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Abstract. Floods are among the most frequent and damaging natural hazards worldwide, and reliable observations of water 

surface elevation (WSE) are essential for improving flood modelling and risk management. The Surface Water and Ocean 

Topography (SWOT) satellite, launched in 2022, offers new opportunities to monitor river hydrodynamics from space, but its 

performance in relatively narrow rivers (< 50 m width) remains poorly documented. This study evaluates the potential of 

SWOT WSEs for flood monitoring by comparing them with in situ observations as well as simulations from an existing large-15 

scale hydraulic model (LISFLOOD-FP) on the Du Gouffre River (width ≈ 40 m), located in Quebec, Canada. The 

L2_HR_RiverSP (RiverSP) SWOT product Version D, derived from a priori database (SWORD), was first compared with 

one-minute WSE measurements from a tidal gauge located downstream the Du Gouffre River in the St. Lawrence River. This 

comparison confirmed the overall quality of the SWOT data in this area, with a root mean square error (RMSE) of 0.24 m. 

Then, a major flood event (with a return period of about 60 years) which occurred on May 1, 2023, during the SWOT’s 20 

calibration orbit, was used to conduct a daily analysis of the entire flood event. Eleven observation cycles, covering the period 

from April 25 to May 7, 2023, were analysed. Limited ground-based observations were available along the studied reach 

during the flood, highlighting the value of SWOT data. The 1D/2D hydraulic model LISFLOOD-FP was run for the discharges 

corresponding to eleven SWOT cycles. Overall, there was good agreement with SWOT WSEs, with biases ranging from -0.30 

to 0.44 m and RMSEs between 0.14 and 0.54 m. For the peak-flood cycle (May 1), upstream discharges were initially 25 

underestimated, and an adjusted LISFLOOD-FP simulation constrained by SWOT observations resulted in a bias of -0.30 m 

and an RMSE of 0.54 m. This study confirms that SWOT WSEs can provide relevant hydraulic information during flood 

events in a river below the mission’s detection limit, thereby opening the way for a broader use in flood monitoring and 

modelling.  

 30 

https://doi.org/10.5194/egusphere-2025-5449
Preprint. Discussion started: 25 November 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

1 Introduction 

As floods are the most significant and costly natural hazard, efforts are underway around the world to improve how we assess, 

forecast, and map floods and their impacts (Barendrecht et al., 2017). Hydraulic modelling is the most widely used method for 

flood mapping to facilitate risk assessment (Teng et al., 2017). A hydraulic model allows the simulation of the spatio-temporal 

evolution of a river's hydraulic variables such as water surface elevation (WSE) and flow velocity, as well as the flooded area, 35 

through the application of mass and momentum conservation equations. It requires information on discharge, boundary 

conditions of the study domain, and characteristics of the area under study (river shape, roughness). The validation of a 

hydraulic model mainly depends on the quantity, quality, and type of observed WSE. However, hydraulic models require 

extensive data, which poses significant challenges (Teng et al., 2017). Given the decline in hydrometric stations (Grimaldi et 

al., 2016; Mishra and Coulibaly, 2009), their limited spatial and temporal coverage and the limited accessibility of 40 

measurement sites, especially during flood periods, observations are not always available or sufficient, which complicates the 

validation of hydraulic models and affects the reliability of simulations. 

In this context, the integration of remotely sensed variables such as WSE (Domeneghetti et al., 2021) and flood extents (Wood 

et al., 2016) into flood hydraulic modelling could potentially provide valuable information for model validation. Flood extents 

are usually derived from optical (Huang et al., 2018) or synthetic aperture radar (SAR) sensors (Landuyt et al., 2018).  Radar 45 

can measure regardless of illumination or weather conditions, whereas optical sensors cannot. This can significantly influence 

the ability to continuously monitor water, particularly during floods. By overlaying the water extent extracted onto a digital 

elevation model (DEM), it is possible to retrieve the WSE (Grimaldi et al., 2016), although the accuracy of the WSE value is 

affected by the resolution of the DEM. Laser and radar altimeters have also been used to measure river WSEs directly (Cretaux 

et al., 2018). Nielsen et al. (2022) worked with data from several altimetric missions in rivers with widths ranging from a few 50 

hundred meters to around 3 km. whereas Li et al. (2023) evaluated how well ICESat-2 laser altimetry could measure WSE in 

rivers ranging from medium-width (around 1000 m wide) to narrower ones (under 50 m). These findings revealed that, despite 

advances, getting reliable measurements for rivers narrower than 30 meters and sometimes even those up to 90 meters wide, 

remains challenging (Li et al., 2023).  

