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Abstract 22 

Carbon monoxide (CO), an important atmospheric pollutant produced from incomplete 23 

combustion and hydrocarbon oxidation, significantly influences atmospheric chemistry and air 24 

quality. Accurate quantification of its global emissions and the underlying drivers of 25 

atmospheric trends is essential for understanding and improving global environmental 26 

conditions. Using 20 years (2003-2022) of satellite observations from the Measurement of 27 

Pollution in the Troposphere (MOPITT) instrument, here we analyze changes in global CO 28 

emissions and atmospheric concentrations. The a posteriori simulations show improved 29 

consistency with independent surface and aircraft measurements compared to the a priori 30 

simulations. Sensitivity analyses further confirm that inferred emissions remain robust against 31 

uncertainties associated with satellite vertical sensitivity and variations in hydroxyl radical (OH) 32 

concentrations. Our results indicate a substantial decline in global anthropogenic CO emissions 33 

of 14-17% (approximately 85-110 Tg) over the two-decade period, largely driven by reductions 34 

https://doi.org/10.5194/egusphere-2025-5432
Preprint. Discussion started: 18 November 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

in the United States, Europe, and eastern China. In contrast, biomass burning emissions 35 

exhibited strong interannual variability, with recent increases in Northern Hemisphere high-36 

latitude forests. A key finding is that rising biomass burning emissions have offset about 37% 37 

of the global anthropogenic emission reduction (47% in the Northern Hemisphere alone), 38 

underscoring the considerable moderating influence of wildfires on atmospheric composition 39 

trends. This study provides a comprehensive assessment of global CO emissions and the 40 

mechanisms governing atmospheric CO trends, offering a scientific basis for integrated 41 

policies addressing both climate change and air pollution. 42 

 43 

1. Introduction 44 

Carbon monoxide (CO) is a key atmospheric pollutant produced from incomplete 45 

combustion and the oxidation of hydrocarbons. As the main sink for the hydroxyl radical (OH), 46 

CO critically influences the oxidative capacity of the atmosphere (Zhao et al., 2020; Tan et al., 47 

2022), and is an important precursor for tropospheric ozone (Whaley et al., 2015; Hu et al., 48 

2024). With a chemical lifetime of approximately one to two months, CO is frequently 49 

employed as a valuable tracer for elucidating variations in anthropogenic activities and biomass 50 

burning, providing critical insights into the long-range transport of atmospheric constituents 51 

(Tang et al., 2019; Buchholz et al., 2022; Smoydzin and Hoor, 2022). Accurate quantification 52 

of global CO emissions and a clear understanding of the drivers behind its atmospheric trends 53 

are therefore essential for formulating effective policies to address the challenges of air quality 54 

and climate change. 55 

The advent of long-term satellite observations has revolutionized our ability to monitor 56 

global CO distributions (Warner et al., 2013; Worden et al., 2013; Hedelius et al., 2021). This 57 

data has enabled a shift from short-term, regional emission estimates (Arellano et al., 2004; 58 

Heald et al., 2004; Kopacz et al., 2010) to analyses of decadal-scale changes. Numerous studies 59 
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have leveraged these records to report substantial declines in anthropogenic CO emissions 60 

(Fortems-Cheiney et al., 2011; Jiang et al., 2017; Miyazaki et al., 2020), especially across the 61 

Northern Hemisphere, contributing to improved air quality. However, a critical and emerging 62 

challenge is to disentangle the competing influences on atmospheric CO concentrations. While 63 

anthropogenic emissions are generally decreasing due to pollution control measures, biomass 64 

burning emissions exhibit strong interannual variability and a growing sensitivity to climate 65 

change. An important unanswered question is to what extent the recent intensification of 66 

wildfires, particularly in high-latitude forests (Jain et al., 2024; Jones et al., 2024), is offsetting 67 

the gains achieved from anthropogenic emission reductions. This has profound implications, 68 

as CO shares common combustion sources with major greenhouse gases like methane (CH4) 69 

and carbon dioxide (Worden et al., 2017; Zheng et al., 2023). 70 

Constraining global emissions and robustly attributing observed concentration trends 71 

require the application of sophisticated inverse modeling approaches. These methods, which 72 

include ensemble-based techniques (e.g., the ensemble Kalman filter) and variational methods 73 

(e.g., four-dimensional variational, 4D-Var, data assimilation), provide powerful frameworks 74 

for optimizing emission estimates by reconciling model simulations with satellite observations, 75 

while accounting for complex atmospheric transport and chemistry (Müller et al., 2018; 76 

Miyazaki et al., 2020; Jiang et al., 2025). Among these, the 4D-Var data assimilation, 77 

implemented within chemical transport models like GEOS-Chem and its adjoint (Henze et al., 78 

2007), has been widely and successfully applied to constrain CO emissions (Kopacz et al., 79 

2010; Jiang et al., 2015b; Tang et al., 2023), owing to its strengths in handling nonlinear 80 

constraints and providing computationally efficient gradients. However, long-term multi-81 

decadal trend analyses based on this system has often been hindered by limitations such as 82 

inconsistent meteorological inputs across years and the use of outdated a priori emission 83 

inventories (Jiang et al., 2017; Qu et al., 2022). 84 
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To address these limitations, we employ a recent extension of the GEOS-Chem adjoint 85 

model (Tang et al., 2023) that features support for consistent MERRA-2 meteorological data 86 

and modern emission inventories via the HEMCO emissions component (Keller et al., 2014; 87 

Lin et al., 2021). By assimilating MOPITT (Measurements of Pollution in the Troposphere) 88 

observations from 2003 to 2022, this study aims to provide an analysis with the following 89 

specific objectives: (1) to quantify the long-term evolution of global CO emissions; (2) to 90 

attribute the observed trends in atmospheric CO concentrations to changes in emissions and 91 

meteorological variations, in particularly, the effect of increasing biomass burning emissions 92 

on atmospheric CO decline driven by anthropogenic reductions; and (3) to evaluate the 93 

sensitivity of inferred emissions to uncertainties in satellite vertical sensitivity and OH 94 

concentrations. By doing so, this work aims to improve the understanding of key drivers behind 95 

atmospheric CO changes and offer a refined emission inventory to support future climate and 96 

air quality policies. 97 

The paper is structured as follows: Section 2 describes the methodology, including the 98 

assimilation framework, observational data, and the design of sensitivity experiments. Section 99 

3 presents the results on the long-term emission trends, the robustness tests, and the attribution 100 

of concentration changes. Conclusions are provided in Section 4. 101 

 102 

2. Methodology and Data 103 

2.1 Assimilation framework 104 

We utilize the adjoint of the GEOS-Chem model (version 35n) with extended support for 105 

