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22 Abstract

23 Carbon monoxide (CO), an important atmospheric pollutant produced from incomplete
24 combustion and hydrocarbon oxidation, significantly influences atmospheric chemistry and air
25  quality. Accurate quantification of its global emissions and the underlying drivers of
26  atmospheric trends is essential for understanding and improving global environmental
27  conditions. Using 20 years (2003-2022) of satellite observations from the Measurement of
28  Pollution in the Troposphere (MOPITT) instrument, here we analyze changes in global CO
29  emissions and atmospheric concentrations. The a posteriori simulations show improved
30  consistency with independent surface and aircraft measurements compared to the a priori
31  simulations. Sensitivity analyses further confirm that inferred emissions remain robust against
32 uncertainties associated with satellite vertical sensitivity and variations in hydroxyl radical (OH)
33 concentrations. Our results indicate a substantial decline in global anthropogenic CO emissions

34 of 14-17% (approximately 85-110 Tg) over the two-decade period, largely driven by reductions
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35 in the United States, Europe, and eastern China. In contrast, biomass burning emissions
36  exhibited strong interannual variability, with recent increases in Northern Hemisphere high-
37 latitude forests. A key finding is that rising biomass burning emissions have offset about 37%
38  of the global anthropogenic emission reduction (47% in the Northern Hemisphere alone),
39  underscoring the considerable moderating influence of wildfires on atmospheric composition
40  trends. This study provides a comprehensive assessment of global CO emissions and the
41  mechanisms governing atmospheric CO trends, offering a scientific basis for integrated
42 policies addressing both climate change and air pollution.

43
44 1. Introduction

45 Carbon monoxide (CO) is a key atmospheric pollutant produced from incomplete
46  combustion and the oxidation of hydrocarbons. As the main sink for the hydroxyl radical (OH),
47  CO critically influences the oxidative capacity of the atmosphere (Zhao et al., 2020; Tan et al.,
48  2022), and is an important precursor for tropospheric ozone (Whaley et al., 2015; Hu et al.,
49  2024). With a chemical lifetime of approximately one to two months, CO is frequently
50  employed as a valuable tracer for elucidating variations in anthropogenic activities and biomass
51  burning, providing critical insights into the long-range transport of atmospheric constituents
52 (Tang et al., 2019; Buchholz et al., 2022; Smoydzin and Hoor, 2022). Accurate quantification
53 of global CO emissions and a clear understanding of the drivers behind its atmospheric trends
54  are therefore essential for formulating effective policies to address the challenges of air quality
55  and climate change.

56 The advent of long-term satellite observations has revolutionized our ability to monitor
57  global CO distributions (Warner et al., 2013; Worden et al., 2013; Hedelius et al., 2021). This
58  data has enabled a shift from short-term, regional emission estimates (Arellano et al., 2004;

59  Heald et al., 2004; Kopacz et al., 2010) to analyses of decadal-scale changes. Numerous studies
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60  have leveraged these records to report substantial declines in anthropogenic CO emissions
61  (Fortems-Cheiney et al., 2011; Jiang et al., 2017; Miyazaki et al., 2020), especially across the
62 Northern Hemisphere, contributing to improved air quality. However, a critical and emerging
63  challenge is to disentangle the competing influences on atmospheric CO concentrations. While
64  anthropogenic emissions are generally decreasing due to pollution control measures, biomass
65  burning emissions exhibit strong interannual variability and a growing sensitivity to climate
66  change. An important unanswered question is to what extent the recent intensification of
67  wildfires, particularly in high-latitude forests (Jain et al., 2024; Jones et al., 2024), is offsetting
68  the gains achieved from anthropogenic emission reductions. This has profound implications,
69  as CO shares common combustion sources with major greenhouse gases like methane (CHa)
70  and carbon dioxide (Worden et al., 2017; Zheng et al., 2023).

71 Constraining global emissions and robustly attributing observed concentration trends
72 require the application of sophisticated inverse modeling approaches. These methods, which
73  include ensemble-based techniques (e.g., the ensemble Kalman filter) and variational methods
74  (e.g., four-dimensional variational, 4D-Var, data assimilation), provide powerful frameworks
75  for optimizing emission estimates by reconciling model simulations with satellite observations,
76  while accounting for complex atmospheric transport and chemistry (Miiller et al., 2018;
77  Miyazaki et al., 2020; Jiang et al., 2025). Among these, the 4D-Var data assimilation,
78  implemented within chemical transport models like GEOS-Chem and its adjoint (Henze et al.,
79  2007), has been widely and successfully applied to constrain CO emissions (Kopacz et al.,
80  2010; Jiang et al., 2015b; Tang et al., 2023), owing to its strengths in handling nonlinear
81  constraints and providing computationally efficient gradients. However, long-term multi-
82  decadal trend analyses based on this system has often been hindered by limitations such as
83  inconsistent meteorological inputs across years and the use of outdated a priori emission

84  inventories (Jiang et al., 2017; Qu et al., 2022).
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85 To address these limitations, we employ a recent extension of the GEOS-Chem adjoint
86  model (Tang et al., 2023) that features support for consistent MERRA-2 meteorological data
87  and modern emission inventories via the HEMCO emissions component (Keller et al., 2014;
88 Lin et al.,, 2021). By assimilating MOPITT (Measurements of Pollution in the Troposphere)
89  observations from 2003 to 2022, this study aims to provide an analysis with the following
90  specific objectives: (1) to quantify the long-term evolution of global CO emissions; (2) to
91 attribute the observed trends in atmospheric CO concentrations to changes in emissions and
92  meteorological variations, in particularly, the effect of increasing biomass burning emissions
93  on atmospheric CO decline driven by anthropogenic reductions; and (3) to evaluate the
94  sensitivity of inferred emissions to uncertainties in satellite vertical sensitivity and OH
95  concentrations. By doing so, this work aims to improve the understanding of key drivers behind
96  atmospheric CO changes and offer a refined emission inventory to support future climate and
97  air quality policies.
98 The paper is structured as follows: Section 2 describes the methodology, including the
99  assimilation framework, observational data, and the design of sensitivity experiments. Section
100 3 presents the results on the long-term emission trends, the robustness tests, and the attribution

101  of concentration changes. Conclusions are provided in Section 4.

