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Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor satellite provides daily

global observations of atmospheric methane (CH4) and carbon monoxide (CO) at relatively high spatial resolution. The dense

spatial and temporal coverage is achieved by the instrument’s wide swath, which permits detailed mapping of the worldwide

distribution of these important atmospheric constituents. The adaptation and optimisation of the Weighting Function Modified

Differential Optical Absorption Spectroscopy (WFMD) algorithm for the simultaneous retrieval of the column-averaged dry-5

air mole fractions XCH4 and XCO from TROPOMI’s shortwave infrared (SWIR) radiance measurements has proven to be a

valuable complement and alternative to the operational TROPOMI products.
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The latest release of the TROPOMI/WFMD product (version 2.0) includes several improvements expanding its suitability for

a wider range of scientific applications. Data yield at mid and high latitudes has increased, accompanied by improved accuracy

and precision according to the validation with the ground-based Total Carbon Column Observing Network (TCCON). These10

advancements are primarily due to more refined quality filtering that has been accomplished by replacing the previous Random

Forest Classifier with the more efficient and potentially higher performing Extreme Gradient Boosting (XGBoost) algorithm in

conjunction with improved training data incorporating an updated cloud product from the Visible Infrared Imaging Radiome-

ter Suite (VIIRS) and the TROPOMI Aerosol Index. This enhanced training data set enables more reliable identification of

cloudy scenes and mitigates issues related to specific aerosol events over bright surfaces. Importantly, as with previous product15

versions, the actual quality classification does not depend on the real-time availability of these external data products, which

are only required during the training phase.

1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas in terms of radiative forcing following carbon

dioxide (CO2). While it is less abundant in the atmosphere, the global warming potential of CH4 by mass unit is significantly20

greater than that of CO2 (Masson-Delmotte et al., 2021). However, thanks to its much shorter atmospheric lifetime of around

a decade (Prather et al., 2012; Li et al., 2022), reducing CH4 emissions will have a decisive impact on climate on a short

timescale, so that rapid action can support measures to limit global warming to well below 2◦C above pre-industrial levels.

Carbon monoxide (CO) is a reactive gas that is formed as a by-product during incomplete combustion and oxidation of hy-

drocarbons, including emissions from wildfires as a natural source. It contributes indirectly to climate change by depleting25

hydroxyl radicals (OH), which are critical for removing other gases that contribute to global warming, such as CH4. At the

same time, the oxidation of CO produces CO2. Under certain conditions, CO also participates in photochemical reactions

forming tropospheric ozone, which is itself a greenhouse gas. With a typical lifetime of 1 to 2 months, CO is a useful tracer

for atmospheric air masses of anthropogenic origin. For sources that emit both CO and CO2 simultaneously, it is feasible to

use CO as a proxy for CO2 emissions by using emission factors (Silva et al., 2013; Wu et al., 2022; Schneising et al., 2024).30

Because of these reasons, monitoring both gases helps to better understand atmospheric chemistry and guide efforts to mitigate

climate change.

Satellite remote sensing has emerged as a useful method for tracking global distributions of CH4 and CO. It thus offers

unique insights into the underlying sources, sinks, and atmospheric transport processes. In particular, measuring upwelling

shortwave infrared (SWIR) radiances is especially useful because of the sensitivity to changes in trace gas abundance through-35

out the entire atmospheric column. Instruments such as MOPITT (Terra) (Drummond et al., 2010), SCIAMACHY (ENVISAT)

(Burrows et al., 1995; Bovensmann et al., 1999), and TANSO-FTS (GOSAT, GOSAT-2) (Kuze et al., 2016; Suto et al., 2021)

have contributed important data on CH4, CO, or both, depending on which spectral range each sensor covers.

Launched on 13 October 2017, TROPOMI on board ESA’s Sentinel-5 Precursor satellite measures radiances across eight

spectral bands from the ultraviolet (UV) to the SWIR (Veefkind et al., 2012) with daily global coverage and relatively high40
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spatial resolution (5.5× 7 km2 at nadir in the SWIR bands, after August 2019). The unique capabilities of TROPOMI enable

unprecedented mapping of CH4 and CO distributions, supporting the detection of large-scale patterns as well as localised

emission sources in a single satellite overpass. The data can be combined with targeted high-resolution airborne or satellite-

based measurements with limited coverage (e.g., from GHGSat (Jervis et al., 2021)) in a tip and cue approach to zoom in on

and quantify individual point sources detected by TROPOMI (Maasakkers et al., 2022; Schuit et al., 2023). In addition to the45

operational TROPOMI products for CH4 (Hu et al., 2016; Hasekamp et al., 2022) and CO (Landgraf et al., 2016, 2022), the

TROPOMI/WFMD product, which retrieves both gases simultaneously from a common spectral window (Schneising et al.,

2019, 2023), has proven valuable as an independent data set in geophysical applications and in sensitivity studies to assess the

robustness of findings with respect to the specific selection of the underlying data product (Veefkind et al., 2023; Nüß et al.,

2025; Lindqvist et al., 2024).50

A non-linear machine learning quality screening algorithm based on a Random Forest Classifier was implemented for the first

time in the original TROPOMI/WFMD combined XCH4 and XCO retrieval to exclude measurements that are insufficiently

characterised by the tabulated forward model, which assumes rather simple physical conditions (e.g., cloud-free scenes) for fast

processing (Schneising et al., 2019). Similar machine learning-based filtering techniques are now widely used in greenhouse

gas retrievals from multiple satellite instruments (Keely et al., 2023; Borsdorff et al., 2024; Barr et al., 2025), reflecting a55

broader shift towards data-driven quality control in this field of remote sensing.

In this article, we present the recent updates that have been incorporated into the latest version of the TROPOMI/WFMD

product (version 2.0). In particular, the Random Forest Classifier previously used for quality filtering has been replaced with

the more efficient high-performance XGBoost algorithm, and the training data have been improved. The following sections

provide a detailed account of these modifications, a comprehensive validation of the resulting data products, and demonstrate60

the consequential enhancements in data quality relative to the previous product version.

2 TROPOMI/WFMD algorithm improvements

The Weighting Function Modified DOAS (WFMD) algorithm retrieves column-averaged dry-air mole fractions of methane

(XCH4) and carbon monoxide (XCO) from SWIR radiances in the 2.3 µm spectral range measured by TROPOMI and is

described in detail in Schneising et al. (2019, 2023). Therefore, only the main aspects are briefly summarised here. WFMD uses65

a least-squares approach to scale pre-defined vertical profiles and fits a linearised radiative transfer model based on SCIATRAN

(Rozanov et al., 2002, 2014) to the logarithm of the sun-normalised radiance. A look-up table enables efficient retrievals of the

vertical columns of the targeted species by covering various atmospheric conditions. The retrieved columns are converted to

XCH4 and XCO using dry air columns from the European Centre for Medium-Range Weather Forecasts (ECMWF) adjusted

for the higher resolved actual surface elevation of the individual satellite scenes. A machine learning-based classifier filters low-70

quality scenes using cloud data from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi NPP (Hutchison

and Cracknell, 2005) in the training phase. To mitigate residual albedo-related biases in XCH4, a random forest regressor

with shallow decision trees (leaf nodes ≪ training scenes ≪ all scenes) is trained on a small spatio-temporally constrained
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subset using a small number of features and the SLIMCH4 climatology (Noël et al., 2022) as a low-resolution reference. This

post-processing correction method is statistically robust and generalises effectively to unseen data (Schneising et al., 2023).75

No similar correction is required for XCO due to its larger natural variability and relaxed quality requirements.