MERRA-2 meteorological data and HEMCO emission inventories. The analysis is conducted 106 

at a horizontal resolution of 2°×2.5° with 47 vertical levels (MERRA-2) and employs a CO-107 

only simulation (tagged-CO mode). Two types of archived OH fields are used in this study: 108 

fixed monthly OH fields for 2013 from the GEOS-Chem full chemistry simulation (Fisher et 109 
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al., 2017), and variable monthly OH fields for 2005-2020 from the Tropospheric Chemistry 110 

Reanalysis version 2 (TCR-2, Miyazaki et al. (2020)). The TCR-2 OH fields have been 111 

validated against various aircraft observations and show generally good agreement (Miyazaki 112 

et al., 2020). The interannual variability of global mean tropospheric OH concentrations from 113 

TCR-2 is illustrated in Fig. S2 (see the SI). 114 

The global default anthropogenic emission inventory is the CEDS (Community Emissions 115 

Data System) (Hoesly et al., 2018). Regional emissions are replaced as follows: MIX (Li et al., 116 

2017) over Asia, NEI 2016 (National Emissions Inventory) over the United States, 117 

DICE_AFRICA and EDGARv4.3 over Africa, and APEI over Canada. Biogenic emissions are 118 

simulated using the Model of Emissions of Gases and Aerosols from Nature, version 2.0 119 

(MEGANv2.0, Guenther et al. (2006)). Biomass burning emissions are based on the Global 120 

Fire Emissions Database version 4 (GFED4, van der Werf et al. (2010)). The distribution of 121 

the annual mean CO emissions from 2003 to 2022 is shown in Figs. 1a-c. The annual global 122 

sources are 536.3 Tg yr-1 from anthropogenic emissions, 312.5 Tg yr-1 from biomass burning, 123 

and 623 Tg yr-1 from the oxidation of biogenic VOCs. 124 

The objective of the 4D-Var approach is to minimize the difference between simulations 125 

and observations by minimizing the cost function (Henze et al., 2007): 126 

𝐽(𝒙) = ∑ (𝑭𝑖(𝒙) − 𝒛𝑖)
𝑇𝑺𝛴

−1(𝑭𝑖(𝒙) − 𝒛𝑖)
𝑁
𝑖=1 + 𝛾(𝒙 − 𝒙𝑎)𝑇𝑺𝑎

−1(𝒙 − 𝒙𝑎)         (1) 127 

where 𝒙 is the state vector of CO emissions, N is the number of observations distributed in 128 

time over the assimilation period, 𝒛𝑖 are the MOPITT CO observations, and 𝑭(𝒙) is the 129 

forward model. Error estimates are assumed to be Gaussian: 𝑺Σ is the observational error 130 

covariance, which combines a 10% uniform error and the MOPITT CO retrieval error 131 

covariance; and 𝑺𝑎 is the a priori error covariance. Here the combustion-related CO sources 132 

(fossil fuel, biofuel, and biomass burning) and the oxidation source from biogenic VOCs are 133 

combined, with a uniform a priori error of 50% assumed. The CO source from CH4 oxidation 134 
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is optimized separately as an aggregated global source, with the a priori uncertainty of 25%. 135 

The cost function is minimized by iteratively adjusting the CO emissions using the quasi-136 

Newton gradient-based optimization L-BFGS-B algorithm (Zhu et al., 1997) and the adjoint 137 

gradients: 138 

𝛻𝒙𝐽(𝒙) = ∑ [2 (
𝜕𝑭𝑖

𝜕𝒙
)

𝑻

𝑺𝛴
−1(𝑭𝑖(𝒙) − 𝒛𝑖)]𝑁

𝑘=1 + 2𝛾(𝒙 − 𝒙𝑎)𝑇𝑺𝑎
−1             (2) 139 

The LOGX2 method (Jiang et al., 2015a; Jiang et al., 2017) is employed to improve the 140 

reduction of negative gradients. 141 

Following Jiang et al. (2017), we applied a two-step approach to mitigate the influence of 142 

systematic biases in the model simulations. First, a sequential Kalman filter (Todling and Cohn, 143 

1994; Tang et al., 2022) was used to assimilate MOPITT CO observations, providing optimized 144 

CO concentration fields with lower bias. As illustrated in Fig. 2a, the GEOS-Chem model 145 

driven by the original monthly CO initial conditions and a priori emission inventories (referred 146 

to as GC-original) substantially underestimated column CO concentrations by approximately 147 

30–40% (mean bias = -39.4 × 1016 molecules cm⁻2; Table 1). In contrast, simulations using the 148 

monthly CO initial conditions derived from the sequential Kalman filter together with a priori 149 

emissions (GC-a priori) showed markedly improved agreement with MOPITT observations 150 

(Fig. 2b), reducing the mean bias to about 10% (mean bias = -9.7 × 1016 molecules cm⁻2). 151 

Similarly, the use of optimized monthly CO initial conditions led to considerable improvement 152 

in model performance against independent surface and aircraft measurements (Table 1). The 153 

mean bias decreased from -20.1 ppb (GC-original) to -2.4 ppb (GC-a priori) for WDCGG 154 

surface observations; from -18.9 ppb to -3.8 ppb for HIPPO aircraft data; and from -16.2 ppb 155 

to -3.4 ppb for ATOM aircraft measurements. These results suggest that the substantial 156 

negative biases seen in Fig. 2a largely originate from the accumulation of biases over preceding 157 

months. 158 

Furthermore, ocean scenes (red grids in Fig. S3) were defined as land boundary conditions. 159 
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The optimized CO fields from the Kalman filter were used to update CO concentrations over 160 

the ocean at hourly intervals during the forward simulation within the 4D-Var process. 161 

Meanwhile, the 4D-Var system constrained CO emissions over land without modifying oceanic 162 

CO distributions. As demonstrated by Jiang et al. (2017), the use of optimized CO land 163 

boundary conditions in 4D-Var assimilation effectively reduces systematic biases associated 164 

with long-range transport. By adopting this two-step assimilation framework, the inversion 165 

focuses on optimizing fresh continental CO emissions, while reducing the influence of 166 

uncertainties arising from transport and chemical processes, which tend to exhibit larger 167 

systematic biases. Consequently, the a posteriori CO emissions estimated in this study are 168 

expected to be lower than those derived without adjustments to the initial and boundary CO 169 

conditions. This reflects both the specific inverse modeling setup and a possible 170 

underestimation in our a posteriori emission estimates, attributable to the emphasis on 171 

constraining fresh continental CO sources. 172 

Based on this assimilation framework, three sets of CO emission inversion experiments 173 

are designed: 174 

(1) Col-FixOH: uses MOPITT CO column concentration data with default OH fields fixed 175 

in 2013. 176 

(2) Prof-FixOH: uses MOPITT CO profile data with default OH fields fixed in 2013. 177 