102

103 2. Methodology and Data

104 2.1 Assimilation framework

105 We utilize the adjoint of the GEOS-Chem model (version 35n) with extended support for
106 MERRA-2 meteorological data and HEMCO emission inventories. The analysis is conducted
107  at a horizontal resolution of 2°x2.5° with 47 vertical levels (MERRA-2) and employs a CO-
108  only simulation (tagged-CO mode). Two types of archived OH fields are used in this study:

109  fixed monthly OH fields for 2013 from the GEOS-Chem full chemistry simulation (Fisher et
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110  al., 2017), and variable monthly OH fields for 2005-2020 from the Tropospheric Chemistry
111  Reanalysis version 2 (TCR-2, Miyazaki et al. (2020)). The TCR-2 OH fields have been
112 validated against various aircraft observations and show generally good agreement (Miyazaki
113 etal., 2020). The interannual variability of global mean tropospheric OH concentrations from
114 TCR-2 is illustrated in Fig. S2 (see the SI).

115 The global default anthropogenic emission inventory is the CEDS (Community Emissions
116  Data System) (Hoesly et al., 2018). Regional emissions are replaced as follows: MIX (Li et al.,
117 2017) over Asia, NEI 2016 (National Emissions Inventory) over the United States,
118  DICE_AFRICA and EDGARv4.3 over Africa, and APEI over Canada. Biogenic emissions are
119  simulated using the Model of Emissions of Gases and Aerosols from Nature, version 2.0
120 (MEGANV2.0, Guenther et al. (2006)). Biomass burning emissions are based on the Global
121  Fire Emissions Database version 4 (GFED4, van der Werf et al. (2010)). The distribution of
122 the annual mean CO emissions from 2003 to 2022 is shown in Figs. la-c. The annual global
123 sources are 536.3 Tg yr"' from anthropogenic emissions, 312.5 Tg yr'! from biomass burning,
124 and 623 Tg yr'! from the oxidation of biogenic VOCs.

125 The objective of the 4D-Var approach is to minimize the difference between simulations
126  and observations by minimizing the cost function (Henze et al., 2007):

127 J(x) = ZiLi(Fi(x) — 2)"S5 " (Fi(x) — 2) + y(x — x2)"S5" (x — x4) (1)
128  where x is the state vector of CO emissions, N is the number of observations distributed in
129  time over the assimilation period, z; are the MOPITT CO observations, and F(x) is the
130  forward model. Error estimates are assumed to be Gaussian: Sy is the observational error
131  covariance, which combines a 10% uniform error and the MOPITT CO retrieval error
132 covariance; and S, is the a priori error covariance. Here the combustion-related CO sources
133 (fossil fuel, biofuel, and biomass burning) and the oxidation source from biogenic VOCs are

134 combined, with a uniform a priori error of 50% assumed. The CO source from CH4 oxidation
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135  is optimized separately as an aggregated global source, with the a priori uncertainty of 25%.
136  The cost function is minimized by iteratively adjusting the CO emissions using the quasi-
137  Newton gradient-based optimization L-BFGS-B algorithm (Zhu et al., 1997) and the adjoint

138  gradients:

139 % () = S [2 (%) 85 (i) — 2| + 29 0x = x0)785? @
140 The LOGX2 method (Jiang et al., 2015a; Jiang et al., 2017) is employed to improve the
141  reduction of negative gradients.

142 Following Jiang et al. (2017), we applied a two-step approach to mitigate the influence of
143 systematic biases in the model simulations. First, a sequential Kalman filter (Todling and Cohn,
144 1994; Tang et al., 2022) was used to assimilate MOPITT CO observations, providing optimized
145  CO concentration fields with lower bias. As illustrated in Fig. 2a, the GEOS-Chem model
146  driven by the original monthly CO initial conditions and a priori emission inventories (referred
147  to as GC-original) substantially underestimated column CO concentrations by approximately
148 30-40% (mean bias = -39.4 x 10'® molecules cm2; Table 1). In contrast, simulations using the
149  monthly CO initial conditions derived from the sequential Kalman filter together with a priori
150  emissions (GC-a priori) showed markedly improved agreement with MOPITT observations
151  (Fig. 2b), reducing the mean bias to about 10% (mean bias = -9.7 x 10'® molecules cm™).
152 Similarly, the use of optimized monthly CO initial conditions led to considerable improvement
153  in model performance against independent surface and aircraft measurements (Table 1). The
154  mean bias decreased from -20.1 ppb (GC-original) to -2.4 ppb (GC-a priori) for WDCGG
155  surface observations; from -18.9 ppb to -3.8 ppb for HIPPO aircraft data; and from -16.2 ppb
156 to -3.4 ppb for ATOM aircraft measurements. These results suggest that the substantial
157  negative biases seen in Fig. 2a largely originate from the accumulation of biases over preceding
158  months.

159 Furthermore, ocean scenes (red grids in Fig. S3) were defined as land boundary conditions.
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160  The optimized CO fields from the Kalman filter were used to update CO concentrations over
161  the ocean at hourly intervals during the forward simulation within the 4D-Var process.
162  Meanwhile, the 4D-Var system constrained CO emissions over land without modifying oceanic
163  CO distributions. As demonstrated by Jiang et al. (2017), the use of optimized CO land
164  boundary conditions in 4D-Var assimilation effectively reduces systematic biases associated
165  with long-range transport. By adopting this two-step assimilation framework, the inversion
166  focuses on optimizing fresh continental CO emissions, while reducing the influence of
167  uncertainties arising from transport and chemical processes, which tend to exhibit larger
168  systematic biases. Consequently, the a posteriori CO emissions estimated in this study are
169  expected to be lower than those derived without adjustments to the initial and boundary CO
170  conditions. This reflects both the specific inverse modeling setup and a possible
171  underestimation in our a posteriori emission estimates, attributable to the emphasis on
172 constraining fresh continental CO sources.

173 Based on this assimilation framework, three sets of CO emission inversion experiments

174 are designed:

175 (1) Col-FixOH: uses MOPITT CO column concentration data with default OH fields fixed
176 in 2013.

177 (2) Prof-FixOH: uses MOPITT CO profile data with default OH fields fixed in 2013.

178 (3) Col-VarOH: uses MOPITT CO column concentration data with variable OH fields
179 from the TCR-2 tropospheric chemistry reanalysis.

180 By comparing the results of Col-FixOH and Prof-FixOH, the influence of different MOPITT
181  CO observation types on CO source estimates can be assessed. Similarly, comparing Col-
182  FixOH and Col-VarOH allows for evaluation of the impact of different OH fields on CO source
183  estimates.