2.1 General processing improvements

TROPOMI/WFMD v2.0 introduces several improvements aimed at enabling more robust results in scientific applications. It

consistently uses TROPOMI Level 1b V02.01.XX files as input, ensuring the inclusion of the latest instrument calibration.

The first part of the split spectral fitting window described in Schneising et al. (2019) contains a continuum-like region (with80

virtually no absorption by atmospheric constituents), which serves to determine the apparent albedo in the preprocessing step

in order to disentangle surface reflection and molecular abundances in the actual fitting procedure. In v2.0, the first part of the

retrieval window has been slightly extended by 0.4nm at the long-wavelength end and now covers the spectral range from

2311-2315.9nm, while the enclosed near-continuum itself remains unchanged. The extension aims at improving the transition

to the region with stronger molecular absorption features captured in the second part of the fitting window (2320-2338nm) and85

may enhance the signal-to-noise ratio and baseline fitting, thereby supporting more stable and precise retrievals. The position

of the fitting window and the continuum-like interval it contains is shown together with the corresponding molecular absorption

features in Appendix A in an example spectral fit.

Another update in v2.0 is the usage of a hybrid sigma-pressure vertical coordinate system consisting of 31 layers to provide

the prior profiles and averaging kernels, replacing the previous pure sigma coordinate system with 20 layers, in which each90

layer represented an equal fraction of the total surface pressure. Figure 1 compares the two vertical discretisations using an ex-

ample of surface elevation variation. The new hybrid layering combines terrain-following characteristics near the surface with

enhanced vertical resolution in the lower atmosphere and fixed reference levels in the upper atmosphere. The increased near-

surface vertical detail in the prior and averaging kernel information supports the consideration of surface pressure mismatches

during comparison with other measurements (e.g., for validation) or during assimilation in inverse modelling frameworks. Such95

mismatches can occur due to local horizontal displacement relative to comparison measurements or from the coarse horizon-

tal resolution of models. The enhanced vertical representation may therefore facilitate better harmonisation of these inherent

differences, especially over complex terrain.

2.2 XGBoost-based quality filtering

In earlier versions of the product, quality filtering was accomplished using a Random Forest Classifier (Schneising et al.,100

2019, 2023), since it delivers robust results that are largely insensitive to fine-tuning of the hyperparameters (Tantithamthavorn

et al., 2019). Random Forest is a bagging-based ensemble learning method that trains the involved decision trees in parallel. In

the standard implementation, these trees are deep and unpruned. All trees train independently on bootstrapped subsets of the

training data, with a random subset of features made available at each split (Breiman, 2001). This double randomisation of the

training process implies that each tree is created from a different subset of data and features, which decorrelates the individual105

trees from each other and reduces overfitting by means of the imposed diversity within the ensemble. The final predictions are
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Figure 1. Comparison of (a) the 31-layer hybrid sigma-pressure vertical coordinate system used in TROPOMI/WFMD v2.0 with (b) the

previous 20-layer pure sigma coordinate system. The dark grey area illustrates exemplary surface elevation variation in x-direction. The

associated pressure layer thicknesses are colour-coded. The perceptual uniform colormap used here and in many other figures is described in

Appendix B.

made by majority voting among the trees, which reduces variance, as the collective decision-making process aggregates the

results of the heterogeneous ensemble members.

The latest product TROPOMI/WFMD v2.0 now uses Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) to

address the rising need for more accurate results and higher computational efficiency. XGBoost builds trees sequentially, with110

each new tree aiming to correct the residual errors of the preceding ensemble. To achieve this, the respective new tree is trained

to predict the negative gradient of the current loss function in order to determine the direction and magnitude of the required

correction. By iteratively adding these correction trees, XGBoost reduces bias and variance, often surpassing the predictive

performance of bagging-based models. The one-time training process is slower due to its sequential nature, but the resulting

model tends to be shallower and more optimised, which is beneficial when used in resource-constrained environments. Unlike115

Random Forest, which usually performs well with default settings, XGBoost is more sensitive to hyperparameter optimisation

due to the complex way its tuning parameters interact with each other. For the TROPOMI/WFMD v2.0 quality filter, the Python

package xgboost is used, and tuning efforts focussed on balancing model simplicity with generalisation ability, resulting in the

following parameter values, which demonstrate the importance of carefully tuning XGBoost to create a maximally robust and

generalisable model.120

To prevent overfitting, a conservative learning_rate = 0.03 was chosen to shrink the weights for the corrections by new

trees, with the trade-off that more boosting rounds are required to compensate for the slower (but more accurate) learning.

The complexity of the individual trees was constrained with max_depth = 8 and min_child_weight = 4 in order to obtain

suitable pruning without uncontrolled growth. An increase in the generalisation capability to unseen data was achieved by
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adding a random component to the training process via subsample = 0.7 and colsample_bytree = 0.7. This means that125

each tree of the model is trained on randomly selected 70% of the training data using 70% of the available features, which

makes the model less likely to fit to noise or irrelevant patterns in the training data. Besides the tree construction and sampling

parameters, there are also other regularisation parameters in addition to the already discussed learning rate: gamma = 0.2

requires that nodes in a single tree are only added if the associated loss reduction is large enough, thus impeding unnecessary

splits; lambda = 1 controls the L2 regularisation of the leaf weights by encouraging the model to find a simpler solution that130

generalises better to unseen data. While lambda is applied during tree creation, learning_rate scales down the final tree

weights at the moment it is added to the ensemble.

The XGBoost classifier was trained using data from 38 randomly chosen days across 2020 and 2021 to cover a wide variety

of atmospheric conditions while keeping the data set size manageable. The training truth for the quality filter was informed by

an updated cloud product from the Visible Infrared Imaging Radiometer Suite (VIIRS; S5P S-NPP Cloud processor version135

V01.03.00 based on the VIIRS Enterprise Cloud Mask) and the TROPOMI Aerosol Index (V02.04.00), aiming at improved

identification of cloudy scenes and mitigation of issues arising from specific aerosol events over bright surfaces. The classifi-

cation task involves a clear class imbalance, with good quality observations (class 0) representing a minority (p = 0.152). The

set of 26 features used in XGBoost remains identical to the quality filter of v1.8 (Schneising et al., 2023) and comprises only

intrinsic parameters available from preceding processing. This means that the quality filter remains independent of real-time140

availability of external cloud and aerosol information during the actual quality prediction.