(3) Col-VarOH: uses MOPITT CO column concentration data with variable OH fields 178 

from the TCR-2 tropospheric chemistry reanalysis. 179 

By comparing the results of Col-FixOH and Prof-FixOH, the influence of different MOPITT 180 

CO observation types on CO source estimates can be assessed. Similarly, comparing Col-181 

FixOH and Col-VarOH allows for evaluation of the impact of different OH fields on CO source 182 

estimates. 183 

2.2 MOPITT CO measurements 184 
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The MOPITT instrument was launched on December 18, 1999, aboard the NASA Terra 185 

spacecraft. The satellite follows a sun-synchronous polar orbit at 705 km altitude, crossing the 186 

equator at 10:30 local time. The instrument made measurements over a 612 km cross-track 187 

scan, with a footprint of 22 km × 22 km. The MOPITT data used in this study are from the 188 

joint retrieval (version 9J) of CO, which combines thermal infrared (TIR, 4.7m) and near-189 

infrared (NIR, 2.3m) radiances using an optimal estimation approach (Worden et al., 2010; 190 

Deeter et al., 2022). The retrieved volume mixing ratios are reported as layer averages across 191 

10 pressure levels (surface, 900, 800, 700, 600, 500, 400, 300, 200, and 100 hPa). The 192 

relationship between the retrieved CO profile and the true atmospheric state is expressed as: 193 

𝒛̂ = 𝒛𝑎 + 𝑨(𝒛 − 𝒛𝑎) + 𝑮𝝐                          (3) 194 

where 𝒛𝑎 is the MOPITT a priori CO profile, 𝒛 is the true atmospheric state, 𝑮𝜺 represents 195 

the retrieval error, and 𝑨 = 𝜕𝒛̂ 𝜕𝒛⁄  is the MOPITT averaging kernel matrix, indicating the 196 

sensitivity of the retrieval to the actual atmospheric CO. We exclude MOPITT data with CO 197 

column amounts less than 5×1017 molecules cm-2 and those with low cloud observations. Since 198 

the NIR channel relies on reflected solar radiation, only daytime data are considered. 199 

2.3 Aircraft and surface CO measurements 200 

The HIAPER Pole-to-Pole Observations (HIPPO, Wofsy and HIPPO Science Team 201 

(2011)) were conducted using the Gulfstream V aircraft from 2009 to 2011. The flights 202 

primarily covered the Pacific Ocean, spanning latitudes from 67°S to 87°N, with continuous 203 

sampling from 0.2 to 12 km altitude. The Atmospheric Tomography Mission (ATom, Wofsy 204 

and Atom Science Team (2018)) used the DC-8 aircraft from 2016 to 2018. ATom covered 205 

similar altitude and latitudinal ranges as HIPPO but with broader spatial coverage, particularly 206 

over the Atlantic Ocean. For HIPPO, a total of 687 CO profiles from five missions were used 207 

directly. For ATom, CO measurements during continuous ascents and descents were used to 208 

construct 523 CO profiles from four missions. Surface CO measurements from the World Data 209 
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Centre for Greenhouse Gases (WDCGG) are also included in this analysis. The WDCGG, 210 

operated by the Japan Meteorological Agency under the World Meteorological Organization’s 211 

Global Atmosphere Watch (GAW) program, collects, archives, and distributes atmospheric 212 

greenhouse gas data, including CO, contributed by various institutions worldwide. 213 

 214 

3. Results and Discussion 215 

3.1 Evaluation of assimilation system performance 216 

Before presenting the estimated emission trends and their drivers, we first evaluate the 217 

performance of our assimilation system. The evaluation involves comparing modeled CO 218 

concentrations from the GC-original, GC-a priori, and the a posteriori simulations (Col-FixOH, 219 

Prof-FixOH, Col-VarOH) over the period 2003-2022 against MOPITT satellite retrievals, as 220 

well as independent surface observations from WDCGG and aircraft measurements from 221 

HIPPO and ATom. As summarized in Table 1, the a posteriori simulations exhibit mean biases 222 

relative to MOPITT observations ranging from -5.1 to -7.3 × 1016 molecules cm⁻2. These values 223 

are notably lower than the biases in the GC-a priori simulation (-9.7 × 1016 molecules cm⁻2) 224 

and the GC-original simulation (-39.4 × 1016 molecules cm⁻2). Similarly, for the HIPPO aircraft 225 

observations, the a posteriori simulations show mean biases between -2.5 and -2.1 ppb, 226 

improved compared to the GC-a priori (-3.8 ppb) and GC-original (-18.9 ppb) simulations. For 227 

ATom aircraft data, the a posteriori mean biases range from -2.9 to -1.6 ppb, also lower than 228 

those from the GC-a priori (-3.4 ppb) and GC-original (-16.2 ppb) simulations. These results 229 

confirm that the a posteriori emission estimates lead to improved agreement with atmospheric 230 

CO observations. 231 

In the case of surface CO concentrations, the a posteriori simulations yield mean biases 232 

between 0.4 and 1.8 ppb relative to WDCGG observations (Table 1), which are reduced 233 

compared to the GC-a priori (-2.4 ppb) and GC-original (-20.1 ppb) simulations. This supports 234 
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the conclusion that the assimilation improves the representation of surface-level CO. It is worth 235 

noting that the a posteriori simulations tend to slightly overestimate surface concentrations 236 

relative to WDCGG data, while generally underestimating CO in the free troposphere 237 

according to MOPITT and aircraft observations. This systematic pattern may be attributable to 238 

uncertainties in convective transport parameterizations within the model. Overall, the enhanced 239 

consistency between the a posteriori simulations and multiple independent observation 240 

platforms demonstrates the capability of our assimilation system to effectively constrain CO 241 

emissions. Given this confidence in the system’s performance, we now present the central 242 

findings of this study: the long-term evolution of CO emissions as derived from the assimilation 243 

constraints. 244 

 245 

3.2 Long-term evolution of global CO emissions 246 

3.2.1 Anthropogenic CO emissions: global decline and regional differentiation 247 

At the global scale, anthropogenic CO emissions were 7-14% higher than the a priori 248 

estimate (Figs. 1d, 1g, 1j and Table 2) showing a clear declining trend superimposed with 249 

notable interannual fluctuations (Fig. 3f and Table S1). Under the Col-FixOH configuration, 250 

global emissions from 2003 to 2022 ranged from 546.1 to 654.1 Tg yr-1, with a multi-year 251 

average of approximately 610 Tg yr-1 and a total reduction of about 17%; Similar ranges and 252 

reduction magnitudes (14-17%) were observed under the Prof-FixOH and Col-VarOH 253 

configurations. As shown in Fig. 4a, negative trends (blue) were concentrated in three major 254 

industrialized regions: eastern North America, Europe, and eastern China, forming a distinct 255 