184 2.2 MOPITT CO measurements
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185 The MOPITT instrument was launched on December 18, 1999, aboard the NASA Terra
186  spacecraft. The satellite follows a sun-synchronous polar orbit at 705 km altitude, crossing the
187  equator at 10:30 local time. The instrument made measurements over a 612 km cross-track
188  scan, with a footprint of 22 km x 22 km. The MOPITT data used in this study are from the
189  joint retrieval (version 9J) of CO, which combines thermal infrared (TIR, 4.7um) and near-
190 infrared (NIR, 2.3um) radiances using an optimal estimation approach (Worden et al., 2010;
191  Deeter et al., 2022). The retrieved volume mixing ratios are reported as layer averages across
192 10 pressure levels (surface, 900, 800, 700, 600, 500, 400, 300, 200, and 100 hPa). The
193  relationship between the retrieved CO profile and the true atmospheric state is expressed as:
194 Z2=2z,+A(z—1z,)+ Ge 3)
195  where z, is the MOPITT a priori CO profile, z is the true atmospheric state, Ge represents
196  the retrieval error, and A = 0Z/0z is the MOPITT averaging kernel matrix, indicating the
197  sensitivity of the retrieval to the actual atmospheric CO. We exclude MOPITT data with CO
198  column amounts less than 5x10'” molecules cm™ and those with low cloud observations. Since
199  the NIR channel relies on reflected solar radiation, only daytime data are considered.

200 2.3 Aircraft and surface CO measurements

201 The HIAPER Pole-to-Pole Observations (HIPPO, Wofsy and HIPPO Science Team
202 (2011)) were conducted using the Gulfstream V aircraft from 2009 to 2011. The flights
203  primarily covered the Pacific Ocean, spanning latitudes from 67°S to 87°N, with continuous
204  sampling from 0.2 to 12 km altitude. The Atmospheric Tomography Mission (ATom, Wofsy
205  and Atom Science Team (2018)) used the DC-8 aircraft from 2016 to 2018. ATom covered
206  similar altitude and latitudinal ranges as HIPPO but with broader spatial coverage, particularly
207  over the Atlantic Ocean. For HIPPO, a total of 687 CO profiles from five missions were used
208  directly. For ATom, CO measurements during continuous ascents and descents were used to

209  construct 523 CO profiles from four missions. Surface CO measurements from the World Data
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210 Centre for Greenhouse Gases (WDCGG) are also included in this analysis. The WDCGG,
211  operated by the Japan Meteorological Agency under the World Meteorological Organization’s
212 Global Atmosphere Watch (GAW) program, collects, archives, and distributes atmospheric
213 greenhouse gas data, including CO, contributed by various institutions worldwide.

214

215 3. Results and Discussion

216 3.1 Evaluation of assimilation system performance

217 Before presenting the estimated emission trends and their drivers, we first evaluate the
218  performance of our assimilation system. The evaluation involves comparing modeled CO
219  concentrations from the GC-original, GC-a priori, and the a posteriori simulations (Col-FixOH,
220  Prof-FixOH, Col-VarOH) over the period 2003-2022 against MOPITT satellite retrievals, as
221  well as independent surface observations from WDCGG and aircraft measurements from
222 HIPPO and ATom. As summarized in Table 1, the a posteriori simulations exhibit mean biases
223 relative to MOPITT observations ranging from -5.1 to -7.3 x 10'® molecules cm2. These values
224 are notably lower than the biases in the GC-a priori simulation (-9.7 x 10'® molecules cm2)
225  and the GC-original simulation (-39.4 x 10'® molecules cm™2). Similarly, for the HIPPO aircraft
226  observations, the a posteriori simulations show mean biases between -2.5 and -2.1 ppb,
227  improved compared to the GC-a priori (-3.8 ppb) and GC-original (-18.9 ppb) simulations. For
228  ATom aircraft data, the a posteriori mean biases range from -2.9 to -1.6 ppb, also lower than
229  those from the GC-a priori (-3.4 ppb) and GC-original (-16.2 ppb) simulations. These results
230  confirm that the a posteriori emission estimates lead to improved agreement with atmospheric
231  CO observations.

232 In the case of surface CO concentrations, the a posteriori simulations yield mean biases
233 Dbetween 0.4 and 1.8 ppb relative to WDCGG observations (Table 1), which are reduced

234 compared to the GC-a priori (-2.4 ppb) and GC-original (-20.1 ppb) simulations. This supports
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235  the conclusion that the assimilation improves the representation of surface-level CO. It is worth
236  noting that the a posteriori simulations tend to slightly overestimate surface concentrations
237  relative to WDCGG data, while generally underestimating CO in the free troposphere
238  according to MOPITT and aircraft observations. This systematic pattern may be attributable to
239  uncertainties in convective transport parameterizations within the model. Overall, the enhanced
240  consistency between the a posteriori simulations and multiple independent observation
241  platforms demonstrates the capability of our assimilation system to effectively constrain CO
242  emissions. Given this confidence in the system’s performance, we now present the central
243  findings of this study: the long-term evolution of CO emissions as derived from the assimilation
244 constraints.

245

246 3.2 Long-term evolution of global CO emissions

247  3.2.1 Anthropogenic CO emissions: global decline and regional differentiation

248 At the global scale, anthropogenic CO emissions were 7-14% higher than the a priori
249  estimate (Figs. 1d, 1g, 1j and Table 2) showing a clear declining trend superimposed with
250  notable interannual fluctuations (Fig. 3f and Table S1). Under the Col-FixOH configuration,
251  global emissions from 2003 to 2022 ranged from 546.1 to 654.1 Tg yr'!, with a multi-year
252 average of approximately 610 Tg yr'! and a total reduction of about 17%; Similar ranges and
253 reduction magnitudes (14-17%) were observed under the Prof-FixOH and Col-VarOH
254  configurations. As shown in Fig. 4a, negative trends (blue) were concentrated in three major
255  industrialized regions: eastern North America, Europe, and eastern China, forming a distinct
256  "reduction belt". These regions collectively accounted for over 65% of global anthropogenic
257  CO emissions, and their systematic reductions constituted the principal driver of the global

258  downward trend. In contrast, positive trends (red) were primarily distributed in northern India



https://doi.org/10.5194/egusphere-2025-5432
Preprint. Discussion started: 18 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

259  (increases of 15.2-22.3%) and Central Africa, corresponding to rapid urbanization and
260  industrialization processes.

