

Divergent iron dissolution pathways controlled by sulfuric and nitric acids from the ground-level to the upper mixing layer

Guochen Wang¹, Xuedong Cui², Bingye Xu³, Can Wu⁴, Minkang Zhi¹, Keliang Li¹, Liang Xu⁵, Qi Yuan⁶, Yuntao Wang⁷, Yele Sun⁸, Zongbo Shi⁹, Akinori Ito¹⁰, Shixian Zhai¹¹, Weijun Li^{1,8*}

5 ¹State Key Laboratory of Ocean Sensing and Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

²Hangzhou Meteorological Bureau, Hangzhou 310051, China

³Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310007, China

10 ⁴Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China

⁵College of Sciences, China Jiliang University, Hangzhou 310018, China

⁶College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

⁷State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

15 ⁸State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

⁹School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B17 8PS, UK

¹⁰Yokohama Institute for Earth Sciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001, Japan

20 ¹¹Earth and Environmental Sciences Programme and Graduation Division of Earth and Atmospheric Sciences, Faculty of Science, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China

Correspondence to: Weijun Li (liweijun@zju.edu.cn)

Abstract. Iron (Fe) plays a crucial role in the global biogeochemical cycle, marine ecosystems, and human health. Despite extensive research on Fe dissolution, the understanding of the mechanism of the Fe acidification process remains highly controversial. Here, we revealed significant differences in Fe acid dissolution between the upper mixing layer and the ground-level of a megacity. The results showed that air masses with elevated $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ ratios (5.4 ± 3.7) yielded more enhanced iron solubility (%Fe_S, $8.7 \pm 2.4\%$) in the upper mixing layer after atmospheric aging compared to those (1.6 ± 0.7 and $3.3 \pm 0.4\%$, respectively) at the ground-level near source regions of acidic gases. Further analysis suggested that Fe dissolution is primarily driven by sulfuric acid in the upper mixing layer different from nitric acid at the ground-level, attributing to the aging processes of acidic species during long-range transport. %Fe_S also exhibits a clear size dependence: sulfuric-acid dominates in submicron aerosols ($D_p < 1 \mu\text{m}$), leading to elevated %Fe_S ($3.5 \pm 3.9\%$), whereas alkaline mineral dust in supermicron particles ($D_p > 1 \mu\text{m}$) neutralizes nitric acid and suppresses Fe dissolution ($1.8 \pm 2.2\%$). This finding highlighted that sulfuric acid dominates Fe acidification process in the upper layer and submicron particles, but the contribution of nitric acid to Fe dissolution at the ground-level is equally important. Our study provides new data sets for testing atmospheric model's capability to simulate dissolved Fe concentration and deposition and will help to improve the accuracy of Fe solubility predictions.

1 Introduction

Iron (Fe) is an ubiquitous but essential element for life and plays a crucial role in the global biogeochemical cycle, marine ecosystems, and human health (Mahowald et al., 2009; Martin, 1990; Boyd and Ellwood, 2010). Despite its abundance in the earth's crust, Fe is often a growth limiting factor, controlling primary productivity in up to one-third of the world's oceans with high nutrient low chlorophyll (HNLC), thereby influencing carbon sequestration (Mahowald et al., 2009; Martin, 1990). Additionally, redox cycling of Fe affects the formation of reactive oxygen species (ROS) in aqueous reactions, causing adverse health effects (Vidrio et al., 2008; Chen et al., 2024a). The vital role of Fe in global climate change and human health underscores the need to understand the mobilization and dissolution of Fe during atmospheric transformations (Jickells et al., 2005; Martínez-García et al., 2014; Boyd et al., 2007; Fang et al., 2017).

The acidification process of insoluble Fe-containing aerosols by acids (e.g., H_2SO_4 and HNO_3) has been identified as the controlling factor in Fe solubility (%Fes) in particles (Baker et al., 2021; Ingall et al., 2018; Longo et al., 2016; Meskhidze, 2005; Shi et al., 2015). In this process, acids condense on the surface of insoluble Fe-containing particles and elevate the aerosol acidity. Both laboratory studies (Cwiertny et al., 2008; Shi et al., 2015; Ito and Shi, 2016) and field observations (Lei et al., 2023; Oakes et al., 2010) have shown that the heterogeneous reaction of SO_2 on the surface of mineral dust forms an extremely acidic environment that promotes Fe dissolution. Zhuang et al. (1992) initially proposed the hypothesis of the coupling and feedback mechanism between Fe and sulfur during the long-range transport of Asian dust, underscoring the crucial role of sulfuric acid in dissolving Fe. Similar findings have been documented during the transport of North Africa dust to the Atlantic Ocean (Zhu et al., 1997), in the North India Ocean (Bay of Bengal) (Srinivas et al., 2011), in major U.S. cities like Atlanta (Wong et al., 2020; Oakes et al., 2012), in offshore regions of China (such as the Yellow Sea) (Li et al., 2017; Meskhidze, 2003) and its cities (Zhu et al., 2020), and even within simulated cloud processes (Wang et al., 2019; Chen et al., 2012). However, other studies also indicated that nitric acid can equally or more effectively promote Fe dissolution than sulfuric acid (Zhu et al., 1997; Sakata et al., 2023; Rubasinghe et al., 2010). For instance, recent work by Zhu et al. (2020) determined that nitric acid elevates %Fes in urban environments in eastern China, emphasizing its contribution to Fe acid dissolution.

Despite extensive previous research on Fe dissolution, understanding the role of proton-promoted process remains highly controversial. Atmospheric acidification accelerates Fe dissolution, primarily depending on the type and relative abundance of acids and their aging process. Variations in emissions of acidic gases such as SO_2 and NO_x ($=\text{NO}+\text{NO}_2$) will consequently affect the formation of H_2SO_4 and HNO_3 , creating an acidic environment (Rubasinghe et al., 2010; Ooki and Uematsu, 2005). Moreover, the aging process of acidic species modulates atmospheric chemistry (e.g., aerosol acidity) during long-range transport, thereby influencing Fe dissolution process (Baker et al., 2021; Li et al., 2017; Xu et al., 2023). To estimate proton levels, the atmospheric chemistry models consider thermodynamic processes involving the sulfuric acid and nitric acid systems (Ito, 2011; Myriokefalitakis et al., 2022). However, ~~when the climate models simplify the proton promoted dissolution scheme, some global aerosol models (e.g., MATCH, MIMI and BAM-Fe) simplify the calculation of pH values~~

70 for proton-promoted Fe dissolution by setting the pH solely from the sulfate-to-calcite ratio (Hamilton et al., 2019; Scanza et al., 2018; Luo et al., 2005). With sustained sustainable reductions of SO₂ emissions, NO_x has increasingly replaced SO₂ as the predominant inorganic acid source at the ground-level in China and other countries over the past two decades (Uno et al., 2020; Van Der A et al., 2017; Zheng et al., 2018; Geng et al., 2024). Such simplification cannot truly reflect proton levels and Fe dissolution rate under the regime shift from sulfuric acid to nitric acid (Ito and Xu, 2014). The accuracy of Fe 75 simulation needs to be further verified. Furthermore, existing research predominantly focuses on surface-level chemistry, neglecting the upper mixing layer where regionally aged aerosols reside. Because vertical transport significantly alters aerosol composition, the lack of altitude-resolved data limits the accuracy of atmospheric models. Investigating this vertical disparity is essential to constrain altitude-dependent mechanisms and improve model accuracy. Here, we raise the issue of 80 whether the key chemical processes governing Fe dissolution differ between near-surface and the upper mixing layer in eastern China. However, current field observation has not well documented how Fe dissolution may change with varied heights in eastern China. Here, we raise the issue of whether the key chemical processes that dominate Fe dissolution differ between the near surface and the upper mixing layer.

To answer this question, we designed field observations in the upper layer of a mountain and at the ground-level in a megacity to clarify how inorganic acids and their atmospheric aging influence Fe dissolution. By distinguishing air masses 85 arriving at the two altitudes and examining their respective $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ ratios, we systematically compared the acid aging processes and associated Fe acidification under these contrasting atmospheric environments. Our results reveal distinct %Fe_s levels between the upper layer and ground-level, driven by differing acid-processing pathways: sulfuric acid-dominated Fe dissolution in the upper layer (due to longer atmospheric aging) versus nitric acid-dominated processing at the ground-level.

90 2 Data and methods

2.1 Sample collection

The field campaigns were conducted during the summer of 2021 in a mountain site (Mt. Daming, 30.03°N, 119.00°E, 95 1483 m) and in the megacity of Hangzhou (30.30°N, 120.09°E, 6 m) (Fig. S1 in the Supplement). The mountain serves as a background environment and is sensitive to the transport of air pollutants from outside. Its high altitude makes it an ideal location for assessing the impacts of anthropogenic emissions in the upper layer. Since mixed-layer height (MLH) data were not available at Mt. Daming during the sampling period, we referenced MLH observations (CL51, Vaisala, Finland) from 100 Hangzhou. The results show that the MLH in Hangzhou remained below ~1500 m for most of the time (~92%; Fig. S2). Given the relatively short distance between the two sites (~110 km), the MLH in Hangzhou is considered a reasonable proxy for that at Mt. Daming. Therefore, owing to its elevation (~1500 m), the mountain site can be considered representative of the upper mixing layer. The urban site in Hangzhou, with a population of 12.52 million by the end of 2023 (Hangzhou Municipal Government, 2024), is one of the densely populated regions in the Yangtze River Delta (YRD).

105 The field sampling was conducted from July 17 to August 19, 2021 for Mt. Daming and from September 11 to 21, 2021 for Hangzhou. A medium-flow total suspended particle (TSP) sampler (TH-16A, Wuhan Tianhong Instrument Co., Ltd, China) with a sampling flow rate of 100 L min^{-1} was deployed to collect aerosol particles on quartz filters. Prior to sampling, the filters were pre-combusted at 600°C for 6 h to eliminate potential organic contamination. All samples were stored at -20°C until further analysis. Ascribed to the rainy season (June–October), the sampling was temporarily stopped due to rain events. Totally, seven samples were obtained from mountain site and seven samples were collected from Hangzhou city. Detailed sampling information is presented in Table S1 in the Supplement. A ten-stage cascade impactor (MOUDI 120R, MSP corporation, USA), operating at a flow rate of 30 L min^{-1} , was employed to collect size-resolved aerosol samples with 110 cut points of 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, and $0.056 \mu\text{m}$. Three sets of samples were collected at Mt. Daming during the periods of July 29 to August 2, August 8–9, and August 18–19, 2021. Due to the maintenance of instrument, however, no MOUDI samples were collected in Hangzhou. All instruments were installed on open ground in front of the monitoring site.