"reduction belt". These regions collectively accounted for over 65% of global anthropogenic 256 

CO emissions, and their systematic reductions constituted the principal driver of the global 257 

downward trend. In contrast, positive trends (red) were primarily distributed in northern India 258 
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(increases of 15.2-22.3%) and Central Africa, corresponding to rapid urbanization and 259 

industrialization processes. 260 

Developed economies exhibited continuous decreases with distinct phases (Figs. 3a-b). In 261 

the United States (US), emissions declined rapidly from 2003 to 2009, followed by a period of 262 

slower reduction. Over the entire period (2003-2022), US CO emissions decreased at rates of 263 

2.0-2.2 Tg yr-1, resulting in a cumulative reduction of 46-49% (Table S1). This phased 264 

reduction pattern is consistent with the diminishing marginal effects of widespread 265 

transportation control technologies, as supported by independent studies (Elguindi et al., 2020; 266 

Miyazaki et al., 2020). European CO emissions showed a similar trend (a cumulative reduction 267 

of 32-34% in 2003-2022), with an average reduction rate of approximately 1.44 Tg yr-1 from 268 

2003 to 2014, slowing after 2015. This finding differs slightly from that of Fortems-Cheiney 269 

et al. (2024), a discrepancy possibly attributable to differences in the processing of initial and 270 

boundary CO conditions (e.g., the use of climatological CO concentrations in Fortems-Cheiney 271 

et al. (2024)). 272 

China's CO emissions demonstrated a distinct turning point from growth to decline (Fig. 273 

3c). The evolution can be divided into four stages: (1) a growth period until 2007, reaching a 274 

peak; (2) a sharp decline of approximately 7% during the 2008 global financial crisis; (3) a 275 

temporary rebound from 2009 to 2011 under economic stimulus policies; and (4) a continuous 276 

decline phase after 2011. From 2003 to 2022, anthropogenic CO emissions from eastern China 277 

decreased at an average rate of 3.0-4.0 Tg yr-1 (Table 2), with a cumulative reduction of 23-278 

32% (Table S1). This evolution is corroborated by multiple studies: Zhao et al. (2012) and Xia 279 

et al. (2016) confirmed the transformation of China's CO emission trend around 2007, 280 

attributing it to improved energy efficiency and emission control regulations; Lin and McElroy 281 

(2011) and Tong et al. (2016) emphasized the significant suppressive effect of the 2008 global 282 

economic recession; and Zheng et al. (2018) quantified a 27% reduction in CO emissions 283 
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between 2010 and 2017. Notably, the emission reduction rate accelerated during 2019-2022 284 

(4.8-8.3 Tg yr-1), reflecting not only the short-term impact of the COVID-19 pandemic but also 285 

the long-term cumulative effects of clean air policies and energy structure transformation. 286 

In contrast, India exhibited a consistent growth trend in CO emissions, with an average 287 

annual increase of 0.5-0.8 Tg yr-1. This growth was primarily driven by rapid industrialization 288 

and urbanization, particularly from coal and biomass fuel combustion in the residential sector 289 

in earlier years, and from the industrial and transportation sectors more recently (Kurokawa 290 

and Ohara, 2020). Comparisons with the CEDS inventory (Hoesly et al., 2018; Wang et al., 291 

2022) indicate that India's anthropogenic emissions of major air pollutants like NOₓ, CO, and 292 

NMVOCs have increased at a much faster rate than in other regions, reflecting sustained 293 

growth in fuel consumption across its industrial, energy, and transport sectors.  294 

This regional analysis underscores the close association between CO emission evolution 295 

and stages of economic development, the intensity of policy interventions, and technological 296 

pathway choices. Developed, post-industrialized economies achieved continuous reductions 297 

through mature environmental policies. China, as a rapidly developing emerging economy, 298 

exhibited a transition consistent with an environmental Kuznets curve; India, in an accelerated 299 

industrialization phase, continues to show emission growth, though with emerging signs of 300 

policy intervention. 301 

3.2.2 Biomass burning emissions: high variability and climate-driven characteristics 302 

Globally, biomass burning CO emissions were 4-11% higher than the a priori estimate 303 

(Figs. 1e, 1h, 1k and Table 3). In contrast to the clear decline of anthropogenic emissions, 304 

biomass burning CO emissions exhibited high interannual variability without a significant 305 

long-term trend (Fig. 5). Under the Col-FixOH configuration, global emissions from 2003 to 306 

2022 ranged from 277.4 to 477.9 Tg yr-1, averaging 342 Tg yr-1 (Table S1). The interannual 307 

variability (standard deviation of 41.7 Tg yr-1) far exceeded any secular trend, underscoring the 308 
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high sensitivity of biomass burning to climatic conditions and ecosystem states. Spatial analysis 309 

revealed a pronounced latitudinal differentiation (Figs. 4d-f). Positive trends (red) were 310 

concentrated in Northern Hemisphere high-latitude coniferous forests, while negative trends 311 

(blue) dominated tropical and subtropical regions. This pattern is consistent with the "global 312 

fire emission geographic reconstruction" observed by Zheng et al. (2023), reflecting the 313 

differential impacts of climate change across latitudinal zones. 314 

Emissions from North American and Asian high-latitude coniferous forest regions 315 

increased dramatically. In 2021, CO emissions from boreal North America reached 52.2-91.9 316 

Tg, an increase of 189-434% compared to 2003; emissions from boreal Asia increased by 48-317 