261 Developed economies exhibited continuous decreases with distinct phases (Figs. 3a-b). In
262  the United States (US), emissions declined rapidly from 2003 to 2009, followed by a period of
263  slower reduction. Over the entire period (2003-2022), US CO emissions decreased at rates of
264  2.0-2.2 Tg yr', resulting in a cumulative reduction of 46-49% (Table S1). This phased
265  reduction pattern is consistent with the diminishing marginal effects of widespread
266  transportation control technologies, as supported by independent studies (Elguindi et al., 2020;
267  Miyazaki et al., 2020). European CO emissions showed a similar trend (a cumulative reduction
268 of 32-34% in 2003-2022), with an average reduction rate of approximately 1.44 Tg yr'! from
269 2003 to 2014, slowing after 2015. This finding differs slightly from that of Fortems-Cheiney
270 et al. (2024), a discrepancy possibly attributable to differences in the processing of initial and
271  boundary CO conditions (e.g., the use of climatological CO concentrations in Fortems-Cheiney
272 etal. (2024)).

273 China's CO emissions demonstrated a distinct turning point from growth to decline (Fig.
274  3c). The evolution can be divided into four stages: (1) a growth period until 2007, reaching a
275  peak; (2) a sharp decline of approximately 7% during the 2008 global financial crisis; (3) a
276  temporary rebound from 2009 to 2011 under economic stimulus policies; and (4) a continuous
277  decline phase after 2011. From 2003 to 2022, anthropogenic CO emissions from eastern China
278  decreased at an average rate of 3.0-4.0 Tg yr'! (Table 2), with a cumulative reduction of 23-
279  32% (Table S1). This evolution is corroborated by multiple studies: Zhao et al. (2012) and Xia
280 et al. (2016) confirmed the transformation of China's CO emission trend around 2007,
281  attributing it to improved energy efficiency and emission control regulations; Lin and McElroy
282  (2011) and Tong et al. (2016) emphasized the significant suppressive effect of the 2008 global

283  economic recession; and Zheng et al. (2018) quantified a 27% reduction in CO emissions
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284  between 2010 and 2017. Notably, the emission reduction rate accelerated during 2019-2022
285  (4.8-8.3 Tg yr!), reflecting not only the short-term impact of the COVID-19 pandemic but also
286  the long-term cumulative effects of clean air policies and energy structure transformation.
287 In contrast, India exhibited a consistent growth trend in CO emissions, with an average
288  annual increase of 0.5-0.8 Tg yr'\. This growth was primarily driven by rapid industrialization
289  and urbanization, particularly from coal and biomass fuel combustion in the residential sector
290  in earlier years, and from the industrial and transportation sectors more recently (Kurokawa
291  and Ohara, 2020). Comparisons with the CEDS inventory (Hoesly et al., 2018; Wang et al.,
292 2022) indicate that India's anthropogenic emissions of major air pollutants like NO,, CO, and
293  NMVOCs have increased at a much faster rate than in other regions, reflecting sustained
294 growth in fuel consumption across its industrial, energy, and transport sectors.

295 This regional analysis underscores the close association between CO emission evolution
296  and stages of economic development, the intensity of policy interventions, and technological
297  pathway choices. Developed, post-industrialized economies achieved continuous reductions
298  through mature environmental policies. China, as a rapidly developing emerging economy,
299  exhibited a transition consistent with an environmental Kuznets curve; India, in an accelerated
300 industrialization phase, continues to show emission growth, though with emerging signs of
301  policy intervention.

302  3.2.2 Biomass burning emissions: high variability and climate-driven characteristics

303 Globally, biomass burning CO emissions were 4-11% higher than the a priori estimate
304  (Figs. le, 1h, 1k and Table 3). In contrast to the clear decline of anthropogenic emissions,
305  biomass burning CO emissions exhibited high interannual variability without a significant
306  long-term trend (Fig. 5). Under the Col-FixOH configuration, global emissions from 2003 to
307 2022 ranged from 277.4 to 477.9 Tg yr'!, averaging 342 Tg yr'! (Table S1). The interannual

308  variability (standard deviation of 41.7 Tg yr'!) far exceeded any secular trend, underscoring the
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309  high sensitivity of biomass burning to climatic conditions and ecosystem states. Spatial analysis
310 revealed a pronounced latitudinal differentiation (Figs. 4d-f). Positive trends (red) were
311  concentrated in Northern Hemisphere high-latitude coniferous forests, while negative trends
312 (blue) dominated tropical and subtropical regions. This pattern is consistent with the "global
313  fire emission geographic reconstruction" observed by Zheng et al. (2023), reflecting the
314  differential impacts of climate change across latitudinal zones.

315 Emissions from North American and Asian high-latitude coniferous forest regions
316  increased dramatically. In 2021, CO emissions from boreal North America reached 52.2-91.9
317  Tg, an increase of 189-434% compared to 2003; emissions from boreal Asia increased by 48-
318  117% over the same period. These two regions accounted for 39-51% of global total biomass
319  burning emissions in 2021, reaching the highest level during the study period. This latitudinal
320  amplification of emissions aligns with observations that carbon emission density from boreal
321  forest fires is 4-10 times higher than from grasslands (Zheng et al., 2021), explaining the
322  substantial increase despite potential decreases in global burned area. Furthermore, climate
323  warming has led to extended fire seasons and increased frequency of extreme fire weather
324  events (Justino et al., 2021). The record-breaking emissions in 2021 were triggered by severe
325  concurrent droughts across North America and Eurasia (Zheng et al., 2023).

326 South American biomass burning CO emissions showed a long-term decrease but with
327  significant interannual fluctuations (Fig. 5c¢), with high emission periods in 2004-2007, 2010,
328  and 2019-2022. The trend shift in CO emissions after 2013 can be linked to changes in policy
329  enforcement (Silva Junior et al., 2021), combustion efficiency (Bloom et al., 2015) and climate
330  variability (Hooghiemstra et al., 2012; Jolly et al., 2015). In Africa, the overall trend of biomass
331  burning CO emissions was not significant (Fig. 5d), but pronounced regional differentiation
332 occurred (Fig. 4d-f), with increases in central Africa and decreases in surrounding areas,

333 consistent with the "strong contrast" pattern observed by Andela et al. (2017). Emission
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334  patterns in Southeast Asia and Australia highlighted their high sensitivity to large-scale climate
335  oscillations. Major fire events in Indonesia in 2006, 2009, 2015, and 2019 were closely linked
336  to El Nifo-induced droughts (Page, 2009; Field et al., 2016; Huijnen et al., 2016). Australia's
337  extreme fires in 2019 resulted from compound extreme climate conditions influenced by the
338  El Niflo-Southern Oscillation, the Southern Annular Mode, and the Indian Ocean Dipole (Deb
339  etal, 2020).

