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Abstract. Droughts are increasingly threatening agricultural productivity. One potential adaptation is to increase the soil water

retention capacity, which can be achieved by enhancing soil organic carbon (SOC) through agricultural management. We

investigated how increasing SOC affects catchment-scale hydrology including extremes. SOC increases were implemented via

adjustments to soil hydraulic parameters (ρb, θPWP, θFC, θSat, Ksat) in a mesoscale hydrologic modeling (mHM) framework,

following literature-reported effects. Our analysis focuses on the medium-sized, agriculturally dominated Broye catchment in5

Western Switzerland, wherein we evaluated five SOC increase scenarios of varying depth and magnitude. At the plot scale,

SOC increases resulted in higher net soil water content (2.99–8.13%) and slightly higher evapotranspiration (0.15–0.4%), while

subsurface runoff was reduced (0.28–0.72% across all scenarios). These values represent overall net changes; while at shorter

timescales, the magnitude and even direction of effects varied by season and location. Increased water retention meant more

soil water was retained and latter evaporated and less was available for groundwater recharge and eventually as streamflow. At10

the catchment scale, streamflows were slightly reduced, with peak flows modestly attenuated. Low flow responses depended on

catchment characteristics and timing. In warmer and drier subcatchments, low flow frequency increased in some years, whereas

in cooler and wetter subcatchments, conditions in spring and early summer produced a beneficial effect, slightly reducing low

flow frequency. Overall our analysis suggest that a large-scale increase in SOC, while benefiting agricultural productivity

and peak flow attenuation, may also induce trade-offs by potentially reducing groundwater recharge and downstream water15

availability.

Keywords. SOC increase; drought; land use change, climate change adaptation; mHM; agro-hydrological modeling; Switzer-

land

1 Introduction

Agricultural productivity is strongly influenced by hydro-climatic variability. Meteorological, hydrological, and soil moisture20

droughts can co-occur and substantially reduce crop yields (Hou et al., 2024; Tijdeman et al., 2022). Compared to soils under

natural vegetation, agricultural soils are more prone to soil moisture depletion (Yu et al., 2019). This heightened vulnerability
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is also a consequence of long-term soil degradation: i.e., intensive management has depleted soil organic carbon (Córdova

et al., 2025), heavy machinery has compacted soils, increased surface runoff and reduced hydraulic conductivity and water

retention (Keller et al., 2019), and bare fallow practices have promoted erosion and weakened soil structure (Poeplau and Don,25

2015). Such degradation processes reduce the capacity of soils to buffer hydro-climatic extremes, thereby amplifying flood

and drought impacts (Saco et al., 2021). With climate change projected to intensify hydro-climatic variability, soil moisture

droughts in Europe are expected to expand in both area and duration (Samaniego et al., 2018).

To understand how climate change impacts agriculture, it is crucial to consider both the responses of plants and those of

farmers. When precipitation and soil moisture deficits coincide with high air temperatures and high evaporative demand, plants30

close their stomata to limit water loss (Gupta et al., 2020). Depending on the timing and duration of a drought, plant survival

rate, growth, and yield quantity and quality can be adversely affected (Dietz et al., 2021). Irrigation has traditionally been the

main option to reduce drought stress and mitigate yield loss, even in water-rich countries like Switzerland (Wriedt et al., 2009;

Baumgartner et al., 2025).

However, irrigation increasingly competes with ecological needs and other sectors (Brunner et al., 2019). In Switzerland,35

water withdrawals from rivers may be restricted when low flows reach critical thresholds for aquatic ecosystems (Heinz et al.,

2025), making yield losses unavoidable. While projections for larger Central European catchments show mixed trends (Marx

et al., 2018), summer low flows in lowland Swiss catchments like the Broye are projected to become more frequent and severe

from mid-century onwards under climate change (Muelchi et al., 2021a). Hence, irrigation restrictions will probably become

more frequent in the future. To increase the resilience of agricultural cropping systems to droughts, management can be adapted40

to enhance the soil’s function as a hydrological buffer, particularly its water retention capacity (Hou et al., 2024).

A key metric for this is plant available water capacity (PAWC), defined as the difference in volumetric soil moisture between

field capacity (θFC) and the permanent wilting point (θPWP ). PAWC thus represents the range of soil water that can potentially

be accessed by plants. The actual plant available water (PAW) is the portion of PAWC currently present in the soil, representing

the water that plants can actually extract at a given time. Other parameters that are key to assessing the soil’s hydraulic behavior45

are the bulk density (ρb) and saturated hydraulic conductivity (Ksat). ρb is defined as the dry mass relative to total soil volume

(commonly in 1.2 gcm−3), while Ksat describes the rate at which water flows through saturated soil (cmd−1).

Agricultural practices that enhance soil structure and increase organic matter, such as conservational tillage, organic amend-

ments, or cover cropping, can influence these parameters, especially ρb, Ksat, and ultimately PAWC (Lal, 2004; Blanco-Canqui

et al., 2009; Blanco-Canqui et al., 2023; Chalise et al., 2019; Bormann et al., 2007). For example, applying organic amend-50

ments enhances microbial activity and organic matter decomposition. This promotes soil aggregation, which generally reduces

ρb, increases porosity and pore connectivity, and thereby improves infiltration, water retention, and ultimately Ksat. Shi et al.

(2016) observed these effects in a silt loam, but the magnitude and direction of the changes can vary depending on soil texture

and structure. In addition to enhancing water retention, increasing soil organic carbon (SOC) offers a co-benefit of contributing

to negative CO2 emissions through carbon sequestration, particularly in the relatively undisturbed subsoil (Button et al., 2022).55

(Heinz et al., 2025) showed that increasing SOC in potato fields can reduce drought stress and yield losses for a case study in
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Switzerland. Assuming that such adaptive management is scaled up and applied on a larger area, raises the question on how do

these field-level interventions affect catchment-scale hydrological processes?

We know that hydrologic processes at the catchment scale can be influenced by local-scale changes (Öztürk et al., 2013; Ni

et al., 2021). In recent years, the use of natural processes to manage water in the landscape, often referred to as nature-based60

solutions, has received increasing attention (Collentine and Futter, 2018; Vann et al., 2025). These practices include structural

measures such as wetland and floodplain restoration, afforestation, riparian buffer strips, or terracing (Deng et al., 2021; Potter,

1991; Krois and Schulte, 2012), as well as targeted arable soil management (Vann et al., 2025). Terracing has been investigated

through both modeling and field-based studies, showing potential to enhance soil moisture and reduce erosion locally, while

possibly limiting downstream water availability (Deng et al., 2021). Soil conservation practices, such as conservational tillage65

and gully treatment, have been evaluated in data-based case studies and can decrease flood peaks and increase flood rise times

(Potter, 1991). Modeling studies also indicate that practices like no-tillage can reduce hydraulic conductivity, leading to higher

runoff and peak flows (Krois and Schulte, 2012; Moussa et al., 2002). Similarly, Fatichi et al. (2014) used the mechanistic

model Tethys-Chloris (Fatichi et al., 2012) to analyze grassland management effects (e.g., grazing, mowing, compaction)

from plot to catchment scale. They found that detectable catchment-scale impacts generally require large interventions or long70

observation periods. Fatichi et al. (2012) highlight that modeling is often the only feasible way to assess such effects, given

data limitations and the need for comparable catchments with and without management adaptations. To our knowledge, the

impacts of field-scale agricultural management practices designed to enhance soil water retention on evaporation, groundwater

recharge, and hydrological extremes have not yet been systematically explored.

To address this gap, we investigate how increasing soil organic carbon (SOC) affects catchment-scale hydrology, including75

hydrologic extremes such as low and peak flows. A model-based approach is used because long-term observational data cap-

turing pre- and post-management hydrological conditions are not available. We hypothesize that increasing SOC, and thus soil

water retention, alters the timing and partitioning of water fluxes – potentially mitigating low-flow conditions by sustaining

soil moisture and discharge during dry periods, while modestly reducing peak flows through enhanced retention capacity.

For this analysis, we implement the distributed mesoscale hydrological model mHM (Samaniego et al., 2010; Kumar et al.,80

2013), representing agricultural management as scenarios of varying SOC increases. Changes in SOC propagate through the

model via adjusted soil hydraulic parameters (ρb, θPWP , θFC , θSat, Ksat), reflecting observed SOC effects reported in the

literature. The selected case study is the lowland, mid-sized agricultural Broye catchment in Western Switzerland, which is

prone to agricultural droughts, summer low flows and has a good data coverage. We chose mHM for this analysis, as it is a

distributed, open-source model under active development with a growing user community (https://mhm-ufz.org). The model85

has been successfully used to simulate not only discharge, but also the spatiotemporal dynamics of runoff, evapotranspiration,

and soil moisture across diverse European catchments (Samaniego et al., 2010; Kumar et al., 2013; Samaniego et al., 2016).

mHM has also been applied to generate soil moisture time series for drought analysis and serves as the basis for the German

drought monitor (Thober et al., 2015; Samaniego et al., 2018; Boeing et al., 2025).
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2 Methods90

Our analysis framework is based on the catchment-scale hydrological model mHM, duly calibrated and evaluated using ob-

served discharge time series (Sect. 4.1). Based on the reviewed literature (Sect. 2.1), we implement the effects of a theoretical

combination of agricultural management practices for several scenarios of soil organic carbon (SOC) increases (Sect. 3.4).

These scenarios are implemented by adjusting the input data for bulk density (ρb) using a pedotransfer function that considers

SOC. The pedotransfer function used internally in mHM to calculate saturated hydraulic conductivity (Ksat) is also adjusted95

to consider SOC (see Sect. 2.3). We evaluate the effect of different SOC increase scenarios on the effective model param-

eters, hydrological states and fluxes at the grid scale and their effect on discharge including hydrological extremes for each

sub-catchment.