117% over the same period. These two regions accounted for 39-51% of global total biomass 318 

burning emissions in 2021, reaching the highest level during the study period. This latitudinal 319 

amplification of emissions aligns with observations that carbon emission density from boreal 320 

forest fires is 4-10 times higher than from grasslands (Zheng et al., 2021), explaining the 321 

substantial increase despite potential decreases in global burned area. Furthermore, climate 322 

warming has led to extended fire seasons and increased frequency of extreme fire weather 323 

events (Justino et al., 2021). The record-breaking emissions in 2021 were triggered by severe 324 

concurrent droughts across North America and Eurasia (Zheng et al., 2023). 325 

South American biomass burning CO emissions showed a long-term decrease but with 326 

significant interannual fluctuations (Fig. 5c), with high emission periods in 2004-2007, 2010, 327 

and 2019-2022. The trend shift in CO emissions after 2013 can be linked to changes in policy 328 

enforcement (Silva Junior et al., 2021), combustion efficiency (Bloom et al., 2015) and climate 329 

variability (Hooghiemstra et al., 2012; Jolly et al., 2015). In Africa, the overall trend of biomass 330 

burning CO emissions was not significant (Fig. 5d), but pronounced regional differentiation 331 

occurred (Fig. 4d-f), with increases in central Africa and decreases in surrounding areas, 332 

consistent with the "strong contrast" pattern observed by Andela et al. (2017). Emission 333 
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patterns in Southeast Asia and Australia highlighted their high sensitivity to large-scale climate 334 

oscillations. Major fire events in Indonesia in 2006, 2009, 2015, and 2019 were closely linked 335 

to El Niño-induced droughts (Page, 2009; Field et al., 2016; Huijnen et al., 2016). Australia's 336 

extreme fires in 2019 resulted from compound extreme climate conditions influenced by the 337 

El Niño-Southern Oscillation, the Southern Annular Mode, and the Indian Ocean Dipole (Deb 338 

et al., 2020). 339 

3.2.3 Difference between combustion and biogenic NMVOC sources 340 

CO from combustion sources in the Northern Hemisphere showed strong regional 341 

differentiation (Figs. 4j-l), reflecting a dynamic redistribution between declining anthropogenic 342 

sources and increasing biomass burning sources. Positive trends were densely distributed in 343 

high-latitude regions, mainly due to climate-driven increases in wildfires; Negative trends 344 

dominated mid-to-low latitude industrialized areas. Tropical regions showed a mixed pattern, 345 

while the Southern Hemisphere exhibited generally weaker trends. This spatial heterogeneity 346 

confirms a net global decrease in combustion-related CO, revealing a clear contrast between 347 

increases at high northern latitudes and decreases at mid-latitudes, reflecting the compound 348 

influences of climate change and policy interventions. 349 

In contrast, CO produced from the oxidation of biogenic VOCs remained relatively stable 350 

from 2003 to 2022 (Fig. 4g-i). This stability aligns with findings by Messina et al. (2016), 351 

suggesting that global-scale biogenic VOC emissions are less sensitive to short-term climate 352 

and land cover changes. The global stability of biogenic VOC-derived CO is important for 353 

atmospheric chemistry, as these compounds are key reactants for OH radicals and play a 354 

regulatory role in atmospheric oxidation capacity. This stable background provides a crucial 355 

baseline for understanding changes in atmospheric oxidation processes. The weaker trends 356 

compared to those reported by Jiang et al. (2017) may be associated with our use of continuous 357 

MERRA-2 meteorological data, which enhances consistency in long-term analysis. 358 
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 359 

3.3 Impacts of systematic errors on inferred CO emissions 360 

3.3.1 Impacts of vertical sensitivity of satellite retrievals 361 

The MOPITT instrument provides observations for both CO total column and vertical 362 

profile. The degrees of freedom for signal (DFS) for MOPITT multi-spectral profile retrievals 363 

(TIR+NIR) is approximately 1.5-2.0 over land, reducing to about 1.0 when converted to a total 364 

column (Worden et al., 2010). The discrepancy between a posteriori emission estimates 365 

constrained by CO column (Col-FixOH) and profile (Prof-FixOH) data helps evaluate the 366 

influence of systematic errors associated with the vertical sensitivity of the satellite retrievals 367 

(Tang et al., 2024). This comparison also aids in understanding the influence of parameterized 368 

model processes, such as convective transport, which shape the vertical distribution of CO 369 

concentrations. 370 

Globally, a posteriori anthropogenic CO emissions from Prof-FixOH were slightly lower 371 

than those from Col-FixOH, with an average difference of -6.6% over 2003–2022 (Table 2). 372 

This difference was more pronounced over North America (-7.9%) and Europe (-7.3%), 373 

potentially reflecting weaker convective transport and thus more chemically aged air in the free 374 

troposphere over these continents (Jiang et al., 2015a). Eastern China exhibited a unique 375 

dynamic evolution (Fig. 3c): a posteriori CO emissions from Prof-FixOH were lower than those 376 

from Col-FixOH during 2003-2015 but gradually exceeded them after 2016, reaching a 377 

difference of approximately 7% by 2022 (Table S1). Similarly, global biomass burning CO 378 

emissions from Prof-FixOH were slightly lower (-5.5% on average) than those from Col-379 

FixOH (Table 2). However, the response of inferred biomass burning emissions to satellite 380 

retrievals showed more complex regional discrepancies (Table 3): Prof-FixOH estimates were 381 

lower than Col-FixOH in Africa (-11.2%) and Australia (-9.2%) but higher in other regions, 382 

particularly Southeast Asia (9.7%). 383 

https://doi.org/10.5194/egusphere-2025-5432
Preprint. Discussion started: 18 November 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

Furthermore, we found broadly consistent trends in inferred anthropogenic CO emissions 384 

between two configurations over 2003-2022. Both Prof-FixOH and Col-FixOH suggest a 385 

decrease in global anthropogenic CO emissions of approximately -0.9% yr-1, with slightly 386 

larger regional discrepancies for eastern China (-2.1% yr-1 and -1.6% yr-1, respectively) and 387 

India (1.1% yr-1 and 0.7% yr-1, respectively). Similarly, trends in global biomass burning CO 388 

emissions were consistent (0.3% yr-1 for Col-FixOH and 0.5% yr-1 for Prof-FixOH), though 389 

regional discrepancies were slightly larger for boreal North America (3.1% yr-1 and 4.9% yr-1) 390 

and Australia (-1.5% yr-1 and -0.7% yr-1). The limited differences in inferred emissions between 391 

the two configurations led to consistent declining trends in simulated CO columns (-0.5% yr-1 392 

for both). The generally small differences in emission magnitudes and trends inferred from 393 

column versus profile retrievals demonstrate the robustness of our central finding, a significant 394 

long-term decline in global anthropogenic CO emissions. The regional discrepancies, 395 

particularly the evolving difference over eastern China, invite further investigation into 396 

potential changes in atmospheric stability or pollution source characteristics differentially 397 

constrained by the retrieval types. 398 

3.3.2 Impacts of CO sinks (OH concentrations) 399 

OH concentrations in model simulations significantly influence the inverse analysis of CO 400 

emissions (Jiang et al., 2011; Müller et al., 2018). By assimilating MOPITT CO column data, 401 

we compared the inverted CO emission estimates driven by fixed (Col-FixOH) and variable 402 