Model performance was assessed using completely independent data from 2022, a year that was not involved at all in the

training process. To monitor and prevent overfitting, early stopping was applied during training (early_stopping_rounds =

16) using the Logloss metric for progress tracking. Logloss was chosen because it corresponds directly to the objective function

that is minimised in XGBoost training, thus ensuring consistency of the evaluation step with the underlying optimisation145

process. As a performance measure, Logloss evaluates the calibration quality of predicted probabilities across all classes. Early

stopping intervened after 8000 boosting rounds (n_estimators) because the Logloss on the validation set had not improved

in 16 consecutive rounds, revealing that the learning progress had already levelled off significantly. According to Figure 2,

the corresponding validation Logloss curve decreases monotonically during the 8000 boosting rounds to values substantially

below the baseline entropy of −(p log(p) + (1− p) log(1− p))≈ 0.426 expected under the prevalence p of class 0.150

To interpret the magnitude of potential overfitting, we quantify the achieved gain on the validation set as the decrease in

Logloss relative to the baseline entropy and define the relative gap metric η to be the ratio of the final training-validation gap to

this gain. This metric offers an intuitive way to assess overfitting and how well a model generalises to unknown data that was

not used in training. In the present case, η is only about 8%, demonstrating that the final training-validation gap is negligible

relative to the validation improvement and that the vast majority of the model’s fitted relationships generalise effectively, with155

overfitting being negligible when assessed in terms of Logloss.

In addition to the previous assessment, potential overfitting was further evaluated using the Area Under the Precision-Recall

Curve (AUPRC), which is particularly suitable for the present application due to the considerable class imbalance. The AUPRC

is specifically meaningful under these conditions as it captures the trade-off between recall (coverage of actual positives) and
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Figure 2. Training and validation performance, measured by (a) Logloss and (b) the Area Under the Precision-Recall Curve (AUPRC, see

main text for details) for class 0 (good quality), as a function of boosting rounds, illustrating stable convergence without notable overfitting.

The relative gap metric η quantifies how large the final training-validation gap is relative to the achieved gain on the validation set over the

baseline. A small value of η indicates that the fitted model generalises effectively to unseen data.

precision (correctness of positive predictions). It penalises false positives more than other metrics such as the Area Under the160

Receiver Operating Characteristic Curve (AUROC). This emphasis is in line with practical considerations in quality filtering,

where false positives (e.g., cloudy scenes that incorrectly pass the quality filter) can introduce systematic retrieval biases, as

such scenes are typically not well characterised by the tabulated forward model.

Since a random classifier would produce an AUPRC close to the prevalence p, any substantial improvement over this baseline

clearly signals successful distinction between classes. Analogous to the Logloss evaluation, the relative gap metric η is defined165

as the ratio of the final training-validation gap to the gain achieved and quantifies potential overfitting in terms of AUPRC.

As shown in Figure 2, the AUPRC curve of the validation data set rises monotonically to high values close to the theoretical

maximum of 1.0 and reaches approximately 0.92 after the completed 8000 boosting rounds, which is about six times the
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Figure 3. Final precision-recall curve of the XGBoost classifier for class 0 (good quality) evaluated on the validation set compared to a

respective curve for an early boosting round. The curves are colour-coded according to the corresponding decision threshold p0, illustrating

how model performance changes as the threshold varies. The circles represent the standard threshold p0 = 0.5 used for assigning the class

label 0 in the TROPOMI/WFMD v2.0 quality filter.

prevalence baseline. The corresponding η is a mere 4%, showing that the final difference between the training and validation

curves is negligible compared to the improvement achieved on the validation set, which is consistent with the conclusions170

from the Logloss analysis. Overall, the consistent performance across the complementary evaluation metrics Logloss and

AUPRC shows that the implemented XGBoost model validly distinguishes between classes under imbalanced conditions,

without showing appreciable signs of overfitting.

The resulting precision-recall curve is shown in Figure 3 with colour-coded decision threshold p0, which is the minimum

level of prediction probability for assigning an instance to class 0 (good quality). The graph illustrates the classifier performance175

trend when varying the threshold, supporting a more reasonable choice of p0 based on the required balance between precision

and recall. Increasing the threshold results in higher precision (reducing the number of false positives) but at the expense of

lower recall, meaning that more true positives are missed. Conversely, a lower threshold raises recall, but it also leads to more

false positives. For the TROPOMI/WFMD v2.0 quality filter, the standard threshold p0 =0.5 is used to assign class labels. This

value reflects the point at which the model is equally confident in assigning either class, which is commonly chosen when there180

is no strong preference for favouring precision over recall. In this context, it is helpful to recognise that recall and data yield of

the quality filter are positively correlated.

To further minimise remaining outliers in the data, we refined the additional empirical quality filter from Schneising et al.

(2023), which is applied after the machine learning quality prediction. This extra step in quality control has two key compo-

nents: (1) Filtering based on the root mean square of the fit residuals ϵRMS as a function of the sun-normalised continuum radi-185

ance Icon (see Appendix A for a definition of fit residual and Icon). Measurements with ϵRMS > 0.03 or ϵRMS > a·(Icon+b)−1+c
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Figure 4. Precision of the quality filter concerning identification of cloud-free scenes in versions 1.8 and 2.0, shown for selected latitude

ranges. Precision is defined as the percentage of actually cloud-free scenes according to VIIRS among those passing the quality filter. The

brown bars highlight the change in the absolute number of good quality scenes (v2.0 relative to v1.8).

are flagged as bad quality, where the parameters a = 0.0015, b = 0.07, and c = 0.011 were determined empirically to sepa-

rate typical values of ϵRMS(Icon) from outliers. The purpose of this filter is to remove specific scenes where the fit quality is

worse than for other scenes with similar radiance. Such anomalies can arise, for example, from high aerosol concentrations or

other unusual atmospheric conditions. (2) Downward outlier detection in three-dimensional (latitude, longitude, XCH4)-space190

on a daily basis with the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996). This

clustering algorithm groups spatially dense points and marks points in low-density regions as outliers. It is utilised instead of

the previously used Local Outlier Factor (LOF) as it tends to be more robust in areas where data points are distributed more

sparsely. Together, these two filtering steps remove roughly 3.5% of the data that initially passed the machine learning quality

screening; about 1.2% are rejected by the ϵRMS filter and about 2.3% by DBSCAN’s outlier detection. The overall removal rate195

corresponds almost exactly to that of the previous method.

As a follow-up to the performance evaluation of the XGBoost-based quality filter with unseen data, the precision in identi-

fying cloud-free retrievals is analysed in the subsequent statistical analysis. To this end, Figure 4 compares the percentage of

actually cloud-free scenes (confidently cloudy sub-scene fraction below 0.1 according to VIIRS) among all scenes that pass the

quality filter for v2.0 and v1.8. At all latitude bands considered, v2.0 consistently achieves better precision than v1.8, reflecting200

an improvement in the reliability of cloud filtering as there is less misclassified data falsely passing quality screening. Never-

theless, the data yield is generally increasing at the same time, especially in the mid and high latitudes, as the brown bars in the

figure indicate. The only exception is the band closer to the equator, which also includes regions with frequent aerosol exposure

like the Sahara Desert; there is a small decline in scenes classified as good, contrary to the general trend. This decrease suggests

that certain aerosol-affected scenes are better removed, which was intended by including the TROPOMI Aerosol Index in the205

training of the quality filter.

Overall, these results suggest that version 2.0 delivers both improved data quality and increased data yield, except under

certain challenging conditions, such as those involving desert aerosols. However, this observation still needs to be confirmed

by validation with independent reference data (see Section 3) and a detailed analysis of the regional patterns of the satellite data
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(see Section 4). It needs to be emphasised that the subsequent shallow machine learning calibration, based on a Random Forest210

Regressor, to reduce the remaining systematic errors in the XCH4 data remains the same as in v1.8. Specifically, the training

regions, the maximum tree growth limit, and the small set of input features, mainly related to albedo, have not been changed.