340  3.2.3 Difference between combustion and biogenic NMVOC sources

341 CO from combustion sources in the Northern Hemisphere showed strong regional
342 differentiation (Figs. 4j-1), reflecting a dynamic redistribution between declining anthropogenic
343  sources and increasing biomass burning sources. Positive trends were densely distributed in
344  high-latitude regions, mainly due to climate-driven increases in wildfires; Negative trends
345  dominated mid-to-low latitude industrialized areas. Tropical regions showed a mixed pattern,
346  while the Southern Hemisphere exhibited generally weaker trends. This spatial heterogeneity
347  confirms a net global decrease in combustion-related CO, revealing a clear contrast between
348  increases at high northern latitudes and decreases at mid-latitudes, reflecting the compound
349 influences of climate change and policy interventions.

350 In contrast, CO produced from the oxidation of biogenic VOCs remained relatively stable
351  from 2003 to 2022 (Fig. 4g-i). This stability aligns with findings by Messina et al. (2016),
352 suggesting that global-scale biogenic VOC emissions are less sensitive to short-term climate
353  and land cover changes. The global stability of biogenic VOC-derived CO is important for
354  atmospheric chemistry, as these compounds are key reactants for OH radicals and play a
355  regulatory role in atmospheric oxidation capacity. This stable background provides a crucial
356  baseline for understanding changes in atmospheric oxidation processes. The weaker trends
357  compared to those reported by Jiang et al. (2017) may be associated with our use of continuous

358  MERRA-2 meteorological data, which enhances consistency in long-term analysis.
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359

360 3.3 Impacts of systematic errors on inferred CO emissions

361  3.3.1 Impacts of vertical sensitivity of satellite retrievals

362 The MOPITT instrument provides observations for both CO total column and vertical
363  profile. The degrees of freedom for signal (DFS) for MOPITT multi-spectral profile retrievals
364  (TIR+NIR) is approximately 1.5-2.0 over land, reducing to about 1.0 when converted to a total
365 column (Worden et al., 2010). The discrepancy between a posteriori emission estimates
366  constrained by CO column (Col-FixOH) and profile (Prof-FixOH) data helps evaluate the
367 influence of systematic errors associated with the vertical sensitivity of the satellite retrievals
368  (Tang et al., 2024). This comparison also aids in understanding the influence of parameterized
369 model processes, such as convective transport, which shape the vertical distribution of CO
370  concentrations.

371 Globally, a posteriori anthropogenic CO emissions from Prof-FixOH were slightly lower
372 than those from Col-FixOH, with an average difference of -6.6% over 2003—2022 (Table 2).
373  This difference was more pronounced over North America (-7.9%) and Europe (-7.3%),
374  potentially reflecting weaker convective transport and thus more chemically aged air in the free
375  troposphere over these continents (Jiang et al., 2015a). Eastern China exhibited a unique
376  dynamic evolution (Fig. 3¢): a posteriori CO emissions from Prof-FixOH were lower than those
377  from Col-FixOH during 2003-2015 but gradually exceeded them after 2016, reaching a
378  difference of approximately 7% by 2022 (Table S1). Similarly, global biomass burning CO
379  emissions from Prof-FixOH were slightly lower (-5.5% on average) than those from Col-
380 FixOH (Table 2). However, the response of inferred biomass burning emissions to satellite
381  retrievals showed more complex regional discrepancies (Table 3): Prof-FixOH estimates were
382  lower than Col-FixOH in Africa (-11.2%) and Australia (-9.2%) but higher in other regions,

383  particularly Southeast Asia (9.7%).
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384 Furthermore, we found broadly consistent trends in inferred anthropogenic CO emissions
385  between two configurations over 2003-2022. Both Prof-FixOH and Col-FixOH suggest a
386  decrease in global anthropogenic CO emissions of approximately -0.9% yr'!, with slightly
387  larger regional discrepancies for eastern China (-2.1% yr'! and -1.6% yr™!, respectively) and
388  India (1.1% yr! and 0.7% yr'!, respectively). Similarly, trends in global biomass burning CO
389  emissions were consistent (0.3% yr!' for Col-FixOH and 0.5% yr! for Prof-FixOH), though
390  regional discrepancies were slightly larger for boreal North America (3.1% yr!' and 4.9% yr'")
391  and Australia (-1.5% yr'!' and -0.7% yr'"). The limited differences in inferred emissions between
392 the two configurations led to consistent declining trends in simulated CO columns (-0.5% yr!
393  for both). The generally small differences in emission magnitudes and trends inferred from
394 column versus profile retrievals demonstrate the robustness of our central finding, a significant
395 long-term decline in global anthropogenic CO emissions. The regional discrepancies,
396 particularly the evolving difference over eastern China, invite further investigation into
397  potential changes in atmospheric stability or pollution source characteristics differentially
398  constrained by the retrieval types.

399  3.3.2 Impacts of CO sinks (OH concentrations)

400 OH concentrations in model simulations significantly influence the inverse analysis of CO
401  emissions (Jiang et al., 2011; Miiller et al., 2018). By assimilating MOPITT CO column data,
402  we compared the inverted CO emission estimates driven by fixed (Col-FixOH) and variable
403  (Col-VarOH) OH fields to investigate the potential influence of uncertainties in CO sinks. As
404  shown in Fig. 6¢, OH concentrations from the TCR-2 reanalysis are broadly 10-40% lower
405  than the fixed climatological OH concentrations over land (differences over the ocean are not
406  considered here due to the use of CO land boundary conditions in the 4D-Var assimilation).
407  Lower OH concentrations over land lead to reduced chemical loss, which is compensated by

408  lower CO emissions in the Col-VarOH inversion to maintain atmospheric chemical equilibrium
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409  between CO sources and sinks (Fig. 6f). From 2003 to 2022, global anthropogenic emissions
410  in Col-VarOH averaged 590.1 Tg yr'! (Table 2), approximately 3.7% lower than in Col-FixOH
411  (612.8 Tg yr'!). Similarly, a posteriori CO emissions in Col-VarOH were approximately 5.5%,
412 4.6%, and 7.6% lower than those in Col-FixOH over the US, East China, and India, respectively.
413 Furthermore, both inversion configurations captured similar temporal evolution in
414  emission changes, including key turning points (e.g., the peak in eastern China's emissions in
415 2007 and trough in 2008, Fig. 5¢) and extreme events (e.g., the biomass burning emission peak
416  in 2021, Fig. 5g). From 2003 to 2022, both configurations suggest consistent trends in global
417  anthropogenic CO emissions (-0.9% yr'). Regional trends were also similar: -3.5% yr' and -
418 3.4%yr' (US), -1.6% yr'!' and -2.0% yr!' (eastern China), and 0.7% yr' and 1.1% yr! (India)
419  for Col-FixOH and Col-VarOH, respectively. The limited discrepancies in the magnitude and
420  trends of a posteriori CO emissions driven by different OH fields suggest that the impact of
421  uncertainties in CO sinks on our derived emission estimates is minor. This insensitivity can be
422 partially attributed to the use of optimized land boundary CO conditions, which, as indicated
423 Dby Jiang et al. (2015b), can reduce the impact of OH concentration uncertainties by
424  approximately 50%.