The Surface Water and Ocean Topography (SWOT) mission, led by the National Aeronautics and Space Administration 55 

(NASA) and the Centre National d’Études Spatiales (CNES), in collaboration with the Canadian Space Agency (CSA) and the 

UK Space Agency (UKSA), was launched in December 2022 to address these gaps (Biancamaria et al., 2016; Fu et al., 2024). 

The Ka-band Radar Interferometer (KaRIn), combined with SWOT’s low near-nadir incidence angles, enables the satellite to 

observe at least 90% of the world’s rivers wider than 50–100 m, as well as lakes, reservoirs, and wetlands larger than 250 m × 

250 m (Biancamaria et al., 2016). The expected vertical accuracy of WSE is 10 cm when pixels are averaged over 1 km2  (Peral 60 

https://doi.org/10.5194/egusphere-2025-5449
Preprint. Discussion started: 25 November 2025
c© Author(s) 2025. CC BY 4.0 License.



3 

 

et al., 2024). The satellite was initially deployed on a 1-day calibration orbit covering only a certain portion of the Earth 

between April and July 2023. It was then moved to its nominal 21-day orbit. 

To study the potential of the SWOT mission to monitor floods with its 21-day orbit, some studies have been conducted using 

synthetic SWOT data generated by the CNES large-scale hydrology simulator (SWOT simulator) prior to the mission launch. 

Frasson et al. (2019) estimated that SWOT would have provided at least one measurement of 55% of the floods recorded 65 

between 1985 and 2018 by the Dartmouth Flood Observatory. According to Frasson et al. (2019), SWOT’s ability to observe 

floods mainly depends on the site's latitude and the duration of the event. Indeed, long-duration floods are more likely to be 

observed more than once. Sites located between 20°S and 20°N will be observed once or twice per 21-day cycle, while higher 

latitudes will generally be observed two or more times per cycle. Following the satellite’s launch, Laipelt et al. (2025) confirm 

the usefulness of SWOT data for flood studies with a very strong relationship (R2 = 0.99) between actual SWOT observations 70 

of WSE variations and in situ measurements during an extreme flood that occurred in southern Brazil in 2024. Such a strong 

relationship was also obtained between SWOT data and external WSE databases, namely Hydroweb (https://www.theia-

land.fr/blog/product/hauteur-des-lacs-et-rivieres/) and G-REALM (https://ipad.fas.usda.gov/cropexplorer/global_reservoir/) 

which provide long-term WSE time series for rivers and lakes worldwide. Based on these comparisons, SWOT’s global 

average measurement error is estimated at 0.15 m (Yu et al., 2024). Moreover, SWOT observations also accurately quantified 75 

variations in the water surface slope along the studied rivers (Laipelt et al., 2025) and resolved both reach-scale and local 

variations in WSS and longitudinal profiles (Jiang et al., 2025), with a median RMSE of about 0.25 m for WSE, even in rivers 

narrower than 100 m (and in some cases < 50 m). Recent large-scale validation over India further demonstrated the strong 

performance of SWOT WSEs, with over 14,000 observations across 419 stations showing high agreement within situ data, 

particularly for rivers wider than 100 m with a relative error (RE) of 18 cm, and satisfactory results even for narrower river 80 

reaches (RE of 25.78 cm) (Patidar et al., 2025). Nevertheless, studies specifically addressing SWOT performance in narrow 

rivers remain limited, particularly during a flood event.  

This study evaluates the ability of SWOT observations to support the calibration and validation of hydraulic models in a narrow 

river (Du Gouffre River, Quebec, Canada (≈ 40 m wide)), which experienced a major flood (return period of 60 years, based 

on three-hour averaged flows (COMEXI-RDG, 2023)) in May 2023, and where a LISFLOOD-FP model (Bates and De Roo, 85 

2000) was available. The Du Gouffre River sector was covered by the SWOT calibration orbit, which made it possible to 

observe this flood on a daily basis. 

