ( $\text{nssCa}^{2+}$ ) and non-sea salt  $\text{K}^+$  ( $\text{nssK}^+$ ):

$$[\text{nssSO}_4^{2-}] = [\text{total SO}_4^{2-}] - 0.253 \times [\text{Na}^+] \quad (1)$$

$$[\text{nssCa}^{2+}] = [\text{total Ca}^{2+}] - 0.038 \times [\text{Na}^+] \quad (2)$$

$$[\text{nssK}^+] = [\text{total K}^+] - 0.037 \times [\text{Na}^+] \quad (3)$$

158 where 0.252, 0.037, and 0.038 in the above expressions are the ratios of  $\text{SO}_4^{2-}/\text{Na}^+$   
159 (Quinby-Hunt and Turehian, 1983),  $\text{Ca}^{2+}/\text{Na}^+$  (Anonymous, 1997), and  $\text{K}^+/\text{Na}^+$  (Keene  
160 et al., 1986) in the sea water, respectively.

161 OC and EC concentrations were determined using a Thermal/Optical Carbon  
162 Analyzer (DRI, Model 2001, Atmoslytic Inc., USA) following the IMPROVE  
163 protocol as implemented by Wu et al., (2024). OC and EC measurements were  
164 conducted for aerosol filters collected during the 2021 Arctic and 2019 Antarctic  
165 cruises.

### 166 **2.3. ON measurement**

167 Aerosol ON and IN were simultaneously measured using the recently developed  
168 Aerosol Nitrogen Analyzer system, which enables sensitive quantification directly  
169 from filter samples without pretreatment. Detailed descriptions of the method are  
170 provided in Yu et al (2021). Briefly, the method detection limit is 96 ng N. Because  
171 the detection limit scales inversely with the analyzed filter area, it can be readily  
172 lowered by analyzing a larger aliquot. In this study, 4–6  $\text{cm}^2$  of filter material was  
173 typically analyzed for each sample, yielding a proportionally lower effective detection  
174 limit and ensuring stable and reliable quantification for low-concentration marine  
175 aerosol samples. Compared with traditional IC-based approaches, this analyzer  
176 provides a clear advantage by determining IN and ON simultaneously on the same  
177 filter aliquot, thereby avoiding the subtraction-based “difference method” ( $\text{ON} = \text{TN} -$   
178  $\text{IN}$ ) and the associated uncertainty propagation when TN and IN are similar in  
179 magnitude.

180 The analyzer integrates a thermal aerosol carbon analyzer and a

181 chemiluminescence NO<sub>x</sub> analyzer. Aerosol samples collected on quartz fiber filters  
182 were thermally evolved under a programmed 6-step temperature protocol (150, 180,  
183 300, 400, 500, and 800 °C) in a 1% O<sub>2</sub>/99% He carrier gas. The evolved materials  
184 were catalytically oxidized to CO<sub>2</sub> and nitrogen oxides (NO<sub>y</sub>), with the C signal  
185 monitored via methanator-FID detection and the N signal recorded through  
186 chemiluminescence after converting NO<sub>y</sub> to NO. The C signal assists in  
187 differentiating IN and ON components, as ON aerosols produce both C and N signals  
188 while the IN fraction only yields an N signal. The programmed thermal evolution  
189 facilitates separation of aerosol IN and ON due to their distinct thermal characteristics.  
190 Specifically, IN and ON discrimination is achieved by jointly interpreting the C and N  
191 thermograms: ON is identified by co-evolving C and N signals across the temperature  
192 steps, whereas IN is characterized by N-only evolution without a corresponding C  
193 signal. The separation of overlapping thermal features is further resolved using  
194 multivariate curve resolution (MCR), which deconvolves the mixed thermograms into  
195 source-like components based on their distinct thermal evolution patterns.  
196 Quantification of IN and ON is achieved through multivariate curve resolution (MCR)  
197 data treatment of the C and N thermograms using USEPA PMF (version 5.0).

198 **2.4. Backward Trajectory Analysis**

199 To study air mass origins, air mass backward trajectories have been calculated using  
200 the Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model with  
201 meteorological fields from the National Oceanic and Atmospheric Administration  
202 (NOAA) air resources laboratory GDAS database. Five-day backward trajectories  
203 were calculated in order to reveal the history of the air masses arriving at the sampling  
204 site (Stein et al., 2015). Each trajectory originated at the vessel's real-time position  
205 with an arrival height of 20 m, capturing boundary layer transport while minimizing  
206 local ship influence. Air mass backward trajectories were simulated using the  
207 HYSPLIT model with meteorological fields from the NOAA GDAS database to  
208 reveal the transport history of air masses arriving at the vessel (Stein et al., 2015).  
209 Given that the ship was continuously moving and each sample integrates air masses

210 over approximately 2–4 degrees of latitude, we applied a nested strategy to account  
211 for spatiotemporal variability. For the initial characterization of the entire dataset, a  
212 representative sampling location was defined for each sample using the average  
213 latitude and longitude of its start and end positions, with backward trajectories  
214 simulated at 6 h intervals anchored to this midpoint to identify dominant air-mass  
215 categories (Fig. 3). Subsequently, to precisely investigate the influence of sea ice on  
216 ON in the Southern Ocean and Antarctic marginal regions (Section 4.2), a targeted  
217 high-resolution analysis was performed on this subset of samples. For each Antarctic  
218 sample, the actual cruise track was equally divided into 48 points corresponding to the  
219 hourly intervals of the 48 h sampling period, and a 120 h backward trajectory was  
220 calculated for each of these 48 coordinates (Fig. S3a and b).

221 To determine whether the backward trajectories of the MABL samples were  
222 mainly influenced by the open ocean, sea-ice-covered regions, or the continental area,  
223 we calculated the time-weighted residence-time ratios of air masses over sea ice ( $R_S$ ),  
224 open ocean ( $R_O$ ), and the continental area ( $R_C$ ) using the following equation:

$$R_S(R_O \text{ or } R_C) = \frac{\sum_{i=1}^{N_S(N_O \text{ or } N_C)} x e^{-\frac{t_i}{120}}}{\sum_{i=1}^{N_{\text{total}}} x e^{-\frac{t_i}{120}}} \quad (4)$$

225 where  $N_{\text{total}}$  denotes the total number of trajectory endpoints;  $N_S$   $N_O$  and  $N_C$  represent  
226 the numbers of endpoints located over sea ice, the open ocean, and the Antarctic ice  
227 sheet, respectively.  $t_i$  is the backward-trajectory time (in hours), and  $t_i/120$  is a  
228 time-weighting factor (Zhou et al., 2021). This factor accounts for air-mass dispersion  
229 during transport and aerosol removal by particle deposition; therefore, regions  
230 associated with longer trajectory times exert weaker influences on the sampling site,  
231 whereas nearby regions exert stronger influences. Accordingly, higher values of  $R_S$ ,  
232  $R_O$  and  $R_C$  indicate greater influences from sea ice, the open ocean, and the Antarctic  
233 ice sheet, respectively.

## 234 **2.5. Potential Source Contribution Function (PSCF) analysis**

235 Potential Source Contribution Function (PSCF) analysis was implemented to identify  
236 source regions of ON observed during the sampling period (Ashbaugh et al., 1985). A

237 higher PSCF value indicates a greater potential source contribution to the receptor site.  
238 In our study, the PSCF domain was established within a grid cell encompassing all  
239 backward trajectories. The cruises were discretized into  $1^{\circ}$  latitude  $\times$   $1^{\circ}$  longitude grid  
240 cells. The PSCF value for cell ij was calculated as:

241 
$$PSCF_{ij} = \frac{\sum m_{ij}}{\sum n_{ij}} \quad (5)$$

242 where,  $m_{ij}$  = total trajectory endpoints within cell ij;  $n_{ij}$  = subset of endpoints  
243 associated with aerosol component concentrations exceeding the 75th percentile of  
244 cruise measurements. To mitigate uncertainty in cells with sparse trajectory density, a  
245 latitude-dependent weighting function (W) was applied:

246 
$$W = \begin{cases} 1.0 & \text{when } n_{ij} > N2 \\ 0.8 & \text{when } N1 < n_{ij} < N2 \\ 0 & \text{when } n_{ij} < N1 \end{cases} \quad (6)$$

247 where  $n_{ij}$  is the number of trajectories passing for each cell in the study period and  
248  $N1 = 60 * \cos(\text{latitude})$ , and  $N2 = 300 * \cos(\text{latitude})$ . The cosine factor is used to  
249 account for the changing grid cell size with varying latitude.

250 **2.6. Air-mass exposure to chlorophyll a**

251 The Air-mass Exposure to Chlorophyll a (Chl-a) index (AEC) serves as a quantitative  
252 metric to assess the influence of marine biogenic emissions on a target region through  
253 air mass transport (Blazina et al., 2017; Choi et al., 2019). This approach is grounded  
254 in the well-established correlation between ocean surface phytoplankton biomass and  
255 marine biogenic emissions, particularly dimethyl sulfide (DMS), where Chl-a  
256 concentration acts as a robust proxy for phytoplankton abundance (Siegel et al., 2013).  
257 The AEC index estimates the integrated exposure of an air mass to oceanic DMS  
258 source regions along its trajectory by accounting for both spatial distribution of Chl-a  
259 and atmospheric vertical mixing dynamics (Zhou et al., 2023).