425  3.3.3 Synthesis and Robustness Assessment

426 The sensitivity experiments described above collectively address the third objective of this
427  study, which is to evaluate the robustness of our central findings against potential systematic
428  errors associated with satellite retrieval vertical sensitivity and OH concentrations. The
429  comparison between emissions constrained by MOPITT column (Col-FixOH) and profile
430  (Prof-FixOH) data revealed limited discrepancies in both the magnitude and, crucially, the
431  long-term trends of global and regional CO emissions (Section 3.2.1). Similarly, employing
432  variable OH fields (Col-VarOH) instead of a fixed climatology led to only modest differences

433 in the derived emission estimates, without altering the key temporal evolution characteristics
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434  (Section 3.2.2). This robustness can be attributed, in part, to our two-step inversion framework,
435  which mitigates systematic biases through optimized initial and boundary CO conditions.
436  Therefore, we conclude that uncertainties in MOPITT vertical sensitivity and modeled OH
437  fields do not significantly undermine the primary emission trends quantified in this study,
438  thereby increasing confidence in our assessment of the long-term evolution of global CO
439  emissions.

440

441 3.4 Long-term evolution and drivers of global CO concentrations

442 Building on the emission estimates evaluated above, this section investigates their ultimate
443  influence in the atmosphere by analyzing the spatiotemporal patterns and trends of CO
444  concentrations. We first present the mean state and long-term changes in CO concentrations,
445  and then quantitatively attribute these changes to their underlying drivers: emissions and
446  meteorology. Figs. 7a-c show the mean surface CO concentrations in 2003-2022 from the a
447  posteriori simulations and WDCGG surface observations. Higher CO concentrations are
448  evident in regions with strong anthropogenic emissions, such as East Asia, India, and Southeast
449  Asia, as well as in areas with significant biomass burning, i.e., Central Africa and South
450  America. The long-term trends in surface CO (Figs. 7d-f) reveal declining concentrations over
451  North America, Europe, East Asia, and South America, which contrast with rising trends over
452  India, Boreal Asia, Central Africa, and Australia. The 20-year mean CO columns (Figs. 8a-c)
453  show a consistent spatial pattern, with the highest column concentrations over East Asia and
454  Central Africa, followed by South America, India, and Southeast Asia. In contrast, the long-
455  term trend of CO columns (Figs. 8d-f) exhibits a more uniform decrease across the Northern
456  Hemisphere, lacking the distinct regional hotspots observed in the surface trends. This suggests
457  that changes in CO are more thoroughly mixed within the column.

458 To quantitatively attribute the concentration trends to specific drivers, we conducted a
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459  series of sensitivity experiments. The results indicate that meteorological influences induced
460  positive trends in surface CO concentrations in regions such as central Africa, Southeast Asia,
461  and the Tibetan Plateau (0.6-1.8% yr™!), along with slight negative trends in areas such as South
462  America. The meteorological impact on CO column concentrations was comparatively weaker
463  (Fig. 9b), showing positive trends of 0.45% yr! over central Africa and the Tibetan Plateau.
464  This vertical differentiation implies that meteorological influences may primarily alter the
465  vertical distribution of CO through changes in convective transport, with a more limited effect
466  on larger horizontal scales. The derived meteorological impact is noticeably weaker than that
467  reported by Jiang et al. (2017), a discrepancy likely attributable to our use of consistent
468  MERRA-2 meteorological fields, which enhances the reliability of the long-term trend analysis.
469  Similarly, the impact of biogenic VOC changes on CO concentrations (Figs. 9g, 9h) was
470  markedly weaker than in Jiang et al. (2017).

471 Anthropogenic emission changes were identified as the principal driver behind declining
472 CO levels, inducing strong negative trends in industrial regions of the Northern Hemisphere,
473  such as eastern North America, Europe, and eastern China. This signal is consistent across both
474  surface and column concentrations. Globally, anthropogenic emission changes led to an
475  average annual decrease of 0.27% yr! in CO column concentrations, with a more pronounced
476  decline rate of 0.51% yr"! in the Northern Hemisphere. Regionally, the US, Europe, and eastern
477  China exhibited the most substantial decreases, at -0.57% yr!, -0.69% yr! and -0.69% yr!,
478  respectively. In contrast, India experienced a slight concentration increase (0.03% yr!) due to
479  rising emissions, while Southeast Asia showed a more moderate decline (-0.19% yr')
480  compared to other major industrial regions.

481 Conversely, changes in biomass burning emissions generally contributed to positive CO
482  trends, particularly in high-latitude regions. Globally, biomass burning emissions led to an

483  average annual increase of 0.10% yr'! in CO column concentrations, with a more significant
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484  rise of 0.24% yr! in the Northern Hemisphere. Notable increases occurred in Boreal North
485  America (0.43% yr'!') and Boreal Asia (0.48% yr'), whereas South America, Australia, and
486  Southeast Asia experienced declining trends ranging from -0.13% yr! to -0.22 yr!; Africa
487  exhibited a slight increase of 0.09% yr'..

488 This attribution analysis quantitatively confirms a substantial offsetting effect from
489  biomass burning emissions. Although anthropogenic emission reductions lowered Northern
490  Hemisphere CO column concentrations by approximately 0.51% yr!, the concomitant rise in
491  biomass burning emissions counteracted this trend by adding about 0.24% yr''. As a result, the
492 net concentration decline was limited to approximately 0.27% yr!, indicating that nearly half
493  (47%) of the potential air quality improvement from anthropogenic emission controls has been
494  offset by the intensification of fires. This finding provides a clear mechanistic explanation for
495  the attenuated decline in atmospheric CO concentrations in recent years, establishing a direct
496  link to climate-change-amplified wildfire activity.

497 4. Conclusions

498 This study provides an updated, quantitative analysis of global CO emissions and drivers
499  of atmospheric CO trends from 2003 to 2022, using an extended GEOS-Chem adjoint model
500  constrained by MOPITT satellite observations. A key methodological advancement was the
501  use of continuous MERRA-2 meteorological data and updated a priori emission inventories,
502  which improved the long-term consistency and convergence efficiency of the 4D-Var
503  assimilation system. The implementation of a two-step bias mitigation strategy, optimizing
504  both initial conditions and land boundary conditions for CO, effectively reduced the
505  accumulated impacts of transport and chemistry uncertainties, lending to weaker sensitivity to
506  uncertainties in satellite vertical sensitivity and OH concentrations.