2.1 Literature-informed adjustment of soil hydraulic parameters

We conducted a literature review to identify studies that examined changes in soil properties resulting from management100

adaptations aimed at increasing SOC. Estimates of soil hydraulic properties—such as soil moisture at field capacity (θFC),

permanent wilting point (θPWP ), or saturated hydraulic conductivity (Ksat), derived from pedotransfer functions (PTFs) can

vary considerably and are a source of uncertainty (Paschalis et al., 2022; Turek et al., 2025). However, since PTFs are (ideally)

trained on large soil datasets from similar pedoclimatic conditions, they should support a broad generalization and enable the

prediction of difficult-to-measure parameters from more easily observable ones. Moreover, they typically cover a wider range105

of soil textures than field or experimental studies. In Table 1, we distinguish between the reported orders of magnitude from

experimental and modeling studies, both of which we consider in our analysis.

A range of management practices are reported that increase SOC: including cover cropping, diversified crop rotations,

the application of organic amendments (e.g., compost or manure), the retention of crop residues and the application of biochar

(Table 1). These practices are often combined, and the magnitude of SOC increase varies depending on site-specific conditions,110

depth, and implementation duration. The reported increases in SOC range from 7% to 36%, 20% to 220%, and 60% to absolute

increases of approximately + 1% by mass (Haruna et al., 2020; Hao et al., 2023; Blanco-Canqui et al., 2023; Shi et al., 2016;

Blanco-Canqui et al., 2009).

In addition to changes in SOC, several studies report concurrent effects on other soil hydraulic properties. A reduction in

bulk density (ρb) is frequently observed; the effect varies from -1% to -4% through cover cropping (Haruna et al., 2020; Hao115

et al., 2023) to -14% for a silt loam in response to long-term organic amendments (Shi et al., 2016).

The ranges of change in saturated hydraulic conductivity (Ksat) are particularly variable, with reported increases of 50%

to 250%, 40% to 360% and 95% depending on the practice and the site. Ksat underlies large variability and is a generally

hard-to-measure and even harder-to-estimate variable and should be handled with caution (Verrelst et al., 2019).
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Soil moisture (θ) and especially plant available water capacity (PAWC), are reported to increase in the range of 4% to 20%,120

4% to 54%, 33% and 65%, following increasing SOC and decreasing ρb (Haruna et al., 2020; Hao et al., 2023; Blanco-Canqui

et al., 2009).

In Blanco-Canqui et al. (2009), reducing crop residue cover from 100% to 0% decreased SOC, increased ρb, and reduced

Ksat and PAWC. In Table 1, we assume that increasing residue cover from 0% to 100% would have the opposite effects:

increasing SOC, reducing BD, and increasing Ksat and PAWC.125

The role of tillage is more complex. While reduced or no-tillage is often associated with higher SOC in the topsoil, it

primarily leads to a redistribution of organic matter, with less SOC in deeper layers, and total SOC differences are not always

significant (Bragazza et al., 2025). Tillage is often used in organic farming to control weeds, which can offset some of the

beneficial effects of organic farming practices. In particular, Blanco-Canqui et al. (2023) describe how tillage can negatively

affect bulk density (ρb) and Ksat, potentially counteracting the positive impacts of increased SOC in organic management130

systems, depending on tillage frequency and intensity.

2.2 Model description

The mesoscale Hydrologic Model (mHM, v. 5.13.1; https://mhm-ufz.org) is a spatially distributed, process-based model de-

signed to simulate major hydrological processes and water balance across diverse hydroclimatic regions and scales (Samaniego

et al., 2010; Kumar et al., 2013; Feigl et al., 2022). The computation of soil moisture processes and the generation of mobile135

water takes place at a grid scale, followed by a HBV-like soil moisture-runoff transformation to transform grid-scale mobile wa-

ter to grid-scale runoff, followed by transfer and routing from grid cell to grid cell following topography-based flow directions

(see below). The multiscale-parameter regionalization (MPR) is a key feature of mHM, which allows for both high-resolution

spatial input data and computational efficiency (Samaniego et al., 2010; Kumar et al., 2013). Using transfer functions, effective

model parameters (such as hydraulic conductivity) at the modelling grid-scale are estimated from spatial input parameters140

such as soil texture. These effective parameters are then internally upscaled to the (coarser) model resolution using different

operators such as harmonic or arithmetic mean, while retaining spatial variability (Samaniego et al., 2010; Kumar et al., 2013).

More detailed descriptions are available in the work of Samaniego et al. (2010); Kumar et al. (2013) with more specific details

on soil hydraulic parameterizations in Livneh et al. (2015).

The main processes simulated in mHM are canopy interception, snow accumulation and melt, evapotranspiration, infiltration,145

soil moisture storage, surface runoff, lateral subsurface flow (called interflow in mHM), percolation, groundwater storage,

baseflow and in-stream routing (Samaniego et al., 2010) (Fig. 1). Snow accumulation is simulated with a simple temperature

threshold; snowmelt is based on a degree-day method. In mHM, surface runoff can only occur on (nearly) impervious grid

cells representing sealed areas such as streets or buildings. Potential runoff from excess water is assumed to re-infiltrate at the

grid-scale and is, therefore, not simulated as a separate process in mHM. This is justified by the typically recommended grid150

resolution of 1 km to 50 km (Samaniego et al., 2010).

The soil moisture and runoff generation schemes in mHM are conceptually based on the HBV model (Bergström, 1995),

with some differences: mHM simulates soil moisture dynamics per soil layer (HBV usually has a single layer); the routine

6
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Figure 1. mHM flowdiagram adapted from Kumar et al. (2013)
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is described in more detail in Sect. 2.3. Once mobile water is generated per soil layer, the HBV conceptualization is used to

transform grid-scale mobile water into grid-scale runoff. Each grid cell uses two subsurface storages fed with the sum of the155

mobile water from the soil moisture routine. The upper unsaturated storage generates faster responding interflow and the other

slower responding baseflow (Fig. 1). Fast interflow occurs only if the water level in the storage zone exceeds a threshold; slow

interflow is a permanent flux governed by the water level in the first bucket (Livneh et al., 2015). The remaining water level in

this zone is the base for the percolation flux, encoded as a linear function of the water level. The percolation feeds the deeper

saturated zone, supposed to emulate groundwater storage, where baseflow is again parameterized as a linear function of the160

water level (Samaniego et al., 2010).

The total generated runoff (interflows and baseflow) from each grid cell is routed through the modelling domain by the mul-

tiscale Routing Model (mRM), a key component of the model (Thober et al., 2019). Grid-scale runoff is transferred from cell to

cell following topography-based flow direction and flow accumulation map. The routing algorithm applies the kinematic wave

equation with spatially varying flow celerity parameterized by slope (Thober et al., 2019). An adaptive time-stepping scheme165

is used to ensure numerical stability across resolutions. Shrestha et al. (2025) developed the subgrid catchment conservation

(SCC) routine specifically for mHM as an alternative to the commonly used D8 algorithm (O’Callaghan and Mark, 1984). This

approach addresses the catchment size problem that arises when small catchments are simulated at coarse resolution, which

can lead to over- or underestimation of catchment area and the resulting streamflow. For cells intersecting several subcatch-

ments, SCC allows water to partition into different neighboring cells. Due to this study’s relatively small catchment size, we170

also employ the SCC algorithm, which reduces biases in discharge between different sub-catchments (Shrestha et al., 2025).

In the configuration chosen for this study (see Sect. 3.3), the model has 47 (global) parameters that are calibrated based

on observed streamflow (calibrated parameter values in Table A3). mHM has a built-in calibration algorithm based on a

dynamically dimensioned search algorithm (Tolson and Shoemaker, 2007) for single objective parameter optimization. The

users can choose between several performance criteria (https://mhm-ufz.org). The retained calibration options for the case175

studies at hand are further discussed in Sect. 3.3. The number of iterations is set to 2500, which has been successfully used to

calibrate the mHM model in other studies (Kumar et al., 2010; Samaniego et al., 2017; Shrestha et al., 2024).

2.3 Parameterization of mHM soil moisture dynamics related to SOC changes

The mHM model represents root-zone soil moisture dynamics across multiple soil layers, with each layer corresponding to an

individual soil water reservoir. The water balance within each reservoir is primarily controlled by incoming fluxes – snowmelt180

and rainfall in the uppermost layer, or percolation from the overlying soil layer in lower layers – and outgoing fluxes, including

downward percolation and layer-specific evapotranspiration. Each soil layer has an upper soil water limit, represented by θsat,

which acts as a threshold for storage capacity. θsat is estimated using the PTF by Zacharias and Wessolek (2007):

θsat = Cconstant + Cclay · τclay + CDB · ρb (1)

8
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Figure 2. Adjustment of bulk density (ρb) for organic matter (pOM) in the default mHM routine, compared to the model version adapted for

this study using spatially distributed SOC data.

where Cclay is the clay content, and Cconstant, τclay, and CDB are (global) parameters that are calibrated (listed in Table A3).185

At each time step, the current water content θ in each soil layer is compared to θsat; if θ is below saturation, infiltration into the

layer is allowed. A portion of the incoming water is retained in the current layer, while the remainder percolates into the next

layer (see Equations in Appendix A). This also means that if θsat (i.e., the soil’s water retention) increases, then for the same

water input, less water infiltrates to deeper layers.

In the default mHM setup, bulk density (ρb) is internally estimated from a user-defined mineral bulk density (ρb,min) and190

modified using an organic matter parameter (pOM), which can be fixed or calibrated but is spatially uniform (Fig. 2). Saturated

hydraulic conductivity (Ksat) in mHM is derived using the pedotransfer function (PTF) from Cosby et al. (1984), based on sand

and clay content. We modify this parameterization to evaluate the effect of different SOC scenarios by directly linking SOC to

ρb and Ksat (Fig. 2). Specifically, we bypass the internal pOM routine and instead input SOC-adjusted ρb values directly, using

the PTF from Manrique and Jones (1991), adapted by De Vos et al. (2005):195

ρb = 1.660− 0.318
√

τSOC, (2)

where τSOC is the SOC content. Here we follow Minasny and McBratney (2018) who showed that SOC consistently affects

ρb in a largely texture-independent way. By representing SOC changes through ρb in pedotransfer functions, the resulting soil

hydraulic parameters naturally reflect SOC effects (Zacharias and Wessolek, 2007).