260 For each trajectory point, Chl-a concentrations ( $Chla_i$ ) were obtained from  
261 satellite remote sensing products (Aqua-MODIS, OCI algorithm; 8-day composite, 4  
262 km  $\times$  4 km resolution; <https://oceancolor.gsfc.nasa.gov/l3/>) within a 20 km radius to  
263 reduce the influence of missing/cloud-contaminated pixels and pixel-scale noise,  
264 while remaining small enough to preserve local marine biological variability relevant

265 to each trajectory point. The 20 km radius approach has been widely adopted in  
 266 previous studies to mitigate the uncertainty of trajectory endpoints and ensure robust  
 267 matching with satellite data coverage in previous research (Park et al., 2018; Zhou et  
 268 al., 2021, 2023). Trajectory endpoints over Antarctica, sea-ice-covered areas, or at  
 269 pressures < 850 hPa were assigned Chl-a = 0 because air masses at these altitudes are  
 270 generally decoupled from local ocean surface biological activity (Zhou et al., 2023).  
 271 Points without valid Chl-a data were excluded. The AEC for a single trajectory was  
 272 computed as:

$$273 \quad AEC = \frac{\sum_{i=1}^{120} Chla_i \times e^{-(\frac{t_i}{120})}}{n} \quad (7)$$

274 where  $t_i$  denotes time backward along the trajectory (hours), and  $n$  is the total number  
 275 of valid trajectory points. The time points when the air mass passed over the continent  
 276 or regions covered by sea ice were assigned a zero chlorophyll value. To ensure  
 277 robustness, trajectories with  $n < 90$  (75% of 120 h data points at hourly resolution)  
 278 were discarded. For each sample, the final AEC value was derived from the arithmetic  
 279 mean of all valid trajectories during the sampling period (Yan et al., 2024).

280 **2.7. Sea ice concentration**

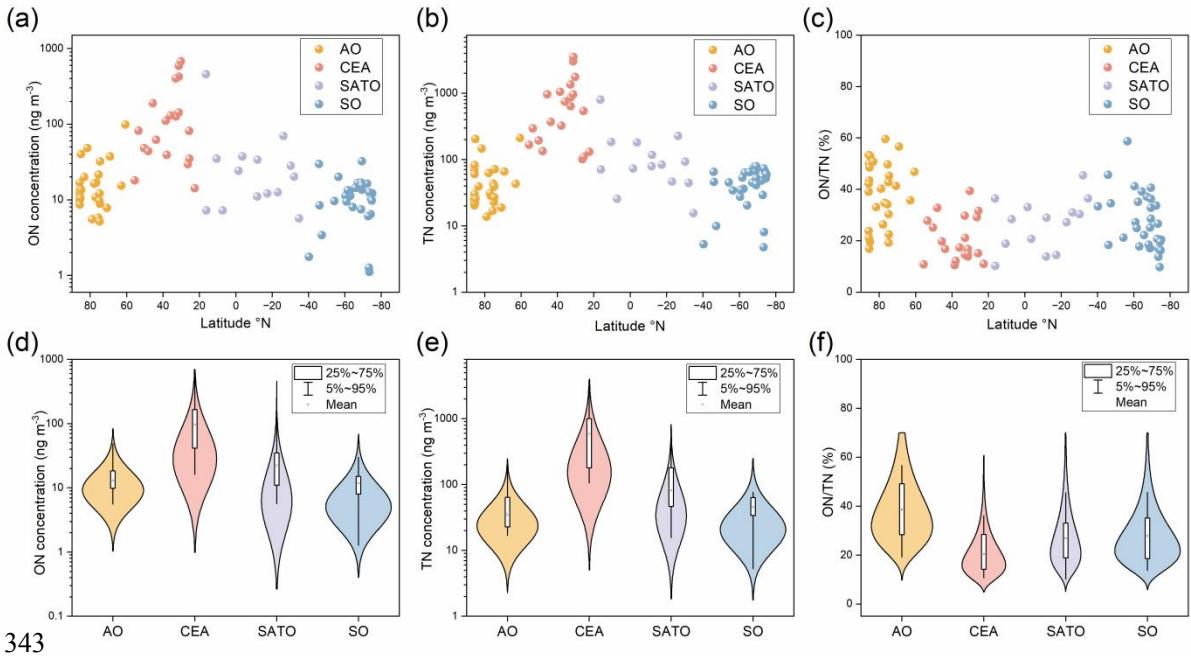
281 In this study, remote sensing data are utilized to illustrate the spatiotemporal  
 282 distribution of sea ice concentrations (SICs) in the Southern Ocean. For regional-scale  
 283 visualization of sea-ice extent (SIE) and SIC variability, we used the Sea Ice Index  
 284 (Version 3) distributed by the National Snow and Ice Data Center (NSIDC) (Fetterer  
 285 et al., 2017), which is derived from passive-microwave observations from DMSP  
 286 SSM/I and SSMIS sensors (Cavalieri et al., 1997).

287 Sea-ice concentrations used here are derived from daily gridded  
 288 passive-microwave SIC products, which provide all-weather coverage and are widely  
 289 used for polar sea-ice monitoring. The SIC of each sample is calculated using the  
 290 following formula:

$$291 \quad SIC = \frac{\sum_{i=1}^{Ns} SIC_i}{Ns} \quad (8)$$

292 where  $SIC_i$  represents the average sea ice density at the endpoint of the specified track.

293 Ns represents the total number of trajectory endpoints located on the sea ice area. For  
294 each trajectory endpoint, the SIC value was extracted by collocating the endpoint  
295 latitude/longitude and the corresponding day with the daily SIC grid; the SIC<sub>i</sub> for each  
296 sample was then calculated as the mean SIC across all sea-ice-covered endpoints (Ns).  
297 Sea ice concentration data are from the AMSR2 dataset (Version 5.4. University of  
298 Bremen, Germany. Index of /amsr2/asi\_daygrid\_swath/s3125).


299 **3. Results**

300 Atmospheric ON concentrations (expressed as N, the same hereafter) exhibited  
301 significant hemispheric differences ( $p < 0.001$ ; Mann–Whitney U test; Table S1), with  
302 values in the Northern Hemisphere (NH:  $83.3 \pm 141.4 \text{ ng m}^{-3}$ , N = 55) being  
303 approximately five times higher than those in the Southern Hemisphere (SH:  $15.4 \pm$   
304  $12.4 \text{ ng m}^{-3}$ , N = 37). The ON/TN ratios showed broadly similar magnitudes between  
305 hemispheres, with slightly higher in the NH ( $30.4 \pm 13.6\%$ ) compared to the SH ( $27.9 \pm$   
306  $10.6\%$ ). Samples from three Antarctic cruises—SP2019 (mean =  $19.4 \text{ ng m}^{-3}$ ; range:  
307  $9.5\text{--}555.6 \text{ ng m}^{-3}$ ), SP2021 (mean =  $20.4 \text{ ng m}^{-3}$ ; range:  $1.3\text{--}81.3 \text{ ng m}^{-3}$ ), and  
308 SP2023 (mean =  $18.3 \text{ ng m}^{-3}$ ; range:  $1.8\text{--}457.0 \text{ ng m}^{-3}$ ) showed no significant  
309 variation (one-way ANOVA;  $p > 0.2$ ), indicating that interannual variation was rather  
310 minor. A clear latitudinal gradient in ON concentrations was observed along the  
311 Antarctic-to-Arctic transect, with peak values in the  $20\text{--}40^\circ \text{ N}$  zone and a gradual  
312 decline toward both polar regions (Fig. 2a). Based on spatial distribution patterns, the  
313 study transect can be divided into four regions (Fig. 1): (1) the Arctic Ocean region  
314 (AO, north of  $\sim 60^\circ \text{ N}$ ); (2) the Coastal East Asia region (CEA,  $20\text{--}60^\circ \text{ N}$ ); (3) the  
315 Southeast Asia-Australia Tropical Ocean region (SATO,  $\sim 20^\circ \text{ N}\text{--}40^\circ \text{ S}$ ); and (4) the  
316 Southern Ocean region (SO, south of  $\sim 40^\circ \text{ S}$ ).

317 The CEA region exhibited the highest ON concentrations (mean =  $164.6 \text{ ng m}^{-3}$ )  
318 but the lowest ON/TN ratio (mean =  $21.1 \pm 7.9\%$ ). In contrast, the SO region showed  
319 the lowest ON concentrations (mean =  $12.0 \text{ ng m}^{-3}$ ; range:  $1.8\text{--}32.3 \text{ ng m}^{-3}$ ) and  
320 higher ON/TN ratios (mean =  $27.8 \pm 11.0\%$ ). Notably, the AO region displayed the  
321 highest ON/TN ratios (mean =  $38.6 \pm 12.4\%$ ) despite relatively low ON

322 concentrations (mean = 19.1 ng m<sup>-3</sup>; range: 5.2–32.2 ng m<sup>-3</sup>). The ON/TN ratio in  
323 SATO region (26.8 ± 10.0%) is similar to that of SO but with a lower ON  
324 concentration (mean = 23.4 ng m<sup>-3</sup>; range: 5.7–70.1 ng m<sup>-3</sup>), which is much lower  
325 than the CEA region, but higher than the high latitude two pole regions.

326 Since direct measurement data of total ON in global MABL are limited, WSON  
327 data were summarized for comparison (Table 1). Overall, the previous results are  
328 consistent with the spatial trends of ON in our study. WSON concentrations exhibit  
329 significant spatial variation, generally higher in the NH than in the SH, highlighting  
330 the substantial contribution of anthropogenic sources (Violaki et al., 2015b). In  
331 addition, WSON concentrations tend to be higher closer to land, while in remote  
332 ocean areas, WSON levels are generally lower. The reported ratios of WSON/WSTN  
333 in previous studies vary significantly across different investigation sites. Moreover, in  
334 remote marine environments, the WSON/WSTN ratio is relatively high, suggesting  
335 that WSON plays a substantial role in the biogeochemical cycle of nitrogen within  
336 these remote regions. It is important to note that most previous studies over the  
337 remote ocean measured only WSON, without accounting for the WION. As a result,  
338 the ON/TN ratios in this region were likely underestimated. Based on our comparison,  
339 the total ON concentration in the Southern Ocean may have been underestimated by  
340 approximately 40%, hinting the significant contribution of the insoluble organic  
341 fraction that has been largely overlooked in earlier datasets due to measurement  
342 method limitations.