2.2 TSP and water-soluble inorganic ions measurements

115 TSP were determined gravimetrically using an ultra-high-resolution balance (Sartorius Lab Instruments GmbH & Co, Germany). Prior to sampling, blank quartz filters were conditioned for 24 h under controlled temperature and relative humidity (25°C and 50% RH) and then weighed. After sampling, the filters were reconditioned under the same conditions and reweighed. The difference between the post-sampling and pre-sampling filter masses was taken as the TSP mass. The water-soluble inorganic ions (WSIIs), including SO_4^{2-} , NO_3^- , Cl^- , Na^+ , NH_4^+ , K^+ , Mg^{2+} and Ca^{2+} in TSP and size-resolved 120 aerosols (MOUDI) were analyzed with an ion chromatography (DIONEX ICS-600). The detection limits of the measured SO_4^{2-} , NO_3^- , Cl^- , Na^+ , NH_4^+ , K^+ , Mg^{2+} and Ca^{2+} are 0.021 , 0.008 , 0.010 , 0.018 , 0.006 , 0.006 , 0.009 and $0.022 \mu\text{g mL}^{-1}$, respectively. More information about the laboratory chemical analyses can be found in our previous studies (Liu et al., 2022a; Zhu et al., 2020). To distinguish the contribution of anthropogenic emissions to sulfate, sulfate associated with sea salt was subtracted from the measured sulfate in this study. The mass concentration of the non-sea salt sulfate (nss- SO_4^{2-}) can be 125 estimated as follows:

$$\text{nss-}\text{SO}_4^{2-} = \text{SO}_4^{2-} - 0.25 \times \text{Na}^+ \quad (1)$$

where SO_4^{2-} and Na^+ are the mass concentrations of SO_4^{2-} and Na^+ , respectively. 0.25 is the mass ratio of SO_4^{2-} to Na^+ in pure seawater (Kunwar and Kawamura, 2014). Therefore, the sulfate used in the analysis is nss- SO_4^{2-} .

2.3 Measurements of total and dissolved Fe

130 The total iron (Fe_T) in TSP and size-resolved aerosols were measured non-destructively using an energy dispersive X-ray fluorescence (ED-XRF) spectrometer (Epsilon 4, PANalytical, Netherlands). A standard reference material (SRM 2786, National Institute of Standards and Technology (NIST), USA) was used to calibrate the instrument before sampling analysis.

The measured Fe concentrations were within the NIST certified values, with relative errors between measured and standard values below 10 %. Soluble iron (Fe_S) in the samples was measured using the ferrozine technique following the procedures 135 of Zhu et al. (2022) and Zhi et al. (2025). Briefly, (1) two circular sections (radius = 8 mm) were cut and placed in polypropylene bottles with 20 mL of ammonium acetate solution (0.5 mM, pH ~4.3); (2) after 60 min of sonication, the extracts were filtered through a 0.22 µm PTFE syringe filter (Tang et al., 2025); (3) the pH of the solution was adjusted to ~1.0 using 150 µL of concentrated HCl and stored at 4 °C before further analysis; (4) starting to measure the solution, a 0.01 M ascorbic acid was added to the solution and held for 30 minutes to ensure the complete reduction of Fe(III) to Fe(II); (5) 140 adding 0.01M ferrozine solution; (6) adjusted the solution to ~pH 9.5 using ammonium acetate buffer. The absorbance of the solution was measured at 562 nm (max light absorption) and 700 nm (background) (Oakes et al., 2012) by using an UV-Visible spectrophotometer (UV-Vis, Specord 50 Plus, Analytik Jena Instruments, Germany). Ultra-grade ammonium Fe(II) sulfate hexahydrate (Sigma-Aldrich, St. Louis, USA) was used for Fe(II) standards. The concentration of Fe(II) obtained from the standard curve was the concentration of dissolved Fe.

145 The quality assurance/quality control (QA/QC) procedures for soluble Fe measurement included the following steps: (1) the spectrophotometer was powered on and stabilized for 6–8 hours prior to use; (2) the instrument was calibrated using seven ammonium Fe(II) sulfate standards with concentrations of 5, 10, 20, 40, 60, 80, and 100 ng mL⁻¹. The absorbance of each standard was measured at 562 nm (I_{562}) and 700 nm (I_{700}), and the absorbance difference ($\Delta I = I_{562} - I_{700}$) was correlated with Fe(II) concentration. When the coefficient of determination (R^2) exceeded 0.995, the instrument was considered 150 properly calibrated; (3) prior to sample analysis, a 0.1 mol L⁻¹ HCl solution (pH = 1) was used as the reference; once the absorbance was displayed nearly to zero, the samples could be measured. (4) the average soluble Fe on blank filters detection limit (0.11 ng m⁻³) was ~0.6 ng cm⁻², determined from two sets of TSP and one set of size-resolved samples. The average contribution of filter blanks accounted for less than 2% of the measured sample concentrations. as three times the standard deviation of filter blank values (n = 9); (5) blank samples were analyzed in the same way as field samples. All 155 samples were corrected by subtracting the filter blank values. In this study, the calibration yielded an R^2 of 0.998 and the absorbance of reference solution displayed zero, indicating excellent instrumental stability and measurement reliability. Iron solubility was calculated using the following equation:

$$\% \text{Fe}_S (\%) = \frac{\text{Fe}_S}{\text{Fe}_T} \times 100\% \quad (2)$$

where Fe_S and Fe_T are the soluble Fe and total Fe concentrations, respectively.

160 2.4 Aerosol pH estimation

The ISORROPIA II thermodynamic equilibrium model (<https://www.epfl.ch/labs/lapi/models-and-software/isorropia/>) was applied to simulate aerosol pH and liquid waters in TSP and size-resolved aerosols by using inorganic chemical species (SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, Na⁺, K⁺, Mg²⁺, Ca²⁺), ammonia (NH₃), and meteorological factors (temperature and RH) (Fountoukis and Nenes, 2007), and it was calculated by following equation:

$$pH = -\log_{10} \left(\frac{1000 \times [H_{air}^+]}{ALW} \right) \quad (3)$$

where $[H_{air}^+]$ is the H^+ per volume of air ($\mu\text{g m}^{-3}$), ALW is the aerosol liquid water ($\mu\text{g m}^{-3}$). Here, only aerosol water associated with inorganic species is considered, as previous studies have shown that organics contribute only a small fraction (~10%) to the total ALW (Bougiatioti et al., 2016; Wang et al., 2022). $[H_{air}^+]$ and ALW can be derived directly from the model results. Due to the lack of ammonia (NH_3) observations during the sampling period, we used NH_3 (Model G2103, 170 Picarro Inc., USA) from the summer of 2025 (13–26, July) to approximate the ammonia concentration levels at Mt. Daming. Although using data from a different year may introduce some uncertainty, this approximation is considered reasonable because the mountain is a high-altitude site (1500 m) with no significant local anthropogenic emission sources, and regional NH_3 mainly originates from natural releases. Under similar seasonal conditions, variations in local NH_3 concentrations are expected to be minor. Moreover, sensitivity analysis further supported that a small change in NH_3 , leading to a bit pH 175 variation (see Text S1 and Fig. S3 in the Supplement). Thus, the 2025 NH_3 data can be as an alteration to represent ambient NH_3 levels in Mt. Daming.

3 Results

3.1 Comparison of chemical composition and Fe solubility

Figure 1a shows the time series of TSP mass concentrations at Mt. Daming and in Hangzhou during the sampling period. 180 The mean concentrations of aerosol particles reached $41 \pm 17 \mu\text{g m}^{-3}$ at Mt. Daming and $86 \pm 28 \mu\text{g m}^{-3}$ in Hangzhou, respectively. The loading of TSP in the upper mixing layer (Mt. Daming) was much lower than that at the ground-level (Hangzhou), indicating relatively clean conditions. In addition, relative humidity at Mt. Daming ($88.1 \pm 5.8\%$) was much higher than in the urban environment ($70.5 \pm 9.3\%$), confirming that the mountain site was consistently influenced by a more humid atmosphere (Table S1 in the Supplement). The pie charts in Fig. 1b show that sulfate accounted for 52% in the total 185 measured inorganic ions at Mt. Daming, compared to 32% in Hangzhou. In comparison, nitrate accounted for 33% of the measured inorganic ions in Hangzhou, which is more than twice the fraction of nitrate (15%) in the upper mixing layer. Moreover, the average proportion of nitrate in Hangzhou slightly higher than that of sulfate in the total measured inorganic 190 ions during the sampling period, unlike at Mt. Daming, where sulfate accounted for a significantly higher proportion than nitrate (Fig. 1b). Fig. 1c shows the mean concentrations of Fe_T and Fe_S at Mt. Daming were $292.3 \pm 86.4 \text{ ng m}^{-3}$ and $25.6 \pm 11.5 \text{ ng m}^{-3}$, respectively, which were significantly lower than those of $2094.9 \pm 637.0 \text{ ng m}^{-3}$ and $69.9 \pm 24.8 \text{ ng m}^{-3}$ in Hangzhou. However, the % Fe_S at Mt. Daming was $8.7 \pm 2.4\%$, 2–3 times higher than that of $3.3 \pm 0.4\%$ in Hangzhou.

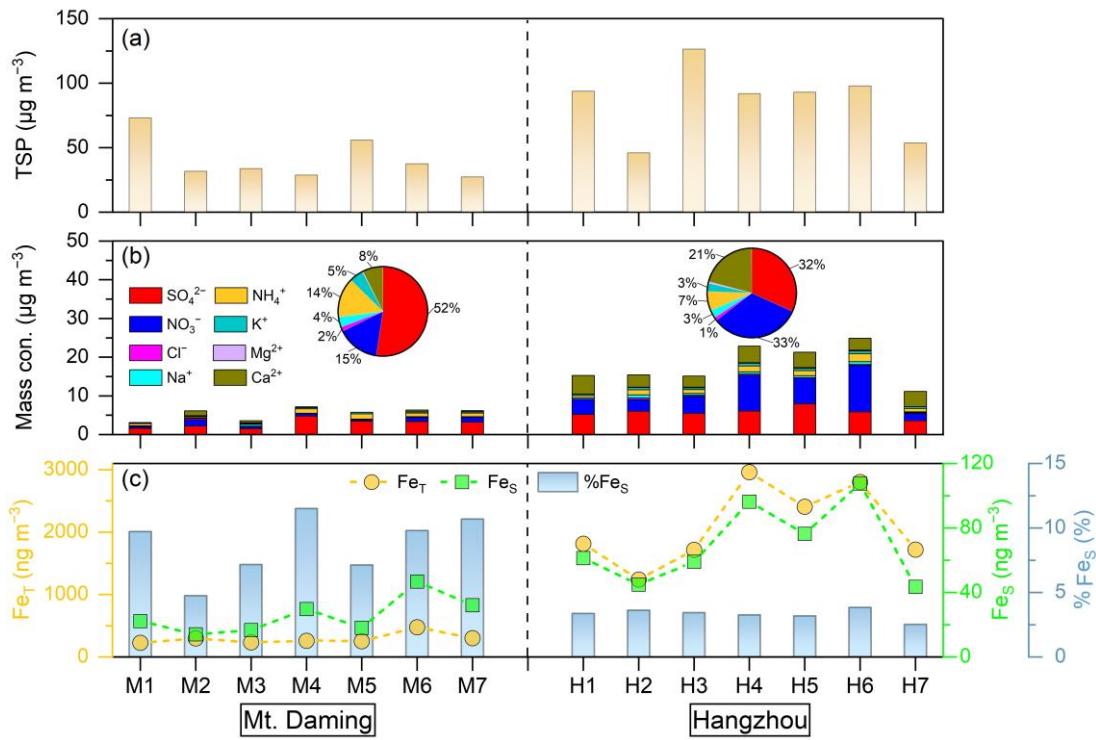


Figure 1: Time series of (a) total suspended particle (TSP), (b) chemical species, and (c) total Fe (Fet), soluble Fe (Fes) and Fe solubility (%Fes) in the upper mixing layer (Mt. Daming) and at the ground-level of Hangzhou, respectively. The labels in X-axis denote the TSP sample series at each site (M1–M7 for Mt. Daming; H1–H7 for Hangzhou).