Above mentioned adaptation also allows us to capture the observed relationship between increasing SOC and decreasing ρb,200

which is generally linked to higher Ksat (Saxton and Rawls, 2006). To incorporate the effect of increasing SOC onto Ksat, we

also replace the default PTF with the one proposed by Vereecken et al. (1990), as listed in Lee (2005), which includes SOC

and ρb as predictors:

Ksat = CKsat1 exp
(
CKsat2−CKsat3 ln(τclay)−CKsat4 ln(τsand)−CKsat5 ln(τSOC)−CKsat6ρb

)
, (3)
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where τclay and τsand are the clay and the sand content, the parameters CKsat1to CKsat6are constants (listed in Appendix A).205

In mHM, θFC is parameterized as a function of Ksat, such that higher Ksat corresponds to lower θFC, based on the PTF derived

from soil database analysis by Twarakavi et al. (2009).

These parameter adjustments propagate through the process simulation chain, and their effects on parameters, variables,

states, and fluxes in response to increased SOC will be described and illustrated in the results Section (Fig. 6). They influence

the estimation of the van Genuchten parameters used to compute θsat, α, n, and m, as well as field capacity (θFC) and the210

permanent wilting point (θPWP) (Equations listed in Appendix A). These, in turn, affect the simulated soil moisture (θ) and the

associated fluxes, including infiltration, evapotranspiration (ET), lateral subsurface flow, and percolation.

ET in mHM is computed as a reduction of potential evapotranspiration (PET) by a soil moisture stress factor, following the

formulation of Feddes et al. (1976) or Jarvis (1989). In this study, we used the mHM process representation of Demirel et al.

(2018), which combines the Jarvis approach with a root distribution model based on Jackson et al. (1996). In this configuration,215

root density varies spatially and vertically as a function of soil field capacity (θFC).

The reduction from PET, after accounting for canopy interception, to ET is expressed as:

ET = PET · f (4)

where f is a soil moisture stress function defined by:

f =





R, θ ≥ tjarvis

R

(
θ

tjarvis

)
, θ < tjarvis

(5)220

Here, tjarvis is a calibrated threshold parameter, θ is the normalized soil water content:

θ =
θ− θpwp

θsat− θpwp
, (6)

and R is the fraction of roots in each soil layer:

R =
(
1−RCoeffFC

du

)
−

(
1−RCoeffFC

dl

)
(7)

with RCoeffFC representing the root fraction coefficient for the layer, and du and dl denoting the upper and lower soil layer225

boundaries (Appendix A). This formulation allows soil-layer specific root fractions to modulate ET in response to soil moisture.

3 Data

3.1 Study area

We apply the mHM model to the mid-sized (602 km2), lowland, pluvial Broye catchment in Western Switzerland (Fig. 3).

The modeling period is constrained by the availability of leaf area index input data and is therefore set to 2015–2022. The230

year 2015 is used as a warm-up period and is therefore discarded from any analysis. Despite the relatively short study period,
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there is considerable variability, with 2018 and 2022 as hot and dry years, 2016 and 2021 as cool and wet years, and some

intermediate, less extreme years (2017, 2019 and 2020, Fig. 3). There is no gauging station at the outlet, but there are stations

for four subcatchments, whose properties are listed in Fig. 3.

3.2 Input data235

The required input data and their sources are listed in Table 2. The morphological and land use input data have a resolution of

50 m x 50 m, and the meteorological data of 1 km x 1 km, which is also the internal modeling resolution. The water transfer and

routing in the model are based on the provided flow direction. However, because the water flow in the flat part of the catchment

is not well constrained by the DEM, a reconditioned DEM consistent with the mapped rivers must be calculated. After trying

different tools that provided unsatisfactory results, we developed a new tool to seamlessly align DEMs with mapped stream240

networks, resulting in minimal terrain alteration: hydro-snap (Horton, 2024). The approach is softer than a stream burn-in and

alters the DEM only where necessary. It also constrains the flow direction to be consistent with a provided catchment boundary.

With the available gridded precipitation data (MeteoSwiss, 2021a), the water balance in the subcatchments Petit Glâne

and Arbogne does not close (Appendix 6). The observed annual discharge is far too low compared to the catchment-average

precipitation. However, comparable catchments nearby show similarly low discharge values (Canton of Bern, 2025; Canton of245

Vaud, 2025); accordingly, discharge measurement errors alone cannot explain the difference. The gridded precipitation product

we use might well contain interpolation artifacts given the substantial spatial variability of observed precipitation. Therefore,

we also explored other precipitation products (Supplementary Material). To reduce potential biases, we eventually combined

the gridded precipitation product with data of the nearby meteo stations for the two smaller subcatchments, Arbogne and Petit

Glâne (Supplementary Material).250

3.2.1 LAI

It has been shown that using spatially distributed leaf area index (LAI) instead of monthly look-up tables improves the discharge

estimation for the VIC model (Liang, 1994), that mHM is partly based on (Tesemma et al., 2014). Therefore, LAI was inferred

from Sentinel-2 imagery using a specifically trained neural network (NN). Sentinel-2 provides multispectral data at up to 10 m

resolution with a 3-day revisit time at mid-latitudes. To train the model, a radiative transfer model (PROSAIL; Jacquemoud et al.255

2009) was used to simulate vegetation spectral reflectances based on varying leaf and canopy parameters, thereby generating a

training database. Here, PROSAIL was parametrised specifically for arable crops in Switzerland.

ESA’s Sentinel Application Platform (SNAP) toolbox includes a Biophysical Processor estimating LAI from Sentinel-2

imagery for all vegetation types (Weiss and Baret, 2016). We therefore used a two-model strategy: the generic SNAP model

for forests, and a trained neural network for cropland. LAI was predicted at 10 m (NN) and 20 m (SNAP) resolution, then260

combined using our land-use mask (Table 2, Zanaga et al. 2022). Non-vegetated areas were set to zero. Monthly median values

were calculated and upscaled to 50 m resolution using nearest-neighbor interpolation.
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Figure 3. a: Sub-catchments and gauging station location. b: Soil texture and soil organic carbon for the total Broye catchment. c: cumulative

temperature and precipitation sums for the whole catchment, cumulative sum of discharge for sub-catchments [scaled for easier comparison,

in 2022 only data available for the Broye sub-catchment]
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Table 2. Overview of input data used.

mHM input data Data description & source

Morphological data with a 50 m resolution

Land use map Land use reclassified in three classes: pervious, impervious, forest. Extracted

from ESA WorldCover (Zanaga et al., 2022).

Soil map Soil type map along with the corresponding table of soil horizons (texture %,

bulk density g/cm3) (Stumpf et al., 2023).

Hydrogeological map Map and corresponding table of the main hydrogeological classes (Federal

Office for the Environment (FOEN), 2009).

Digital Elevevation Model DEM reconditionned with hydro-snap (Horton, 2024) and based on the

swissALTI3D product (swisstopo, 2021).

Flow direction map Flow direction computed by pysheds (Bartos, 2020) on the reconditionned

DEM.

Flow accumulation map Flow accumulation computed from the flow direction map.

Aspect map Aspect map computed from the DEM

Slope map Slope map puted from the DEM

Gauges position map Map with location of gauging stations

Forcing data with a 1000 m resolution

Precipitation Daily precipitation (mm/d) from the RhiresD dataset (MeteoSwiss, 2021a)

Temperature Average daily temperature (◦C) from the TabsD dataset (MeteoSwiss, 2021b)

PET Daily PET calculated after Priestley-Taylor (mm/d) using data from swisstopo

(2021); MeteoSwiss (2021b); Stöckli (2013)

LAI Monthly LAI derived from Sentinel 2 satellite data

Discharge Daily discharge (m3 s−1) provided by DGE Vaud (2025a, b, c); Federal Office

for the Environment (FOEN) (2023)
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3.3 Model set-up and evaluation

Different options are available to represent the hydrological processes in mHM (see https://mhm-ufz.org for details). We

selected the default options (Samaniego et al., 2024), except for the soil moisture and the evapotranspiration routine. For the265

soil moisture routine, we selected the option in which ET for each soil layer is constrained by relative available soil moisture

instead of being uniform for each land use class (following Jarvis (1989) as implemented and documented by Demirel et al.

(2018)). This option allows for a spatially varying root fraction distribution depending on the soil’s field capacity (θFC), which

is an advantage in the presence of a high-quality soil database of high resolution (90 m x 90 m) (Stumpf et al., 2023). In contrast

to most crop and land surface models, where root distribution is prescribed as a depth-dependent function independent of soil270

moisture (Maan et al., 2023), mHM explicitly links the root distribution to the soil´s θFC following Demirel et al. (2018).

We compute PET as an external model input according to the Priestley-Taylor method (Priestley and Taylor, 1972), which

uses average temperature, solar radiation and elevation as input. We set the model options such that PET is further distributed

in space based on aspect, as implemented by Demirci and Demirel (2023). It should be noted that the mHM option to correct

PET based on LAI data led to unrealistically high PET/ET values in our case and was thus not used.275

The model is calibrated using as performance criterion the Kling-Gupta efficiency (KGE) (Gupta et al., 2009), calculated

on each of the observed streamflow time series (at the four gauges) and averaged thereafter (without weighting). The retained

period for calibration is 2016-2019 and for evaluation 2020-2022. The specific calibration setting is the result of manual

explorations of different objective functions and of number of iterations. With fitting the model based on the KGE, we could

get the overall best performance while maintaining realistic dynamics of all states and fluxes.280

We also evaluate the model performance for soil moisture using observed timeseries of volumetric water content at three

depths from a grassland site close to the Broye gauging station in Payerne, measured as part of the Swiss Soil Moisture

EXperiment SwissSMEX (Mittelbach and Seneviratne, 2012).