2 Methods  

2.1 Study Area 

The Du Gouffre River (Fig. 1.) is located around 100 km north-east of Quebec City (Quebec, Canada). It is a dynamic 90 

meandering river, that crosses the municipalities of Saint-Urbain and Baie-Saint-Paul before joining the St. Lawrence River. 
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The floodplain is between 300 and 400 m wide, with an average active channel width of about 40 m. The upstream sector of 

Saint-Urbain is characterized by a slope of 0.30%, which decreases to 0.11% in the sector of Baie-Saint-Paul. The downstream 

parts of the Du Gouffre River valley are influenced by the tides of the St. Lawrence River. The watershed of the Du Gouffre 

River covers an area of about 991 km². Among the main tributaries, the Bras du Nord Ouest River (100 km²) and the Des 95 

Mares River (115 km²) also represent important sub-watersheds within the Du Gouffre watershed (Fig. 1.). The region is 

subject to frequent flooding (Gouvernement du Québec, 2023), especially in the Baie-Saint-Paul area, where the Du Gouffre 

River and the Bras du Nord-Ouest River meet within an urban perimeter. Three types of flooding can occur on the Du Gouffre 

River: open water flooding caused by heavy rainfall or snowmelt, ice jam flooding, and flooding caused by the overflow of 

the St. Lawrence River along the Baie-Saint-Paul shoreline during high tides and strong winds. 100 

 

Figure 1:  Du Gouffre River study area  
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2.2 Flood Event  

On May 1, 2023, an exceptional flood occurred in the Du Gouffre watershed. It was preceded by two weeks of spring snowmelt, 

during which approximately 170 mm of water from the snowpack flowed into the basin. This situation was exacerbated by the 105 

heavy rainfall between April 30 and May 2, 2023, totalling 95 mm at the centre of the watershed at Saint-Urbain, with up to 

142 mm of rain recorded at the La-Galette station, located at the head of the watershed (Fig. 1.), including almost 100 mm in 

the space of just 12 hours (Gouvernement du Québec, 2023). These rainfall amounts, far exceeding the monthly averages for 

May (around 81 mm at La-Galette and 88 mm at Saint-Urbain), were intensified by a strong orographic effect in the high-

altitude areas (Gouvernement du Québec, 2023). The river flow thus increased from 75 m³/s to 500 m³/s in the span of 12 110 

hours, peaking around 12:30 p.m. (local time: UTC-4) on May 1 (Fig. 2.). The recurrence of this flood at the hydrometric 

station 051305 (Station 051305, 2025) in Saint-Urbain corresponds to a return period of 60 years for the maximum three-hour 

discharge, and 150 years for the daily average discharge. In the lower part of the river, near Baie-Saint-Paul, tidal fluctuations 

can also influence WSE and may contribute to worsening flood conditions when coinciding with river discharge peak. The 

SWOT satellite captured the May 1 flood through 13 acquisitions made before, during, and after the event (Fig. 2.). For this 115 

study, the comparison with SWOT observations focuses on the period from April 25 to May 7, 2023, excluding cycles 504 

and 505 due to invalid data. 

 

Figure 2: Instantaneous discharge (black curve) measured at hydrometric station 051305, and the WSE (blue curve) recorded at the 

tide gauge station 03057 (Station 03057, 2025), from April 25 to May 7, 2023. The black dots indicate the dates of SWOT satellite 120 
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acquisitions during its calibration orbit. The peak of the flood (reaching nearly 500 m³/s) occurred on May 1, 2023, at 12:30 p.m. 

(Local Time). 

2.3 Hydraulic Modelling: LISFLOOD-FP  

An existing LISFLOOD-FP 1D-2D hydraulic model was used to simulate WSE and flooded areas in the Du Gouffre River 

between Saint-Urbain and Baie-Saint-Paul. This model, described in Choné et al. (Choné et al., 2021, 2024), had been applied 125 

prior to the 2023 flood in this area as part of a large-scale modelling project based on high-resolution LiDAR (Light Detection 

And Ranging) data.  