(Col-VarOH) OH fields to investigate the potential influence of uncertainties in CO sinks. As 403 

shown in Fig. 6c, OH concentrations from the TCR-2 reanalysis are broadly 10-40% lower 404 

than the fixed climatological OH concentrations over land (differences over the ocean are not 405 

considered here due to the use of CO land boundary conditions in the 4D-Var assimilation). 406 

Lower OH concentrations over land lead to reduced chemical loss, which is compensated by 407 

lower CO emissions in the Col-VarOH inversion to maintain atmospheric chemical equilibrium 408 
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between CO sources and sinks (Fig. 6f). From 2003 to 2022, global anthropogenic emissions 409 

in Col-VarOH averaged 590.1 Tg yr-1 (Table 2), approximately 3.7% lower than in Col-FixOH 410 

(612.8 Tg yr-1). Similarly, a posteriori CO emissions in Col-VarOH were approximately 5.5%, 411 

4.6%, and 7.6% lower than those in Col-FixOH over the US, East China, and India, respectively. 412 

Furthermore, both inversion configurations captured similar temporal evolution in 413 

emission changes, including key turning points (e.g., the peak in eastern China's emissions in 414 

2007 and trough in 2008, Fig. 5c) and extreme events (e.g., the biomass burning emission peak 415 

in 2021, Fig. 5g). From 2003 to 2022, both configurations suggest consistent trends in global 416 

anthropogenic CO emissions (-0.9% yr-1). Regional trends were also similar: -3.5% yr-1 and -417 

3.4% yr-1 (US), -1.6% yr-1 and -2.0% yr-1 (eastern China), and 0.7% yr-1 and 1.1% yr-1 (India) 418 

for Col-FixOH and Col-VarOH, respectively. The limited discrepancies in the magnitude and 419 

trends of a posteriori CO emissions driven by different OH fields suggest that the impact of 420 

uncertainties in CO sinks on our derived emission estimates is minor. This insensitivity can be 421 

partially attributed to the use of optimized land boundary CO conditions, which, as indicated 422 

by Jiang et al. (2015b), can reduce the impact of OH concentration uncertainties by 423 

approximately 50%. 424 

3.3.3 Synthesis and Robustness Assessment 425 

The sensitivity experiments described above collectively address the third objective of this 426 

study, which is to evaluate the robustness of our central findings against potential systematic 427 

errors associated with satellite retrieval vertical sensitivity and OH concentrations. The 428 

comparison between emissions constrained by MOPITT column (Col-FixOH) and profile 429 

(Prof-FixOH) data revealed limited discrepancies in both the magnitude and, crucially, the 430 

long-term trends of global and regional CO emissions (Section 3.2.1). Similarly, employing 431 

variable OH fields (Col-VarOH) instead of a fixed climatology led to only modest differences 432 

in the derived emission estimates, without altering the key temporal evolution characteristics 433 
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(Section 3.2.2). This robustness can be attributed, in part, to our two-step inversion framework, 434 

which mitigates systematic biases through optimized initial and boundary CO conditions. 435 

Therefore, we conclude that uncertainties in MOPITT vertical sensitivity and modeled OH 436 

fields do not significantly undermine the primary emission trends quantified in this study, 437 

thereby increasing confidence in our assessment of the long-term evolution of global CO 438 

emissions. 439 

 440 

3.4 Long-term evolution and drivers of global CO concentrations 441 

Building on the emission estimates evaluated above, this section investigates their ultimate 442 

influence in the atmosphere by analyzing the spatiotemporal patterns and trends of CO 443 

concentrations. We first present the mean state and long-term changes in CO concentrations, 444 

and then quantitatively attribute these changes to their underlying drivers: emissions and 445 

meteorology. Figs. 7a-c show the mean surface CO concentrations in 2003-2022 from the a 446 

posteriori simulations and WDCGG surface observations. Higher CO concentrations are 447 

evident in regions with strong anthropogenic emissions, such as East Asia, India, and Southeast 448 

Asia, as well as in areas with significant biomass burning, i.e., Central Africa and South 449 

America. The long-term trends in surface CO (Figs. 7d-f) reveal declining concentrations over 450 

North America, Europe, East Asia, and South America, which contrast with rising trends over 451 

India, Boreal Asia, Central Africa, and Australia. The 20-year mean CO columns (Figs. 8a-c) 452 

show a consistent spatial pattern, with the highest column concentrations over East Asia and 453 

Central Africa, followed by South America, India, and Southeast Asia. In contrast, the long-454 

term trend of CO columns (Figs. 8d-f) exhibits a more uniform decrease across the Northern 455 

Hemisphere, lacking the distinct regional hotspots observed in the surface trends. This suggests 456 

that changes in CO are more thoroughly mixed within the column. 457 

To quantitatively attribute the concentration trends to specific drivers, we conducted a 458 
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series of sensitivity experiments. The results indicate that meteorological influences induced 459 

positive trends in surface CO concentrations in regions such as central Africa, Southeast Asia, 460 

and the Tibetan Plateau (0.6-1.8% yr-1), along with slight negative trends in areas such as South 461 

America. The meteorological impact on CO column concentrations was comparatively weaker 462 

(Fig. 9b), showing positive trends of 0.45% yr-1 over central Africa and the Tibetan Plateau. 463 

This vertical differentiation implies that meteorological influences may primarily alter the 464 

vertical distribution of CO through changes in convective transport, with a more limited effect 465 

on larger horizontal scales. The derived meteorological impact is noticeably weaker than that 466 

reported by Jiang et al. (2017), a discrepancy likely attributable to our use of consistent 467 

MERRA-2 meteorological fields, which enhances the reliability of the long-term trend analysis. 468 

Similarly, the impact of biogenic VOC changes on CO concentrations (Figs. 9g, 9h) was 469 

markedly weaker than in Jiang et al. (2017). 470 

Anthropogenic emission changes were identified as the principal driver behind declining 471 

CO levels, inducing strong negative trends in industrial regions of the Northern Hemisphere, 472 

such as eastern North America, Europe, and eastern China. This signal is consistent across both 473 

surface and column concentrations. Globally, anthropogenic emission changes led to an 474 

average annual decrease of 0.27% yr-1 in CO column concentrations, with a more pronounced 475 

decline rate of 0.51% yr-1 in the Northern Hemisphere. Regionally, the US, Europe, and eastern 476 

China exhibited the most substantial decreases, at -0.57% yr-1, -0.69% yr-1 and -0.69% yr-1, 477 

respectively. In contrast, India experienced a slight concentration increase (0.03% yr-1) due to 478 

rising emissions, while Southeast Asia showed a more moderate decline (-0.19% yr-1) 479 

compared to other major industrial regions. 480 

Conversely, changes in biomass burning emissions generally contributed to positive CO 481 

trends, particularly in high-latitude regions. Globally, biomass burning emissions led to an 482 

average annual increase of 0.10% yr-1 in CO column concentrations, with a more significant 483 
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rise of 0.24% yr-1 in the Northern Hemisphere. Notable increases occurred in Boreal North 484 