3.4 SOC change experiments

We apply different scenarios to evaluate the effect of increased SOC on catchment hydrology to i) represent possible outcomes285

from long-term agricultural management adaptations (Sect. 2.1), and ii) test the model’s sensitivity towards different levels

and depths of SOC increases (Fig. 4). In the Broye catchment, SOC is on average around 2.2% in the first 30 cm (soil layer

1), and approximately 0.9% between 30 cm and 60 cm (layer 2, Fig. 3). The SOC ratio between layer 2 and layer 1 is there-

fore approximately 60 %. We apply this depth-decrease ratio to the increase scenarios 1, 3, and 5. These scenarios represent

increasing magnitudes of SOC increases. In scenario 2, SOC is not increased in soil layer 2 at all, and in scenario 4, SOC is290

increased by 1% (mass) in both layers.

We emphasize that these scenarios are artificial and not intended to represent specific, immediately achievable management

interventions, but should rather reflect the long-term possible outcomes of combinations of different management adaptations.

While they are informed by the literature review (Sect. 2.1), the scenarios with large and deep SOC increases (MedC_MedC and
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Figure 4. SOC scenarios

vHighC_MedC) may be harder to achieve in practice. Nevertheless, including such scenarios allows us to explore the potential295

range of hydrological responses to SOC increases and test the sensitivity of the model to large changes in soil properties.

The SOC values in each scenario are then used to estimate the model input ρb (bulk density), as discussed in Sect. 2.3.

Consistent with the rationale outlined in the introduction, we hypothesize that increasing SOC will enhance soil water retention,

allowing the soil to buffer hydrologic extremes, reduce low-flow frequency, and modestly attenuate peak flows. mHM considers

three land use types: forest, impervious cover and pervious cover, where the latter includes all cropland and meadows. The300

adaptations to ρb are only applied to pervious areas, which have the highest share in each subcatchment (Fig. 3).

3.5 Hydrologic extremes evaluations: Low and peak flow indicators

To assess the impact of the SOC scenarios on low flows, we calculate the Q347 threshold for each sub-catchment. Q347

corresponds to the discharge that is exceeded on 347 days per year (i.e., the 5th percentile) and is commonly used in Switzerland

to define low-flow periods and as a threshold for the restriction of irrigation water withdrawal from rivers (Heinz et al., 2025;305

WPA, 1991).

For peak flows, our analysis is constrained by the daily resolution of simulated discharge, whereas hourly peaks would be

more relevant (Bartens et al., 2024). Nevertheless, we estimate changes in discharge associated with two-year return period

floods (Q2 events). Q2 thresholds are determined for each sub-catchment using a generalized extreme value model, although

the short time series in smaller sub-catchments can be limiting (48 years in the Broye and 26 years in the other subcatchments).310

Across stations, we also observe a decreasing discharge trend, significant only for the Broye at Payerne, which explains why

only a few Q2 events occur during the study period.

4 Results

4.1 Calibration and evaluation

Model calibration led to a good fit of simulated to observed streamflow for the Broye and the Flon (KGE = 0.91), with a slightly315

lower performance for the Arbogne and Petit Glâne (KGE = 0.83 and 0.86, Fig. 5).
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Figure 5. Observed and simulated discharge for all subcatchments. Except for the Broye, the data for the other stations was not officially

validated yet for 2022. NSE= Nash-Sutcliff-Efficiency, pbias = percentage bias.

Seasonal discharge dynamics are not equally well captured across subcatchments (Appendix A). The Broye shows the best

fit; low flows are underestimated in the Flon, overestimated and mis-timed in the Arbogne, and mis-timed in the Petit Glâne.

Percentage biases for high and low flows (Q95 and Q5) range from –0.1% to 7% and -22% to 43%, respectively, with the best

agreement in the Broye (pbias for Q95 = 7%, pbias for Q5 = 9%), likely reflecting the higher quality of observed discharge320

data there.

In comparison with the observed soil moisture time series (Sect. 3.3), mHM achieved reasonably good performance, except

for the lowest soil layer, with KGE values of 0.65, 0.73, and 0.13 (0-30cm, 30-60cm and 60-90cm). The good fit in the two

upper layers is noteworthy given that the data were not used for calibration and represent a single grid cell. While soil moisture

was generally underestimated (percentage bias 8% to –11%), the model reproduced the temporal variability well (Fig. A1).325

4.2 Change in soil hydraulic properties

In Fig. 6 (panel a), we show the impact of the SOC increase on several parameters of interest. The points represent all pervious

land cover cells, which equals the area the SOC increase is applied to. Saturated hydraulic conductivity (Ksat) and water content

at saturation and wilting point (θSat and θPWP ) are effective model parameters calculated within mHM. θFC changes with

the almost same magnitude as θSat, which is why we dont show it explicitly in Fig. 6. Bulk density (ρb) is a model input and330

PAWC (plant available water capacity, θFC−θPWP ) gives an idea if the surplus in retained water could be taken up by plants.

The Figure compares the base scenario (no SOC added) with all five SOC increase scenarios.
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Adding +0.5%, 1% and 1.5% SOC to the first soil layer led to a decrease in ρb by on average 3.3%, 6.4% and 9.2% (Fig. 6).

The decrease in ρb propagates through the model (Fig. 1), leading to an increase in θSat and θFC of on average 3.2%, 6.2% and

8.8% accordingly. PAWC is increased by 4.9%, 9.3% and up to 13.5%. As described in Sect. 2.3, an increase in Ksat leads to335

a decrease in θFC , as parameterized in mHM. Although Ksat was substantially increased, the effect on θFC is negligible. The

sensitivity of PAWC to increases in SOC depends on the initial SOC content and soil texture. PAWC increases more strongly

in soils with low initial SOC and higher sand content (Appendix A).

4.3 Impact of increasing SOC on grid-scale processes

In Fig. 6 (panel b) we visualize how the changes in hydraulic parameters propagate through the process chain in mHM and340

how states and fluxes are changed accordingly, here representing a snapshot for the simulated net changes. On average, the

increase in water retention capacity of the soil leads to an increase in ET and since more water can be retained and evaporated,

less water contributes to further states and fluxes downwards.

The overall impacts of the SOC scenarios on the model’s fluxes and states at grid-scale are moderate. Fig. 7 shows the results

of the base scenario and the SOC scenarios for actual evapotranspiration (ET), soil water content in the first and second soil345

layer, and subsurface runoff across all permeable land use (grid-) cells throughout the catchment (other states and fluxes are

shown in the Supplementary Material). It is important to note, that subsurface runoff in mHM comprises the fluxes fast &

slow interflow and baseflow. Soil water content in layer 1 and 2 is with on average 2.9% to 8.1% consistently higher under

the SOC scenarios, though spatial variability is large (evident through the large ranges visible in Fig. 7). In absolute terms,

soil water content is in winter 3-8 mm and in summer 2-6 mm higher (panel b, Fig. 7). The impact of SOC increase on the350

boundary fluxes ET and subsurface, is however relatively small. Panel c displays the cumulative absolute differences between

each SOC scenario and the base scenario, with relative differences also written in each subplot (Fig. 7). ET shows a net increase

of +0.16% to +0.4% over all SOC scenarios, while subsurface runoff slightly decreases (-0.28% to -0.72%). In absolute terms,

ET is higher by maximal 0.2-0.6 mm and subsurface runoff is reduced by maximum 1-2 mm. The differences in these key

state and fluxes exhibit distinct seasonal patterns. For ET, cumulative differences increase sharply in spring and summer, while355

little change is observed in fall and winter. In contrast, the cumulative differences in subsurface runoff peak in winter are partly

reversed in summer and fall. The difference in soil water content is largest in winter and spring, while it is gradually decreasing

in late summer and early fall, before it sharply increases again.

We summarize the average seasonal pattern of all SOC scenarios relative to the base scenario in Fig. 8 and can distinguish

four stages, defined in Table 3, which outline the main hydrological responses throughout the year. Overall, we see a consis-360

tent increase in soil moisture across all seasons, moderate increases in ET during spring and summer, and generally reduced

subsurface runoff, except in spring when it shows a slight increase (Tab. 3.

4.4 Impact of increasing SOC on discharge and hydrological extremes

Beyond grid-scale subsurface, mHM also simulates routed discharge at the locations of gauging stations. The overall effect of

increased SOC on discharge is small. Hydrographs from all scenarios almost entirely overlap and are therefore only shown in365
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Figure 6. a: Changes in key effective parameters for all pervious landcover cells, which represent the area where SOC was increased in

our scenario runs. Please note the differences in scale for each plot. Number in each plot show the mean relative differences for each SOC

scenario against the base scenario. b: How changes in SOC and bulk density (ρb) propagate in the mHM model. The Figure shows a snapshot

of net changes in parameters and outputs; actual variables depend on boundary conditions, so seasonal responses may differ. Note that θFC

scales linearly with θsat but only weakly with Ksat, leading to an overall increase. frunoff and I at each timestep are controlled by the current

θ; ET affects them only indirectly through its impact on θ in preceding timesteps, therefore the dashed arrow here.
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Figure 7. All panels show the (weekly) mean and range over all pervious landcover cells, where SOC was increased. a: Timeseries of key

fluxes and state for the base and all SOC increase scenarios. Note, that the difference between the scenarios for ET and subsurface runoff is

so small that the lines almost completely overlap. b: Absolute difference between each SOC scenario and the base scenario. c: Cumulative

sums of the difference between each SOC scenario and the base scenario; the text in each subplot is the mean relative difference over all

cells.
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Figure 8. Schematic of the annual cycle of average impacts of SOC increase scenarios relative to the base scenario.
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Table 3. Mean annual hydrological impacts of increased SOC on key fluxes and states relative to base scenario

Stage/Season Soil Moisture ET Subsurface

Runoff

Key Mechanism

Winter/early spring ↑↑ No difference ↓ High water retention capacity stores precipitation,

minimizing subsurface runoff under SOC scenario.