Even though the settings remain identical, this post-processing correction might perform better with the current version as

the improved quality filter produces more consistent data, helping the regressor model to learn the core relationships more

effectively.215

3 Validation

3.1 Random and spatial systematic errors

TCCON is a global network of ground-based Fourier-transform spectrometers that measure direct solar radiation in the near-

and shortwave-infrared spectral region to retrieve precise column-averaged abundances of trace gases such as XCH4 and

XCO, serving as a benchmark for satellite data validation (Wunch et al., 2011a). All sites operate similar instrumentation220

(Bruker IFS 125HR) and use a standardised retrieval algorithm. Data are tied to the WMO trace gas scale using airborne in-situ

measurements with species-specific scaling factors, yielding estimated accuracies of about 4 ppb for XCH4 and 2 ppb for

XCO in the GGG2020 version used here (Laughner et al., 2024).

To enable a quantitative comparison with satellite data, the differences in instrument sensitivity and prior profiles must be

taken into account. This involves adjusting the measurements for the influence of their native prior profiles using a common225

prior (Rodgers, 2000; Dils et al., 2014; Schneising et al., 2019), here taken from the TCCON:

ĉadj = ĉ +
1

m0

∑

l

ml(1−Al)(xl
a,T −xl

a) (1)

where ĉ is the original TROPOMI retrieval, Al the satellite averaging kernel, xa and xa,T the TROPOMI and TCCON prior

profiles, respectively. ml denotes the dry air mass in layer l from pressure differences corrected for water vapour, and m0 is

the total dry air mass. The averaging kernels of the satellite data product are illustrated in Figure 5, demonstrating that the230

retrievals are sensitive to all atmospheric layers.

Theoretically, smoothing errors can be further reduced by adjusting the TCCON results ĉT before the comparison with ĉadj

using the retrieved TCCON profile scaling factors in conjunction with the satellite averaging kernels (Rodgers and Connor,

2003; Wunch et al., 2011b; Schneising et al., 2019). However, this second correction step is omitted in the present analysis for

the sake of simplicity, as it became apparent in the past that this adjustment is negligible in the validation of TROPOMI/WFMD.235

Since the satellite averaging kernels in the lower atmosphere are sufficiently close to 1.0, the resulting correction would be in the

sub-ppb range, which is significantly smaller than the systematic errors associated with the TROPOMI and TCCON retrievals.

To account for surface elevation differences between TROPOMI observations and TCCON measurements, a height correc-

tion is applied to the retrieved column-averaged dry-air mole fractions ĉ, such that the collocated data pairs are referenced to

a common surface pressure (Sha et al., 2021). Specifically, this height correction estimates the mole fraction that would be240

retrieved by the satellite measurement, had the retrieval been performed at the surface pressure, PT , of the TCCON station,
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Figure 5. Averaging kernels of the TROPOMI/WFMD v2.0 satellite data product used in the prior profile adjustment of (1). Shown are the

averaging kernels of all measurements from every second day of a given year for (a) XCH4 and (b) XCO, illustrating the vertical sensitivities

of the satellite retrievals.

rather than at the original TROPOMI surface pressure, P . This adjustment incorporates the retrieved TROPOMI profile scal-

ing factor γ̂, assuming that the scaling factor does not change but the associated profile xa is suitably extended or truncated

consistent with the updated surface pressure. The complete height-correction is given by

ĉP→PT
=


ĉ ·P + γ̂

PT∫

P

xa(p)dp


P−1

T (2)245

where the integral accounts for the additional or missing air mass resulting from the difference in surface pressure. The generic

prior xa is available across all realistic pressures and can therefore be applied when PT > P as well. The integral inherently

yields the correct sign depending on whether P or PT is greater.

The validation is performed using the latest TCCON data version GGG2020 (Laughner et al., 2024) and the 26 sites listed in

Table C1. The used collocation criteria balance representativity and statistical robustness: Satellite data must be within 100km250

horizontally and 500m vertically of the TCCON site, with a maximum time difference of 2 hours between observations. Since

sources in the vicinity of Edwards and Xianghe limit the representability, the collocation radius for these two locations is

reduced to 50km (Schneising et al., 2019).
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Figure 6. Comparison of the TROPOMI/WFMD v2.0 XCH4 time series (green) with ground based measurements from the TCCON (red).

For each site, N is the number of collocations, µ corresponds to the mean local bias and σ to the scatter of the satellite data relative to

TCCON in ppb.

The validation results are summarised in Figures 6 and 7 including the mean local offsets µ and the scatter σ relative to

the TCCON for each site. The results for the individual sites are condensed to the following figures of merit for the overall255

quality assessment of the satellite data: the global offset µ̄ is defined as the mean of the local biases at the individual sites,

the random error σ̄ is the site-wise mean scatter relative to the TCCON, and the spatial systematic error σ(µ) is the standard

deviation of the local offsets relative to the TCCON at the individual sites as a measure of the station-to-station biases. For

XCH4, the global offset amounts to µ̄ = 0.65 ppb, the random error is σ̄ = 13.35 ppb, and the spatial systematic error is

given by σ(µ) = 4.46 ppb. For XCO, the corresponding values are µ̄ =−0.44 ppb, σ̄ = 5.55 ppb, and σ(µ) = 2.67 ppb. Thus,260

the estimated spatial systematic errors for both species are on the order of the estimated (station-to-station) accuracy of the

TCCON. In the case of XCH4, the largest scatter σ relative to TCCON is observed at high northern latitude sites, with the largest
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Figure 7. As Figure 6 but for XCO. Individual collocated pairs with lower agreement are typically associated with wildfire events, e.g., when

there is a true XCO enhancement in a distant satellite scene but not directly at the TCCON site or vice versa (representation error).

local offset µ at Eureka. These features are attributed to the influence of the polar vortex, which can introduce representation

errors when the vortex boundary lies between the TCCON site and individual satellite measurements, leading to genuine

differences in XCH4 between the two data sets (Hachmeister et al., 2025).265

Figure 8 shows how the validation results compare to the previous version 1.8. Overall, the number of collocations has

increased by about 10% in version 2.0, thanks to better data coverage. In the Arctic in particular, coverage improved by roughly

40%, which reflects the enhanced data yield under challenging conditions, such as high solar zenith angles and low surface

reflectivity. Even though the number of collocations N is larger, which often introduces more variability, both the random

and systematic errors have actually improved in v2.0, indicating more consistent and reliable retrievals. The only exception270

is the spatial systematic XCO error, which remains mostly unchanged. Furthermore, the global offset µ̄ of XCH4 relative to

the TCCON has been significantly reduced and is now nearly zero. While this former global offset was not a critical quality
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Figure 8. Comparison of the retrieval results for TROPOMI/WFMD v1.8 and v2.0. The comparison was limited to the period during which

both product versions were available (May 2018-June 2024). As a result, the numbers differ slightly from those in the full validation of v2.0.

issue since it could be easily corrected with a dedicated bias correction, the fact that it is improved aligns well with the better

accuracy of the new v2.0 data product.