195

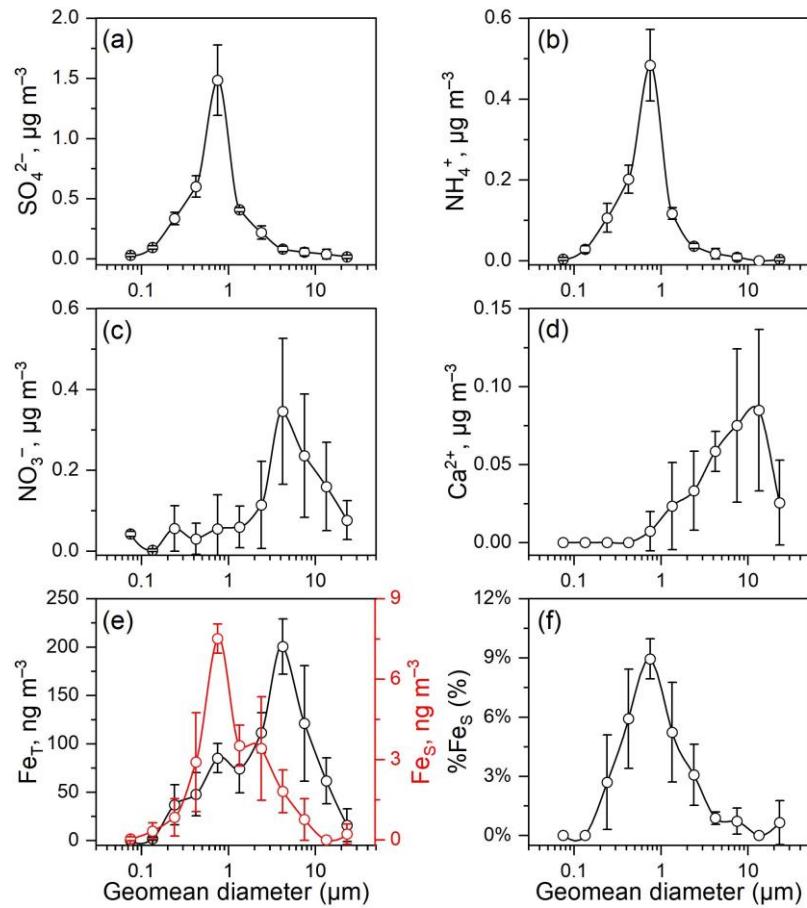
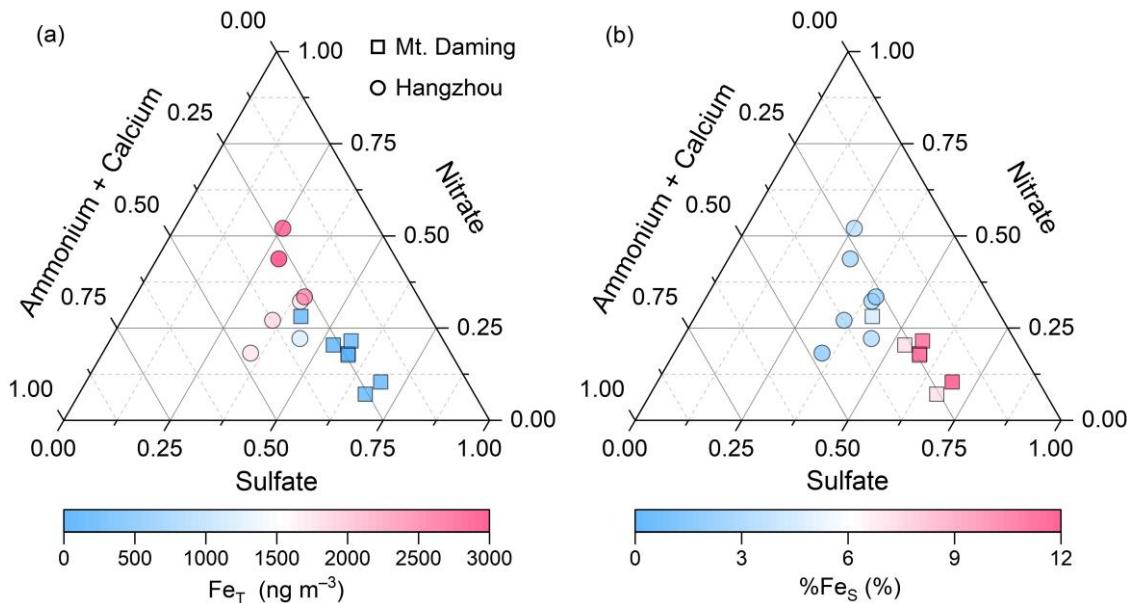

3.2 Size distributions of major chemical species and Fe

Figure 2 illustrates the size distributions of SO_4^{2-} , NO_3^- , NH_4^+ , and Ca^{2+} , Fe_T , Fe_S , and $\% \text{Fe}_S$ in the sized-resolved aerosols. Since there were no MOUDI samples available in Hangzhou, we solely used MOUDI samples collected at the 200 mountain site as an example. We observed significant differences in the size distributions of major ions. The results showed that SO_4^{2-} and NH_4^+ both peaked at the 0.56–1.0 μm size bin (Fig. 2a–b). In contrast, NO_3^- and Ca^{2+} peaked at 3.2–5.6 μm ~~or and~~ 10–18 μm size bins (Fig. 2c–d), respectively. Sulfate accounted for more than 60% of the measured inorganic ions in the submicron particles ($D_p < 1 \mu\text{m}$) at the mountain site, whereas nitrate contributed only 5% (Fig. S4a), consistent with the high sulfate fraction observed in TSP at Mt. Daming (Fig. 1b). In contrast, nitrate dominated in the supermicron mode ($D_p > 1 \mu\text{m}$), 205 representing 39% of the total inorganic ions and exceeding the sulfate fraction (33%) (Fig. S4b).

We further explored size distributions of Fe_T , Fe_S and $\% \text{Fe}_S$ in the upper mixing layer (Fig. 2e–f). The size distribution of Fe_T ~~exhibited a bimodal pattern was dominated by supermicron particles, with a pronounced peak in the~~ 3.2–5.6 μm size range ~~in the and a minor peak (0.56–1.0 μm) in the submicron particles~~ (Fig. 2e). The main peak aligns with the size distribution of NO_3^- . In contrast, the size distributions of Fe_S and $\% \text{Fe}_S$ exhibit similar peaks (0.56–1.0 μm) to those of SO_4^{2-}

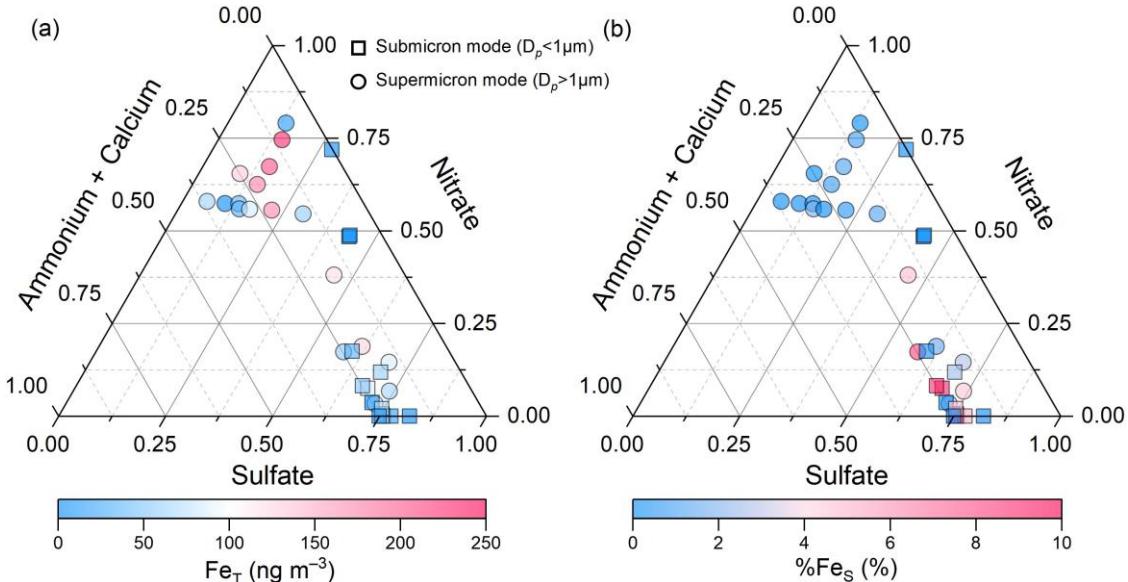
210 and NH_4^+ in the submicron fraction. The low %Fes in supermicron particles coincided with the size distributions of NO_3^- and Ca^{2+} (Fig. 2c-d). Aerosol pH was simulated using the ISORROPIA-II model. As shown in Fig. S5, supermicron particles exhibited a higher pH (4.0 ± 1.9) compared to submicron particles (2.5 ± 0.2), indicating that submicron particles were more acidic and thus more conducive to Fe acid dissolution. The implications of acid processing on aerosol Fe will be discussed later.

215


220 **Figure 2: Size distributions of (a) SO_4^{2-} , (b) NH_4^+ , (c) NO_3^- , (d) Ca^{2+} , (e) Fe_T (black) and Fe_S (red), and (f) %Fes in the size-resolved aerosols at the upper mixing layer (Mt. Daming). The vertical bars represent one standard deviation for each diameter measurement ($n = 3$).**

220

3.3 Typical features of Fe dissolution


The ternary diagrams illustrate distinct features of %Fes and aerosol composition in two contrasting environments for TSP (Fig. 3) and size-resolved aerosols (Fig. 4, Mt. Daming only). As size-resolved aerosol samples were unavailable for

Hangzhou, we simulated size-fractionated %Fes using the Integrated Massively Parallel Atmospheric Chemical Transport (IMPACT) model (Ito and Miyakawa, 2023; Ito et al., 2019; Ito and Xu, 2014). The model description and validation were presented in [Fig. S6](#) and [Text S2](#) in the Supplement. Sulfate-rich particles cluster near the lower-right vertex, nitrate-rich particles near the top vertex, and ammonium- and calcium-rich particles near the left vertex of the ternary diagrams. In TSP at [Mt. Daming](#), samples with high %Fes but low Fe_T predominantly occur near the sulfate vertex rather than the nitrate or ammonium–calcium apexes ([Fig. 3](#)), suggesting that sulfuric acid dominates Fe dissolution in the upper mixing layer. In contrast, Hangzhou TSP samples ([Fig. 3](#)) exhibit high Fe_T and low %Fes, positioned near the center or upper regions of the ternary diagram. These points are scattered toward the nitrate and ammonium–calcium apexes and are characterized by a high proportion of nitrate and alkaline species (i.e., ammonium and calcium).