343  
344 Figure 2. Latitudinal distributions of ON concentration, TN concentration and ON/TN ratio (a, b,  
345 c), and the statistics (d, e, f) over the the Arctic Ocean region (AO), the Coastal East Asia region  
346 (CEA), the Southeast Asia-Australia Tropical Ocean region (SATO) and the Southern Ocean  
347 region (SO), respectively.

Table 1. Measured concentrations of WSON from published reports in the marine atmospheric boundary layer.

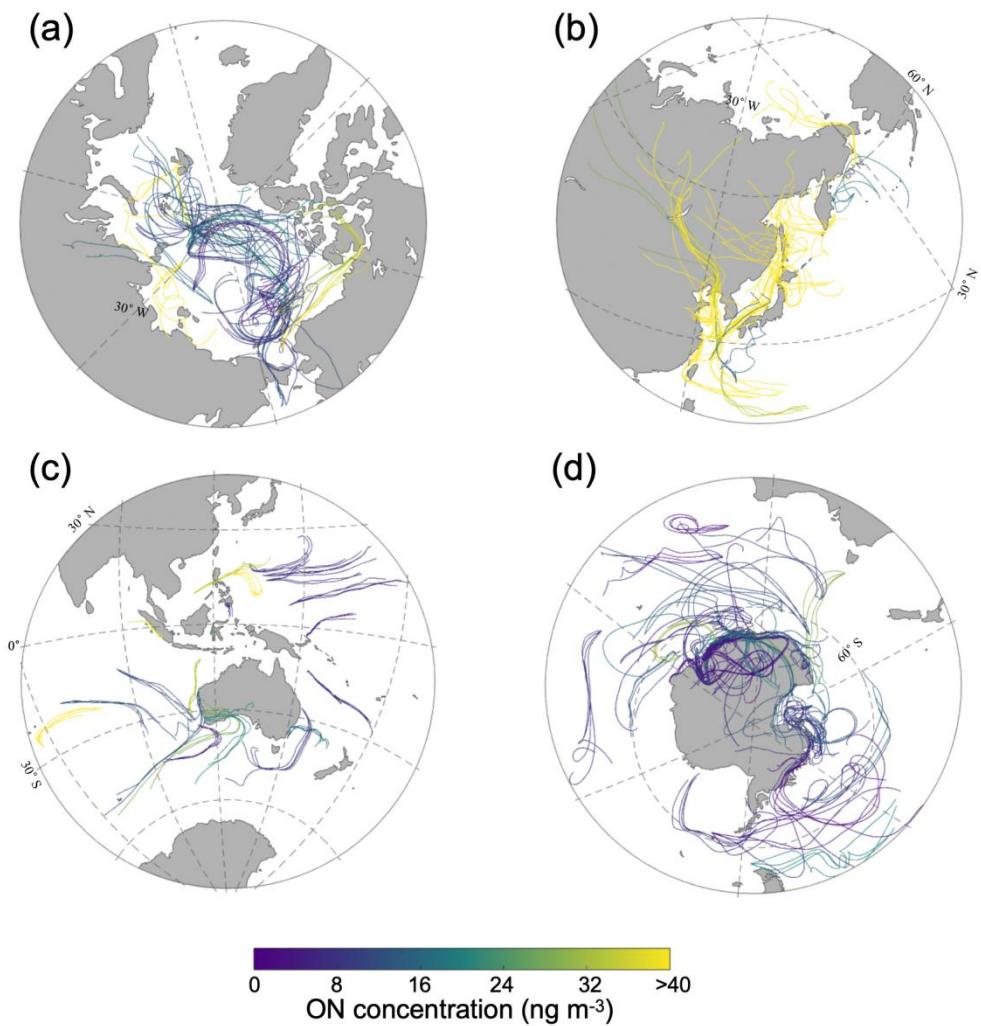
| Regions                                   | Period                                                      | Locations                                   | WSON (ng m <sup>-3</sup> ) | Ratio to WSTN(%)           | Methods for IN           | Methods for WSTN | Reference                |
|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------|----------------------------|----------------------------|--------------------------|------------------|--------------------------|
| Southern Atlantic                         | 2007.01-02                                                  | 35° S-45° S                                 | 119 ± 163.8                | -                          | IC                       | PO               | (Violaki et al., 2015b)  |
| the Northwest Pacific Ocean               | 2014.2015                                                   | 25-40° N, 125-150° E                        | 43.4-564.2                 | 11-46                      | IC                       | PO               | (Luo et al., 2018)       |
| the coast of China the East China seas    | 2014.2015                                                   | 30-40° N, 120-130° E                        | 96.6-7238                  | 6-48                       | IC                       | PO               | (Luo et al., 2018)       |
| Southern Ocean                            | 2000.11                                                     | 40.41° S, 144.41° E                         | 50.4 ± 79.8                | 21                         | IC                       | UV               | (Mace et al., 2003)      |
| Oahu, Hawaii                              | 1998.7.22-8.13                                              | 21.7° N, 157.8° W                           | 46.2                       | 31                         | IC                       | UV               | (Cornell et al., 2001)   |
| the southern margin of the East China Sea | 2005-2006                                                   | 25.09° N, 121.46° E                         | 476 ± 756                  | 24 ± 16                    | IC                       | UV with PO       | (Chen and Chen, 2010)    |
| the western North Pacific                 | 2008.08.24-09.13                                            | 42.98° N, 144.37° E<br>-35.65° N, 139.77° E | 130 ± 61<br>(10-260)       | 67 ± 15                    | IC                       | TOC/TN analyzer  | (Miyazaki et al., 2011b) |
| Huaniao Island                            | 2019                                                        | 30.86° N, 122.67° E                         | 30-2810                    | 0.13-77                    | IC                       | TOC/TN analyzer  | (Tian et al., 2023)      |
| the northern tip of Japan                 | 2010-2012                                                   | ~45.2° N, ~141.2° E                         | 77 ± 57                    | 12.8 ± 15.2                | IC                       | TOC/TN analyzer  | (Matsumoto et al., 2017) |
| the Southern Ocean                        | 2016-2020                                                   | 38.8-69.0° S,<br>38.1-150.8° E              | 4.7                        | 20                         | IC                       | TOC/TN analyzer  | (Matsumoto et al., 2022) |
| the Subarctic Western North Pacific Ocean | 2016.7.21-8.22                                              | 30-65° N,<br>130-160° W                     | 1.62-205.8                 | 9                          | IC                       | TOC/TN analyzer  | (Jung et al., 2019)      |
| Bermuda                                   | 2011                                                        | 32.27° N, 64.87° W                          | 105 ± 191.8                | 50.4 ± 18.9                | nutrient analyzer        | TN Analyzer      | (Altieri et al., 2016)   |
| the Arctic Ocean                          | 2021.07-09<br>2021.07-09,<br>2019.10-11,<br>2023.10-2024.04 | north of ~60° N<br>20-60° N                 | 5.2-32.2<br>18.1-55.6      | 38.6 ± 12.4<br>21.1 ± 7.9  | N Analyzer<br>N Analyzer | N Analyzer       | this study               |
| the Coastal East Asia                     | 2021.11, 2023.11<br>2021.11-2022.03,<br>2019.11, 2023.11    | 20° N-40° S<br>south of ~ 40° S             | 5.7-70.1<br>1.8-32.3       | 26.8 ± 10.0<br>27.8 ± 11.0 | N Analyzer<br>N Analyzer | N Analyzer       | this study               |

\*PO: the persulfate oxidation (PO) method

\*UV: ultraviolet photo-oxidation

\*TN analyzer: a total organic carbon (TOC) analyzer with a TN unit

\*Nutrient analyzer: automated nutrient analyzer and standard colorimetric method


349 **4. Discussion**350 **4.1 Source identification of ON**

351 ON in the MABL primarily originates from two main source pathways: marine  
352 emissions and long-distance continental transport. Marine sources include primary  
353 ON, predominantly associated with sea-spray particles enriched in biological material  
354 from the ocean surface microlayer, and secondary ON. The latter not only derives  
355 from marine precursors such as alkylamines that react with acidic species (Altieri et  
356 al., 2016; Facchini et al., 2008), but also significantly involves the atmospheric  
357 oxidation of marine-derived biogenic volatile organic compounds (BVOCs).  
358 Specifically, isoprene and monoterpenes emitted from the ocean can react with  
359 hydroxyl (OH) or nitrate radicals ( $\text{NO}_3$ ) to form secondary organic nitrates (Fisher et  
360 al., 2016; Ng et al., 2017). Additionally, direct sea-to-air emissions of light alkyl  
361 nitrates produced photochemically in the surface water contribute to the MABL ON  
362 pool (Chuck et al., 2002). Continental sources involve the long-range transport of  
363 organic emissions—including combustion byproducts, soil- and vegetation-derived  
364 compounds, and biomass burning aerosols. It is important to note that these  
365 continental inputs include both ON formed directly over land and ON produced from  
366 continental precursors during transport (Duce et al., 2008; Li et al., 2025). This  
367 transport can significantly influence remote ocean regions (Cape et al., 2011; Jickells  
368 et al., 2013).