3.2 Seasonal biases275

In order to further analyse the intra-annual variability of the discrepancies between the collocated TROPOMI and TCCON

data, the site-specific mean offsets µ are first subtracted from the differences of the individual data pairs to remove the al-

ready discussed spatial bias component. The resulting anomalies are then grouped by season and categorised as January-March

(JFM), April-June (AMJ), July-September (JAS), and October-December (OND). To summarise joint seasonal characteristics,

the sites are additionally divided into broad latitudinal bands, namely Arctic (90◦N-66.5◦N), Northern mid-latitudes (66.5◦N-280

23.5◦N), Tropics (23.5◦N-23.5◦S), and Southern mid-latitudes (23.5◦S-66.5◦S). Since there are many TCCON sites in the

Northern Hemisphere’s mid-latitudes, this band is further separated into smaller sub-regions based on longitude (North Amer-

ica, Europe, and Asia). The associated spatio-temporal averages are only included in the analysis for those combinations of
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Figure 9. Seasonal mean biases for (a) XCH4 and (b) XCO relative to the TCCON for the analysed regions. Masked cells indicate insufficient

coverage (see main text for details). Row and column averages further summarise the overarching regional and seasonal variability. The

standard deviation of the seasonal biases across all regions is interpreted as the overall seasonal bias and indicated in the bottom-right corner.

(c) Number of collocations N for the different combinations of region and season. The number of contributing years Ny is shown in the

top-left corner of each cell; the number of calendar months Nm contributing data to the corresponding 3-month season is displayed in the

bottom-right corner of each cell, only if it is smaller than the maximum value of 3.

region and season that contain data from at least three different years for more than one calendar month of the respective season

in order to ensure statistical robustness.285

The results are displayed as heat maps in Figure 9, where the average bias values are annotated on the corresponding cells

and entries with insufficient sampling are masked. In addition, the row and column mean values provide an average overview of

regional and seasonal variations, respectively. The total seasonal bias relative to the TCCON is then calculated as the standard

deviation of the individual biases across all regions and seasons, resulting in 1.92 ppb for XCH4 and 1.10 ppb for XCO.

3.3 Uncertainties290

The individual uncertainties of the TROPOMI/WFMD measurements are provisionally estimated during the inversion process

by error propagation based on the uncorrelated spectral errors provided in the TROPOMI Level 1 files. However, this estimate

does not take into account pseudo-noise components that may arise from specific atmospheric conditions or instrumental

characteristics, nor systematic uncertainties associated with spectroscopic parameters. For this reason, the initial uncertainty

estimates tend to underestimate the actual measurement error and are therefore inflated by a simple linear adjustment to provide295

more realistic values (Schneising, 2025).

The resulting final uncertainties σunc reported in the TROPOMI/WFMD v2.0 product are checked by comparison with the

actual measured scatter relative to the TCCON. To this end, a data-driven adaptive binning approach based on k-means++
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Figure 10. Comparison of reported uncertainties in the TROPOMI/WFMD v2.0 product with the measured scatter relative to the TCCON

for (a) XCH4 and (b) XCO. In the blue-shaded areas, reported uncertainties exceed the observed scatter (overestimation), whereas in the

yellow-shaded areas, they fall below it (underestimation).

clustering (Arthur and Vassilvitskii, 2007) is applied as a preparatory step. This approach divides the data into discrete bins

of similar uncertainty by minimising the within-cluster variance. For each of these bins, the mean reported uncertainty is300

calculated and compared to the actual observed scatter of the differences relative to the TCCON. The results presented in

Figure 10 demonstrate that the uncertainty estimates provided are generally realistic, as evidenced by the fact that the mean

uncertainty ratio Γ̄, defined as the reported uncertainty divided by the measured scatter, is close to 1.0 (1.03 for XCH4 and 1.01

for XCO), which is what one would expect from a reliable, high-quality uncertainty estimate. There is a slight overall tendency

to overestimate the uncertainties on average (Γ̄ > 1), with the exception of the rather rare cases of poor XCO precision, where305

the reported uncertainties of the satellite data appear to be somewhat underestimated.

3.4 Surface albedo sensitivity

To investigate possible albedo-related biases in the TROPOMI/WFMD product, the sensitivity of TROPOMI to TCCON dis-

crepancies with respect to surface albedo variability is examined on a daily basis, taking into account site-specific offsets that

could complicate the determination of such a relationship. Although the local offsets determined during the validation are prob-310

ably largely independent of albedo, it cannot be entirely excluded that albedo also contributes to some extent to the site-specific

biases. To rigorously account for this by disentangling these components, a joint hierarchical Bayesian linear regression model

from the probabilistic programming library PyMC (Abril-Pla et al., 2023) is applied, which allows comprehensive uncertainty

quantification and propagation, enabling a fully probabilistic characterisation of albedo sensitivity. In this framework, site-
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specific offsets are modelled as random intercepts informed by the previous validation results, while the relationship between315

surface albedo and the difference to the TCCON is represented by a global fixed regression slope β across all sites. Conse-

quently, the hierarchical approach leaves the model free to attribute parts of the estimated local biases to albedo, thus yielding

a more realistic estimate of β.

The model inference is performed by Markov Chain Monte Carlo sampling using the No-U-Turn Sampler (NUTS), an

adaptive Hamiltonian Monte Carlo algorithm that efficiently explores high-dimensional posterior distributions, even in the320

presence of complex hierarchical structures. In the specific case presented here, six independent chains are run in parallel and

their convergence to a common posterior distribution is evaluated using the potential scale reduction factor R̂ (Vehtari et al.,

2021), which compares the variance between multiple chains to the within-chain variance. Values of R̂ close to 1.0 indicate

that the chains have mixed well, i.e., they have sufficiently explored the parameter space and converged to virtually the same

posterior distribution.325

To inform plausible data-driven values for the slope parameter β, the observed albedo range is divided into bins of fixed

width. Within each bin, the median values of albedo, ∆XCH4 and ∆XCO (satellite minus collocated TCCON measurements)

are calculated, and the respective slopes for all possible pairs of bins are computed to obtain an empirical distribution that

reflects the variability over the entire domain. The median absolute deviation (MAD) of these pairwise slopes is then used to

conservatively estimate the variability σβ . Assuming a normal prior centered at zero, this defines a weakly informative normal330

prior for the slope parameter β.

With i denoting individual daily averaged observations and j indexing TCCON sites, the complete hierarchical model

includes hyperpriors on site-level intercepts, additional informative validation-based anchor data, a linear predictor combining

site biases and albedo dependence, and a likelihood assuming normally distributed observational uncertainties:

aj ∼N (µa,σa) with µa ∼N (µ̄,σ(µ)), σa ∼HN (σ(µ)),

âj ∼N (aj ,σeff,j) with f ∼ B(2,2), σeff,j = σj√
f ·Nj

,

ξi = aj[i] + β ·αi with β ∼N (0,σβ),

∆i ∼N (ξi,σobs,i) with σres,j[i] ∼HN ( 1
2 σ̄unc), σ2

obs,i = σ2
unc,i + σ2

res,j[i]

(3)335

where N denotes a normal distribution, HN denotes a half-normal distribution, and B a Beta distribution. The systematic

errors µ̄ and σ(µ) estimated from the preceding validation are used to construct the prior for aj , which describes the site-

specific bias for site j. The local biases are further informed by observed validation-based estimates âj , which are treated as

noisy measurements with effective standard errors σeff,j reflecting the corresponding uncertainties of the previously obtained

local offset estimates µj from validation. Thereby, the co-fitted factor f ∈ (0,1) shrinks the collocation sample size Nj in340

computing the standard error from the scatter σj relative to the TCCON. The parameters µj , σj , and Nj are defined as in