235 | **Figure 3: The ternary diagram of the relative abundances of sulfate, nitrate, and alkaline species (ammonium + calcium) in TSP collected from the mountain site ([Mt. Daming](#)) and Hangzhou, respectively. The symbols (circles and squares) are colored by total Fe (Fe_T) in (a) and Fe solubility (%Fes) in (b).**

240 In terms of %Fes in size-resolved aerosols, sulfate-rich particles are primarily distributed in the submicron mode in the upper mixing layer ([Fig. 4b](#)), whereas nitrate-rich particles mainly occur in the supermicron range. In contrast, IMPACT simulations for %Fes in size-resolved aerosols in Hangzhou ([Fig. S7](#)) show [that](#) nitrate-rich particles [are](#) concentrated in the submicron mode, differing from [that observed in the upper mixing layer](#). This is consistent with the higher nitrate contribution to TSP observed at the ground level in Hangzhou ([Fig. 1b](#)).

245

Figure 4: The ternary diagram of the relative abundances of sulfate, nitrate, and alkaline species (ammonium + calcium) in the size-resolved aerosols collected from the [upper mixing layer](#) (Mt. Daming). The symbols (circles and squares) were colored by total Fe (Fe_T) in (a) and Fe solubility (%Fe_S) in (b).

250

Figure S8 shows the correlation matrix of aerosol compositions (SO_4^{2-} , NO_3^- , NH_4^+ and Ca^{2+}), Fe_T , Fe_S , $\% \text{Fe}_S$, and aerosol pH in the size-resolved aerosols collected at Mt. Daming. In the submicron particles, Fe_T ($r = 0.85, p < 0.01$) or Fe_S ($r = 0.93, p < 0.01$) displayed significant linear correlation with SO_4^{2-} , yielding positive correlation between SO_4^{2-} and $\% \text{Fe}_S$ ($r = 0.89, p < 0.01$) (left bottom panel in Fig. S8), which is consistent with previous studies (Oakes et al., 2012; Wong et al., 2020; Zhuang et al., 1992; Lei et al., 2023). Notably, no such correlations were found between NO_3^- and Fe_T , Fe_S , or $\% \text{Fe}_S$ in the submicron particles. This finding indicated that the sulfuric acid was the leading contributor to Fe dissolution in the submicron particles. However, correlations among aerosol compositions, Fe_T , Fe_S , $\% \text{Fe}_S$, and aerosol pH in the supermicron particles showed a contrasting pattern (right panel in Fig. S8). Specifically, the correlations between SO_4^{2-} and Fe_S ($r = 0.81, p < 0.01$) or $\% \text{Fe}_S$ ($r = 0.82, p < 0.01$) in supermicron particles were weaker than those observed in the submicron fraction.

255

Moreover, SO_4^{2-} and Fe_T showed no significant correlation ($r = 0.06, p > 0.05$), whereas NO_3^- was correlated well with Fe_T but not with Fe_S or $\% \text{Fe}_S$. This is mainly due to the fact that total Fe is mainly derived from coarse particles such as mineral dust, as found in previous studies (Cwiertny et al., 2008; Longo et al., 2016; Chen et al., 2024b). Fe_S and $\% \text{Fe}_S$ in the supermicron particles exhibited significant negative correlations with aerosol pH ($p < 0.01$ and $p < 0.05$, respectively). This may suggest that the Fe dissolution is sensitive to proton levels in the supermicron particles (Zhang et al., 2022; Chen et al., 2024b). However, no such correlation was observed for submicron particles. This absence of correlation likely reflects the non-linear relationship between aerosol pH and Fe_S or $\% \text{Fe}_S$, as reported in previous studies (Sakata et al., 2022; Zhang et al., 2022). It is also possible that there are fewer data points to reveal the relationship between Fe dissolution and aerosol acidity.

Although a significant correlation was observed between NH_4^+ and %Fes, this does not necessarily indicate that NH_4^+ directly promotes Fe dissolution. As shown in [Fig. S8](#), NH_4^+ exhibits a strong positive correlation with sulfate, but not with nitrate across both submicron and supermicron particles. This pattern likely reflects the association of ammonium with sulfate during atmospheric aging, rather than a direct pH-buffering effect. The potential role of NH_4^+ in Fe dissolution is further discussed in a subsequent section.

4 Discussion

4.1 Distinct aging processes of acidic species at two heights

Previous studies have shown that atmospheric aging of acidic species influences both acid types and abundance, thereby modulating Fe acidification (Hsu et al., 2010; Li et al., 2017; Srinivas et al., 2014). To delve deeper into the contribution of aging process of acidic species to Fe dissolution, the backward trajectories arriving at the upper mixing layer ([Mt. Daming](#)) and the ground-level (Hangzhou) and their corresponding molar ratios of sulfate to nitrate ($n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$) was investigated. As shown in [Fig. 5a](#), air masses reaching [Mt. Daming](#) primarily originated from the eastern ocean and travelled through regions with relatively low NO_x emissions. These trajectories, although shorter in horizontal distance, were associated with slower transport speeds and thus longer atmospheric residence times, leading to more extensive aging. Consequently, the air masses exhibited elevated $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ ratios (5.4 ± 3.7), mostly exceeding 3. ~~these trajectories with relatively short pathways (longer resident time) traversed regions with relatively low NO_x emissions and arrived at Mt. Daming after longer aging process, yielding elevated $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ ratios (5.4 ± 3.7), mostly exceeding 3.~~ The enhanced sulfate fraction with increasing transport time is consistent with substantial secondary sulfate formation during atmospheric aging (Longo et al., 2016; Itahashi et al., 2022; Chen et al., 2021). In contrast, air masses affecting Hangzhou mainly originated from the north and passed through nearby high- NO_x emission regions ([Fig. 5b](#)). Although their horizontal pathways were longer, their faster transport speeds resulted in shorter atmospheric residence times and thus limited aging. This is reflected in the substantially lower $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ ratios (1.6 ± 0.7), highlighting the dominant influence of local emissions on nitrate formation.

In general, the significant contrast in $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ ratios between the upper mixing layer and the surface reflects distinct aging regimes. Compared to SO_2 , NO_x has a shorter atmospheric lifetime and is quickly oxidized to nitrate (Chen et al., 2021). Consequently, $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ typically increases with the extent of atmospheric aging. This explains the elevated ratios observed at Mt. Daming, where anthropogenic emissions are less or not anticipated. Consistent with this interpretation, SO_2 column mass densities at both sites were far lower than in the high-emission regions to the north and northeast ([Fig. S9](#)), indicating that local sources contribute little to sulfate levels. Backward trajectory analysis further revealed that air masses reaching both the upper mixing layer and Hangzhou had travelled regions with elevated SO_2 levels prior to arrival, suggesting that sulfate was predominantly formed during upwind transport. Moreover, as shown in [Fig. S10](#),

air plume heights along trajectories arriving at the upper mixing layer were generally lower than those reaching Hangzhou and remained mostly below 1000 m, providing additional evidence that these air masses had undergone substantial atmospheric aging process within the boundary layer.

300

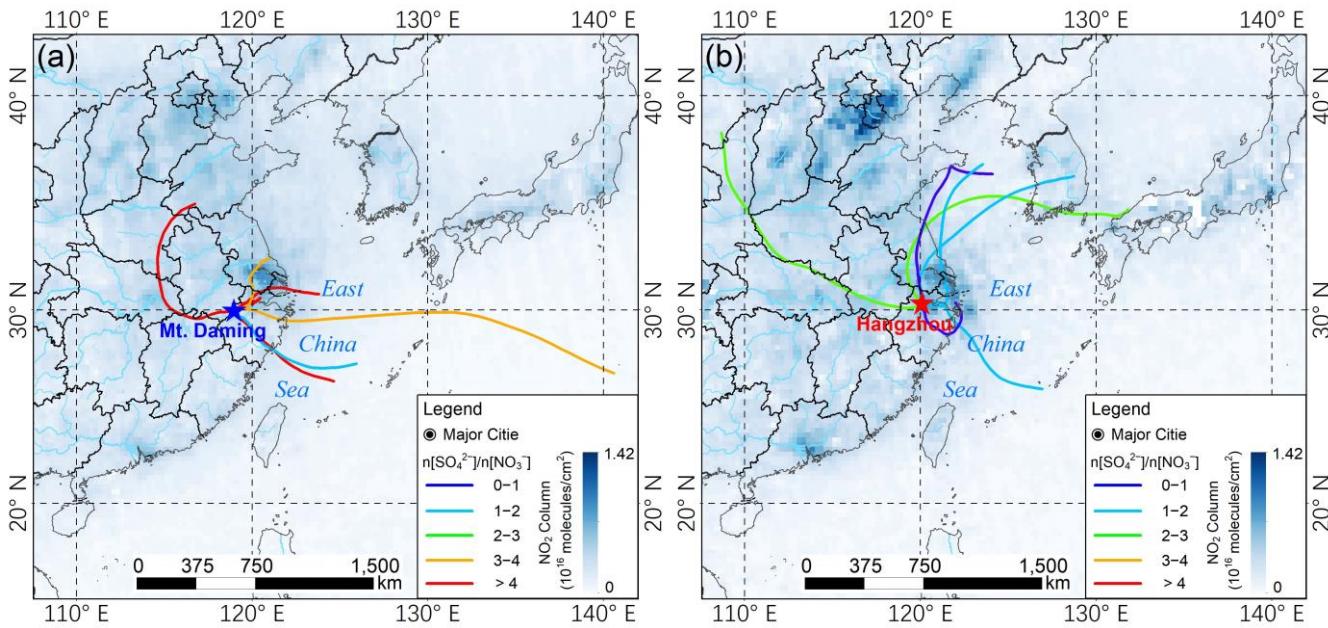


Figure 5: 48-h backward trajectories at 500 m a.g.l. (above ground level) and their corresponding $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ molar ratios during the sampling period. (a) Mt. Daming, and (b) Hangzhou. Each trajectory represents a single sample, and it is derived from the NOAA HYSPLIT Trajectory Model (available at https://www.ready.noaa.gov/HYSPLIT_traj.php, accessed on September 3, 2024). The base map shows the spatial distribution of daily averaged tropospheric NO₂ column concentration with a spatial resolution of $0.25^\circ \times 0.25^\circ$ during the sampling periods. The data was obtained from Goddard Earth Sciences Data and Information Services Center (GES DISC) (available at <https://giovanni.gsfc.nasa.gov/giovanni/>, accessed on October 5, 2024).