Unlike conventional hydraulic models such as HEC-RAS, which are typically site-specific, strongly calibrated, and reliant on 

extensive in situ datasets, LISFLOOD-FP was explicitly designed for large-scale floodplain applications where such detailed 

data are often unavailable. It employs a simplified raster-based framework with an estimated, thereby reducing both 130 

computational costs and input data requirements (Bessar et al., 2021; Horritt and Bates, 2001; Moghim et al., 2023). It uses an 

approach that solves the Saint-Venant equations on a 2D grid corresponding to the provided DEM for overbank flow and a 1D 

representation of in-channel flow, neglecting the advection term in the momentum equation, following the simplified approach 

proposed by Bates et al. (2010). The model is fed solely by remote-sensed data, incorporating an inverse hydraulic model to 

estimate bed elevation from LiDAR water surfaces, using the known discharge value on the LiDAR day of acquisition (Choné 135 

et al., 2021, 2024). The hydraulic model is not calibrated, using a constant Manning’s n over the studied area.   

Model boundary conditions include instantaneous discharge series applied at several domain entry points, as well as 

downstream WSEs provided by the tidal gauging station ((Station 03057, 2025), Fig. 2.). Tide data were initially provided at 

map datum (ZC), then corrected by -3.311 m to convert them to the Canadian Geodetic Vertical Datum of 1928 (CGVD28, 

epoch 1997) to ensure consistency of WSEs with the rest of the data used in the modelling. 140 

The May 2023 flood modified the geomorphology of the Du Gouffre River and altered the historical relationships between 

WSE and discharge at the Saint-Urbain hydrometric station (Station 051305, 2025). To take these changes into account, a new 

rating curve was developed by using the Baratinage software (INRAE, 2023), based on the available observations and their 

associated uncertainties. By interpolating the relationships between WSE and discharge, we were able to associate each WSE 

value with an average, a minimum and a maximum discharge. Since the Saint-Urbain station is located 11.6 km upstream of 145 

the SWOT study area, a drainage area transfer was applied across the LISFLOOD domain to account for spatial differences. 

The drainage area at Saint-Urbain is 632 km², compared with 889 km² at Baie-Saint-Paul, and this scaling was used consistently 

to derive discharges at all input points of the model, therefore assuming a constant specific discharge.  

Unlike the other cycles, during the peak flood of May 1 (cycle 508), the drainage-area-based transfer applied across the 

LISFLOOD-FP domain was not sufficient to capture the actual hydraulic conditions. The transposed discharge at the Saint-150 

Urbain station (357 m³/s) was lower than the maximum value of 505 m³/s recorded only a few hours before the SWOT overpass 

(Fig. 2). Given the 11.6 km distance between the station and the upstream limit of the SWOT-observed reach, it is plausible 

that the true discharge was higher at the time of acquisition. Furthermore, tributaries originating from the Nord-Ouest Massif, 
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particularly the Des Mares River, contributed significant additional inflows during the event. The transposed discharge for this 

tributary was 82 m³/s, whereas Marquis et al. (2024) suggests that actual peak flows may have ranged between 150 and 200 155 

m³/s. Radar-based analyses suggest that rainfall over the Nord-Ouest Massif was significantly more intense than recorded at 

available stations, potentially exceeding 240 mm according to Marquis et al. (2024), which further supports the hypothesis of 

underestimated discharges. Consequently, a specific discharge adjustment was performed for the Des Mares tributary, with 

tested inflows up to 240 m³/s, while the main channel discharge was constrained by the maximum value observed at Saint-

Urbain (505 m³/s). This calibration, supported by SWOT observations, provided a more realistic hydraulic representation of 160 

the flood conditions for cycle 508 than that solely based on a drainage area ratio from the St-Urbain gauging station. 

Table 1 summarizes the discharges derived from the rating curve of the Saint-Urbain gauging station (Station 051305, 2025)for 

each SWOT overpass. These discharges served as the reference for drainage-area transposition across the LISFLOOD-FP 

domain. Downstream WSE correspond to observations at the Saint-Joseph station (Station 03057, 2025).  

Following Choné et al. (Choné et al., 2021, 2024), a constant Manning's roughness coefficient (n) of 0.03 was applied to the 165 

channel, whereas the Manning’s n in the floodplain was based on land-use data following Chow (1959).  

Table 1: Discharges derived from the Saint-Urbain rating curve during SWOT overpasses, used in LISFLOOD-FP (prior to 

discharge calibration for cycle 508). 