Figures 6 and 7 but for daily averages. The quantity ξi is the mean response predicted by the model for observation i (where j[i]

refers to the site associated with i), αi denotes the associated surface albedo, and ∆i are the observed differences to TCCON,

incorporating both the daily averaged reported observational uncertainty σunc,i (see previous subsection) and site-level residual

variability σres,j[i]. The additional σres may be elevated at specific sites, for example due to representation errors during wildfire345
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Figure 11. Assessment of the surface albedo sensitivity of TROPOMI/WFMD v2.0 (a) XCO and (b) XCH4 based on daily means. Residual

∆XCO and ∆XCH4 were obtained by subtracting the posterior mean site-specific intercepts from the observed differences to remove site-

to-site biases. The fitted slope β and its 95% credible band are overlaid illustrating the inferred sensitivity to surface albedo for each trace

gas. The insets show the respective marginal posterior distribution of the albedo sensitivity parameter β from the hierarchical model. The

width of the distribution reflects the inferred uncertainty in the slope, with the peak indicating the most probable value.

events, when for some ∆i the two involved data sets are differently affected by corresponding XCO enhancements as a result

of spatial separation.

In Figure 11, the posterior mean values of the site-specific intercepts aj have been subtracted from the observed ∆XCH4

and ∆XCO values to focus on their dependence on surface albedo. The resulting residuals are free of site-to-site biases and

are thus ideally suited to analyse the pure albedo sensitivity β of the data. The arising marginal posterior distributions of the350

albedo sensitivity parameter are shown as insets in the figure together with the results of the individual Markov Chains. The

excellent agreement between the individual resulting distributions, with an associated potential scale reduction factor R̂β close

to 1.0 in both cases, demonstrates that the sampling chains have reliably converged to a common posterior distribution.

The found surface albedo sensitivity in the case of XCO is β = 1.2± 0.8 ppb for a unit increase in albedo (∆α = 1), with

a coefficient of determination R2 = 0.0002. This means that there is a statistically significant positive relationship between355

surface albedo and ∆XCO, but albedo explains only a marginal fraction of the overall variance. Some additional uncertainty

arises from the fact that the TCCON collocations may not fully represent the entire range of naturally occurring surface

albedos. For XCH4, the estimated sensitivity is β =−1.1± 1.5 ppb per unit albedo, with R2 = 0.0001 suggesting that there

is no significant bias due to surface albedo. If we consider only the two neighbouring sites, Edwards and Caltech, whose

combined albedo range already extends from 0.1 to 0.4, the sensitivities for both gases are very similar to those obtained in the360
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Figure 12. Assessment of the surface albedo sensitivity of TROPOMI/WFMD v2.0 over the Sahara (white region) for (a) XCH4 and (b)

XCO after subtracting the seasonal and level components of a fitted Dynamic Linear Model (DLM). The fitted slope β and its 95% credible

band are overlaid illustrating the inferred sensitivity to surface albedo for each trace gas.

full analysis, albeit with increased uncertainty. Since albedo is a dimensionless quantity with values ranging from 0 to 1, and

typical observed albedo values cover a considerably narrower subrange, the practical influence of surface albedo on XCO and

XCH4 is correspondingly even smaller. Thus, the albedo-induced bias under typical conditions is limited to the sub-ppb range.

These results imply that surface albedo has a minor impact on the XCO retrievals and a negligible effect on XCH4 in terms of

retrieval biases.365

Because the albedo range covered by the TCCON comparison is limited (α ≲ 0.4), an additional analysis independent of

the TCCON is performed to further assess albedo sensitivity. In the absence of a reference data set to serve as ground truth,

a region with negligible methane emissions has to be selected. For this reason, the Sahara is used here (see Figure 12), which

also has high albedo variability and is therefore well-suited for this analysis. To remove the influence of the seasonal cycle and

the long-term methane increase, the seasonal and level components of a Dynamic Linear Model (DLM) (Hachmeister et al.,370

2024) based on daily data are subtracted from the time series of individual satellite observations, yielding an anomaly ∆Xgas

for each measurement. The albedo sensitivity is then estimated as the slope parameter β of a linear regression fit between these

anomalies and surface albedo. To assess uncertainty, we use a subsampling bootstrap technique, in which random subsets of

1000 data points are repeatedly drawn from the complete data set and linear regression is re-performed on each subset. This

yields empirical distributions of the regression parameters, from which uncertainties are quantified using the corresponding375

95% credible bands.
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Table 1. Figures of merit from the quality assessment of TROPOMI/WFMD v2.0 using TCCON GGG2020. The total systematic error is

defined as the root-sum-square of the spatial and seasonal systematic errors. Also shown is the derived albedo sensitivity from the TCCON-

independent time series analysis over the Sahara in italics.

XCH4 XCO

Random Error σ̄ (ppb) 13.35 5.55

Global Offset µ̄ (ppb) 0.65 −0.44

Spatial Systematic Error σ(µ) (ppb) 4.46 2.67

Seasonal Systematic Error (ppb) 1.92 1.10

Total Systematic Error (ppb) 4.86 2.89

Uncertainty Ratio Γ̄ [reported/measured] (-) 1.03 1.01

Albedo sensitivity (ppb) −1.1± 1.5 1.2± 0.8

Albedo sensitivity [Sahara] (ppb) 4 .4 ± 6 .5 2 .1 ± 3 .2

The findings align with the TCCON-based results and show that there is no evidence of critical albedo-related biases in

the TROPOMI/WFMD data. In fact, the estimated surface albedo sensitivities β are of the same order of magnitude as in the

TCCON assessment and do not differ significantly from zero. The magnitude of the uncertainty estimates is about four times

greater than that of the TCCON analysis. Specifically, the sensitivities are β = 4.4± 6.5 ppb per unit albedo for XCH4 and380

β = 2.1± 3.2 ppb for XCO, with a coefficient of determination of R2 = 0.002 in both cases.

3.5 Summary of validation results

Independent ground-based measurements from the TCCON confirmed that the updated TROPOMI/WFMD v2.0 XCH4 and

XCO products have higher quality than the previous version. The refined retrievals are not only more accurate and precise, but

also provide increased data yield at mid and high latitudes, including observationally challenging regions such as the Arctic.385

The broader coverage of v2.0 is beneficial for all types of applications, whether at the regional level, such as quantifying

local hotspot emissions, or on a larger scale, like analysing growth rates of latitude bands. According to the review of the

uncertainties reported for each measurement, the estimates are reasonable and realistic. Furthermore, the analysis showed that

surface albedo does not introduce any relevant biases into the data products. This is an important finding as albedo-related

biases are often a concern in the application of TROPOMI methane retrievals (Barré et al., 2021; Balasus et al., 2023).390

The quality assessment results are summarised in Table 1, including metrics that measure both random and systematic errors

of the data product. These figures of merit give a clear overview of how well the TROPOMI/WFMD v2.0 products perform

and are helpful benchmarks for users intending to use the data in scientific research.