305

310 4.2 Fe dissolution driven by acid processing

Field-based evidence indicates that ligand-promoted pathways involving organic acids can enhance Fe dissolution more efficiently in fine particles (Shi et al., 2022; Zhang et al., 2022). In our study, however, the analysis is based on bulk TSP samples, and oxalic acid concentrations in both the ground-level (Hangzhou) and the upper mixing layer (Mt. Daming) were relatively low (Text S3 in the Supplement). Under these conditions, Fe dissolution is likely dominated by inorganic acids, and the contribution of organic acids is therefore expected to be limited. Accordingly, we focus primarily on the proton-promoted dissolution pathway. Although numerous studies have demonstrated that ligand-induced dissolution by organic acids can enhance %Fe_s (Deguillaume et al., 2005; Paris and Desboeufs, 2013), our results suggest that organic acids played a limited role in Fe dissolution (Figure S10 and Text S2 in the Supplement). Therefore, we focused primarily on the proton-

promoted pathway. The molar ratio of acidic species (sulfate + nitrate) to total Fe is used as a proxy to qualitatively assess 320 the impact of aerosol acidification on %Fes (Zhang et al., 2022; Shi et al., 2020; Liu et al., 2021; Zhu et al., 2022). [Fig. 6a](#) shows that %Fes correlates strongly with $(n[\text{SO}_4^{2-}] + n[\text{NO}_3^-])/n[\text{FeT}]$ ($p < 0.01$), indicating that Fe dissolution is enhanced by acid processing. These ratios were higher at the mountain site than at Hangzhou, reflecting a greater degree of Fe acidification in the upper mixing layer and explaining the vertical differences in %Fes. [Prior researches indicate](#) that %Fes is higher under high relative humidity (RH) due to more efficient heterogeneous reactions on aqueous surfaces compared to dry 325 particles (Shi et al., 2020; Zhu et al., 2022). Indeed, we found that the RH was normally higher ($88.1 \pm 5.8\%$) at [Mt. Daming](#) compared to RH at $70.5 \pm 9.3\%$ in [Hangzhou](#). This suggests that the enhancement of aerosol water induced by high RH in the upper mixing layer provides an aqueous surface to foster Fe dissolution. [The ISORROPIA II thermodynamic model, operated in forward mode, was used to simulate aerosol pH for TSP. The mean aerosol pH at Mt. Daming was \$2.4 \pm 2.3\$, substantially lower than that at Hangzhou \(\$4.7 \pm 2.2\$ \) \(Fig. S11\), indicating markedly stronger aerosol acidity in the upper](#) 330 [mixing layer. This enhanced acidity helps explain the higher acidification potential of aerosols aloft and the correspondingly elevated %Fes observed in this layer \(Fig. 6a\).](#)

[Fig. 7a](#) presents Fe acidification process in the size-resolved aerosols. The results showed that the higher Fe acidification in submicron particles resulted in a relatively high %Fes ($3.5 \pm 3.9\%$) in comparison to those in the supermicron particles ($1.8 \pm 2.2\%$). This disparity aligns with the size-resolved aerosol acidity measurements, which showed that submicron 335 particles exhibited lower pH (2.5 ± 0.2) than supermicron particles (4.0 ± 1.9). [Together, these observations provide additional evidence](#) that stronger acid processing in submicron aerosols enhances Fe dissolution.

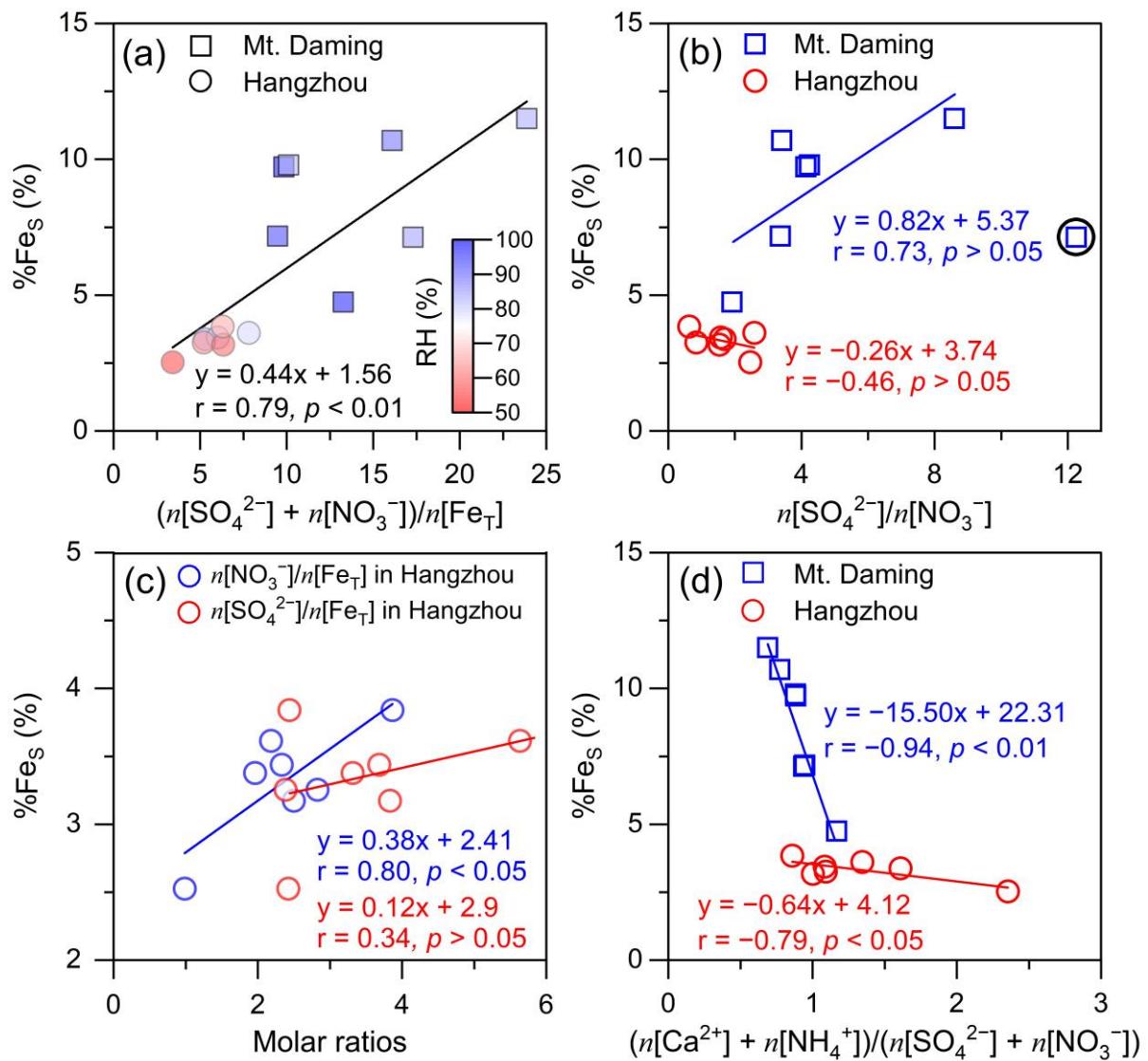
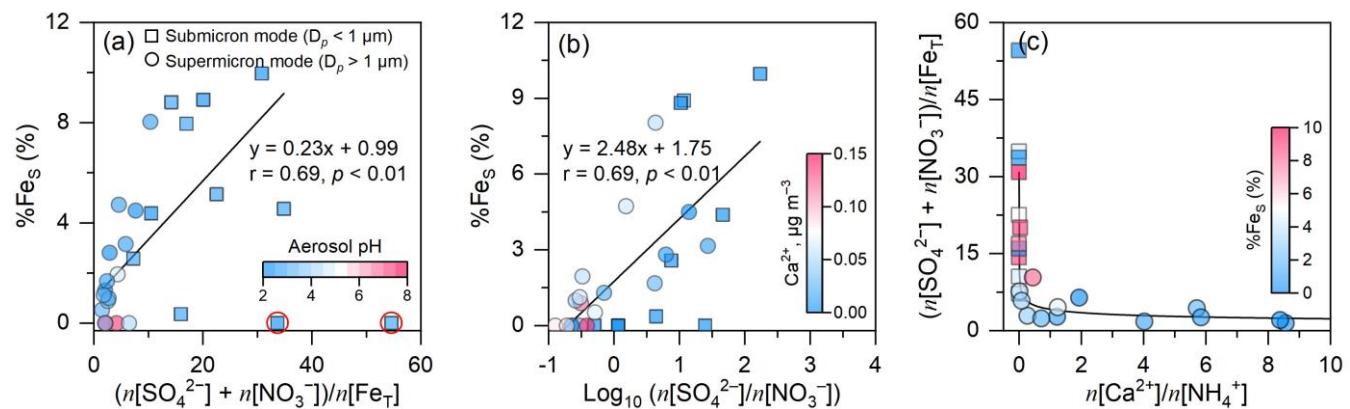



Figure 6: Correlations between %FeS and certain inorganic ions. (a) $(n[\text{SO}_4^{2-}] + n[\text{NO}_3^-])/n[\text{Fe}_T]$ versus %FeS, (b) $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ versus %FeS, (c) $n[\text{SO}_4^{2-}]/n[\text{Fe}_T]$ or $n[\text{NO}_3^-]/n[\text{Fe}_T]$ versus %FeS in Hangzhou, and (d) $(n[\text{Ca}^{2+}] + n[\text{NH}_4^+])/n[\text{SO}_4^{2-} + n[\text{NO}_3^-]$ versus %FeS in TSP, respectively. Solid circles and squares are colored by relative humidity (RH) in (a). In plot b, one point is not included in the correlation analysis ascribed to relatively low NO_3^- and is indicated by the black circle.