 

Date 
SWOT 

Cycle 

SWOT 

Overpass 

(UTC−4) 

Q 

Mean 

(m3/s) 

Q Min 

(m3/s) 

Q 

Max 

(m3/s) 

WSE 

station 

03057 

(m) 

04/25/2023 502 21:06 78 68 87 1.47 

04/26/2023 503 20:57 70 62 78 0.93 

04/29/2023 506 20:30 70 63 78 -0.77 

04/30/2023 507 20:21 73 65 81 -1.12 

05/01/2023 508 20:10 357 287 444 -0.88 

05/02/2023 509 20:01 197 164 237 -0.47 

05/03/2023 510 19:51 101 88 116 0.00 

05/04/2023 511 19:42 78 68 87 0.33 

05/05/2023 512 19:32 63 57 69 0.92 

05/06/2023 513 19:24 73 65 81 1.58 

05/07/2023 514 19:14 78 68 87 2.17 
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2.4 SWOT data analysis 170 

The SWOT River data processing chain begins with the L2_HR_PIXC product (PIXC), a pixel cloud in NetCDF format 

containing, among other attributes, ellipsoidal heights, geographic coordinates, surface classification (water, near-water, near-

land, and land), pixel area, and quality flags. The RiverObs algorithm developed by Ernesto Rodriguez, available at GitHub 

(https://github.com/SWOTAlgorithms/RiverObs)  then takes the PIXC product as input, along with the SWORD (Surface 

Water and Ocean Topography River Database), which structures rivers into segments (reaches) of about 10 km, themselves 175 

subdivided into nodes spaced approximately 200 m apart (Altenau et al., 2021). As a first step, RiverObs generates the 

L2_HR_PIXCVEC product (PIXCVEC), which filters and vectorizes valid water pixels to reduce noise and improve geometric 

accuracy and ensure proper geolocation. Using PIXCVEC and the SWORD river geometry, RiverObs produces the final 

L2_HR_RiverSP product (RiverSP), in which water pixels are associated with their nearest node or reach, and hydrological 

attributes are aggregated accordingly (Stuurman et al., 2023).  180 

The RiverSP (Single-Pass) product is distributed in shapefile format, with separate files for reaches (line features) and nodes 

(point features). These include aggregated attributes such as WSE, surface width, water surface area, as well as quality flags 

associated with each node. Estimated discharge (not available at the time of this study) and slope are provided at the reach 

level only. In this study, only the WSE values from the node product are used, with the aim of comparing them to the WSEs 

simulated by the LISFLOOD-FP hydraulic model. In SWOT products, WSE refers to the elevation of the inland water surface 185 

relative to the geoid, after removing tide effects (Chen et al., 2025). Version D (PGD0) of the SWOT RiverSP product, which 

includes the wse_sm attribute, was used in this study, as this smoothed variable reduces noise and ensures better spatial 

continuity between nodes, making it more suitable for hydraulic comparisons (Stuurman et al., 2025).  

SWOT node data were filtered to eliminate unreliable observations. Two quality flag fields were used: node_q and xovr_cal_q. 

The node_q field, is a summary quality indicator for the node, derived from the aggregation of PIXC product pixels assigned 190 

to the corresponding node, indicates the overall quality of the observation at the node level and can take the following values: 

0 (good), 1 (suspect), 2 (degraded), and 3 (bad). In parallel, the xovr_cal_q flag was selected because it is the only indicator 

that specifically assesses the reliability of the cross-over calibration (see Peral et al., 2024 for details on the cross-over 

calibration). It takes three values: 0 (nominal measurement), 1 (suspect measurement), and 2 (bad measurement). Only nodes 

with a node_q value less than or equal to 2 and a xovr_cal_q value equal to 0 or 1 were retained to limit the influence of points 195 

with known anomalies. The other quality flags should be the subject of further investigation before being used for data filtering. 

In addition, some nodes were removed manually despite satisfying both quality criteria, as their WSE values were clearly 

inconsistent with the river’s typical elevation range and deviated significantly from adjacent node values. 

The WSEs provided in the SWOT product are expressed in the ITRF2014 reference frame, based on the WGS84 ellipsoid and 

associated with the EGM2008 geoid. The adopted ITRF realization is referenced to the epoch of the measurements (Chen et 200 

al., 2025). To ensure compatibility with the WSEs simulated by the LISFLOOD-FP model, all SWOT observations were 

converted to the Canadian Spatial Reference System (CSRS). In this study the NAD83 (CSRS) reference frame (epoch 1997.0) 
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and the CGVD28 vertical datum were used. The conversion was performed using the TRX and GPS-H tools provided by 

Natural Resources Canada (https://ressources-naturelles.canada.ca/carte-outils-publications/donnees). This step aimed to place 

all data in a common reference frame, to make SWOT observations directly comparable to the results simulated by the 205 

hydraulic model. 