Late spring/early summer ↑ ↑ ↑ The soil’s high initial saturation combined with

increasing spring precipitation inputs exceeds the

remaining storage capacity, temporarily increasing

subsurface runoff.

Late summer/fall ↑ ↑ No difference A transitional period as soil moisture recovers

from the summer peak; no difference in subsurface

runoff.

Late fall/winter ↑↑ No difference ↓ Low ET allows the enhanced retention capacity to

maximize SM recovery, reducing subsurface runoff

under SOC scenarios.

Appendix A. Relative differences between the base and SOC scenarios are moderate (positive values indicate higher discharge

under SOC; Fig. 9, Panel b), which is consistent with the small changes in subsurface runoff at the grid-cell scale (Sect. 4.3).

All subcatchments display a similar seasonal pattern: the relative difference in discharge decreases mostly in fall and winter,

and increases in spring and summer. However, the magnitude and direction of changes differ by subcatchment (Fig. 9 panel

b and Fig. 10). Across catchments, relative discharge responses vary in both magnitude and direction. The Flon shows the370

strongest increases, with values reaching up to +20%, while the Petit Glâne exhibits the largest decreases of up to −18%.

For most catchments, relative differences remain within ±10%. In absolute terms, the Arbogne (mean discharge (mean Q)

0.73 m3 s−1) shows increases of up to 0.08 m3 s−1 and decreases between 0.10 and 0.30 m3 s−1. In the Broye (mean Q

7.89 m3 s−1), discharge can increase by up to 0.8 m3 s−1 and decrease by 1−3.5 m3 s−1. For the Flon (mean Q 0.34 m3 s−1),

increases reach up to 0.05 m3 s−1, while decreases range from 0.05 to 0.25 m3 s−1. In the Petit Glâne (mean Q 0.94 m3 s−1),375

discharge increases are around 0.1 m3 s−1, and decreases range from 0.3 to 0.8 m3 s−1 (see Appendix A).

The Arbogne resembles the Petit Glâne, and the Broye’s response is more attenuated. The share of pervious area per catch-

ment (where SOC is increased) is comparable between the subcatchments: The Broye and Arbogne have 61% and 62%, Flon

and Petit Glâne slightly higher shares with 72% and 74% (Fig. 3). Thus, the described differences between stations rather arise

from climatic variations than differences in land use.380
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Figure 9. Relative difference timeseries of SOC to base scenario. positive values = more discharge under SOC increase. Gray vertical lines

= days where the low flow threshold for each subcatchment is reached in the base scenario, red vertical lines = days where Q2 threshold is

reached.
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Figure 10. Spatial patterns of precipitation, temperature and discharge for one intermediate SOC scenario (MedC_lowC). Difference in

discharge = SOC-scenario - base scenario. More details and monthly maps in Appendix A

The Flon chatchment has a higher average elevation, with lower temperatures, more precipitation and therefore increased

discharge (Fig. 10). The Petit Glâne and Arbogne lie lower and receive less precipitation and show therefore also less discharge.

The Broye subcatchment spans a wider elevational and climatic gradient, thus slightly averaging out the effects.

Peak flows are, in general, reduced under the SOC scenarios, although the effect is small (Fig. 9). Floods with a 2-year return

period occurred in winter 2017/2018 and summer 2021 (Q2 events, red vertical lines in Fig. 9). Discharge during these events385

is slightly decreased under the SOC scenarios in 2017/2018, but the impact in 2021 is negligible. For instance, the peak flow

in the Broye in 2018 reached 77.17 m3s−1 and was reduced by 0.2–0.5 m3s−1 under the SOC scenarios, while in 2021 a peak

of 70.29 m3s−1 was reduced by 0.3–1 m3s−1 (see Appendix A).

A relevant indicator for low flows is the Q347 threshold, an indicator that cantonal authorities use to determine bans on

irrigation water withdrawal from rivers to fulfill the minimum environmental flow requirements. In Fig. 9, days where the390

observed discharge fell below this threshold are marked in gray as low-flow days. Although the influence is minor, discharge

is slightly increased under the SOC scenarios before and sometimes during observed low-flow periods. This leads to fewer

days falling below the Q347—typically 1–6 days depending on scenario, year, and subcatchment (in the Broye, for example,

1–4 days less). However, in the Arbogne in 2016 and 2019, as well as in the Petit Glâne in 2019, low-flow periods coincided

with reduced discharge under the SOC scenarios, resulting in more low-flow days (a surplus of 1–14 days in the Arbogne and395

up to 5 days in the Petit Glâne, Fig. 11).
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Figure 11. Timeseries of relative difference between base and SOC scenarios in the annual number of days with discharge below Q347 (low

flow threshold).

4.5 Scenario sensitivity

Since the overall small impact of SOC increase on ET was first surprising, we wanted to investigate the responses of the

individual soil layers. Here we found, that although the soil water content in the first two layers was consistently higher under

the SOC scenarios, ET from soil layers 1 is reduced, while it is increased from soil layer 2 and 3, leading to an overall small400

net increase. The reason for this is explained and discussed in Sect. 5.2.3.

The SOC scenarios represent possible outcomes of combinations of management adaptations. Their impact on the model

output fluxes ET and total grid-scale runoff increases almost linearly with increasing SOC content, as visible by comparing

scenarios LowC_vLowC, MedC_LowC and vHighC_MedC in Fig. 12.

In total, the largest SOC additions occur in scenario vHighC_MedC (+1.5% in the first layer and +0.6% in the second405

layer), whereas in scenario MedC_MedC, SOC is added evenly across both layers (+1% in each). Interestingly, the effects on

soil moisture are often largest under MedC_MedC, despite its slightly lower total SOC increase (Fig. 7). This suggests that

increasing SOC in the subsoil can be particularly beneficial, as it slows soil moisture depletion during late summer and fall.
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Figure 12. Magnitude of change in selected states and fluxes for SOC scenarios relative to the base scenario.

Differences between vHighC_MedC and MedC_MedC are generally minor: in most catchments, the two scenarios produce

nearly identical reductions in low-flow days compared to the base scenario. However, in the Arbogne in 2018, low-flow days410

are reduced by one day only under MedC_MedC, and in the Flon in 2022, the reduction under scenario MedC_MedC is two

days—one day more than under vHighC_MedC.

For the catchment-wide, annual effect, the distribution of SOC in the two soil layers does not make a difference. Only at

the seasonal scale, a distribution into deeper layers might lead to a delay of drought-induced transpiration reduction (as was

observed in Turek et al. 2023; Heinz et al. 2025).415

5 Discussion

5.1 Applicability of the study framework

5.1.1 Model performance

In this study, we used a fixed parameter set that was calibrated to perform well across all four subcatchments, effectively

representing observed discharge dynamics. Model or parameter uncertainty was not systematically explored, but testing six420

alternative parameter sets showed that the direction of simulated changes is robust, while the magnitude varies (Sect. 5.2.2).
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For streamflow, the calibrated mHM model performs very well for the Broye (Payerne) subcatchment (KGE = 0.91, NSE =

0.86), outperforming previous applications of conceptual models (SWAT, Zarrineh et al. 2018; PREVAH, Muelchi et al. 2021b)

and a physics-based model (Alpine3D, Lehning et al. 2006). Despite relatively short calibration and evaluation periods (four

and three years), these performance values are high (see Supplementary Material for a more detailed comparison), underlining425

the model’s ability to reproduce observed discharge dynamics. Seasonal low-flow regimes are fairly well reproduced for the

Broye and Petit Glâne subcatchments, while the frequency of low flows is underestimated for the Flon and overestimated for

the Arbogne. The differences in performance can be traced to biases in the precipitation input fields. Such biases were already

reported in earlier studies using the same precipitation data product (Muelchi et al., 2021b; Brunner et al., 2019). While our

adjustments to the precipitation input substantially reduced these biases, they were not fully eliminated. A more systematic430

bias correction would be required. Still, this adaptation was essential to reliably simulate soil moisture dynamics. Here, we

were able to reproduce observed soil moisture time series with relatively good performance (Appendix A).

5.1.2 Plausibility of represented changes in soil hydraulic properties

The plausibility of our simulation results depends on how reliably SOC-driven changes in soil hydraulic properties are repre-

sented, which can only be discussed against literature reported estimates.435

The non-linear pedotransfer function (PTF) used to calculate ρb from SOC captures the stronger sensitivity of θFC and θSat

at low initial SOC, consistent with large soil database analyses (Rawls et al., 2004; Hudson, 1994; Minasny and McBratney,

2018). Simulated reductions in ρb (Fig. 6) align with reported ranges (Table 1). In our study, θFC and θSat increase with

SOC, while θPWP increases less, raising plant available water capacity (PAWC), in line with previous findings (Rawls et al.,

2003, 2004; Libohova et al., 2018; Lal, 2020; Abdallah et al., 2021). Exact incremental changes along the retention curve440

remain however uncertain and are soil-specific (Lal, 2020). Reported PAWC increases vary widely: 1.5–7% for +0.6% SOC

(Libohova et al., 2018; Archer and David, 2005), 1.16% for +1% SOC (Minasny and McBratney, 2018), up to 50% for +1.5%

SOC (Libohova et al., 2018), and 4–45% for management-related SOC gains (7–220% (Haruna et al., 2020; Hao et al., 2023;

Blanco-Canqui et al., 2023)). Our simulated average increase of 9.3% for +1% SOC (+1% (mass) increase ≈ 35–60% relative

increase) lies within these ranges but toward the upper end. Changes in θSat or θFC are rarely quantified, but Shi et al.445

(2016) reported +8–10% in a silt loam, comparable to our +6.2% average. Changes in θPWP are unfortunately rarely reported,

meaning that we cannot explicitly assess the plausibility of our simulated average increase in θPWP by 2.1%. The SOC effect

on water retention is texture dependent, with greater PAWC increases in coarser soils (Lal, 2020; Libohova et al., 2018) and at

low initial SOC (Rawls et al., 2004), patterns consistent with our results (Appendix A).