4.3 Role of sulfuric acid versus nitric acid in Fe solubility

To identify contributions of the sulfuric acid and nitric acid to %FeS, we performed an in-depth analysis of the response of Fe dissolution to acid processing driven by acidic species. The sulfate-to-nitrate molar ratio ($n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$) serves as an indicator of the relative strength and dominance of inorganic acids. Fig. 6b shows that %FeS exhibits a positive linear

correlation with $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ in the upper mixing layer but no positive correlation in Hangzhou. This result suggests that sulfuric acid plays a more important role in enhancing %Fes in the upper layer, consistent with the more prolonged atmospheric aging of air masses at higher altitudes (Section 4.1). Cwiertny et al. (2008) reported that an equivalent molar concentration of sulfuric acid dissolves ~32% more Fe from dust particles (Arizona Test Dust) than nitric acid. This might contribute to the differences we observed in our study between the sites but such an impact is not bigger enough to explain the large differences. To further reveal the contribution of these acids to Fe dissolution in Hangzhou, we examined the correlations between %Fes and molar ratios $n[\text{NO}_3^-]/n[\text{Fe}_T]$ or $n[\text{SO}_4^{2-}]/n[\text{Fe}_T]$, following previous studies (Zhu et al., 2020; Hsu et al., 2014). our analysis revealed a significant positive correlation between $n[\text{NO}_3^-]/n[\text{Fe}_T]$ and %Fes ($r = 0.80, p < 0.05$), whereas the correlation between $n[\text{SO}_4^{2-}]/n[\text{Fe}_T]$ and %Fes was weak ($r = 0.34, p > 0.05$; Fig. 6c). At the mountain site, $n[\text{NO}_3^-]/n[\text{Fe}_T]$ showed no significant correlation with %Fes ($p > 0.05$), whereas $n[\text{SO}_4^{2-}]/n[\text{Fe}_T]$ exhibited a positive, though relatively weak ($p > 0.05$), correlation with %Fes (Fig. S12). These contrasting patterns indicate that nitric acid likely dominates Fe acidification in urban aerosols, in contrast to the sulfuric acid-driven Fe dissolution observed in the upper mixing layer.

Figure 7: Scatter plots of (a) $(n[\text{SO}_4^{2-}] + n[\text{NO}_3^-])/n[\text{Fe}_T]$ versus %Fes, (b) $\log_{10}(n[\text{SO}_4^{2-}]/n[\text{NO}_3^-])$ versus %Fes, and (c) $(n[\text{Ca}^{2+}]/n[\text{NH}_4^+])$ versus $(n[\text{SO}_4^{2-}] + n[\text{NO}_3^-])/n[\text{Fe}_T]$, respectively, in the size-resolved aerosols at Mt. Daming. Solid circles and squares are colored by aerosol pH, Ca^{2+} and %Fes in (a), (b), and (c), respectively. In plot a, two outliers are not included in the correlation analysis due to the relatively low Fes concentrations and are indicated by red circles.

Similar analysis revealed a significant positive correlation ($p < 0.01$) between %Fes and $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ across the size-resolved particles (Fig. 7b). When $n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]$ exceeded 1 ($\log_{10}(n[\text{SO}_4^{2-}]/n[\text{NO}_3^-]) > 0$), high sulfate concentrations in submicron particles corresponded to the elevated %Fes. In contrast, when the ratio was below 1, %Fes in submicron particles was concentrated near the origin of the coordinate and did not exceed 3%. This comparison provides direct evidence that sulfuric acid plays a key role in enhancing Fe dissolution in the upper mixing layer, consistent with Section 4.2. Although we lacked size-resolved data for Hangzhou, urban environments in eastern China typically exhibit

375 high concentrations of fine-mode ammonium nitrate formed via homogeneous reactions of traffic-emitted NO_x (Xie et al., 2023; Wu et al., 2020). It is expected that this fine-mode urban nitrate co-exists with Fe_{es} and significantly boosts acidity (proton availability) and %Fe_{es} in the submicron particles in urban conditions.

380 Here we noticed that high Ca^{2+} concentrations were primarily associated with NO_3^- levels and low %Fe_{es} in supermicron particles (Fig. 7b), likely due to the buffering capacity of Ca^{2+} , which partially neutralizes aerosol acidity and inhibits Fe dissolution. To quantify this effect, the ratio of $(n[\text{Ca}^{2+}] + n[\text{NH}_4^+])$ to $(n[\text{SO}_4^{2-}] + n[\text{NO}_3^-])$ was used to represent as a proxy 385 for the overall buffering capacity of alkaline species in TSP at both heights (Fig. 6d). The results showed that %Fe_{es} was negatively correlated with $(n[\text{Ca}^{2+}] + n[\text{NH}_4^+])/(n[\text{SO}_4^{2-}] + n[\text{NO}_3^-])$ ratios at both heights, indicating that Fe dissolution is partially suppressed by the presence of alkaline species. The mean ratios were generally below 1 in the upper mixing layer (0.9 ± 0.1) but above 1 at the ground level (1.3 ± 0.5), suggesting a weaker buffering effect aloft. Further analysis of the $n[\text{Ca}^{2+}]/n[\text{NH}_4^+]$ ratio revealed the dominant alkaline species: NH_4^+ governed buffering in submicron particles ($n[\text{Ca}^{2+}]/n[\text{NH}_4^+]$ approaching zero), whereas Ca^{2+} dominated in supermicron particles (Fig. 7c).

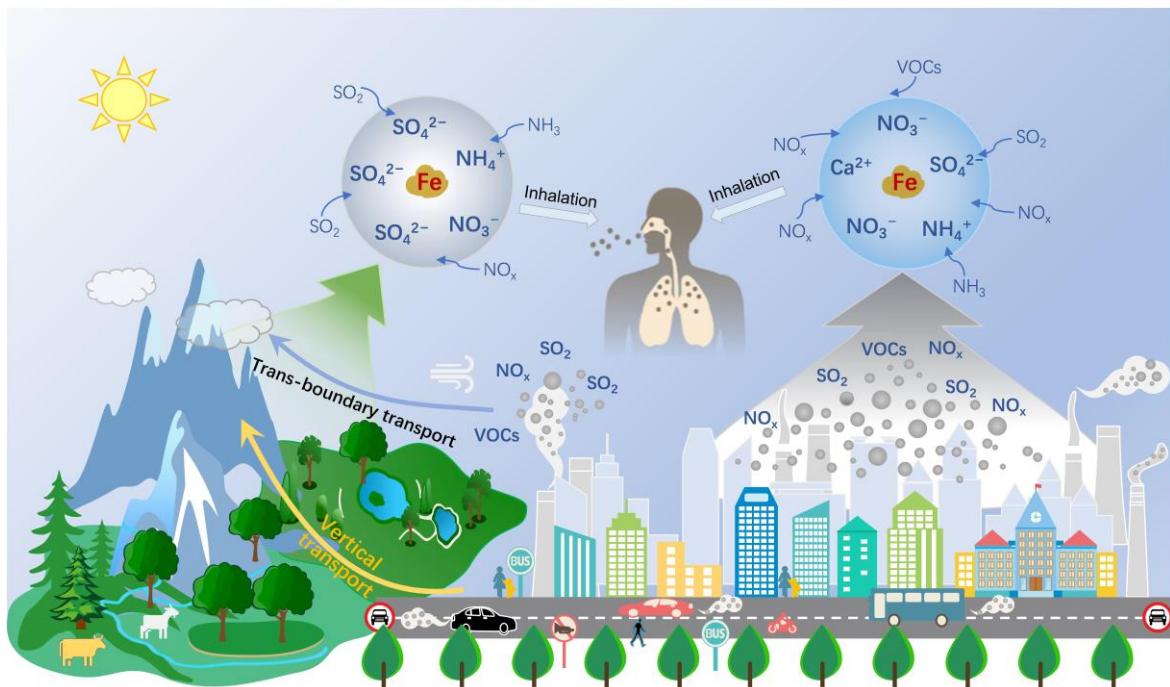


Figure 8: Schematic illustration of atmospheric iron acid dissolution processes in the upper mixing layer and at the ground-level, and their potential implications for human health.

Our study elucidates significant vertical differences in the pathways in which Fe is dissolved by inorganic acids between the upper mixing layer and at the ground-level (Fig. 8). The dissolution of Fe depends mainly on the process of atmospheric acidification and the availability of acids in the atmosphere. The longer aging process, leading to more sulfuric vs nitric acid-dominates Fe dissolution in the upper mixing layer, in contrast to those in the urban environment. This difference leads to the 395 distinct %Fes by acid processing in the two heights. Notably, nitric acid-driven Fe dissolution deserves more attention considering that NO_x has replaced SO₂ as the dominant chemical species in most parts of China and some cities around the world (Geng et al., 2024; Van Der A et al., 2017; Ooki and Uematsu, 2005). It's projected that the contribution of the elevated nitric acid to Fe dissolution tends to become important in megacities (Ooki and Uematsu, 2005).

While the distinct contribution of sulfuric and nitric acids to Fe dissolution in the upper mixing layer and at the ground-400 level is highlighted in this study, how this chemical pattern affects dissolved Fe concentration and deposition in numerical models has not been fully assessed by field observations (Liu et al., 2022; Ito, 2012). To better predict Fe dissolution and its impact on biogeochemical cycles, atmospheric chemistry models should place emphasis on the important contribution of nitric acid to Fe dissolution in the downwind locations (e.g., cities in the East Asia), where nitric acid replaces sulfuric acid as the dominant acidic species in the atmosphere (Itahashi et al., 2018; Uno et al., 2020). Although the number of samples 405 collected in this study is limited and does not allow assessment of long-term variability or climatological trends, our study focus on different mechanism of acid processing at the two altitudes. These field campaign provided a valuable observational dataset for testing and improving model representations of Fe dissolution. To further strength these findings, future work should incorporate long-term, vertically resolved observations to better characterize Fe solubility profiles throughout the lower troposphere.

410 Our focus should pivot towards the health implications stemming from Fe acidification. Previous researches have revealed that the magnetite (Fe₃O₄) nanoparticles produced by combustion or friction-derived heating can enter the brain directly and in turn cause damage to the human brain (Maher et al., 2016; Kirschvink et al., 1992; Lu et al., 2020). Moreover, the Fe toxicity and its valence states (Fe(II) and Fe(III)) can generate ROS in aqueous reaction, causing oxidative stress and adverse health impacts (Chen et al., 2024a; Abbaspour et al., 2014; Song et al., 2024). As far as we know, to what extent 415 airborne concentrations of iron nitrate affect human health is yet to be determined. Given that cities are the most densely populated and economically connected areas, traffic-related metal emissions are projected to increase. Future studies should pay more attention to the linkages between ambient nitrate, Fe dissolution, and potential adverse health impacts in urban regions (Fig. 8).

420 **Data availability.** The data are available upon request to the corresponding author by email.

Author contributions. GCW and WJL conceived the study. GCW formulated the scientific questions, performed the data analysis, and wrote the manuscript. AI performed the model simulations. CW supported the measurement of NH₃. XDC, BYX, CW, MKZ, KLL, LX, QY, YTW, YLS, ZBS, AI, SXZ and WJL contributed to manuscript review and editing.

Competing interests. The authors declare no competing interests.

425 **Acknowledgements.** A. I. acknowledges the Scientific Committee on Oceanic Research (SCOR) for their support of Working Group 167, Reducing Uncertainty in Soluble Aerosol Trace Element Deposition (RUSTED), via a grant to SCOR from the U.S. National Science Foundation (OCE-2513154) and the MEXT Program for the Advanced Studies of Climate Change Projection (SENTAN), Grant Number JPMXD0722681344. We also thank Yue Wang for assistance with the sampling work.

430 **Financial support.** This work was financially supported by the National Natural Science Foundation of China (42277080; 42561160138), National Key Research and Development Program of China (2023YFC3706301), Postdoctoral Fellowship Program of CPSF (GZC20232275), State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC-KF-2023-03), Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (LZJMZ24D050009), ~~and the MEXT Program for the advanced studies of climate change projection (SENTAN) (JPMXD0722681344)~~.