369 ON concentrations in the CEA region were the highest among all study regions,  
370 with air masses spending 22.6% of their 5-day trajectories over continental areas (Fig.  
371 3b). A significant correlation between ON and crustal elements such as  $\text{nssCa}^{2+}$  ( $r =$   
372  $0.75$ ,  $p < 0.01$ ; Fig. 4) likely suggests the influences of continental transport of  
373 particles on the ON levels in this region (Xiao et al., 2016). A significant correlation  
374 between ON and the anthropogenic tracer EC ( $r = 0.81$ ,  $p < 0.01$ ; Fig. 4) indicates that  
375 fossil fuel combustion and biomass burning are important ON sources (Shubhankar  
376 and Ambade, 2016; Wu and Yu, 2016). Similarly, the robust association between ON  
377 and  $\text{nssK}^+$  ( $r = 0.78$ ,  $p < 0.01$ ; Fig. 4), a tracer of biomass burning, also supports  
378 contributions from agricultural and residential biomass burning (Song et al., 2018).  
379 Despite the high absolute ON concentrations, the relatively low ON/TN ratio (21.1%)  
380 likely reflects disproportionately elevated IN emissions from intensive human  
381 activities, particularly  $\text{NH}_3$  volatilization from agriculture and vehicular  $\text{NO}_x$

382 emissions (Pavuluri et al., 2015). This interpretation aligns with emission inventories  
383 that identify the CEA as a global nitrogen pollution hotspot, where ON is co-emitted  
384 or formed from precursors that share common sources with EC and other  
385 combustion-related pollutants, originating from incomplete combustion and industrial  
386 processes (Deng et al., 2024).

387



388  
389 Figure 3. 5-day air-mass backward trajectories with ON concentrations and ON/TN ratios  
390 along the Chinese Arctic/Antarctic expedition voyage over the Arctic Ocean (a), the coastal  
391 East Asia (b), the Southeast Asia-Australia Tropical Ocean (c), and the Southern Ocean (d).

392 The SATO region exhibits intermediate level of ON concentrations (mean = 23.4  
393  $\pm 18.0 \text{ ng m}^{-3}$ ), lower than those influenced by anthropogenic activities in CEA but  
394 higher than in polar regions. In this region, ON shows a significant positive  
395 correlation with  $\text{nssCa}^{2+}$  (Fig. 4;  $r = 0.76, p < 0.01$ ), suggesting that terrestrial mineral  
396 inputs (e.g., dust) influence ON levels, rather than purely marine sources. In addition,

backward trajectory analysis showed that samples affected by continental air masses have significantly higher ON concentrations than those exposed solely to marine air (Fig. 3c), suggesting the influences of continental sources. However, ON does not exhibit significant correlations with  $\text{nssK}^+$  or with EC ( $p > 0.05$ ), indicating that combustion emissions may not be the primary drivers. These findings suggest that the variability of ON in the SATO region results from a mixture of marine-terrestrial interactions, primarily modulated by episodic terrestrial mineral influence rather than continuous marine emissions. Notably, this region displays an elevated ON/TN ratio (Fig. 2), primarily due to its very low IN levels—approximately 85% lower than in the CEA region—which amplifies the relative contribution of ON within TN.

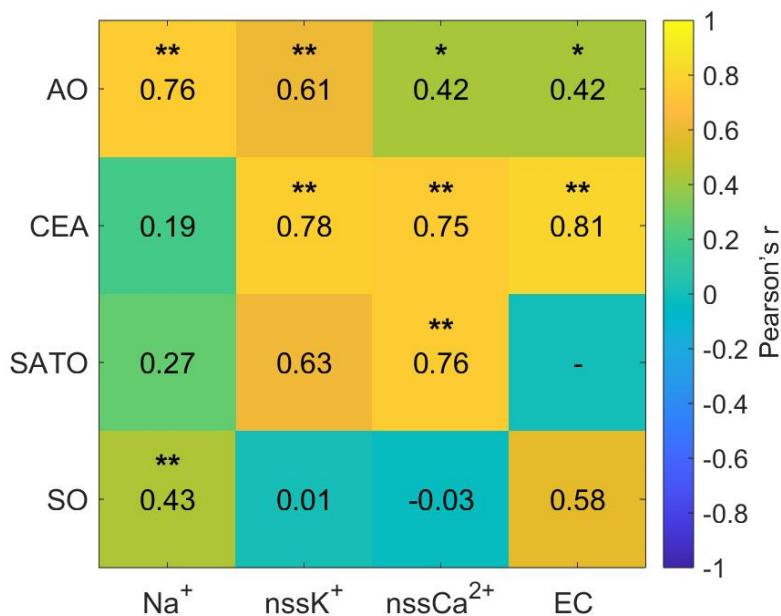
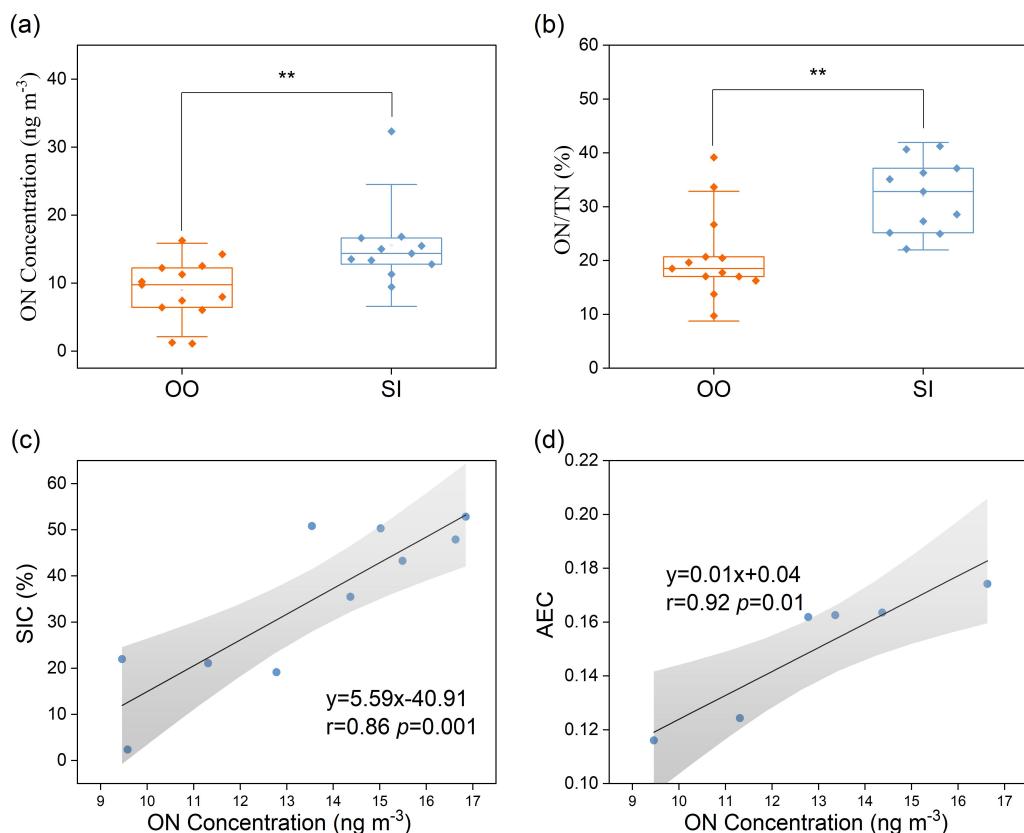



Figure 4. Spatial variations in the correlation coefficient between ON and chemical species across four regions (with “\*\*” indicating  $p < 0.01$  and “\*” indicating  $p < 0.05$ ).

In the AO region, ON concentrations were slightly lower than in the SATO region and significantly lower than in the CEA region. In this area, ON exhibited a significant positive correlation with Na<sup>+</sup>, which suggest the sea salts inputs (Fig. 4;  $r = 0.43$ ,  $p < 0.01$ ), and also showed significant correlations with nssK<sup>+</sup> ( $r = 0.61$ ,  $p < 0.01$ ). Its correlations with nssCa<sup>2+</sup> ( $r = 0.42$ ) and EC ( $r = 0.42$ ) were weaker but still significant ( $p < 0.05$ ). These patterns suggest that ON in the AO region may originate not only from primary sea-salt aerosols but may also be linked to biomass burning. However, the backward trajectory analysis shows no significant difference in ON concentrations between air masses influenced by continental sources and those


419 transported solely over the ocean (Fig. S1b; independent samples t-test,  $p = 0.16$ ),  
420 likely suggesting the limited role of terrestrial inputs in this region. Unlike the SATO  
421 region, where ON showed no correlation with AEC (Fig. S2b;  $p > 0.05$ ), ON  
422 concentrations in the AO exhibited a strong positive correlation with the AEC (Fig.  
423 S2a;  $p < 0.01$ ), suggesting that marine biological activity is a key driver of ON  
424 variability in this region (Creamean et al., 2022). Collectively, these results  
425 demonstrate that the AO region is primarily governed by marine processes, with ON  
426 derived from both sea-spray organic enrichment and biogenic aerosol precursors,  
427 while terrestrial influences remain secondary (Nøjgaard et al., 2022).