America (0.43% yr-1) and Boreal Asia (0.48% yr-1), whereas South America, Australia, and 485 

Southeast Asia experienced declining trends ranging from -0.13% yr-1 to -0.22 yr-1; Africa 486 

exhibited a slight increase of 0.09% yr-1. 487 

This attribution analysis quantitatively confirms a substantial offsetting effect from 488 

biomass burning emissions. Although anthropogenic emission reductions lowered Northern 489 

Hemisphere CO column concentrations by approximately 0.51% yr-1, the concomitant rise in 490 

biomass burning emissions counteracted this trend by adding about 0.24% yr-1. As a result, the 491 

net concentration decline was limited to approximately 0.27% yr-1, indicating that nearly half 492 

(47%) of the potential air quality improvement from anthropogenic emission controls has been 493 

offset by the intensification of fires. This finding provides a clear mechanistic explanation for 494 

the attenuated decline in atmospheric CO concentrations in recent years, establishing a direct 495 

link to climate-change-amplified wildfire activity. 496 

4. Conclusions 497 

This study provides an updated, quantitative analysis of global CO emissions and drivers 498 

of atmospheric CO trends from 2003 to 2022, using an extended GEOS-Chem adjoint model 499 

constrained by MOPITT satellite observations. A key methodological advancement was the 500 

use of continuous MERRA-2 meteorological data and updated a priori emission inventories, 501 

which improved the long-term consistency and convergence efficiency of the 4D-Var 502 

assimilation system. The implementation of a two-step bias mitigation strategy, optimizing 503 

both initial conditions and land boundary conditions for CO, effectively reduced the 504 

accumulated impacts of transport and chemistry uncertainties, lending to weaker sensitivity to 505 

uncertainties in satellite vertical sensitivity and OH concentrations.  506 

The optimized a posteriori emission estimates were rigorously evaluated against 507 

independent surface (WDCGG) and aircraft (ATOM, HIPPO) observations. This evaluation 508 
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demonstrated a noticeable improvement in model performance. The mean bias in simulated 509 

CO concentrations was reduced from -3.8 ppb in the a priori simulation to between -2.5 and -510 

2.1 ppb in the a posteriori simulation for HIPPO, and from -3.4 ppb in the a priori simulation 511 

to between -2.9 and -1.6 ppb in the a posteriori simulation for ATOM. Similarly, biases against 512 

surface observations were reduced, confirming the robustness of the inversion results. 513 

Consistent with previous studies focusing on shorter periods, our two-decade analysis reveals 514 

a pronounced decline of 14-17% in global anthropogenic CO emissions, equivalent to a 515 

reduction of approximately 85-110 Tg. This decline was primarily driven by emission 516 

reduction efforts in major industrialized regions, with cumulative reductions estimated at 46–517 

49% in the US, 32–34% in Europe, and 23–32% in eastern China. In contrast, biomass burning 518 

emissions exhibited strong interannual variability, with a notable recent increase in Northern 519 

Hemisphere high-latitude forests. 520 

A critical finding of this work is the substantial offsetting effect of increasing biomass 521 

burning emissions on atmospheric CO levels. Our attribution analysis shows that while 522 

anthropogenic emission reductions decreased the Northern Hemisphere CO column 523 

concentration at a rate of approximately 0.51% yr-1, concurrent increases in biomass burning 524 

emissions counteracted this trend by adding about 0.24% yr-1. The net decline was therefore 525 

limited to only 0.27% yr-1, indicating that nearly half (47%) of the potential air quality 526 

improvement from anthropogenic emission controls was offset by enhanced biomass burning. 527 

This substantial offsetting effect implies that the carbon mitigation benefits achieved by 528 

reducing fossil fuel combustion are being concurrently attenuated by climate-driven carbon 529 

releases from wildfires. Our analysis thus not only clarifies the past evolution of global CO 530 

emissions and concentrations but also highlights an increasingly critical challenge: climate 531 

change is actively undermining emission control efforts by intensifying natural fire activities, 532 

underscoring the need for integrated policies that address both anthropogenic sources and the 533 
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climate-driven amplification of natural emissions. 534 

 535 

Code and data availability: The MOPITT CO data can be downloaded from 536 

https://asdc.larc.nasa.gov/data/MOPITT/. The adjoint of GEOS-Chem model can be 537 

downloaded from http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint. 538 

The a posteriori CO emission estimates (Col-FixOH, Prof-FixOH and Col-VarOH) can be 539 
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Tables and Figures 554 

Table 1. Mean biases of modeled CO concentrations relative to satellite and in-situ 555 

observations for five model configurations. Configurations include GC-original (using original 556 

monthly CO initial conditions + a priori emission inventories), GC-a priori (using optimized 557 

monthly CO initial conditions + a priori emission inventories), and three a posteriori 558 

simulations (using optimized initial conditions + optimized emission inventories). Biases are 559 

presented in units of 1016 molecules cm-2 for MOPITT and ppb for other datasets. 560 
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 561 

Table 2. Mean anthropogenic CO emissions (Tg yr-1) and their trends in 2003-2022 in the a 562 

priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals 563 

with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure S1e. 564 

 565 

Table 3. Mean biomass burning CO emissions (Tg yr-1) and their trends in 2003-2022 in the a 566 

priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals 567 

with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure S1f. 568 

 569 

Table 4. Trends in column CO concentrations (% yr-1) driven by changes in anthropogenic and 570 

biomass burning emissions (based on Col-FixOH in 2003-2022). Values represent the annual 571 

percentage change in CO columns due solely to changes in one type of sources. 572 

 573 

Fig. 1. (a-c) Mean a priori CO emissions from 2003 to 2022 with unit 1012 molecules cm⁻2 s-1; 574 

(d-f) Scaling factors of Col-FixOH; (g-i) Scaling factors of Prof-FixOH; (j-l) Scaling factors 575 

of Col-VarOH. The scaling factors are the ratios between a posteriori to a priori CO emissions. 576 

 577 

Fig. 2. Relative bias in column CO for 2003-2022, calculated as (Model - MOPITT) / MOPITT 578 

for GC-original (a), GC-a priori (b), and the a posteriori simulations (c-e). 579 

 580 

Fig. 3. Twelve-month moving average of anthropogenic CO emissions (Tg month-1) in 2003-581 