435

References

Abbaspour, N., Hurrell, R., and Kelishadi, R.: Review on iron and its importance for human health, *Journal of Research in Medical Sciences*, 19, 164–174, 2014.

Baker, A. R., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L., Duce, R. A., Gao, Y., Guieu, C., Ito, A., Jickells, T. D., Mahowald, N. M., Middag, R., Perron, M. M. G., Sarin, M. M., Shelley, R., and Turner, D. R.: Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry, *Sci. Adv.*, 7, eabd8800, <https://doi.org/10.1126/sciadv.abd8800>, 2021.

Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability, *Atmos. Chem. Phys.*, 16, 4579–4591, <https://doi.org/10.5194/acp-16-4579-2016>, 2016.

445 Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the ocean, *Nat. Geosci.*, 3, 675–682, <https://doi.org/10.1038/ngeo964>, 2010.

Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments 1993–2005: Synthesis and Future Directions, *Science*, 315, 612–617, <https://doi.org/10.1126/science.1131669>, 2007.

450 Chen, C., Tan, H., Hong, Y., Yin, C., Deng, X., Chan, P., Wu, M., Bu, Q., Weng, J., and Gan, Q.: Characteristics, formation mechanisms, and sources of non-refractory submicron aerosols in Guangzhou, China, *Atmos. Environ.*, 250, 118255, <https://doi.org/10.1016/j.atmosenv.2021.118255>, 2021.

Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., and Grassian, V. H.: Coal fly ash as a source of iron in atmospheric dust, *Environ. Sci. Technol.*, 46, 2112–2120, <https://doi.org/10.1021/es204102f>, 2012.

Chen, X., Wu, D., Zheng, L., Chen, Y., Cheng, A., and Li, Q.: Variable Valence State of Trace Elements Regulating Toxic Potencies of Inorganic Particulate Matter, *Environ. Sci. Technol. Lett.*, 11, 223–229, <https://doi.org/10.1021/acs.estlett.4c00019>, 2024a.

Chen, Y., Wang, Z., Fang, Z., Huang, C., Xu, H., Zhang, H., Zhang, T., Wang, F., Luo, L., Shi, G., Wang, X., and Tang, M.: Dominant Contribution of Non-dust Primary Emissions and Secondary Processes to Dissolved Aerosol Iron, *Environ. Sci. Technol.*, 58, 17355–17363, <https://doi.org/10.1021/acs.est.4c05816>, 2024b.

Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., and Grassian, V. H.: Characterization and acid-mobilization study of iron-containing mineral dust source materials, *J. Geophys. Res.: Atmos.*, 113, D05202, <https://doi.org/10.1029/2007jd009332>, 2008.

Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., and Chaumerliac, N.: Transition Metals in Atmospheric Liquid Phases-Sources, Reactivity, and Sensitive Parameters, *Chem. Rev.*, 105, 3388–3431, 2005.

Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity, *Environ. Sci. Technol.*, 51, 2611–2620, <https://doi.org/10.1021/acs.est.6b06151>, 2017.

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K^+ – Ca^{2+} – Mg^{2+} – NH_4^+ – Na^+ – SO_4^{2-} – NO_3^- – Cl^- – H_2O aerosols, *Atmos. Chem. Phys.*, 7, 4639–4659, 2007.

Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., Wu, N., Hu, H., Tong, D., Zheng, B., Yin, Z., He, K., and Zhang, Q.: Efficacy of China's clean air actions to tackle $PM_{2.5}$ pollution between 2013 and 2020, *Nat. Geosci.*, 17, 987–994, <https://doi.org/10.1038/s41561-024-01540-z>, 2024.

Hamilton, D. S., Scanza, R. A., Feng, Y., Guinness, J., Kok, J. F., Li, L., Liu, X., Rathod, S. D., Wan, J. S., Wu, M., and Mahowald, N. M.: Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0), *Geosci. Model Dev.*, 12, 3835–3862, <https://doi.org/10.5194/gmd-12-3835-2019>, 2019.

Hangzhou Municipal Government, Hangzhou Overview-Population and Employment: https://eng.hangzhou.gov.cn/art/2024/6/17/art_1229498044_58876294.html, last access: 17 June 2024.

Hsu, S. C., Gong, G. C., Shiah, F. K., Hung, C. C., Kao, S. J., Zhang, R., Chen, W. N., Chen, C. C., Chou, C. C. K., Lin, Y. C., Lin, F. J., and Lin, S. H.: Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning, *Atmos. Chem. Phys. Discuss.*, 14, 21433–21472, <https://doi.org/10.5194/acpd-14-21433-2014>, 2014.

Hsu, S. C., Liu, S. C., Arimoto, R., Shiah, F. K., Gong, G. C., Huang, Y. T., Kao, S. J., Chen, J. P., Lin, F. J., Lin, C. Y., Huang, J. C., Tsai, F., and Lung, S. C. C.: Effects of acidic processing, transport history, and dust and sea salt loadings on the dissolution of iron from Asian dust, *J. Geophys. Res.: Atmos.*, 115, D19313, <https://doi.org/10.1029/2009jd013442>, 2010.

Ingall, E. D., Feng, Y., Longo, A. F., Lai, B., Shelley, R. U., Landing, W. M., Morton, P. L., Violaki, K., Gao, Y., Sahai, S., and Castorina, E.: Enhanced Iron Solubility at Low pH in Global Aerosols, *Atmosphere*, 9, 201, <https://doi.org/10.3390/atmos9050201>, 2018.

Itahashi, S., Hattori, S., Ito, A., Sadanaga, Y., Yoshida, N., and Matsuki, A.: Role of Dust and Iron Solubility in Sulfate Formation during the Long-Range Transport in East Asia Evidenced by ^{17}O -Excess Signatures, *Environ. Sci. Technol.*, 56, 13634–13643, <https://doi.org/10.1021/acs.est.2c03574>, 2022.

Itahashi, S., Yumimoto, K., Uno, I., Hayami, H., Fujita, S.-i., Pan, Y., and Wang, Y.: A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia, *Atmos. Chem. Phys.*, 18, 2835–2852, <https://doi.org/10.5194/acp-18-2835-2018>, 2018.

500 Ito, A.: Contrasting the Effect of Iron Mobilization on Soluble Iron Deposition to the Ocean in the Northern and Southern Hemispheres, *Journal of the Meteorological Society of Japan. Ser. II*, 90A, 167–188, <https://doi.org/10.2151/jmsj.2012-A09>, 2012.

Ito, A. and Miyakawa, T.: Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron, *Environ. Sci. Technol.*, 57, 4091–4100, <https://doi.org/10.1021/acs.est.2c06472>, 2023.

505 Ito, A. and Shi, Z.: Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean, *Atmos. Chem. Phys.*, 16, 85–99, <https://doi.org/10.5194/acp-16-85-2016>, 2016.

Ito, A. and Xu, L.: Response of acid mobilization of iron-containing mineral dust to improvement of air quality projected in the future, *Atmos. Chem. Phys.*, 14, 3441–3459, <https://doi.org/10.5194/acp-14-3441-2014>, 2014.

Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R. A., Hamilton, D. S., Baker, A. R., Jickells, T., 510 Sarin, M., Bikkina, S., Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron, M. M. G., Guieu, C., Meskhidze, N., Johnson, M. S., Feng, Y., Kok, J. F., Nenes, A., and A., D. R.: Pyrogenic iron: The missing link to high iron solubility in aerosols, *Sci. Adv.*, 5, eaau7671, <https://doi.org/10.1126/sciadv.aau7671>, 2019.

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, 515 I., and Torres, R.: Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, *Science*, 308, 67–71, <https://doi.org/10.1126/science.1105959>, 2005.

Kirschvink, J. L., Kobayashi-Kirschvink, A., and Woodford, B. J.: Magnetite biomineralization in the human brain, *Proc. Natl. Acad. Sci.*, 89, 7683–7687, <https://doi.org/10.1073/pnas.89.16.768>, 1992.

Kunwar, B. and Kawamura, K.: One-year observations of carbonaceous and nitrogenous components and major ions in the 520 aerosols from subtropical Okinawa Island, an outflow region of Asian dusts, *Atmos. Chem. Phys.*, 14, 1819–1836, <https://doi.org/10.5194/acp-14-1819-2014>, 2014.

Lei, Y., Li, D., Lu, D., Zhang, T., Sun, J., Wang, X., Xu, H., and Shen, Z.: Insights into the roles of aerosol soluble iron in secondary aerosol formation, *Atmos. Environ.*, 294, 119507, <https://doi.org/10.1016/j.atmosenv.2022.119507>, 2023.

Li, W. J., Xu, L., Liu, X. H., Zhang, J. C., Lin, Y. T., Yao, X. H., Gao, H. W., Zhang, D. Z., Chen, J. M., Wang, W. X., 525 Harrison, R. M., Zhang, X. Y., Shao, L. Y., Fu, P. Q., Nenes, A., and Shi, Z. B.: Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems, *Sci. Adv.*, 3, e1601749, <https://doi.org/10.1126/sciadv.1601749>, 2017.

Liu, L., Lin, Q., Liang, Z., Du, R., Zhang, G., Zhu, Y., Qi, B., Zhou, S., and Li, W.: Variations in concentration and solubility of iron in atmospheric fine particles during the COVID-19 pandemic: An example from China, *Gondwana Res.*, 530 97, 138–144, <https://doi.org/10.1016/j.gr.2021.05.022>, 2021.

Liu, M. X., Matsui, H., Hamilton, D. S., and Lamb, K. D.: The underappreciated role of anthropogenic sources in atmospheric soluble iron flux to the Southern Ocean, *npj Clim. Atmos. Sci.*, 5, 28, <https://doi.org/10.1038/s41612-022-00250-w>, 2022.

Longo, A. F., Feng, Y., Lai, B., Landing, W. M., Shelley, R. U., Nenes, A., Mihalopoulos, N., Violaki, K., and Ingall, E. D.: 535 Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust, *Environ. Sci. Technol.*, 50, 6912–6920, <https://doi.org/10.1021/acs.est.6b02605>, 2016.

Lu, D., Luo, Q., Chen, R., Zhuansun, Y., Jiang, J., Wang, W., Yang, X., Zhang, L., Liu, X., Li, F., Liu, Q., and Jiang, G.: Chemical multi-fingerprinting of exogenous ultrafine particles in human serum and pleural effusion, *Nat. Commun.*, 11, 2567, <https://doi.org/10.1038/s41467-020-16427-x>, 2020.

540 Luo, C., Mahowald, N. M., Meskhidze, N., Chen, Y., Siefert, R. L., Baker, A. R., and Johansen, A. M.: Estimation of iron solubility from observations and a global aerosol model, *J. Geophys. Res.*, 110, D23307, <https://doi.org/10.1029/2005JD006059>, 2005.