Overall, the TROPOMI/WFMD v2.0 product performs reliably in retrieving XCH4 and XCO from actual TROPOMI data,

achieving accuracy and precision levels well within the mission requirements after appropriate quality filtering. In concrete395

terms, this means that the products meet the strict limits of less than 1.5% bias and 1.0% random error for XCH4, as well as
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less than 15% bias and 10% random error for XCO, confirming the suitability of the algorithm for quasi-operational processing

of TROPOMI measurements.

4 Regional assessments

To elucidate how the improvements in TROPOMI/WFMD v2.0 manifest in the retrieval results, this section examines regional400

patterns in the data products. While previous sections focussed on evaluating the trained quality filter using unseen data and

validation with independent reference measurements from the TCCON, the spatially resolved assessment here reveals how

these refinements translate specifically into increased regional coverage. While this section mainly discusses XCH4 because

of its stricter quality requirements, it is worth noting that the data coverage for XCO is exactly the same across all cases.

Depending on the intended application, this assessment is carried out by means of selected examples based on temporal405

averaging on a 0.1◦× 0.1◦ grid or daily swath data.

As a first step, Figure 13 presents the global distribution of the retrieved XCH4 and XCO mole fractions for the years

2022 and 2023. There are clear differences between the hemispheres with higher values in the Northern Hemisphere, where

most emission sources are concentrated. This gradient is further modified by additional increases over key regions, such as

China, India, and Southeast Asia, which are caused by the many anthropogenic sources located there. For XCH4, elevated410

abundances are also observed over tropical wetlands and specific hotspots, such as California’s Central Valley and the Po

Valley in northern Italy. For XCO, additional enhanced values are primarily associated with biomass burning in Africa and

South America, as well as with major urban agglomerations including Mexico City and Tehran. The coverage over land is

generally high, although persistent cloud cover and low surface reflectivity result in some data gaps near the equator. Coverage

over oceans and inland waters is more limited, as good measurements mainly occur under favourable observational conditions,415

such as sun-glint geometries or certain sea ice scenarios.

To further assess the performance of the updated quality filter, regional coverage and temporal variability are analysed using

monthly data. Figures 14 and 15 present the differences between v1.8 and v2.0 for February and October 2023. An obvious

change in v2.0 is the slight decrease in coverage over the Sahara, attributable to stricter aerosol filtering. Conversely, coverage

at higher latitudes has improved, in line with the results of Section 3. For a given grid cell, v2.0 shows less variation within a420

month, especially in desert and mountain areas, which is reflected in reduced scatter σ. While the standard deviation for each

grid cell partly captures natural changes, the overall reduction indicates that more low-quality observations have been filtered

out.

In addition to temporally averaged products, individual Level 2 swath data help evaluate how the updated quality filter

performs under specific atmospheric conditions, such as dust storm events over the Sahara. Figure 16 shows two example days425

where the v2.0 filter more effectively removes aerosol-contaminated observations than v1.8. In these cases, the number of

retained observations in v2.0 is reduced by 19% and 12%, respectively. In particular, spurious high values linked to elevated

aerosol loading or cloud edges are removed more reliably, e.g., those from dust plumes originating from the Bodélé Depression

in Chad. The result is a much more spatially homogeneous methane distribution in v2.0 compared to v1.8.
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Figure 13. Biennial mean (2022/2023) of retrieved TROPOMI/WFMD v2.0 (a) XCH4 and (b) XCO.

The v2.0 quality filter also improves cloud screening and increases data coverage at mid- and high latitudes. Figures 17–19430

show example satellite overpasses over Central Europe and Siberia for both XCH4 and XCO. While both versions correlate

well and effectively remove cloudy scenes, v2.0 allows more valid observations under cloud-free conditions, thereby boosting

the data yield. In these examples, the number of soundings passing the filter increases by about 10–20% over Central Europe,

and by 60% and 15% for the two example overpasses in Siberia. Better coverage also enables improved estimation of emissions

sources, some examples of which are easily identifiable in the presented images. In Figure 17, methane emissions from the435

Upper Silesian Coal Basin in Poland are evident on both observation days, while the Siberian enhancements in Figure 19 are
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Figure 14. Comparison of monthly averages for (a) TROPOMI/WFMD v1.8 and (b) v2.0 using the example of February 2023. The top row

shows the XCH4, the middle row the number of days that contribute to the monthly average as a percentage (100% corresponds to 28 days in

this example), and the bottom row the standard deviation of XCH4 per grid cell. As at least two values are required to calculate a meaningful

standard deviation, only grid cells with two or more measurements are shown in the bottom row.

associated with methane leakage from oil and gas infrastructure. Figure 18 displays major carbon monoxide emissions from

steel production plants in Central Europe, particularly in Germany, Poland, Slovakia, and the Czech Republic (Schneising et al.,

2024; Leguijt et al., 2025).

These figures use various Suomi NPP/VIIRS band combinations to highlight cloud cover, which helps to visually identify440

observations that should be excluded. In the examples for Central Europe, the background image displays a True Colour
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Figure 15. As Figure 14 but for October 2023.

composite (bands I1-M4-M3), which closely resembles the natural appearance of land, ocean, and atmospheric features as

perceived by the human eye. In this representation, the clouds appear white due to the approximately equal scattering of light

across the visible bands used.

For the Siberian case, a false-colour composite (bands M3-I3-M11) is used instead, because it more effectively distinguishes445

clouds from snow and ice, which look similar in standard true-colour images. In this representation, snow and ice appear bright

red because they strongly reflect visible light (band M3, centered at 0.49 µm), while they strongly absorb in the shortwave

infrared (SWIR) range (band I3: 1.61 µm; band M11: 2.25 µm). Vegetation appears green as it reflects strongly in band I3 but
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Figure 16. Comparison of (a) TROPOMI/WFMD v1.8 and (b) v2.0 XCH4 for two example days (columns) over the Sahara demonstrating

the improved filtering of spurious high values associated with individual aerosol events or cloud edges in v2.0.

much less in the other two bands. Water clouds are warm off-white with a pale orange or beige tint, while high cirrus clouds

appear pastel pink as a result of scattering by small ice crystals.450

5 Conclusions

The TROPOMI/WFMD v2.0 product represents a substantial advance in the remote sensing of atmospheric XCH4 and XCO

from space. This improvement is mainly the result of implementing refined quality filtering based on Extreme Gradient Boost-

ing (XGBoost) in order to address the increasing demands for enhanced retrieval accuracy and computational efficiency. Thor-

ough quality assessments have shown that the updated algorithm delivers higher data yield with better precision and accuracy,455

as well as robust estimates of uncertainty. In particular, dedicated analyses have confirmed that there are no critical biases

related to albedo in the TROPOMI/WFMD data product. This finding helps to defuse a frequent concern associated with using

TROPOMI methane observations for certain applications. The demonstrated quality of this data product broadens its suitability

for a more extensive range of scientific investigations.