507 The optimized a posteriori emission estimates were rigorously evaluated against

508  independent surface (WDCGG) and aircraft (ATOM, HIPPO) observations. This evaluation

20
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509  demonstrated a noticeable improvement in model performance. The mean bias in simulated
510  CO concentrations was reduced from -3.8 ppb in the a priori simulation to between -2.5 and -
511 2.1 ppb in the a posteriori simulation for HIPPO, and from -3.4 ppb in the a priori simulation
512 tobetween -2.9 and -1.6 ppb in the a posteriori simulation for ATOM. Similarly, biases against
513  surface observations were reduced, confirming the robustness of the inversion results.
514  Consistent with previous studies focusing on shorter periods, our two-decade analysis reveals
515 a pronounced decline of 14-17% in global anthropogenic CO emissions, equivalent to a
516  reduction of approximately 85-110 Tg. This decline was primarily driven by emission
517  reduction efforts in major industrialized regions, with cumulative reductions estimated at 46—
518  49% in the US, 32-34% in Europe, and 23-32% in eastern China. In contrast, biomass burning
519  emissions exhibited strong interannual variability, with a notable recent increase in Northern
520  Hemisphere high-latitude forests.

521 A critical finding of this work is the substantial offsetting effect of increasing biomass
522 burning emissions on atmospheric CO levels. Our attribution analysis shows that while
523  anthropogenic emission reductions decreased the Northern Hemisphere CO column
524 concentration at a rate of approximately 0.51% yr!, concurrent increases in biomass burning
525  emissions counteracted this trend by adding about 0.24% yr'!. The net decline was therefore
526  limited to only 0.27% yr!, indicating that nearly half (47%) of the potential air quality
527  improvement from anthropogenic emission controls was offset by enhanced biomass burning.
528  This substantial offsetting effect implies that the carbon mitigation benefits achieved by
529  reducing fossil fuel combustion are being concurrently attenuated by climate-driven carbon
530 releases from wildfires. Our analysis thus not only clarifies the past evolution of global CO
531 emissions and concentrations but also highlights an increasingly critical challenge: climate
532 change is actively undermining emission control efforts by intensifying natural fire activities,

533 underscoring the need for integrated policies that address both anthropogenic sources and the

21
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534 climate-driven amplification of natural emissions.
535
536 Code and data availability: The MOPITT CO data can be downloaded from

537  https://asdc.larc.nasa.gov/data/MOPITT/. The adjoint of GEOS-Chem model can be

538  downloaded from http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint.
539  The a posteriori CO emission estimates (Col-FixOH, Prof-FixOH and Col-VarOH) can be
540  downloaded from https://doi.org/10.5281/zenodo.17221834.
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554  Tables and Figures

555 Table 1. Mean biases of modeled CO concentrations relative to satellite and in-situ
556  observations for five model configurations. Configurations include GC-original (using original
557  monthly CO initial conditions + a priori emission inventories), GC-a priori (using optimized
558 monthly CO initial conditions + a priori emission inventories), and three a posteriori
559  simulations (using optimized initial conditions + optimized emission inventories). Biases are
560  presented in units of 10'® molecules cm™ for MOPITT and ppb for other datasets.
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561

562  Table 2. Mean anthropogenic CO emissions (Tg yr') and their trends in 2003-2022 in the a
563  priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals
564  with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure Sle.
565

566  Table 3. Mean biomass burning CO emissions (Tg yr'') and their trends in 2003-2022 in the a
567  priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals
568  with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure S1f.
569

570  Table 4. Trends in column CO concentrations (% yr™') driven by changes in anthropogenic and
571  biomass burning emissions (based on Col-FixOH in 2003-2022). Values represent the annual
572 percentage change in CO columns due solely to changes in one type of sources.

573

574  Fig. 1. (a-c) Mean a priori CO emissions from 2003 to 2022 with unit 10'? molecules cm= s!;
575  (d-f) Scaling factors of Col-FixOH; (g-i) Scaling factors of Prof-FixOH; (j-1) Scaling factors
576  of Col-VarOH. The scaling factors are the ratios between a posteriori to a priori CO emissions.
577

578  Fig. 2. Relative bias in column CO for 2003-2022, calculated as (Model - MOPITT) / MOPITT
579  for GC-original (a), GC-a priori (b), and the a posteriori simulations (c-¢).

580

581  Fig. 3. Twelve-month moving average of anthropogenic CO emissions (Tg month™) in 2003-
582  2022. The series includes the a priori emission (green) and the a posteriori emissions
583  constrained with Col-FixOH (blue), Prof-FixOH (magenta) and Col-VarOH (red). The region
584  definition is shown in Figure Sle.

585

586  Fig. 4. Trends in CO emissions (10'° molecules cm 2 s yr'!) from 2003 to 2022, as constrained
587 by different MOPITT data sets and OH configurations. Months where biomass burning CO
588  emissions contributed >50% of the total emissions in a grid cell were excluded from the trend
589  calculations for anthropogenic and biogenic VOC emissions.

590

591  Fig. 5. Monthly biomass burning CO emissions (with unit Tg month™') in 2003-2022: a priori
592  emission (green) and a posteriori emissions constrained with Col-FixOH (blue), Prof-FixOH
593  (magenta) and Col-VarOH (red). The region definition is shown in Figure S1f.

594
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595  Fig. 6. Comparison of OH fields and their impact on emission estimates. (a-c) Tropospheric
596  OH columns (10'> molecules cm™2) averaged over 2003-2022 from (a) the fixed OH field, (b)
597  the variable OH field, and (c) their difference (Variable - Fixed). (d-f) The corresponding CO
598  emission scaling factors from (d) the Col-FixOH inversion, (e) the Col-VarOH inversion, and
599 () the difference between them (Col-VarOH - Col-FixOH).

600

601  Fig. 7. (a-c) Mean surface CO concentrations (ppb) for 2003-2022 from WDCGG observations
602  and model simulations. (d-f) Trend of surface CO concentration from observations and model
603  simulations. Only stations with 20 year observations (the time range between the first and last
604  observations) during 2003-2022 are included.

605

606  Fig. 8. (a-c) Mean modeled column CO concentrations (10'® molecules cm2) from 2003 to
607  2022. (d-f) Trend of modeled column CO concentrations (% yr™') from 2003 to 2022.