2022. The series includes the a priori emission (green) and the a posteriori emissions 582 

constrained with Col-FixOH (blue), Prof-FixOH (magenta) and Col-VarOH (red). The region 583 

definition is shown in Figure S1e. 584 

 585 

Fig. 4. Trends in CO emissions (1010 molecules cm⁻2 s-1 yr-1) from 2003 to 2022, as constrained 586 

by different MOPITT data sets and OH configurations. Months where biomass burning CO 587 

emissions contributed >50% of the total emissions in a grid cell were excluded from the trend 588 

calculations for anthropogenic and biogenic VOC emissions. 589 

 590 

Fig. 5. Monthly biomass burning CO emissions (with unit Tg month-1) in 2003-2022: a priori 591 

emission (green) and a posteriori emissions constrained with Col-FixOH (blue), Prof-FixOH 592 

(magenta) and Col-VarOH (red). The region definition is shown in Figure S1f. 593 

 594 
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Fig. 6. Comparison of OH fields and their impact on emission estimates. (a-c) Tropospheric 595 

OH columns (1012 molecules cm⁻2) averaged over 2003-2022 from (a) the fixed OH field, (b) 596 

the variable OH field, and (c) their difference (Variable - Fixed). (d-f) The corresponding CO 597 

emission scaling factors from (d) the Col-FixOH inversion, (e) the Col-VarOH inversion, and 598 

(f) the difference between them (Col-VarOH - Col-FixOH). 599 

 600 

Fig. 7. (a-c) Mean surface CO concentrations (ppb) for 2003-2022 from WDCGG observations 601 

and model simulations. (d-f) Trend of surface CO concentration from observations and model 602 

simulations. Only stations with 20 year observations (the time range between the first and last 603 

observations) during 2003-2022 are included. 604 

 605 

Fig. 8. (a-c) Mean modeled column CO concentrations (1018 molecules cm⁻2) from 2003 to 606 

2022. (d-f) Trend of modeled column CO concentrations (% yr-1) from 2003 to 2022. 607 

 608 

Fig. 9. Attribution of trends (% yr-1) in surface and column CO from 2003 to 2022 to specific 609 

emission sectors, based on sensitivity simulations. Trends are shown for scenarios with: (a, b) 610 

all emissions fixed at 2003 levels; (c, d) only anthropogenic emissions varying over time; (e, 611 

f) only biomass burning emissions varying; (g, h) only biogenic VOC emissions varying. The 612 

varying emissions in these scenarios are prescribed from the Col-FixOH a posteriori inversion. 613 

 614 
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Table 1. Mean biases of modeled CO concentrations relative to satellite and in-situ 

observations for five model configurations. Configurations include GC-original (using original 

monthly CO initial conditions + a priori emission inventories), GC-a priori (using optimized 

monthly CO initial conditions + a priori emission inventories), and three a posteriori 

simulations (using optimized initial conditions + optimized emission inventories). Biases are 

presented in units of 1016 molecules cm-2 for MOPITT and ppb for other datasets. 

 

 

 

Table 2. Mean anthropogenic CO emissions (Tg yr-1) and their trends in 2003-2022 in the a 

priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals 

with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure S1e. 

 

 

 

 

Table 3. Mean biomass burning CO emissions (Tg yr-1) and their trends in 2003-2022 in the a 

priori inventories and those constrained by MOPITT column (Col) and profile (Prof) retrievals 

with fixed (Fix) and variable (Var) OH fields. The region definition is shown in Figure S1f. 
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Table 4. Trends in column CO concentrations (% yr-1) driven by changes in anthropogenic and 

biomass burning emissions (based on Col-FixOH in 2003-2022). Values represent the annual 

percentage change in CO columns due solely to changes in one type of sources.  

 

 

 

 

Fig. 1. (a-c) Mean a priori CO emissions from 2003 to 2022 with unit 1012 molecules cm⁻2 s-1; 

(d-f) Scaling factors of Col-FixOH; (g-i) Scaling factors of Prof-FixOH; (j-l) Scaling factors 

of Col-VarOH. The scaling factors are the ratios between a posteriori to a priori CO emissions. 
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Fig. 2. Relative bias in column CO for 2003-2022, calculated as (Model - MOPITT) / MOPITT 

for GC-original (a), GC-a priori (b), and the a posteriori simulations (c-e). 
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Fig. 3. Twelve-month moving average of anthropogenic CO emissions (Tg month-1) in 2003-

2022. The series includes the a priori emission (green) and the a posteriori emissions 

constrained with Col-FixOH (blue), Prof-FixOH (magenta) and Col-VarOH (red). The region 

definition is shown in Figure S1e. 
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Fig. 4. Trends in CO emissions (1010 molecules cm⁻2 s-1 yr-1) from 2003 to 2022, as constrained 

by different MOPITT data sets and OH configurations. Months where biomass burning CO 

emissions contributed >50% of the total emissions in a grid cell were excluded from the trend 

calculations for anthropogenic and biogenic VOC emissions. 
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Fig. 5. Monthly biomass burning CO emissions (with unit Tg month-1) in 2003-2022: a priori 

emission (green) and a posteriori emissions constrained with Col-FixOH (blue), Prof-FixOH 

(magenta) and Col-VarOH (red). The region definition is shown in Figure S1f. 
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Fig. 6. Comparison of OH fields and their impact on emission estimates. (a-c) Tropospheric 

OH columns (1012 molecules cm⁻2) averaged over 2003-2022 from (a) the fixed OH field, (b) 

the variable OH field, and (c) their difference (Variable - Fixed). (d-f) The corresponding CO 

emission scaling factors from (d) the Col-FixOH inversion, (e) the Col-VarOH inversion, and 

(f) the difference between them (Col-VarOH - Col-FixOH).  
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Fig. 7. (a-c) Mean surface CO concentrations (ppb) for 2003-2022 from WDCGG observations 

and model simulations. (d-f) Trend of surface CO concentration from observations and model 

simulations. Only stations with 20 year observations (the time range between the first and last 

observations) during 2003-2022 are included. 
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Fig. 8. (a-c) Mean modeled column CO concentrations (1018 molecules cm⁻2) from 2003 to 

2022. (d-f) Trend of modeled column CO concentrations (% yr-1) from 2003 to 2022. 
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Fig. 9. Attribution of trends (% yr-1) in surface and column CO from 2003 to 2022 to specific 

emission sectors, based on sensitivity simulations. Trends are shown for scenarios with: (a, b) 

all emissions fixed at 2003 levels; (c, d) only anthropogenic emissions varying over time; (e, f) 

only biomass burning emissions varying; (g, h) only biogenic VOC emissions varying. The 

varying emissions in these scenarios are prescribed from the Col-FixOH a posteriori inversion. 
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