428 In the SO region, ON concentrations were the lowest among all regions (mean =  
429  $12.0 \pm 7.1 \text{ ng m}^{-3}$ ), yet the ON/TN ratio was relatively high ( $27.8 \pm 11.0\%$ ). Back  
430 trajectory analysis indicates that air masses predominantly originated from the open  
431 ocean and Antarctic continent (Fig. 3d), with minimal anthropogenic influence. ON  
432 here exhibited a significant positive correlation with  $\text{Na}^+$  (Fig. 4;  $r = 0.43$ ,  $p < 0.01$ ),  
433 but no significant relationships with  $\text{nssK}^+$ ,  $\text{nssCa}^{2+}$  or EC. While long-range transport  
434 events may deliver stable continental tracers like EC to this remote region, the lack of  
435 correlation between ON and these markers suggests that continental inputs are not the  
436 primary driver of ON variability. This pattern, combined with the association with  
437  $\text{Na}^+$  suggests that primary sea-salt emissions are an important pathway for ON in the  
438 SO atmosphere (Matsumoto et al., 2022), likely through the incorporation of  
439 marine-derived organic matter into sea-spray aerosols. Meanwhile, the absence of  
440 associations with terrestrial tracers further supports the notion that ON in this remote  
441 region is likely influenced more significantly by natural marine processes rather than  
442 continental or anthropogenic sources (Altieri et al., 2016).

#### 443 **4.2 Role of sea-ice–associated biogenic processes in shaping Antarctic aerosol ON**

444 Sea-ice and open-ocean environments create distinct conditions for the production and  
445 emission of ON. While sea ice restricts direct air–sea exchange, it hosts specialized  
446 microbial communities and accumulates organic matter within brine channels. During  
447 melt and ice-edge retreat, this organic material is released into waters characterized by  
448 high primary productivity (Arrigo et al., 2008). This biological intensification  
449 enriches the surface microlayer and supplies precursors for aerosolization via sea  
450 spray and secondary formation (Dall’Osto et al., 2017; DeMott et al., 2016; Galgani et  
451 al., 2016; Wilson et al., 2015).

452 Along the Antarctic coast, we classified samples into two groups based on  
 453 air-mass histories: open ocean (OO), influenced almost exclusively by open-ocean  
 454 trajectories, and sea ice (SI), with air masses residing over sea ice for extended  
 455 periods. SI samples exhibited significantly higher ON concentrations and ON/TN  
 456 ratios than OO samples ( $p < 0.001$ ; Mann–Whitney U test; Fig. 5a, b). Multiple lines  
 457 of evidence point to sea-ice–associated biological processes as the driver of these  
 458 enhancements: (1) Strong positive correlations of ON with sea-ice concentration (SIC;  
 459  $r = 0.86, p < 0.01$ ) and with air-mass exposure to chlorophyll-a (AEC;  $r = 0.91, p <$   
 460  $0.01$ ) in the SI group indicate that both ice cover and associated biological activity  
 461 elevate ON (Fig. 5c, d); (2) PSCF analysis identifies high-probability source regions  
 462 (PSCF  $> 0.8$ ) over sea ice and its marginal zone for SI samples (Fig. S3c), consistent  
 463 with an ice-edge origin; and (3) In contrast, ON shows no significant correlation with  
 464  $\text{Na}^+$  ( $r = -0.22, p > 0.05$ ) or with IN ( $p > 0.05$ ) for SI samples (Fig. S4a,b), suggesting  
 465 that primary sea-salt emissions and purely abiotic inorganic pathways are not the  
 466 dominant contributors.



467  
 468 Figure 5. Comparison of measured ON concentrations (a) and ON/TN ratio (b) between SI  
 469 and OO aerosol samples (“\*\*” indicating  $p < 0.01$ ). And correlations between SIC (c), AEC

470 (d) and ON concentration in SI aerosol samples. The sample sizes are  $n = 10$  for panel (c) and  
471  $n = 6$  for panel (d). These reduced sample sizes are due to unavailable satellite SIC/Chl-a data  
472 along the trajectories, and in this study SIC or Chl-a is used only when  $\geq 75\%$  of the  
473 trajectory points have valid satellite values (see Sections 2.6 – 2.7).

474 These observations support a mechanistic pathway whereby organic matter  
475 released from sympagic (ice-associated) communities during melt enriches the surface  
476 microlayer and is transferred to the atmosphere via sea spray as ON-rich particles  
477 (DeMott et al., 2016; Wilson et al., 2015). Concurrently, a portion of this organic  
478 nitrogen is rapidly microbially degraded to volatile alkylamines (e.g., methylamines)  
479 (Taubert et al., 2017), which then form aminium salts through acid–base reactions  
480 with marine emissions-derived acids (e.g.,  $\text{H}_2\text{SO}_4$ , MSA), contributing to both ON  
481 and IN in SI conditions (Brean et al., 2021; Dawson et al., 2012; Fitzsimons et al.,  
482 2023). This process results in the formation of both organic (amine salts, contributing  
483 to ON) and inorganic nitrogen aerosol species ( $\text{NH}_4^+$  and  $\text{NO}_3^-$ ), which explains their  
484 elevated levels in the SI group samples (Fig. S5). The elevated ON/TN ratios in SI  
485 samples (31.0%) relative to OO samples (20.8%) further indicate a greater fractional  
486 contribution of ON under sea-ice influence (Fig. 5b), consistent with reported releases  
487 of organic species from the sympagic ecosystem during melt (Jang et al., 2023;  
488 Mirrielees et al., 2024; Yan et al., 2020).

489 For OO samples, PSCF hotspots ( $\text{PSCF} > 0.8$ ) shift toward the offshore Southern  
490 Ocean (Fig. S3d), in line with trajectories dominated by open-ocean air masses. The  
491 positive association between ON and oceanic residence time ( $r = 0.66$ ,  $p < 0.01$ ; Fig.  
492 S6) suggests that, as sea-ice influence diminishes, ON variability becomes  
493 increasingly governed by open-ocean biological processes and long-range marine  
494 aerosol transport.

495 Overall, these results establish the ice-edge/sympagic environment as an  
496 important regulator of Antarctic aerosol ON. Sea-ice dynamics modulate both the  
497 magnitude (higher ON and ON/TN) and sources (biogenic enrichment and  
498 amine-driven secondary formation) of ON, underscoring the need to represent  
499 sea-ice–associated processes in polar atmospheric chemistry and climate models.

500 **5. Conclusions and Implications**

501 Taking advantage of a new analytical tool for ON and aerosol samples collected from

502 three Antarctic and Arctic expeditions from 2019 to 2024, we quantified aerosol ON  
503 and IN in 92 TSP samples spanning  $160^{\circ}$  of latitude in the MABL. This dataset  
504 provides the first direct, subtraction-free ON measurements along a global-scale  
505 marine transect, capturing both water-soluble and water-insoluble fractions.

506 We observed a pronounced hemispheric and latitudinal gradient in ON, with  
507 substantially higher concentrations in the Northern Hemisphere ( $83.3 \pm 141.4 \text{ ng m}^{-3}$ )  
508 than in the Southern Hemisphere ( $15.4 \pm 12.4 \text{ ng m}^{-3}$ ). Regionally, Coastal East Asia  
509 exhibited the highest ON ( $164.6 \pm 179.1 \text{ ng m}^{-3}$ ) but a low ON/TN ratio (21.1%),  
510 consistent with strong terrestrial and anthropogenic influences that elevate IN. The  
511 Southeast Asia–Australia Tropical Ocean showed intermediate ON and a relatively  
512 high ON/TN ratio due to low IN. The Arctic Ocean had lower ON but the highest  
513 ON/TN ratio (38.6%), indicating prominent marine biogenic contributions. The  
514 Southern Ocean showed the lowest ON ( $12.0 \pm 7.0 \text{ ng m}^{-3}$ ) yet a relatively high  
515 ON/TN ratio (27.8%), also suggestive of oceanic sources. Interannual variability  
516 across the three Antarctic campaigns was minor.

517 Multiple lines of evidence, including correlations with tracers, back-trajectory  
518 analysis, and PSCF, indicate that ON in CEA is dominated by continental inputs from  
519 combustion and dust, whereas ON in AO and SO is primarily controlled by marine  
520 processes. Along the Antarctic coast, air masses influenced by sea ice exhibited  
521 significantly higher ON and ON/TN than those influenced by the open ocean, with  
522 strong positive relationships to sea-ice concentration and air-mass exposure to  
523 chlorophyll-a. These patterns point to sympagic and ice-edge biogenic  
524 activity—through organic enrichment of sea spray and amine-driven secondary  
525 formation—as key regulators of ON near Antarctica.

526 Comparison with prior WSON-only datasets suggests that earlier studies likely  
527 underestimated total ON—by approximately 40% in the Southern Ocean—due to  
528 omission of WION. Accounting for both soluble and insoluble phases is therefore  
529 essential for constraining nitrogen deposition to the oceans and for representing ON’s  
530 roles in atmospheric processes. Specifically, given that WION may significantly  
531 influence cloud condensation nuclei activity and cloud droplet formation, overlooking  
532 this fraction could lead to substantial uncertainties in assessing the radiative forcing  
533 and climate effects of marine aerosols.

534 These findings fill a critical observational gap, establish robust hemispheric and  
535 regional patterns of marine aerosol ON, and provide essential constraints for

536 atmospheric chemistry and climate models. Future efforts should explicitly represent  
537 ON sources, including sea-ice-associated biogenic processes and amine chemistry,  
538 and expand year-round, size-resolved, and composition-resolved measurements paired  
539 with isotopic and molecular tracers to refine source apportionment and evaluate model  
540 parameterizations across regions and seasons.

541 **Data availability.**

542 The data on organic nitrogen concentrations in aerosol are available at National  
543 Tibetan Plateau/Third Pole Environment Data Center,  
544 <https://cstr.cn/18406.11.Atmos.tpd.303043>. DOI:  
545 <https://doi.org/10.11888/Atmos.tpd.303043> (Sun, 2025) [Dataset].