608

609  Fig. 9. Attribution of trends (% yr!) in surface and column CO from 2003 to 2022 to specific
610  emission sectors, based on sensitivity simulations. Trends are shown for scenarios with: (a, b)
611  all emissions fixed at 2003 levels; (c, d) only anthropogenic emissions varying over time; (e,
612  f) only biomass burning emissions varying; (g, h) only biogenic VOC emissions varying. The
613  varying emissions in these scenarios are prescribed from the Col-FixOH a posteriori inversion.

614
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Observations |GC-original| GC-a priori | Col-FixOH | Prof-FixOH | Col-VarOH
MOPITT -39.4 9.7 =73 -6.8 -5.1
WDGCC -20.1 2.4 1.8 1.7 0.4

HIPPO -18.9 3.8 2.5 2.1 2.2
ATOM -16.2 -3.4 2.1 29 -1.6

Table 1. Mean biases of modeled CO concentrations relative to satellite and in-situ
observations for five model configurations. Configurations include GC-original (using original
monthly CO initial conditions + a priori emission inventories), GC-a priori (using optimized
monthly CO initial conditions + a priori emission inventories), and three a posteriori
simulations (using optimized initial conditions + optimized emission inventories). Biases are
presented in units of 10'® molecules cm™ for MOPITT and ppb for other datasets.

Anthropogenic emissions us Europe | E. China India SE. Asia | Global

GC-a priori Emissions 53.5 33.7 179.6 72.7 26.1 536.3
Trends -18+0.1 -0.7+0.1 |-14+£03] 03+0.1 | 0.1+0.0 |-3.6+04

Col-FixOH Emissions 61.6 392 195.8 733 26.9 612.8
Trends -22+£03]-09+02|-40+08| 08+03 | 0.0+0.1 |-5.6+0.9

Prof-FixOH Emissions 56.7 36.3 188.3 69.9 26.8 5722
Trends —20£03 08+x02|-30£04/05+£02 | 0.1x0.1 | 5004

Col-VarOH Emissions 58.2 38.5 186.7 67.7 26.3 590.1
Trends -20£03/-09+£02[-37+£08]07+02 |-00£0.1-53+£08

Table 2. Mean anthropogenic CO emissions (Tg yr'!) and their trends in 2003-2022 in the a
priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals
with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure Sle.

Biomass burning Boreal_N. Boreal Asia|S. America| Afiica SE. Asia | Australia | Global
America .

GC-a priori 21.50 39.50 44.00 136.90 25.00 12.00 312.50

Col-FixOH 2041 45.38 37.42 167.51 17.99 15.08 345.61

Prof-FixOH 21.24 46.68 38.37 148.76 19.73 13.70 326.56

Col-VarOH 18.03 41.02 33.30 159.48 18.98 15.81 325.75

Table 3. Mean biomass burning CO emissions (Tg yr'') and their trends in 2003-2022 in the a
priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals
with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure S1f.
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Region Anthropogenic Region Biomass burning
United States -0.57% Boreal N. America 0.43%
Europe -0.69% Boreal Asia 0.48%
Eastern China -0.69% South America -0.13%
India 0.03% Africa 0.09%
Southeast Asia -0.19% Southeast Asia -0.22%
\ \ Australia -0.12%
Northern Hemisphere -0.51% Northern Hemisphere 0.24%
Global -0.27% Global 0.10%

Table 4. Trends in column CO concentrations (% yr'!) driven by changes in anthropogenic and
biomass burning emissions (based on Col-FixOH in 2003-2022). Values represent the annual
percentage change in CO columns due solely to changes in one type of sources.

Anthropogenic Biomass Burning
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Fig. 1. (a-c) Mean a priori CO emissions from 2003 to 2022 with unit 10'> molecules cm 2 s7';

(d-f) Scaling factors of Col-FixOH; (g-i1) Scaling factors of Prof-FixOH; (j-1) Scaling factors
of Col-VarOH. The scaling factors are the ratios between a posteriori to a priori CO emissions.
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Fig. 2. Relative bias in column CO for 2003-2022, calculated as (Model - MOPITT) / MOPITT
for GC-original (a), GC-a priori (b), and the a posteriori simulations (c-¢).
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Fig. 3. Twelve-month moving average of anthropogenic CO emissions (Tg month™') in 2003-
2022. The series includes the a priori emission (green) and the a posteriori emissions
constrained with Col-FixOH (blue), Prof-FixOH (magenta) and Col-VarOH (red). The region
definition is shown in Figure Sle.
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Fig. 4. Trends in CO emissions (10" molecules cm™ s yr'!") from 2003 to 2022, as constrained
by different MOPITT data sets and OH configurations. Months where biomass burning CO
emissions contributed >50% of the total emissions in a grid cell were excluded from the trend
calculations for anthropogenic and biogenic VOC emissions.
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Fig. 5. Monthly biomass burning CO emissions (with unit Tg month™') in 2003-2022: a priori
emission (green) and a posteriori emissions constrained with Col-FixOH (blue), Prof-FixOH

(magenta) and Col-VarOH (red). The region definition is shown in Figure S1f.
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Fig. 6. Comparison of OH fields and their impact on emission estimates. (a-c) Tropospheric
OH columns (10'? molecules cm™2) averaged over 2003-2022 from (a) the fixed OH field, (b)
the variable OH field, and (c) their difference (Variable - Fixed). (d-f) The corresponding CO
emission scaling factors from (d) the Col-FixOH inversion, (¢) the Col-VarOH inversion, and
(f) the difference between them (Col-VarOH - Col-FixOH).
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Fig. 7. (a-c) Mean surface CO concentrations (ppb) for 2003-2022 from WDCGG observations
and model simulations. (d-f) Trend of surface CO concentration from observations and model
simulations. Only stations with 20 year observations (the time range between the first and last
observations) during 2003-2022 are included.
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Fig. 8. (a-c) Mean modeled column CO concentrations (10'® molecules cm™2) from 2003 to
2022. (d-f) Trend of modeled column CO concentrations (% yr™') from 2003 to 2022.
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Fig. 9. Attribution of trends (% yr™') in surface and column CO from 2003 to 2022 to specific
emission sectors, based on sensitivity simulations. Trends are shown for scenarios with: (a, b)
all emissions fixed at 2003 levels; (c, d) only anthropogenic emissions varying over time; (e, f)
only biomass burning emissions varying; (g, h) only biogenic VOC emissions varying. The
varying emissions in these scenarios are prescribed from the Col-FixOH a posteriori inversion.
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