For each SWOT node retained after filtering, the corresponding WSE simulated by the LISFLOOD-FP model was extracted 

from the WSE raster. When the node did not coincide exactly with a valid raster cell, the value of the nearest cell was used. 

This method ensured full spatial correspondence between SWOT observations and the model results over the entire study 

period. To compare WSE from SWOT observations and hydraulic modelling, two statistical indicators were calculated for 210 

each overpass date: the root mean square error (RMSE), which measures the overall difference between the values produced 

by the LISFLOOD-FP hydraulic model and those measured by the SWOT satellite, and the bias, which highlights any 

systematic trends of overestimation or underestimation. The SWOT mission requirements are expressed using the 1-sigma 

metric, which is the 68th percentile of the absolute error between SWOT and the observations. This metric is therefore used 

to compare WSE SWOTs with observations at stations. 215 

3 Results  

The extracted WSEs from SWOT products (PGD0) were first compared with measurements (at one-minute intervals) from 

tide gauge station 03057 (Saint-Joseph-de-la-Rive, Fig. 1A) for all satellite passes between April 2023 and August 2025, during 

ice-free period. Figure 4 shows the probability that the absolute WSE error is less than or equal to a given value, indicating 

that the 68th percentile (corresponding to the 1-sigma metric defined in the SWOT requirements) is 0.05 m, with an RMSE of 220 

0.24 m. The SWOT observations used are of good quality (node_q < 3 et xovr_cal_q < 2). The obtained values meet the 

accuracy thresholds defined by the SWOT mission, which corresponds to the expected accuracy of 0.10 m averaged over 1 

km² or 0.45 m averaged over 0.01 km² (Desai, 2018).  

The consistency of the SWOT WSEs with LISFLOOD-FP simulations was assessed by comparing the corresponding nodes, 

which represents the core of this study. SWOT observations were thus compared with the results of the LISFLOOD-FP 225 

hydraulic model for seven observation cycles between April 25 and May 7, 2023 (Table 2). The differences between the two 

sources remain relatively small, with bias values ranging from -0.30 to 0.44 m and RMSE values between 0.27 and 0.54 m, 

indicating good agreement between SWOT observations and LISFLOOD-FP simulations. Detailed bias and RMSE values are 

shown in Table 2. 

 230 

 

 

 

 

 235 
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Table 2. Comparison of WSEs observed by SWOT with the results of the LISFLOOD-FP model, for each SWOT cycle (Cycles 504-

505 lack valid data; Cycle 510 excluded after filtering). 

SWOT cycle Bias (m) RMSE (m) 

502 0.44 0.52 

503 0.43 0.47 

506 0.33 0.50 

507 0.28 0.47 

508 -0.30 0.54 

509 -0.07 0.14 

510 - - 

511 0.24 0.40 

512 0.03 0.33 

513 0.33 0.40 

514 0.18 0.29 

 

The observed flood is covered by cycles 508, 509, and 510. For cycle 508, which corresponds to the flood peak reached on 

May 1, a discharge calibration was carried out for the Des Mares tributary using SWOT-derived WSEs. Increasing the tributary 240 

inflow to 240 m³/s yielded a bias of -0.30 m and an RMSE of 0.54 m (Fig. 3.), demonstrating that SWOT effectively helps 

calibrate discharge estimates when they are poorly known. For this figure, no discharge uncertainty is considered, as the value 

of 240 m³/s corresponds to the calibrated flow used in the simulation.  
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 245 

Figure 3: Comparison of SWOT and LISFLOOD-FP WSEs during the flood peak (cycle 508, May 1, 2023) 

The following cycle, 509, shows a good agreement between the two sources. The SWOT points generally align well with the 

simulated WSEs (Fig. 4.). The bias is -0.07 m and the RMSE is 0.14 m. Unlike cycle 508, the discharges for this overpass 

were well constrained and did not involve significant tributary inputs, which likely contributed to the strong consistency 

between the two datasets.  250 

SWOT data corresponding to cycle 510 could not be used. In this case, all nodes were associated with a xovr_cal_q value 

equal to 2, indicating a cross-over calibration that was considered unreliable. By applying the quality filters defined above, all 

these observations were discarded. 