546 **Author contribution.**

547 Ningning Sun: Data curation, Writing-original draft. Yu Xu: Methodology. Bo  
548 Zhang and Ye Hu: Visualization, Software. Zhe Li: Methodology. Yilan Li: Carried  
549 out data analysis. Zhenlou Chen: Review. Jian Zhen Yu: Supervision, Writing –  
550 review & editing. Guitao Shi: Supervision, Writing – review & editing.

551 **Competing interests.**

552 The authors declare that they have no conflict of interest.

553 **Financial support**

554 This work was supported by the National Science Foundation of China (Grant  
555 Nos. 42276243 and 41922046), the Fundamental Research Funds for the Central  
556 Universities, the Hong Kong Research Grants Council (1621322, 16304924 and  
557 CRS\_HKUST605/24)

558 **Acknowledgments**

559 The authors are grateful to CHINARE members for their support and assistance  
560 in sampling. The authors acknowledge the availability of the Hybrid Single-Particle  
561 Lagrangian Integrated Trajectory (HYSPLIT) model (available at  
562 <https://www.arl.noaa.gov/hysplit/>)

563 **References**

564 Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O.,  
565 Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David,  
566 A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart,  
567 S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M.,  
568 Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen,  
569 H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K.,  
570 Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath,  
571 M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen,  
572 I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart,  
573 S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y.,  
574 Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen,  
575 Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H.,  
576 Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M.,  
577 Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.:  
578 Molecular understanding of sulphuric acid–amine particle nucleation in the  
579 atmosphere, *Nature*, 502, 359–363, <https://doi.org/10.1038/nature12663>, 2013.  
580 Alsante, A. N., Thornton, D. C. O., and Brooks, S. D.: Effect of Aggregation and  
581 Molecular Size on the Ice Nucleation Efficiency of Proteins, *Environ. Sci.  
582 Technol.*, 58, 4594–4605, <https://doi.org/10.1021/acs.est.3c06835>, 2024.  
583 Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings, M. G.:  
584 Marine biogenic source of atmospheric organic nitrogen in the subtropical North  
585 Atlantic, *Proc. Natl. Acad. Sci. U.S.A.*, 113, 925–930,  
586 <https://doi.org/10.1073/pnas.1516847113>, 2016.  
587 Altieri, K. E., Fawcett, S. E., and Hastings, M. G.: Reactive Nitrogen Cycling in the  
588 Atmosphere and Ocean, *Annu. Rev. Earth Planet. Sci.*, 49, 523–550,  
589 <https://doi.org/10.1146/annurev-earth-083120-052147>, 2021.  
590 Anonymous: A fresh look at element distribution in the North Pacific Ocean, *Eos  
591 Trans. Am. Geophys. Union*, 78, 221–221, <https://doi.org/10.1029/97EO00148>,  
592 1997.  
593 Arrigo, K. R., Van Dijken, G. L., and Bushinsky, S.: Primary production in the  
594 Southern Ocean, 1997–2006, *J. Geophys. Res.*, 113, 2007JC004551,  
595 <https://doi.org/10.1029/2007JC004551>, 2008.

596 Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A residence time probability  
597 analysis of sulfur concentrations at grand Canyon National Park, *Atmos.*  
598 *Environ.*, 19, 1263–1270, [https://doi.org/10.1016/0004-6981\(85\)90256-2](https://doi.org/10.1016/0004-6981(85)90256-2), 1985.

599 Baker, A. R., Kanakidou, M., Altieri, K. E., Daskalakis, N., Okin, G. S.,  
600 Myriokefalitakis, S., Dentener, F., Uematsu, M., Sarin, M. M., Duce, R. A.,  
601 Galloway, J. N., Keene, W. C., Singh, A., Zamora, L., Lamarque, J.-F., Hsu,  
602 S.-C., Rohekar, S. S., and Prospero, J. M.: Observation- and model-based  
603 estimates of particulate dry nitrogen deposition to the oceans, *Atmos. Chem.*  
604 *Phys.*, 17, 8189–8210, <https://doi.org/10.5194/acp-17-8189-2017>, 2017.

605 Blazina, T., Läderach, A., Jones, G. D., Sodemann, H., Wernli, H., Kirchner, J. W.,  
606 and Winkel, L. H. E.: Marine Primary Productivity as a Potential Indirect Source  
607 of Selenium and Other Trace Elements in Atmospheric Deposition, *Environ. Sci.*  
608 *Technol.*, 51, 108–118, <https://doi.org/10.1021/acs.est.6b03063>, 2017.

609 Brean, J., Dall’Osto, M., Simó, R., Shi, Z., Beddows, D. C. S., and Harrison, R. M.:  
610 Open ocean and coastal new particle formation from sulfuric acid and amines  
611 around the Antarctic Peninsula, *Nat. Geosci.*, 14, 383–388,  
612 <https://doi.org/10.1038/s41561-021-00751-y>, 2021.

613 Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen in the  
614 atmosphere — Where does it come from? A review of sources and methods,  
615 *Atmos. Res.*, 102, 30–48, <https://doi.org/10.1016/j.atmosres.2011.07.009>, 2011.

616 Cavalieri, D. J., Gloersen, P., Parkinson, C. L., Comiso, J. C., and Zwally, H. J.:  
617 Observed Hemispheric Asymmetry in Global Sea Ice Changes, *Science*, 278,  
618 1104–1106, <https://doi.org/10.1126/science.278.5340.1104>, 1997.

619 Chan, M. N., Choi, M. Y., Ng, N. L., and Chan, C. K.: Hygroscopicity of  
620 Water-Soluble Organic Compounds in Atmospheric Aerosols: Amino Acids and  
621 Biomass Burning Derived Organic Species, *Environ. Sci. Technol.*, 39,  
622 1555–1562, <https://doi.org/10.1021/es0495841>, 2005.

623 Chen, H. Y. and Chen, L.-D.: Occurrence of water soluble organic nitrogen in  
624 aerosols at a coastal area, *J. Atmos. Chem.*, 65, 49–71,  
625 <https://doi.org/10.1007/s10874-010-9181-y>, 2010.

626 Choi, J. H., Jang, E., Yoon, Y. J., Park, J. Y., Kim, T.-W., Becagli, S., Caiazzo, L.,  
627 Cappelletti, D., Krejci, R., Eleftheriadis, K., Park, K.-T., and Jang, K. S.:  
628 Influence of Biogenic Organics on the Chemical Composition of Arctic Aerosols,  
629 *Global Biogeochem. Cycles*, 33, 1238–1250,

630 https://doi.org/10.1029/2019GB006226, 2019.

631 Chuck, A. L., Turner, S. M., and Liss, P. S.: Direct Evidence for a Marine Source of  
632 C<sub>1</sub> and C<sub>2</sub> Alkyl Nitrates, *Science*, 297, 1151–1154,  
633 https://doi.org/10.1126/science.1073896, 2002.

634 Cornell, S.: Water-soluble organic nitrogen in atmospheric aerosol: a comparison of  
635 UV and persulfate oxidation methods, *Atmos. Environ.*, 33, 833–840,  
636 https://doi.org/10.1016/S1352-2310(98)00139-3, 1999.

637 Cornell, S., Mace, K., Coeppicus, S., Duce, R., Huebert, B., Jickells, T., and Zhuang,  
638 L.-Z.: Organic nitrogen in Hawaiian rain and aerosol, *J. Geophys. Res.*, 106,  
639 7973–7983, https://doi.org/10.1029/2000JD900655, 2001.

640 Creamean, J. M., Barry, K., Hill, T. C. J., Hume, C., DeMott, P. J., Shupe, M. D.,  
641 Dahlke, S., Willmes, S., Schmale, J., Beck, I., Hoppe, C. J. M., Fong, A.,  
642 Chamberlain, E., Bowman, J., Scharien, R., and Persson, O.: Annual cycle  
643 observations of aerosols capable of ice formation in central Arctic clouds, *Nat.*  
644 *Commun.*, 13, 3537, https://doi.org/10.1038/s41467-022-31182-x, 2022.

645 Dall'Osto, M., Ovadnevaite, J., Paglione, M., Beddows, D. C. S., Ceburnis, D., Cree,  
646 C., Cortés, P., Zamanillo, M., Nunes, S. O., Pérez, G. L., Ortega-Retuerta, E.,  
647 Emelianov, M., Vaqué, D., Marrasé, C., Estrada, M., Sala, M. M., Vidal, M.,  
648 Fitzsimons, M. F., Beale, R., Airs, R., Rinaldi, M., Decesari, S., Cristina  
649 Facchini, M., Harrison, R. M., O'Dowd, C., and Simó, R.: Antarctic sea ice  
650 region as a source of biogenic organic nitrogen in aerosols, *Sci. Rep.*, 7, 6047,  
651 https://doi.org/10.1038/s41598-017-06188-x, 2017.

652 Dall'Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D.,  
653 Harrison, R. M., Ceburnis, D., O'Dowd, C., Rinaldi, M., Paglione, M., Nenes, A.,  
654 Decesari, S., and Simó, R.: Simultaneous Detection of Alkylamines in the  
655 Surface Ocean and Atmosphere of the Antarctic Sympagic Environment, *ACS*  
656 *Earth Space Chem.*, 3, 854–862,  
657 https://doi.org/10.1021/acsearthspacechem.9b00028, 2019.

658 Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and  
659 Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from  
660 methanesulfonic acid, amines, and water via experiments and ab initio  
661 calculations, *Proc. Natl. Acad. Sci. U.S.A.*, 109, 18719–18724,  
662 https://doi.org/10.1073/pnas.1211878109, 2012.