The simulated change of Ksat aligns with observations from Haruna et al. (2020); Hao et al. (2023); Blanco-Canqui et al.450

(2023) for similar soils, is higher than those reported by Veettil et al. (2024); Rawls et al. (2004), but comparable to Kojima

et al. (2018); Bormann et al. (2007), who also used PTF estimates rather than observations, which carry their own assumptions

and uncertainties. Given high variability in pedo-climatic conditions, management practices, PTF selection, and soil texture,

the plausibility of simulated hydraulic changes can only be assessed generally: overall trends and magnitudes are plausible,
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but uncertainty remains, especially for Ksat and θPWP . A potential way forward would be to incorporate additional soil probe455

measurements and observationally derived hydraulic parameters, such as Ksat, to further constrain and validate the model.

5.2 Simulated impact of management adaptations

5.2.1 SOC enhances ET and reduces subsurface runoff at the grid-scale

Although the SOC scenarios considered here are based on simplified and rather ambitious assumptions (i.e., uniform applica-

bility of management across all permeable cells), their overall impact on simulated hydrological processes is small. This can460

be attributed to the moderate changes in hydraulic properties following SOC application, which fall within observed ranges

and can therefore be considered plausible (Sect. 5.1.2). Under the strongest SOC scenario (vHighC_MedC), θ increases by

8.8%; under the weakest (LowC_vLowC) by 3.2% (Fig. 7). This increased retention capacity extends the water content in the

top two soil layers, reducing percolation and temporarily enabling higher ET during summer when evaporative demand peaks

and when ET would otherwise be water-limited. Over 2016–2022, this results in a net ET increase of +0.16–0.4% (8–18 mm465

depending on scenario, Fig. 7).

Direct comparison with experiments is difficult since ET is rarely measured; PAWC is often used as a proxy due to its

influence on transpiration and yield (Feifel et al., 2023). Skadell et al. (2025) analyzed SOC effects on soil hydraulic properties

across European sites and found that, although overall impacts on water retention were limited, SOC increased PAWC and

slightly delayed plant drought stress. This implies a modest rise in transpiration, but it was not measured directly. In a lysimeter470

experiment Ghanem et al. (2022) showed that biochar application to sandy soil reduced bulk density, increased porosity, and

ultimately enhanced ET.

Plot-scale simulations with Richards-equation-based models show that +1% (mass) SOC can increase transpiration by up

to 9%, while soil evaporation may decrease due to higher crop cover (Heinz et al., 2025). Turek et al. (2023) reported similar

increases (+15 mm year−1 for +1% SOC down to 65 cm). Using Hydrus-1D (Šimůnek et al., 2013), Feifel et al. (2023) found475

that evaporation always increased, whereas transpiration rose only when SOC increased below 30 cm depth, with stronger

effects in finer soils and drought years. Deep drainage and recharge consistently declined, in line with our simulated percolation

and recharge decreases.

Unlike these plot-scale studies, mHM represents ET as a single bulk flux after canopy interception, without separating

evaporation and transpiration or explicitly limiting root water uptake. Consequently, direct comparison with plot-scale studies480

is limited. We argue, the simulated ET increase in this study is likely dominated by transpiration, which the increase in PAWC

suggests (Fig. 6). During high summer evaporative demand, the increased PAWC and θ translate directly into higher ET, slightly

reducing subsurface runoff (-0.3% to -0.78%, 10–22 mm over 7 years).

The actual impact of SOC on ET strongly depends on management: cover crops, mulching, or residue retention can suppress

soil evaporation (Abdallah et al., 2021). The effect of topsoil changes is two-fold: soil cover changes like mulching can i)485

modify the re-evaporation of (soil-)intercepted water and ii) impact soil evaporation, i.e. of water that infiltrated into the

topsoil (Ramos et al., 2024). The first could, in principle, be represented through modified interception parameterizations; the

27

https://doi.org/10.5194/egusphere-2025-5447
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



second remains largely absent from current catchment-scale models and represents a key direction for future work—explicitly

distinguishing soil evaporation and transpiration across temporal and vertical scales.

In summary, modest SOC increases slightly enhance summer ET, likely via transpiration, and marginally reduce subsurface490

runoff. These effects align with field-scale findings and modeling results, particularly where SOC increases extend deeper into

the soil, underscoring the importance of considering both depth and method of SOC application in agricultural practice. The

simulated reduction of deeper drainage, and thus recharge, in our and other modeling studies highlights a potential trade-off

between enhancing SOC for agricultural benefits and sustaining hydrologic processes critical for water management, especially

under changing climate conditions.495

Although it is beyond the scope of this study, we acknowledge that increasing SOC also affects soil biogeochemical cycles,

particularly when nutrient balances change. For example, in poorly-drained soils, increasing SOC without adjusting nitrogen

inputs can enhance denitrification and lead to elevated emissions of N2O, a potent greenhouse gas, thus representing a trade-off

worth noting (Jäger et al., 2011).

5.2.2 Catchment-scale implications of SOC-induced changes in discharge500

SOC-related impacts on discharge are seasonally dependent. In spring, increased rainfall combined with high soil moisture (θ)

levels from winter, pushing more water into percolation and discharge just before the low-flow period. During the low-flow

period itself, higher ET reduces percolation, so discharge increases are limited (1–5%) or may even turn into decreases. These

modest discharge increases can reduce days below the Q347 threshold by 1–6 compared to the base scenario, potentially easing

irrigation constraints (Heinz et al., 2025). This holds for the Flon and Broye, but in the Arbogne (2016, 2019) and Petit Glâne505

(2017, 2019), low-flow days mostly increase. These two subcatchments are the lowest, thus warmer and also drier than the

others. When low subsurface runoff coincides with high ET, the SOC scenarios further enhance water retention and ET, which

can exacerbate discharge reductions and increase low-flow days, potentially increasing the likelihood of irrigation constraints.

Seasonal discharge dynamics are best captured by the model in the Broye; smaller subcatchments show biased or mis-timed

low flows, likely reflecting input data limitations. Changes in low-flow days, derived from the 95th percentile of discharge, are510

sensitive to model optimization and thus less robust. While overall discharge fits are nearly identical across six optimization

runs, variation at the distribution tails is observed and expected (Appendix A). The selected optimization run reflects the overall

pattern observed over several optimization runs: reductions in low-flow days are consistent in the Broye and Flon, whereas the

pattern for the Arbogne and Petit Glâne are more variable. However, the number of low flow days most often increases in 2016,

2017 and 2019. This suggests that SOC is likely to reduce low-flow days in larger, or cooler and wetter catchments, but impacts515

in smaller, warmer, and drier catchments are highly variable and climate-dependent, often even increasing the number of low

flows. Small catchments, with typically low storage and fast hydrological response, are highly sensitive to minor changes

in precipitation and temperature (Thomas et al., 2011). Thus, even modest SOC-induced reductions in discharge can push

flows below ecological or minimum thresholds, making these trade-offs especially relevant in smaller catchments under future

climate changes.520

28

https://doi.org/10.5194/egusphere-2025-5447
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Observed discharge in the Broye peaks between December and March, but SOC-related reductions occur mainly in late

autumn and winter, not necessarily the most critical period (Fig. 9). Q2 events in winter 2017/2018 and summer 2021 show

only moderate reductions (Appendix A). Daily simulation resolution prevents precise quantification of peak reductions.

Evidence on agricultural management effects on peak and low flows is limited, with most studies focusing on major land-use

changes or structural interventions. As a result, direct validation of our findings is challenging, and comparisons must be made525

cautiously. In a modeling experiment on land use changes, Moussa et al. (2002) found that high Ksat reduces mean discharge

and flood peaks, consistent with our findings, although we only found a very limited effect of increased Ksat on θFC. Antolini

et al. (2019) simulated the impact of cover crops and reduced tillage and found a moderate reduction in high-frequency flood

peaks, also in line with our results. Similarly, Fatichi et al. (2014) used Tethys-Chloris to show that strong soil compaction at

the plot scale (represented by -95% Ksat) can increase discharge peaks by 50–80% at the catchment scale.530

Our SOC scenarios, though spanning different magnitudes, are optimistic, assuming SOC increases across all pervious cells.

This assumption is constrained, as pervious cover aggregates cropland and meadows, which at the moment cannot be separated

in the model. Upstream, where meadow cover increases, substantial SOC gains below 30 cm are less likely. Even under these

assumptions, the catchment-scale effects are very modest, which is in line with Fatichi et al. (2014), suggesting detectable

impacts of management require either strong interventions or long observation periods.535

In recent years, a broader debate around nature-based solutions and soil and water conservation measures has emerged. Sev-

eral international and European initiatives aim to enhance soil carbon sequestration, soil health, and water retention through

nature-based and conservation practices. The 4 per mille Initiative (https://sdgs.un.org/partnerships/4-1000-initiative-and-its-

implementation) promotes the increase of global SOC stocks by 0.4% per year to offset CO2 emissions from fossil fuels

(Minasny et al., 2017). The EU project NBsoil (https://nbsoil.eu/) focuses on nature-based soil management to enhance soil540

ecosystem services. The EJP Soil project SoilX (https://projects.au.dk/ejpsoil/soil-research/eom4soil/into-dialogue/soilx) de-

velops strategies to improve soil carbon, soil health, and water retention. The OPTAIN project (https://www.optain.eu/) pro-

motes small water retention measures and nutrient management in agricultural catchments. While increasing SOC can enhance

water retention, slightly reduce flood peaks, and decrease low-flow frequency, the catchment scale benefits remain modest even

under large SOC increases. Moreover, our results indicate that in smaller, drier agricultural catchments, SOC-enhancing mea-545

sures may involve trade-offs, such as reduced groundwater recharge or streamflow, reducing downstream water availability,

which should be considered when designing management strategies.