545 Maher, B. A., Ahmed, I. A., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., Mann, D. M., Torres-Jardon, R., and Calderon-Garciduenas, L.: Magnetite pollution nanoparticles in the human brain, *Proc. Natl. Acad. Sci.*, 113, 10797–10801, <https://doi.org/10.1073/pnas.1605941113>, 2016.

550 Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J. M., Shank, L. M., and Siefert, R. L.: Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations, *Annu. Rev. Mar. Science*, 1, 245–278, <https://doi.org/10.1146/annurev.marine.010908.163727>, 2009.

555 Martin, J. H.: Glacial-interglacial CO₂ change: The Iron Hypothesis, *Paleoceanography*, 5, 1–13, <https://doi.org/10.1029/PA005i001p00001>, 1990.

Martínez-García, A., Sigman, D. M., Ren, H. J., Anderson, R. F., Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron Fertilization of the Subantarctic Ocean During the Last Ice Age, *Science*, 343, 1347–1350, <https://doi.org/10.1126/science.1246>, 2014.

560 Meskhidze, N.: Iron mobilization in mineral dust: Can anthropogenic SO₂ emissions affect ocean productivity?, *Geophys. Res. Lett.*, 30, 2085, <https://doi.org/10.1029/2003gl018035>, 2003.

Meskhidze, N.: Dust and pollution: A recipe for enhanced ocean fertilization?, *J. Geophys. Res.*, 110, D03301, <https://doi.org/10.1029/2004jd005082>, 2005.

565 Oakes, M., Rastogi, N., Majestic, B. J., Shafer, M., Schauer, J. J., Edgerton, E. S., and Weber, R. J.: Characterization of soluble iron in urban aerosols using near - real time data, *J. Geophys. Res.: Atmos.*, 115, D15302, <https://doi.org/10.1029/2009jd012532>, 2010.

Oakes, M., Ingall, E. D., Lai, B., Shafer, M. M., Hays, M. D., Liu, Z. G., Russell, A. G., and Weber, R. J.: Iron Solubility Related to Particle Sulfur Content in Source Emission and Ambient Fine Particles, *Environ. Sci. Technol.*, 46, 6637–6644, <https://doi.org/10.1021/es300701c>, 2012.

570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 10415 10420 10425 10430 10435 10440 10445 10450 10455 10460 10465 10470 10475 10480 10485 10490 10495 10500 10505 10510 10515 10520 10525 10530 10535 10540 10545 10550 10555 10560 10565 10570 10575 10580 10585 10590 10595 10600 10605 10610 10615 10620 10625 10630 10635 10640 10645 10650 10655 10660 10665 10670 10675 10680 10685 10690 10695 10700 10705 10710 10715 10720 10725 10730 10735 10740 10745 10750 10755 10760 10765 10770 10775 10780 10785 10790 10795 10800 10805 10810 10815 10820 10825 10830 10835 10840 10845 10850 10855 10860 10865 10870 10875 10880 10885 10890 10895 10900 10905 10910 10915 10920 10925 10930 10935 10940 10945 10950 10955 10960 10965 10970 10975 10980 10985 10990 10995 11000 11005 11010 11015 11020 11025 11030 11035 11040 11045 11050 11055 11060 11065 11070 11075 11080 11085 11090 11095 11100 11105 11110 11115 11120 11125 11130 11135 11140 11145 11150 11155 11160 11165 11170 11175 11180

Shi, J., Guan, Y., Ito, A., Gao, H., Yao, X., Baker, A. R., and Zhang, D.: High Production of Soluble Iron Promoted by Aerosol Acidification in Fog, *Geophys. Res. Lett.*, 47, e2019GL086124, <https://doi.org/10.1029/2019gl086124>, 2020.

Shi, Z., Krom, M. D., Bonneville, S., and Benning, L. G.: Atmospheric processing outside clouds increases soluble iron in mineral dust, *Environ. Sci. Technol.*, 49, 1472–1477, <https://doi.org/10.1021/es504623x>, 2015.

590 Song, X., Wu, D., Chen, X., Ma, Z., Li, Q., and Chen, J.: Toxic Potencies of Particulate Matter from Typical Industrial Plants Mediated with Acidity via Metal Dissolution, *Environ. Sci. Technol.*, 58, 6736–6743, <https://doi.org/10.1021/acs.est.4c00929>, 2024.

Srinivas, B., Sarin, M. M., and Kumar, A.: Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea, *Biogeochemistry*, 110, 257–268, <https://doi.org/10.1007/s10533-011-9680-1>, 2011.

595 Srinivas, B., Sarin, M. M., and Rengarajan, R.: Atmospheric transport of mineral dust from the Indo - Gangetic Plain: Temporal variability, acid processing, and iron solubility, *Geochem. Geophys. Geosyst.*, 15, 3226–3243, <https://doi.org/10.1002/2014GC005395>, 2014.

Tang, M., Perron, M. M. G., Baker, A. R., Li, R., Bowie, A. R., Buck, C. S., Kumar, A., Shelley, R., Ussher, S. J., Clough, R., Meyerink, S., Panda, P. P., Townsend, A. T., and Wyatt, N.: Measurement of soluble aerosol trace elements: inter-laboratory comparison of eight leaching protocols, *Atmos. Meas. Tech.*, 18, 6125–6141, <https://doi.org/10.5194/amt-18-6125-2025>, 2025.

600 Uno, I., Wang, Z., Itahashi, S., Yumimoto, K., Yamamura, Y., Yoshino, A., Takami, A., Hayasaki, M., and Kim, B. G.: Paradigm shift in aerosol chemical composition over regions downwind of China, *Sci. Rep.*, 10, 6450, <https://doi.org/10.1038/s41598-020-63592-6>, 2020.

605 van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., Mao, H., and Theys, N.: Cleaning up the air: effectiveness of air quality policy for SO₂ and NO_x emissions in China, *Atmos. Chem. Phys.*, 17, 1775–1789, <https://doi.org/10.5194/acp-17-1775-2017>, 2017.

Vidrio, E., Jung, H., and Anastasio, C.: Generation of Hydroxyl Radicals from Dissolved Transition Metals in Surrogate Lung Fluid Solutions, *Atmos. Environ.*, 42, 4369–4379, <https://doi.org/10.1016/j.atmosenv.2008.01.004>, 2008.

610 Wang, G. C., Chen, J., Xu, J., Yun, L., Zhang, M. D., Li, H., Qin, X. F., Deng, C. R., Zheng, H. T., Gui, H. Q., Liu, J. G., and Huang, K.: Atmospheric Processing at the Sea-Land Interface Over the South China Sea: Secondary Aerosol Formation, Aerosol Acidity, and Role of Sea Salts, *J. Geophys. Res.: Atmos.*, 127, e2021JD036255, <https://doi.org/10.1029/2021JD036255>, 2022.

Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.: Enhanced heterogeneous uptake 615 of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing, *Atmos. Chem. Phys.*, 19, 12569–12585, <https://doi.org/10.5194/acp-19-12569-2019>, 2019.

Wong, J. P. S., Yang, Y., Fang, T., Mulholland, J. A., Russell, A. G., Ebelt, S., Nenes, A., and Weber, R. J.: Fine Particle Iron in Soils and Road Dust Is Modulated by Coal-Fired Power Plant Sulfur, *Environ. Sci. Technol.*, 54, 7088–7096, <https://doi.org/10.1021/acs.est.0c00483>, 2020.

620 Wu, C., Zhang, S., Wang, G., Lv, S., Li, D., Liu, L., Li, J., Liu, S., Du, W., Meng, J., Qiao, L., Zhou, M., Huang, C., and Wang, H.: Efficient Heterogeneous Formation of Ammonium Nitrate on the Saline Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm Periods, *Environ. Sci. Technol.*, 54, 15622–15630, <https://doi.org/10.1021/acs.est.0c04544>, 2020.

Xie, X., Hu, J., Qin, M., Guo, S., Hu, M., Ji, D., Wang, H., Lou, S., Huang, C., Liu, C., Zhang, H., Ying, Q., Liao, H., and 625 Zhang, Y.: Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China, *Atmos. Chem. Phys.*, 23, 10563–10578, <https://doi.org/10.5194/acp-23-10563-2023>, 2023.

Xu, L., Zhi, M., Liu, X., Gao, H., Yao, X., Yuan, Q., Fu, P., and Li, W.: Direct evidence of pyrogenic aerosol iron by intrusions of continental polluted air into the Eastern China Seas, *Atmos. Res.*, 292, 106839, <https://doi.org/10.1016/j.atmosres.2023.106839>, 2023.

630 Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren, Y., Wang, X., Hu, X., Li, T., Peng, C., Zhang, G.,
Xue, L., Wang, X., and Tang, M.: Abundance and Fractional Solubility of Aerosol Iron During Winter at a Coastal City
in Northern China: Similarities and Contrasts Between Fine and Coarse Particles, *J. Geophys. Res.: Atmos.*, 127,
e2021JD036070, <https://doi.org/10.1029/2021jd036070>, 2022.

635 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng,
Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions,
Atmos. Chem. Phys., 18, 14095–14111, <https://doi.org/10.5194/acp-18-14095-2018>, 2018.

Zhi, M., Wang, G., Xu, L., Li, K., Nie, W., Niu, H., Shao, L., Liu, Z., Yi, Z., Wang, Y., Shi, Z., Ito, A., Zhai, S., and Li, W.:
How Acid Iron Dissolution in Aged Dust Particles Responds to the Buffering Capacity of Carbonate Minerals during
Asian Dust Storms, *Environ. Sci. Technol.*, 59, 6167–6178, <https://doi.org/10.1021/acs.est.4c12370>, 2025.

640 Zhu, X. R., Prospero, J. M., and Millero, F. J.: Diel variability of soluble Fe(II) and soluble total Fe in North African dust in
the trade winds at Barbados, *J. Geophys. Res.: Atmos.*, 102, 21297–21305, <https://doi.org/10.1029/97jd01313>, 1997.

Zhu, Y., Li, W., Wang, Y., Zhang, J., Liu, L., Xu, L., Xu, J., Shi, J., Shao, L., Fu, P., Zhang, D., and Shi, Z.: Sources and
processes of iron aerosols in a megacity in Eastern China, *Atmos. Chem. Phys.*, 22, 2191–2202,
<https://doi.org/10.5194/acp-22-2191-2022>, 2022.

645 Zhu, Y. H., Li, W. J., Lin, Q. H., Yuan, Q., Liu, L., Zhang, J., Zhang, Y. X., Shao, L. Y., Niu, H. Y., Yang, S. S., and Shi, Z.:
B.: Iron solubility in fine particles associated with secondary acidic aerosols in east China, *Environ. Pollut.*, 264, 114769,
<https://doi.org/10.1016/j.envpol.2020.114769>, 2020.

Zhuang, G. S., Yi, Z., Duce, R. A., and Brown, P. R.: Link between iron and sulphur cycles suggested by detection of Fe(II)
in remote marine aerosols, *Nature*, 355, 537–539, 1992.

650