663 DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D. B., Sullivan,

664 R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T., Hwang, C. Y., Rhee, T.  
665 S., Snider, J. R., McMeeking, G. R., Dhaniyala, S., Lewis, E. R., Wentzell, J. J.  
666 B., Abbatt, J., Lee, C., Sultana, C. M., Ault, A. P., Axson, J. L., Diaz Martinez,  
667 M., Venero, I., Santos-Figueroa, G., Stokes, M. D., Deane, G. B., Mayol-Bracero,  
668 O. L., Grassian, V. H., Bertram, T. H., Bertram, A. K., Moffett, B. F., and Franc,  
669 G. D.: Sea spray aerosol as a unique source of ice nucleating particles, *Proc. Natl.  
670 Acad. Sci. U.S.A.*, 113, 5797–5803, <https://doi.org/10.1073/pnas.1514034112>,  
671 2016.

672 Deng, O., Wang, S., Ran, J., Huang, S., Zhang, X., Duan, J., Zhang, L., Xia, Y., Reis,  
673 S., Xu, J., Xu, J., De Vries, W., Sutton, M. A., and Gu, B.: Managing urban  
674 development could halve nitrogen pollution in China, *Nat. Commun.*, 15, 401,  
675 <https://doi.org/10.1038/s41467-023-44685-y>, 2024.

676 Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G.,  
677 Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells,  
678 T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J.,  
679 Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R.,  
680 Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., and  
681 Zamora, L.: Impacts of Atmospheric Anthropogenic Nitrogen on the Open  
682 Ocean, *Science*, 320, 893–897, <https://doi.org/10.1126/science.1150369>, 2008.

683 Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi,  
684 S., Moretti, F., Tagliavini, E., Ceburnis, D., and O'Dowd, C. D.: Important  
685 Source of Marine Secondary Organic Aerosol from Biogenic Amines, *Environ.  
686 Sci. Technol.*, 42, 9116–9121, <https://doi.org/10.1021/es8018385>, 2008.

687 Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. and Windnagel, A. K.: Sea Ice  
688 Index. (G02135, Version 3). [Data Set]. Boulder, Colorado USA. National Snow  
689 and Ice Data Center. <https://doi.org/10.7265/N5K072F8>, 2017.

690 Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., Yu,  
691 K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Mao, J., Wennberg, P. O., Crounse,  
692 J. D., Teng, A. P., Nguyen, T. B., St. Clair, J. M., Cohen, R. C., Romer, P., Nault,  
693 B. A., Wooldridge, P. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W.,  
694 Shepson, P. B., Xiong, F., Blake, D. R., Goldstein, A. H., Misztal, P. K., Hanisco,  
695 T. F., Wolfe, G. M., Ryerson, T. B., Wisthaler, A., and Mikoviny, T.: Organic  
696 nitrate chemistry and its implications for nitrogen budgets in an isoprene- and  
697 monoterpane-rich atmosphere: constraints from aircraft (SEAC<sup>4</sup> RS) and

698 ground-based (SOAS) observations in the Southeast US, *Atmos. Chem. Phys.*, 16,  
699 5969–5991, <https://doi.org/10.5194/acp-16-5969-2016>, 2016.

700 Fitzsimons, M. F., Tilley, M., and Cree, C. H. L.: The determination of volatile  
701 amines in aquatic marine systems: A review, *Anal. Chim. Acta*, 1241, 340707,  
702 <https://doi.org/10.1016/j.aca.2022.340707>, 2023.

703 Galgani, L., Piontek, J., and Engel, A.: Biopolymers form a gelatinous microlayer at  
704 the air-sea interface when Arctic sea ice melts, *Sci. Rep.*, 6, 29465,  
705 <https://doi.org/10.1038/srep29465>, 2016.

706 Jang, J., Park, J., Park, J., Yoon, Y. J., Dall'Osto, M., Park, K.-T., Jang, E., Lee, J. Y.,  
707 Cho, K. H., and Lee, B. Y.: Ocean-atmosphere interactions: Different organic  
708 components across Pacific and Southern Oceans, *Sci. Total Environ.*, 878,  
709 162969, <https://doi.org/10.1016/j.scitotenv.2023.162969>, 2023.

710 Jickells, T., Baker, A. R., Cape, J. N., Cornell, S. E., and Nemitz, E.: The cycling of  
711 organic nitrogen through the atmosphere, *Phil. Trans. R. Soc. B*, 368, 20130115,  
712 <https://doi.org/10.1098/rstb.2013.0115>, 2013.

713 Jung, J., Han, B., Rodriguez, B., Miyazaki, Y., Chung, H. Y., Kim, K., Choi, J.-O.,  
714 Park, K., Kim, I.-N., Kim, S., Yang, E. J., and Kang, S.-H.: Atmospheric Dry  
715 Deposition of Water-Soluble Nitrogen to the Subarctic Western North Pacific  
716 Ocean during Summer, *Atmosphere*, 10, 351,  
717 <https://doi.org/10.3390/atmos10070351>, 2019.

718 Keene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E.: Sea-salt  
719 corrections and interpretation of constituent ratios in marine precipitation, *J.*  
720 *Geophys. Res.*, 91, 6647–6658, <https://doi.org/10.1029/JD091iD06p06647>, 1986.

721 Lesworth, T., Baker, A. R., and Jickells, T.: Aerosol organic nitrogen over the remote  
722 Atlantic Ocean, *Atmos. Environ.*, 44, 1887–1893,  
723 <https://doi.org/10.1016/j.atmosenv.2010.02.021>, 2010.

724 Li, Y., Fu, T.-M., Yu, J. Z., Yu, X., Chen, Q., Miao, R., Zhou, Y., Zhang, A., Ye, J.,  
725 Yang, X., Tao, S., Liu, H., and Yao, W.: Dissecting the contributions of organic  
726 nitrogen aerosols to global atmospheric nitrogen deposition and implications for  
727 ecosystems, *Natl. Sci. Rev.*, 10, nwad244, <https://doi.org/10.1093/nsr/nwad244>,  
728 2023.

729 Li, Y., Fu, T.-M., Yu, J. Z., Zhang, A., Yu, X., Ye, J., Zhu, L., Shen, H., Wang, C.,  
730 Yang, X., Tao, S., Chen, Q., Li, Y., Li, L., Che, H., and Heald, C. L.: Nitrogen  
731 dominates global atmospheric organic aerosol absorption, *Science*, 387, 989–995,

732 <https://doi.org/10.1126/science.adr4473>, 2025.

733 Luo, L., Kao, S.-J., Bao, H., Xiao, H., Xiao, H., Yao, X., Gao, H., Li, J., and Lu, Y.:  
734 Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean  
735 in spring, *Atmos. Chem. Phys.*, 18, 6207–6222,  
736 <https://doi.org/10.5194/acp-18-6207-2018>, 2018.

737 Mace, K. A., Duce, R. A., and Tindale, N. W.: Organic nitrogen in rain and aerosol at  
738 Cape Grim, Tasmania, Australia, *J. Geophys. Res.*, 108, 2002JD003051,  
739 <https://doi.org/10.1029/2002JD003051>, 2003.

740 Matsumoto, K., Yamamoto, Y., Nishizawa, K., Kaneyasu, N., Irino, T., and  
741 Yoshikawa-Inoue, H.: Origin of the water-soluble organic nitrogen in the  
742 maritime aerosol, *Atmos. Environ.*, 167, 97–103,  
743 <https://doi.org/10.1016/j.atmosenv.2017.07.050>, 2017.

744 Matsumoto, K., Kobayashi, H., Hara, K., Ishino, S., and Hayashi, M.: Water-soluble  
745 organic nitrogen in fine aerosols over the Southern Ocean, *Atmos. Environ.*, 287,  
746 119287, <https://doi.org/10.1016/j.atmosenv.2022.119287>, 2022.

747 Mirrielees, J. A., Kirpes, R. M., Costa, E. J., Porter, G. C. E., Murray, B. J., Lata, N.  
748 N., Boschi, V., China, S., Grannas, A. M., Ault, A. P., Matrai, P. A., and Pratt, K.  
749 A.: Marine aerosol generation experiments in the High Arctic during  
750 summertime, *Elem Sci Anth*, 12, 00134,  
751 <https://doi.org/10.1525/elementa.2023.00134>, 2024.

752 Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., and Uematsu, M.: Latitudinal  
753 distributions of organic nitrogen and organic carbon in marine aerosols over the  
754 western North Pacific, *Atmos. Chem. Phys.*, 11, 3037–3049,  
755 <https://doi.org/10.5194/acp-11-3037-2011>, 2011a.

756 Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., and Uematsu, M.: Latitudinal  
757 distributions of organic nitrogen and organic carbon in marine aerosols over the  
758 western North Pacific, *Atmos. Chem. Phys.*, 11, 3037–3049,  
759 <https://doi.org/10.5194/acp-11-3037-2011>, 2011b.

760 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day,  
761 D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I.,  
762 Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee,  
763 B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang,  
764 B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H.,  
765 Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri,

766 R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation,  
767 mechanisms, and organic aerosol, *Atmos. Chem. Phys.*, 17, 2103–2162,  
768 <https://doi.org/10.5194/acp-17-2103-2017>, 2017.

769 Nøjgaard, J. K., Peker, L., Pernov, J. B., Johnson, M. S., Bossi, R., Massling, A.,  
770 Lange, R., Nielsen, I. E., Prevot, A. S. H., Eriksson, A. C., Canonaco, F., and  
771 Skov, H.: A local marine source of atmospheric particles in the High Arctic,  
772 *Atmos. Environ.*, 285, 119241, <https://doi.org/10.1016/j.atmosenv.2022.119241>,  
773 2022.