5.2.3 Root distribution dependency on θF C in mHM

As noted in Sect. 4.5, the SOC-induced increase in θ only led to a very small net increase in ET, since ET from the top soil

layer actually decreased, which was unexpected. This response stems from the mHM adaptation by Demirel et al. (2018),550

which links root distribution to field capacity (θFC): higher θFC shifts root fractions (R) downward, reducing the weight of

the top layer and increasing that of the lower ones. This relationship was derived from observations in the region where the

scheme was developed, where sandy soils with low θFC concentrated roots near the surface, while clay-rich soils with high
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θFC showed deeper rooting (Demirel et al., 2018). Yet as noted by Demirel et al. (2018), such a pattern is not necessarily

globally valid.555

If we recall the formulation of the soil moisture stress function f (Sect. 2.3), which linearly scales PET to ET, we saw that

f depends on the root fraction R and the normalized soil water content θ (calculated as: θ = (θ− θpwp)/(θsat− θpwp)).

If mean soil water content θ increases or decreases depends on the SOC-induced increases in θpwp and θsat that are texture

dependent, but also on the daily varying θ, which depends on incoming precipitation, so seasonality. Only if θ increases

sufficiently, θ would increase and by that also f and hence ET. This mechanism applies in principle to both upper soil layers,560

but in the top layer R decreases as θFC increases. Consequently, even though θ tends to increase, the overall stress factor f

(and thus ET) decreases in most cases. Only under very wet conditions, high soil water content θ may offset the reduction in

root fraction and ET can still increase. In deeper layers, the opposite holds: the higher root fraction allows f to increase, so ET

is increased when additional water infiltrates from above. Physiologically, this is unexpected, as plants usually allocate roots

cost-efficiently to shallow layers where water and nutrients are accessible, though they may extend them deeper under drought565

(Jarvis, 1989; Fry et al., 2018; Jackson et al., 1996; Maan et al., 2023). More broadly, root allocation depends on cultivar and

growth stage (Tajima, 2021), and such dynamics are difficult to generalize at the catchment scale. Nevertheless, as discussed in

Sect. 5.2.2, the overall pattern of SOC-induced changes remains robust. Future work could test how increased θFC affects root

depth allocation and evapotranspiration dynamics under local climatic and edaphic conditions in our case study region.

Note that in Fig. 12, soil water content in the top layer differs slightly among the three SOC scenarios MedC_MedC,570

MedC_LowC and MedC_ZeroC, even though the SOC increase in this layer is identical. This results from the top-down

calculation of the root fraction R per layer and subsequent re-normalization, which ensures that R sums to one across all

layers. Therefore, differences in SOC in the lower soil layers can indirectly impact soil water content and ET in the top layer.

5.2.4 Role of SOC increase magnitude and depth in modulating hydrological responses

The SOC scenarios affect ET and subsurface runoff almost linearly with increasing SOC. Seasonal differences emerge when575

SOC is distributed into deeper layers: Scenario MedC_MedC (+1% SOC in both soil layers) exhibits the highest increase in

θ over the winter and spring, despite vHighC_MedC adding more SOC in total (Fig. 7). Adding SOC to deeper layers delays

overall soil moisture depletion and can thus reduce drought impacts, which was also concluded in the modeling studies of

Turek et al. (2023) and Feifel et al. (2023). In our model simulations on catchment-annual scales, however, the vertical SOC

distribution plays little role and achieving a significant increase in SOC in deeper layers is more difficult, as most (agricultural)580

adaptation measures would primarily lead to SOC increases near the surface (Bai et al., 2019).

5.3 Model suitability and structural limitations for representing SOC-induced changes

The mHM model is well suited for impact studies like this due to its open-source nature, active user community, and flexible

structure, which allows individual adjustments, such as in the estimation of soil hydraulic properties (Livneh et al., 2015).

As with the case of any modeling scheme, some simplifications and limitations remain. First, in mHM only three land-use585

classes are distinguished, which may be sufficient at large scales but limits the representation of heterogeneous agricultural
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landscapes. In our study region, pervious land cover aggregates cropland and meadows, which can differ in management and

water-use processes. Introducing additional land-use classes and distinguishing different crop functional types with varying

root profiles would improve model realism.

Differentiating winter crops and spring crops could be important too, since they have distinct patterns of water uptake and590

thus may influence recharge and also low flow dynamics differently.

Regarding ET, mHM separates canopy interception but combines soil evaporation and transpiration into a single flux, com-

mon in many hydrological models (Samaniego et al., 2010). While net ET is likely captured correctly, partitioning between

productive (transpiration) and unproductive (soil evaporation and interception) fluxes, as well as their temporal dynamics, may

differ from reality. Finally, the root distribution, which varies with θFC, is more dynamic than standard static profiles, but could595

be improved by incorporating dynamic crop/root growth and reassessing the negative relationship between θFC and root density

under the climatic and edaphic conditions of our study region. Overall, while these limitations can affect processes and fluxes

at the plot scale, their impact at the catchment scale is uncertain, particularly given the lack of direct observations for root

distribution or ET partitioning. Compared to fully physics-based models such as WaSiM-ETH (Schulla, 1997), which often

require extensive parameter adjustment and high computational effort, mHM offers a practical balance between spatially ex-600

plicit process representation and computational efficiency (Samaniego et al., 2010; Kumar et al., 2013; Samaniego et al., 2017).

Fully physics-based models are in practice never “fully” mechanistic, and for our purpose they would not provide additional

advantages in representing SOC-related management effects. Their higher data and computational demands would mainly add

complexity without improving the core processes relevant to this study.

6 Conclusion605

We explored how increasing soil organic carbon (SOC) through agricultural management could alter catchment-scale hydrol-

ogy, using the Broye catchment in Western Switzerland as a representative case study. By representing SOC-driven changes

in soil hydraulic properties in a large-scale hydrological model (mHM), we traced how increased water retention could affect

evapotranspiration, subsurface runoff, and streamflow extremes. We applied five SOC scenarios varying in depth and mag-

nitude to explore process sensitivity. While the direction and timing of SOC effects are credible, their magnitude remains610

uncertain due to limitations in pedotransfer functions and parameterization. At the plot scale, the increase in SOC increased

soil water content (2.99–8.13%), slightly increased evapotranspiration (0.15–0.4%), and marginally reduced subsurface runoff

(0.28–0.72%), depending on the applied SOC scenario. At the catchment scale, effects were highly context-dependent: SOC-

driven improvements in soil water retention tended to support higher evapotranspiration but reduced groundwater recharge and

discharge, a clear trade-off. These shifts occasionally intensified low flows in warmer and drier subcatchments (Arbogne, Petit615

Glâne), while they could temporarily alleviate them in cooler and wetter areas (Broye, Flon), especially under deeper SOC

increases.

Our key takeaways are:
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– Even optimistic and substantial increases of SOC, and thus changes in hydraulic properties, lead to relatively modest

impacts at the catchment scale.620

– The hydrological effects of SOC management depend strongly on local hydro-climatic conditions: the intended increase

in plant-available water can reduce critical low-flow periods. However, it can also lead to unwanted ET increases and

slightly reduce summer discharge.

– Future work should focus on capturing vegetation and transpiration dynamics more accurately, including the interplay

of crops with different growing seasons (winter vs. spring crops), to improve model realism.625

Overall, our analysis emphasizes the need for a better understanding of the trade-offs and balances between agricultural

practices aimed at increasing soil organic carbon (SOC) – including initiatives such as the 4 per mille and other soil carbon

sequestration efforts – and their resulting impacts on catchment hydrological processes, ranging from soil moisture dynamics

to groundwater recharge and hydrologic extremes.

Code availability. Scripts to pre- and postprocess and visualize mHM input and output data : 10.5281/zenodo.17515165. The mHM source630

code is available on the developers github : https://github.com/mhm-ufz/mhm.

Data availability. The adapted precipitation timeseries (explained in further detail in Sect. 3.2 and in the Supplementary Material) is available

here: 10.5281/zenodo.17243146.
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Appendix: A1

Table A1. Mean annual water balance components (2016–2022) for four subcatchments under three model runs. Where i) is the run with

the default parameter set and the default RhiresD precipitation input data, ii) is the default parameter set but with the adjusted precipitation

input data (RhiresD+) and iii) is the optimized parameter set and precipitation input data. Qobs and Qsim denote the observed and simulated

discharge, P is precipitation and ET is simulated evapotranspiration. Values in mm yr−1.