Cycles 502, 503, 506 and 507 precede the flood peak. The discrepancies between SWOT and the model are slightly more 

pronounced than those observed during the recession phase. Biases range from 0.28 m to 0.44 m, and RMSEs from 0.47 m to 255 

0.52 m. During the recession phase, covered by cycles 511, 512, 513 and 514, the discrepancies are smaller; the biases do not 

exceed 0.33 m and the RMSE values range are from 0.29 m to 0.40 m. 

 

 

 260 
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Figure 4: Comparison of SWOT and LISFLOOD-FP WSEs for all cycles before and after the May 1 flood (excluding Cycle 508); 

the maximum and minimum discharges based on the uncertainty of the rating curve are also represented. 

4 Discussion and Conclusion 

The results obtained show a general consistency between the SWOT observations and the WSEs simulated by the LISFLOOD-265 

FP model over most of the cycles studied. The RMSE values ranging from 0.14 m to 0.54 m and biases values between -0.30 

and 0.44 m. These results are for river reaches of about 40 m in width, which is significantly smaller than rivers studied using 

simulated and actual SWOT data (e.g., 100–500 m, Domeneghetti et al., 2018; >300 m, Nair et al., 2022; 5.4 to 490 km, Yu et 

al., 2024; ∼10 km, Laipelt et al., 2025). According to Domeneghetti et al. (2018), the narrower the river, the lower the 

performance of SWOT.  270 

In this study, the discrepancies between the SWOT observations and the hydraulic simulations remain at a level of precision 

that is sufficient to support the calibration and validation of hydraulic models. These results suggest that SWOT observations 

can offer satisfactory accuracy even in the context of narrow rivers, thereby helping to broaden their range of application. 

Some studies indicate that vertical errors on the order of a few tens of centimeters can be sufficient to calibrate hydraulic 

models. For example, Shen et al. (2020) used altimetric observations from the Sentinel-3A and CryoSat-2 satellites to calibrate 275 

a one-dimensional model of the Han River in China. While initial RMSE values reached 0.22 m and 0.49 m respectively, the 

calibration brought them down to between 0.10 m and 0.22 m. The authors concluded that altimetric data with RMSEs below 
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0.6 m can be considered accurate enough to make a meaningful contribution to improving hydraulic simulations. On the Po 

River, Schneider et al. (2018) demonstrated the added value of continuous CryoSat-2 observations (average RMSE of 0.38 m), 

which were used to refine the spatial distribution of roughness coefficients in a hydraulic model. The results were comparable 280 

to those obtained using traditional gauging methods. Also on the Po River, Domeneghetti et al. (2014) pointed out that, 

although ERS-2 and ENVISAT altimetric data had relatively high RMSE (0.73–0.85 m), their combined use improved the 

depiction of the hydrological regime and the slope of the water profile when included in a joint calibration alongside ground-

based measurements. More recently, Coppo Frias et al. (2023) showed that it was possible to model rivers less than 100 m 

wide using a simplified hydraulic model and ICESat-2 products, achieving validation RMSEs between 0.41 m and 0.44 m. 285 

Lastly, Zhou et al. (2023) used a combination of ICESat-2 and Sentinel-2 data in the Yiluo River basin to estimate WSEs with 

RMSE ranging from 0.25 m to 0.59 m. The model calibrated with these data then achieved a validation RMSE of 0.36 m, 

further supporting the idea that this level of precision is more than sufficient for simulating WSE and floods, even in poorly 

gauged catchments.  

In cycle 508 (May 1 flood peak), calibrating the Des Mares tributary inflow with SWOT-derived WSEs greatly improved the 290 

hydraulic model’s performance, yielding a bias of -0.30 m and an RMSE of 0.54 m. This result demonstrates that SWOT 

observations can reveal discharge underestimation in ungauged tributaries and can effectively calibrate model inputs and 

reduce uncertainty. Similar findings were reported by Diouf et al. (2025), who demonstrated that SWOT’s centimeter-level 

accuracy can substantially enhance model calibration in poorly instrumented environments, particularly by constraining 

hydraulic parameters and improving the representation of WSE dynamics in zones lacking in situ measurements. At the same 295 

time, the need for such adjustment underscores the inherent challenge of determining an accurate discharge representation in 

hydraulic models under conditions of spatial rainfall variability. Spatial variability in rainfall strongly influences flood runoff, 

they can alter the volume, timing, and peak flow of the hydrograph (Khakbaz et al., 2012). Discharge estimates that may 

become available in future versions of SWOT products (and already for some reaches in version D) will be particularly valuable 

in such situations, as they could help refine the discharge inputs used in hydraulic models. 300 

Additional validation elements confirm the reliability of SWOT observations during the flood peak. Drone imagery acquired 

on May 1 (cycle 508) (Appendix A, Fig. A1) illustrates the extent of the flooding observed in the field. The extent of the 

flooded areas visible in these images is consistent with the WSEs measured by the satellite, thus providing an independent 

validation for the SWOT observations.  