774 Park, K., Lee, K., Kim, T., Yoon, Y. J., Jang, E., Jang, S., Lee, B., and Hermansen, O.:  
775 Atmospheric DMS in the Arctic Ocean and Its Relation to Phytoplankton  
776 Biomass, *Global Biogeochemical Cy.*, 32, 351–359,  
777 <https://doi.org/10.1002/2017GB005805>, 2018.

778 Pavuluri, C. M., Kawamura, K., and Fu, P. Q.: Atmospheric chemistry of nitrogenous  
779 aerosols in northeastern Asia: biological sources and secondary formation,  
780 *Atmos. Chem. Phys.*, 15, 9883–9896, <https://doi.org/10.5194/acp-15-9883-2015>,  
781 2015.

782 Quinby-Hunt, M. S. and Turehian, K. K.: Distribution of elements in sea water, *EoS*  
783 *Trans. Am. Geophys. Union*, 64, 130–130,  
784 <https://doi.org/10.1029/EO064i014p00130>, 1983.

785 Shi, G., Ma, H., Zhu, Z., Hu, Z., Chen, Z., Jiang, S., An, C., Yu, J., Ma, T., Li, Y.,  
786 Sun, B., and Hastings, M. G.: Using stable isotopes to distinguish atmospheric  
787 nitrate production and its contribution to the surface ocean across hemispheres,  
788 *Earth Planet. Sci. Lett.*, 564, 116914, <https://doi.org/10.1016/j.epsl.2021.116914>,  
789 2021.

790 Shubhankar, B. and Ambade, B.: Chemical characterization of carbonaceous carbon  
791 from industrial and semi urban site of eastern India, *SpringerPlus*, 5, 837,  
792 <https://doi.org/10.1186/s40064-016-2506-9>, 2016.

793 Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine, D., Bailey,  
794 S. W., Bontempi, P. S., Boss, E. S., Dierssen, H. M., Doney, S. C., Eplee, R. E.,  
795 Evans, R. H., Feldman, G. C., Fields, E., Franz, B. A., Kuring, N. A., Mengelt,  
796 C., Nelson, N. B., Patt, F. S., Robinson, W. D., Sarmiento, J. L., Swan, C. M.,  
797 Werdell, P. J., Westberry, T. K., Wilding, J. G., and Yoder, J. A.: Regional to  
798 global assessments of phytoplankton dynamics from the SeaWiFS mission,  
799 *Remote Sens. Environ.*, 135, 77–91, <https://doi.org/10.1016/j.rse.2013.03.025>,

800 2013.

801 Song, J., Zhao, Y., Zhang, Y., Fu, P., Zheng, L., Yuan, Q., Wang, S., Huang, X., Xu,  
802 W., Cao, Z., Gromov, S., and Lai, S.: Influence of biomass burning on  
803 atmospheric aerosols over the western South China Sea: Insights from ions,  
804 carbonaceous fractions and stable carbon isotope ratios, *Environ. Pollut.*, 242,  
805 1800–1809, <https://doi.org/10.1016/j.envpol.2018.07.088>, 2018.

806 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan,  
807 F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System,  
808 *Bull. Am. Meteorol. Soc.*, 96, 2059–2077,  
809 <https://doi.org/10.1175/BAMS-D-14-00110.1>, 2015.

810 Sun, N.: Spatial distribution of organic nitrogen in the global marine boundary layer  
811 from Arctic to Antarctic, National Tibetan Plateau / Third Pole Environment  
812 Data Center), <https://doi.org/10.11888/Atmos.tpd.303043>, 2025.

813 Taubert, M., Grob, C., Howat, A. M., Burns, O. J., Pratscher, J., Jehmlich, N., Von  
814 Bergen, M., Richnow, H. H., Chen, Y., and Murrell, J. C.: Methylamine as a  
815 nitrogen source for microorganisms from a coastal marine environment, *Environ.*  
816 *Microbiol.*, 19, 2246–2257, <https://doi.org/10.1111/1462-2920.13709>, 2017.

817 Tian, M., Li, H., Wang, G., Fu, M., Qin, X., Lu, D., Liu, C., Zhu, Y., Luo, X., Deng,  
818 C., Abdullaev, S. F., and Huang, K.: Seasonal source identification and  
819 formation processes of marine particulate water soluble organic nitrogen over an  
820 offshore island in the East China Sea, *Sci. Total Environ.*, 863, 160895,  
821 <https://doi.org/10.1016/j.scitotenv.2022.160895>, 2023.

822 Violaki, K., Sciare, J., Williams, J., Baker, A. R., Martino, M., and Mihalopoulos, N.:  
823 Atmospheric water-soluble organic nitrogen (WSON) over marine environments:  
824 a global perspective, *Biogeosciences*, 12, 3131–3140,  
825 <https://doi.org/10.5194/bg-12-3131-2015>, 2015a.

826 Violaki, K., Sciare, J., Williams, J., Baker, A. R., Martino, M., and Mihalopoulos, N.:  
827 Atmospheric water-soluble organic nitrogen (WSON) over marine environments:  
828 a global perspective, *Biogeosciences*, 12, 3131–3140,  
829 <https://doi.org/10.5194/bg-12-3131-2015>, 2015b.

830 Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M., Browse, J.,  
831 Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C., Kilthau, W. P., Mason,  
832 R. H., McFiggans, G., Miller, L. A., Nájera, J. J., Polishchuk, E., Rae, S.,  
833 Schiller, C. L., Si, M., Temprado, J. V., Whale, T. F., Wong, J. P. S., Wurl, O.,

834 Yakobi-Hancock, J. D., Abbatt, J. P. D., Aller, J. Y., Bertram, A. K., Knopf, D.  
835 A., and Murray, B. J.: A marine biogenic source of atmospheric ice-nucleating  
836 particles, *Nature*, 525, 234–238, <https://doi.org/10.1038/nature14986>, 2015.

837 Wu, C. and Yu, J. Z.: Determination of primary combustion source organic  
838 carbon-to-elemental carbon (OC / EC) ratio using ambient OC and EC  
839 measurements: secondary OC-EC correlation minimization method, *Atmos.*  
840 *Chem. Phys.*, 16, 5453–5465, <https://doi.org/10.5194/acp-16-5453-2016>, 2016.

841 Wu, G., Hu, Y., Gong, C., Wang, D., Zhang, F., Herath, I. K., Chen, Z., and Shi, G.:  
842 Spatial distribution, sources, and direct radiative effect of carbonaceous aerosol  
843 along a transect from the Arctic Ocean to Antarctica, *Sci. Total Environ.*, 916,  
844 170136, <https://doi.org/10.1016/j.scitotenv.2024.170136>, 2024.

845 Xiao, H.-W., Xiao, H.-Y., Luo, L., Shen, C.-Y., Long, A.-M., Chen, L., Long, Z.-H.,  
846 and Li, D.-N.: Atmospheric aerosol compositions over the South China Sea:  
847 temporal variability and source apportionment, *Atmos. Chem. Phys.*, 17,  
848 3199–3214, <https://doi.org/10.5194/acp-17-3199-2017>, 2017.

849 Yan, J., Jung, J., Lin, Q., Zhang, M., Xu, S., and Zhao, S.: Effect of sea ice retreat on  
850 marine aerosol emissions in the Southern Ocean, Antarctica, *Sci. Total Environ.*,  
851 745, 140773, <https://doi.org/10.1016/j.scitotenv.2020.140773>, 2020.

852 Yan, S., Xu, G., Zhang, H., Wang, J., Xu, F., Gao, X., Zhang, J., Wu, J., and Yang, G.:  
853 Factors Controlling DMS Emission and Atmospheric Sulfate Aerosols in the  
854 Western Pacific Continental Sea, *J. Geophys. Res.*, 129, e2024JC020886,  
855 <https://doi.org/10.1029/2024JC020886>, 2024.

856 Yu, X., Li, Q., Ge, Y., Li, Y., Liao, K., Huang, X. H., Li, J., and Yu, J. Z.:  
857 Simultaneous Determination of Aerosol Inorganic and Organic Nitrogen by  
858 Thermal Evolution and Chemiluminescence Detection, *Environ. Sci. Technol.*,  
859 55, 11579–11589, <https://doi.org/10.1021/acs.est.1c04876>, 2021.

860 Zamora, L. M., Prospero, J. M., and Hansell, D. A.: Organic nitrogen in aerosols and  
861 precipitation at Barbados and Miami: Implications regarding sources, transport  
862 and deposition to the western subtropical North Atlantic, *J. Geophys. Res.*, 116,  
863 D20309, <https://doi.org/10.1029/2011JD015660>, 2011.

864 Zhou, S., Chen, Y., Paytan, A., Li, H., Wang, F., Zhu, Y., Yang, T., Zhang, Y., and  
865 Zhang, R.: Non-Marine Sources Contribute to Aerosol Methanesulfonate Over  
866 Coastal Seas, *JGR Atmospheres*, 126, e2021JD034960,  
867 <https://doi.org/10.1029/2021JD034960>, 2021.

868 Zhou, S., Chen, Y., Wang, F., Bao, Y., Ding, X., and Xu, Z.: Assessing the Intensity  
869 of Marine Biogenic Influence on the Lower Atmosphere: An Insight into the  
870 Distribution of Marine Biogenic Aerosols over the Eastern China Seas, Environ.  
871 Sci. Technol., 57, 12741–12751, <https://doi.org/10.1021/acs.est.3c04382>, 2023.