With a steadily growing data record of currently seven years, the advanced TROPOMI/WFMD v2.0 product is well-460

positioned for integration into comprehensive monitoring systems that combine complementary information from accurate

local in-situ measurements and global satellite observations within an inverse modelling framework. The proven performance
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Figure 17. Comparison of (a) TROPOMI/WFMD v1.8 and (b) v2.0 XCH4 over Central Europe for example satellite overpasses demon-

strating the improved cloud screening in v2.0. The background shows the corresponding Suomi NPP/VIIRS True Colour image (bands

I1-M4-M3) to highlight the position of the clouds. Elevated methane abundances associated with emissions from the Upper Silesian Coal

Basin in Poland are clearly visible on both days.
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Figure 18. Similar to Figure 17 but showing XCO and different satellite overpasses. Distinct enhancements are evident over major Central

European steelworks including those located in Duisburg and Dillingen, Germany.
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Figure 19. Comparison of (a) TROPOMI/WFMD v1.8 and (b) v2.0 XCH4 over Siberia for example satellite overpasses demonstrating the

improved cloud screening in v2.0. The background shows a specific Suomi NPP/VIIRS false-colour composite (bands M3-I3-M11), which

is capable of distinguishing clouds (warm off-white) from snow/ice (bright red). In a true colour image both would appear white and would

be indistinguishable. The observed elevated methane abundances are attributed to leakage from oil and gas facilities.

of the data product also supports important applications, such as the quantification of emission sources. The expertise in

applying machine learning techniques in the field of satellite retrievals, which was gained during the development of the

TROPOMI/WFMD algorithm, establishes a sound basis for similar approaches in future missions, including the Sentinel-5465

satellites.

Data availability. The methane and carbon monoxide data products presented in this publication are available at https://www.iup.uni-bremen.

de/carbon_ghg/products/tropomi_wfmd/. The Total Carbon Column Observing Network data are available in the TCCON data archive hosted

by CaltechDATA at https://tccondata.org.
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Appendix A: Spectral fit example470

Figure A1. Spectral fit for a sample scene in Bavaria, Germany. (a) The TROPOMI spectral measurements (red circles) are shown together

with the fitted radiative transfer model (black line) and the resulting (relative) fit residual ϵ below. The grey dashed line highlights the baseline

of the model, i.e., the fitted polynomial without absorption. The difference between the baseline relative to the model or measurement gives a

sense of the depth of the individual absorption lines. The blue-shaded interval indicates the virtually absorption-free continuum-like portion

used to determine the apparent albedo, which is important to disentangle surface reflection and molecular abundances in the fitting procedure.

(b) Weighting functions with respect to the fitted gases j scaled with the respective retrieved columns v̂j , breaking down which of the

measured features are attributable to which absorber. This representation also explicitly reconfirms that none of the gases has any significant

absorption in the continuum-like interval used.

The spectral fitting window of TROPOMI/WFMD v2.0 can be seen in the example fit shown in Figure A1. The strong

methane band around 2317nm is generally excluded to retrieve CH4 and CO simultaneously as accurately as possible

(Schneising et al., 2019). The apparent albedo is retrieved in the preprocessing from the measured mean radiance Icon in the

continuum interval and is then prescribed in the actual fitting procedure. The relative fit residual ϵ is defined as 2·Model−TROPOMI
Model+TROPOMI .
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Appendix B: Perceptual uniform colormap vivian475

It is increasingly recognised that scientific visualisation benefits from perceptually uniform colormaps, which enable accurate

and accessible interpretation of data. Non-uniform changes in brightness or hue can distort the perception of quantitative values.

Many conventional colour scales remain difficult to interpret, especially for viewers with colour vision deficiencies.

The vivian colormap, which is available in the Python package cmuseo, is designed to be perceptually uniform and acces-

sible to people with colour vision deficiencies. Like the widely used viridis colormap, vivian targets the needs of scientific480

visualisation, but is intended to achieve a wider perceptual range. The perceptual gradient curve, used to assess the quality

of colormaps, is generated by calculating the colour differences ∆E between adjacent colours using Euclidean distance in

CAM02-UCS space, which closely models the human perception of colour. If the ∆E curve remains flat, this means that

equal changes in the data translate into equal perceived differences, helping to preserve gradients and fine structures without

introducing visual artefacts. We measure this flatness with the normalised root mean square (RMS) deviation δ%
RMS , which is485

reported as a percentage of the average ∆E. The total perceptual arc length L =
∫
C dE of the colormap’s trajectory C in the

CAM02-UCS space reflects how large the perceptual range is that the colormap can cover, with larger L values indicating a

better ability to reproduce fine details. In addition to ensuring the perceptual uniformity of the original colour information, it

is also important that changes in brightness, calculated as ∆J ′ = ∆E(J′,0,0), are likewise uniform and monotonic in order to

guarantee flawless greyscale representation and better accessibility for viewers with limited colour perception.490

Figure B1 shows that vivian is perfectly perceptually uniform, both in original colour representation and also when converted

to greyscale, and is thus a reliable choice for accurate and accessible data visualisation in science. In line with the intended

objective, the colormap offers a slightly larger perceptual range than viridis (L = 145.0 versus 123.9).

Figure B1. Perceptual analysis of the vivian colormap. Shown are perceptual differences along the colormap (top left) and corresponding

lightness differences (top right) in CAM02-UCS space. The bottom panel shows the 3D-trajectory of vivian and an example figure.
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Appendix C: List of TCCON sites

Table C1. TCCON sites used in the validation sorted according to latitude from north to south.

Site Latitude Longitude Altitude Reference

(◦) (◦) (km)

Eureka 80.05 −86.42 0.61 Strong et al. (2022); Batchelor et al. (2009)

Ny-Ålesund 78.92 11.92 0.02 Buschmann et al. (2022)

Sodankylä 67.37 26.63 0.19 Kivi et al. (2022); Kivi and Heikkinen (2016)

East Trout Lake 54.35 −104.99 0.50 Wunch et al. (2022)

Białystok 53.23 23.03 0.19 Petri et al. (2024a); Messerschmidt et al. (2012)

Bremen 53.10 8.85 0.03 Notholt et al. (2022)

Harwell 51.57 −1.32 0.14 Weidmann et al. (2023, 2025)

Karlsruhe 49.10 8.44 0.11 Hase et al. (2024)

Paris 48.85 2.36 0.06 Té et al. (2022)

Orléans 47.97 2.11 0.13 Warneke et al. (2024)

Garmisch 47.48 11.06 0.75 Sussmann and Rettinger (2023)

Park Falls 45.94 −90.27 0.44 Wennberg et al. (2022b)

Rikubetsu 43.46 143.77 0.38 Morino et al. (2022a)

Xianghe 39.80 116.96 0.04 Zhou et al. (2022); Yang et al. (2020)

Lamont 36.60 −97.49 0.32 Wennberg et al. (2022c)

Tsukuba 36.05 140.12 0.03 Morino et al. (2022b)

Nicosia 35.14 33.38 0.19 Petri et al. (2024b)

Edwards 34.96 −117.88 0.70 Iraci et al. (2022)

Caltech 34.14 −118.13 0.24 Wennberg et al. (2022a)

Saga 33.24 130.29 0.01 Shiomi et al. (2022); Ohyama et al. (2015)

Hefei 31.90 119.17 0.04 Liu et al. (2023); Wang et al. (2017)

Burgos 18.53 120.65 0.04 Morino et al. (2022c); Velazco et al. (2017)

Darwin −12.46 130.93 0.04 Deutscher et al. (2023b, 2010)

Réunion −20.90 55.49 0.09 De Mazière et al. (2022)

Wollongong −34.41 150.88 0.03 Deutscher et al. (2023a)

Lauder −45.04 169.68 0.37 Sherlock et al. (2022); Pollard et al. (2022, 2021)
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