This agreement is further supported by the analysis of two internal quality indicators provided in the SWOT River SP product 305 

(Fig. 5). The first, wse_u, represents the total uncertainty (random and systematic) of the WSE at each node (in meters), while 

the second, dark_frac, corresponds to the fraction of “dark water” pixels used in the retrieval, expressed as a unitless ratio 

between 0 and 1. Dark water results from signal attenuation, which can be caused by rainfall or by a smooth water surface 

(e.g., in the absence of wind). This raises the question of whether dark water occurs more frequently during flood events. For 

cycle 508, most wse_u values are tightly clustered between 0.09 m and 0.24 m, with a median around 0.13 m, indicating a 310 

generally low total uncertainty for most nodes. Only a few outliers exceed 0.3 m, reaching up to 0.76 m, but these remain 
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exceptions. Regarding dark_frac, almost all nodes have values equal to 0, with only three points above zero (≤ 0.3 m). When 

compared with the remaining cycles (Fig. 5.), the distribution of wse_u values is similarly concentrated, with a median of 0.15 

m. Similarly, dark_frac, values remain consistently close to 0 for all cycles, confirming the robustness of water detection 

throughout the study period. Taken together, these indicators show that the SWOT observations during the flood peak were of 315 

sufficient quality to ensure reliable WSE estimates. This case study demonstrates that the combination of SWOT observations 

with LISFLOOD-FP modelling provides valuable insights into discharge dynamics in poorly gauged reaches, particularly 

under extreme flood events where tributary contributions and hydraulic uncertainties are most pronounced. 

 

Figure 5: Cumulative distribution of SWOT quality indicators (wse_u in meters, dark_frac unitless) across cycles.  320 

During cycle 509, which corresponds to the recession phase, SWOT observations and model hydraulic simulations show 

limited deviations. The bias remains low (-0.07 m) and the RMSE is 0.14 m, showing a high degree of consistency between 

the two datasets.  

Cycle 510 was excluded from the analysis because all available observations had an xovr_cal_q value of 2, indicating low-

quality cross-calibration. This shows the value of using the quality indicators supplied with the data to assess their reliability 325 

prior to any comparison with a model. The use of enhanced reprocessed products should improve the accuracy and reliability 

of WSEs. The implementation of an automatic filter based on these indicators would represent a relevant approach to simplify 

the identification of usable data.  
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The pre- and post-flood cycles (503-507, and 511-514), as well as cycle 509 in the recession phase, show good agreement 

between the WSEs observed by SWOT and those simulated by the LISFLOOD-FP model. RMSEs are between 0.14 m and 330 

0.52 m. Such results also suggest that, in cases of systematic discrepancies, SWOT observations could be used as a basis for 

calibrating large-scale hydraulic models. These findings are in line with the conclusions of Frasson et al (2019), according to 

which SWOT data, despite their irregular spatio-temporal nature, can be useful for evaluating or adjusting hydraulic models, 

particularly when acquired after a flood event. 
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Appendix A 

 355 

Fig. A1 Aerial photograph showing the extent of flooding along the Du Gouffre River in Baie-Saint-Paul, on May 1, 2023, at 18:59 

(photograph courtesy of Frederick Tremblay, via Facebook). 
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Code and data availability 

The SWOT RiverSP products used in this study are freely available from the NASA Earthdata portal at 

https://www.earthdata.nasa.gov/. Hydrometric data were obtained from the Centre d’expertise hydrique du Québec (CEHQ), 370 

and tidal observations at the Saint-Joseph station were provided by the Canadian Hydrographic Service. The LISFLOOD-FP 

hydraulic model was used for the simulations, and the processing scripts used in this study are available upon reasonable 

request from the corresponding author. 
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