Run Subcatchment Qobs Qsim P ET

(i) Default + RhiresD

Broye (Payerne) 504 509 1120 586

Petit Glâne (Cugy) 298 385 917 566

Arbogne (Avenches) 244 370 867 577

Flon Aval (Oron) 527 654 1285 615

(ii) Default + RhiresD+

Broye (Payerne) 504 509 1120 586

Petit Glâne (Cugy) 298 373 917 545

Arbogne (Avenches) 244 285 867 554

Flon Aval (Oron) 527 654 1285 615

(iii) Calibrated + RhiresD+

Broye (Payerne) 504 490 1120 612

Petit Glâne (Cugy) 298 324 917 598

Arbogne (Avenches) 244 260 867 589

Flon Aval (Oron) 527 644 1285 635

Appendix: A2

The following equations are used to estimate van Genuchten parameters and other key soil hydraulic properties (assuming soil

texture given in fractions [0-1]):645

θsat = Pconstant + Pclay ·Tclay + PBD · ρb (A1)

n = CvG1−CvG2 ·Tsand
CvG3 + CvG4 ·Tclay

CvG5 (A2)

m = 1− 1
n

(A3)

α = exp
(
CvG6 + CvG7 ·Tsand + CvG8 ·Tclay−CvG9 · ρb

)
(A4)
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θFC = θsat · exp
(
CFC1 ·

(
CFC2 + log10(Ksat)

)
· log(n)

)
(A5)650

θPWP =
θsat

exp(m · log(CPWPc + exp(n · log(α ·CPWPh))))
(A6)

All constant and parameter values are listed in Tables A2 and A3.

Equation for θFC depends on paper by (Twarakavi et al., 2009), that calculates θFC in dependence of Ksat, decreasing θFC

with increasing Ksat.

Changes in SOC and bulk density (ρb) would propagate to other soil hydraulic parameters, as evident in equations 7 to A6.655

These would affect the estimation of θ, which initialized to = 0.25 and then updated at each timestep via:

I =





Peffective, if θ > θsat

Peffective + (θ− θsat), if θ + xtmp > θsat

Peffective− xtmp, otherwise

(A7)

θnew =





θsat, if θ + xtmp > θsat

θ + xtmp, otherwise
(A8)

frunoff =





exp(esoil_moisture log( θ
θsat

)), θ > 0

0, otherwise
(A9)

xtmp = Peffective (1− frunoff) (A10)660

Where Peffective is either incoming precipitation or Infiltration (I) from the above soil layer. The change in θ then again

propagates to the root zone soil moisture storage (X3 in Figure 1):

X3 = I(k−1)−ETk −
(
I(k−1)−

(
I(k−1) (1− frunoff)

))
(A11)

Where k is the soil layer and I is the Infiltration coming from the layer above and esoil_moisture is being calibrated.
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Appendix: A3665

Not only do the changes in soil hydraulic properties affect soil moisture, but the soil moisture also governs how much water

can evapotranspire from each layer:

θFC =
θFC− θmin

θmax− θmin
(A12)

where θmax is θglobal + θmin, and:

RCoeffFC = θFC · fclay + (1− θFC) · fsand (A13)670

Appendix: A4

Table A2. Constants used in mHM. Column “Constant” refers to the name used in this study.

Constant Value Description Name in mHM

CFC1 -0.60 Constant in PTF for θFC field_cap_c1

CFC2 2.00 Constant in PTF for θFC field_cap_c2

CPWPc 1 Constant in PTF for θPWP PWP_c

CPWPh 15000 Constant in PTF for θPWP PWP_matPot_ThetaR

CvG1 1.392 Constant in PTF for n vGenuchtenN_c1

CvG2 0.418 Constant in PTF for n vGenuchtenN_c2

CvG3 -0.024 Constant in PTF for n vGenuchtenN_c3

CvG4 1.212 Constant in PTF for n vGenuchtenN_c4

CvG5 -0.704 Constant in PTF for n vGenuchtenN_c5

CvG6 -0.648 Constant in PTF for α vGenuchtenN_c6

CvG7 0.023 Constant in PTF for α vGenuchtenN_c7

CvG8 0.044 Constant in PTF for α vGenuchtenN_c8

CvG9 3.168 Constant in PTF for α vGenuchtenN_c9

CKsat1 1.1574e-7 Constant in PTF for Ksat

CKsat2 20.62 Constant in PTF for Ksat

CKsat3 0.96 Constant in PTF for Ksat

CKsat4 0.66 Constant in PTF for Ksat

CKsat5 0.46 Constant in PTF for Ksat

CKsat6 8.43 Constant in PTF for Ksat
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Appendix: A5

Appendix: A6

According to Ruehlmann and Körschens (2009) and Robinson et al. (2022), the rate of change in bulk density (ρb) following

an increase in SOC should increase with increased initial ρb. This is not the case, however, in the current representation of how675

SOC can affect ρb in mHM. Currently, input to the model should be mineral ρb (Dbm), which is then adjusted to total ρb (Db):

Db =
100(

pOM
BulkDens_OrgMatter

)
+

(
100−pOM

Dbm

) (A14)

Where pOM is a calibration parameter adjusting the percentage of organic matter in the soil (statically, over all cells),

and BulkDens_OrgMatter is the ρb of organic matter. Since we want to be able to represent different scenarios of SOC

increases, we also want this to be reflected in the ρb, as and increase in SOC has been observed to decrease ρb (Rawls et al.,680

2004; Chalise et al., 2019; Haruna et al., 2020). To overcome the limitation of adjusting the pOM parameter statically for all

cells, we mute this part in the model and instead use already adjusted ρb values as input. To this end, we estimate ρb from initial

and perturbed distributed SOC input data via the PTF by Manrique and Jones (1991), adopted by De Vos et al. (2005):

ρb = 1.660− 0.318
√

SOC (A15)

Appendix: A7685

Figure A1. Observed and simulated (mHM) timeseries of volumetric water content at the SwissSMEX grassland site near Payerne. Simula-

tions represent three soil layers, while observations are point-scale: layer 1 (5, 10, 15 cm, integrated), layer 2 (50 cm), and layer 3 (80 cm).
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Appendix: A8

Figure A2. Discharge for all subcatchments and SOC scenarios. Gray vertical lines = days where the low flow threshold for each subcatch-

ment is reached in the base scenario, red vertical lines = days where Q2 threshold is reached.
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Appendix: A9

Figure A3. Absolute difference in discharge between the base and each SOC increase scenarios.
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Appendix: A10

Figure A4. Observed and simulated low flow days for all subcatchments.

Table A1. Metrics for peak flow and low flow fit: Q95 and Q5 denote high- and low-flow percentiles; Peak_bias and Low_bias are percent

biases (%).

Station KGE Q95_obs Q95_sim Q5_obs Q5_sim Peak_bias Low_bias

Petit Glâne 0.86 2.63 2.66 0.17 0.20 1.24 18.09

Arbogne 0.83 1.77 1.76 0.20 0.15 -0.08 -22.51

Flon 0.91 1.18 1.22 0.02 0.02 3.79 43.23

Broye 0.91 21.02 22.49 0.87 0.94 6.98 8.57
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Appendix: A11

Figure A5. Monthly and annually aggregated spatial patterns of key fluxes. Q = discharge, P = precipitation, T mean = average temperature,

ET/PET= ratio of actual to potential evapotranspiration, ET/P = ration of actual evapotranspiration to precipitation. Qdiff = absolute difference

in discharge between base and example SOC increase scenario (MedC_LowC).
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Appendix: A12690

Figure A6. Absolute difference in discharge for peak flow events for SOC scenarios vs. the base scenario. "Q base" denotes the absolute

discharge value for each event.
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Appendix: A13

Figure A7. Relative difference in PAWC for SOC cs. base scenario for different soil textures. We can see, that PAWC increase is more

sensitive to higher sand contents.

Appendix: A14

Figure A8. Difference in number of low flow days for base vs. SOC scenario (example scenario MedC_lowC) for 6 different optimization

runs with the same setting.s
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Table A3. Default and optimized mHM parameters used in this study. Column “Name (this study)” refers to the names given those parameters

in the context of this study for practical reasons.

Parameter (mHM) Unit Default value Calibrated value Name (this study)

canopyInterceptionFactor - 0.1500 0.2567

snowTreshholdTemperature °C 1.0000 1.4050

degreeDayFactor_forest m°C−1 1.5000 3.9656

degreeDayFactor_impervious m°C−1 0.5000 0.9776

degreeDayFactor_pervious m°C−1 0.5000 1.9552

increaseDegreeDayFactorByPrecip °C−1 0.5000 0.3843

maxDegreeDayFactor_forest m°C−1 3.0000 7.8540

maxDegreeDayFactor_impervious m°C−1 3.5000 7.9992

maxDegreeDayFactor_pervious m°C−1 4.0000 7.9497

orgMatterContent_forest % 3.4000 0.0041

orgMatterContent_impervious % 0.1000 0.9951

orgMatterContent_pervious % 0.6000 0.0000

PTF_lower66_5_constant - 0.7600 0.7627 Pconstant

PTF_lower66_5_clay - 0.000900 0.000122 Pclay

PTF_lower66_5_Db - -0.2640 -0.3160 PBD

PTF_higher66_5_constant - 0.8900 1.1042

PTF_higher66_5_clay - -0.0010 0.0048

PTF_higher66_5_Db - -0.3240 -0.1002

rootFractionCoefficient_forest - 0.9700 0.9705

rootFractionCoefficient_impervious - 0.9300 0.9850

rootFractionCoefficient_pervious - 0.0200 0.9753

infiltrationShapeFactor - 1.7500 2.3038 esoil_moisture

rootFractionCoefficient_sand - 0.0200 0.9753 fsand

rootFractionCoefficient_clay - 0.0200 0.9753 fclay

FCmin_glob - 0.1500 0.1500 θmin

FCdelta_glob - 0.2500 0.2500 θglobal

jarvis_sm_threshold_c1 - 0.5000 0.5161 Tjarvis

imperviousStorageCapacity cm 0.5000 4.9946

minCorrectionFactorPET - 0.9300 0.8664

maxCorrectionFactorPET - 0.1900 0.1598

aspectTresholdPET - 171.00 160.22

interflowStorageCapacityFactor mm 85.000 82.543

interflowRecession_slope - 7.0000 4.0930

fastInterflowRecession_forest - 1.5000 1.0324

slowInterflowRecession_Ks - 15.0000 2.7844

exponentSlowInterflow - 0.1250 0.2985

rechargeCoefficient - 35.000 14.867

rechargeFactor_karstic - -1.000 -1.000
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