

TROPOMI/WFMD v2.0: Improved retrievals of XCH₄ and XCO with XGBoost-based quality filtering

Oliver Schneising¹, Heinrich Bovensmann¹, Michael Buchwitz¹, Matthias Buschmann¹, Nicholas M. Deutscher², David W. T. Griffith², Jonas Hachmeister¹, Frank Hase³, Laura T. Iraci⁴, Rigel Kivi⁵, Isamu Morino⁶, Hirofumi Ohyama⁶, Christof Petri¹, Maximilian Reuter¹, John Robinson⁷, Coleen Roehl⁸, Mahesh Kumar Sha⁹, Kei Shiomi¹⁰, Kimberly Strong¹¹, Ralf Sussmann¹², Yao Té¹³, Voltaire A. Velazco¹⁴, Mihalis Vrekoussis^{15,1,16}, Wei Wang¹⁷, Thorsten Warneke¹, Damien Weidmann¹⁸, Debra Wunch¹¹, Minqiang Zhou¹⁹, and Hartmut Bösch¹

Correspondence: Oliver Schneising (oliver.schneising@iup.physik.uni-bremen.de)

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor satellite provides daily global observations of atmospheric methane (CH₄) and carbon monoxide (CO) at relatively high spatial resolution. The dense spatial and temporal coverage is achieved by the instrument's wide swath, which permits detailed mapping of the worldwide distribution of these important atmospheric constituents. The adaptation and optimisation of the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFMD) algorithm for the simultaneous retrieval of the column-averaged dryair mole fractions XCH₄ and XCO from TROPOMI's shortwave infrared (SWIR) radiance measurements has proven to be a valuable complement and alternative to the operational TROPOMI products.

¹Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany

²Environmental Futures, School of Science, University of Wollongong, Wollongong, NSW, Australia

³Karlsruhe Institute of Technology (KIT), IMKASF, Karlsruhe, Germany

⁴Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA

⁵Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland

⁶Satellite Remote Sensing Section and Satellite Observation Center, Earth System Division, National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, Japan

⁷Earth Sciences New Zealand, Omakau, New Zealand

⁸California Institute of Technology, Pasadena, CA, USA

⁹Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

¹⁰Earth Observation Research Center (EORC), Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, Japan

¹¹Department of Physics, University of Toronto, Toronto, Ontario, Canada

¹²Karlsruhe Institute of Technology (KIT), IMKIFU, Garmisch-Partenkirchen, Germany

¹³Sorbonne Université, CNRS, MONARIS, UMR8233, Paris, France

¹⁴Deutscher Wetterdienst (DWD), Meteorological Observatory Hohenpeissenberg, Hohenpeissenberg, Germany

¹⁵Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus

¹⁶Center of Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany

¹⁷Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China

¹⁸STFC Rutherford Appleton Laboratory, Space Science and Technology Department, Harwell Campus, Didcot, UK

¹⁹State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

The latest release of the TROPOMI/WFMD product (version 2.0) includes several improvements expanding its suitability for a wider range of scientific applications. Data yield at mid and high latitudes has increased, accompanied by improved accuracy and precision according to the validation with the ground-based Total Carbon Column Observing Network (TCCON). These advancements are primarily due to more refined quality filtering that has been accomplished by replacing the previous Random Forest Classifier with the more efficient and potentially higher performing Extreme Gradient Boosting (XGBoost) algorithm in conjunction with improved training data incorporating an updated cloud product from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the TROPOMI Aerosol Index. This enhanced training data set enables more reliable identification of cloudy scenes and mitigates issues related to specific aerosol events over bright surfaces. Importantly, as with previous product versions, the actual quality classification does not depend on the real-time availability of these external data products, which are only required during the training phase.

1 Introduction

Methane (CH_4) is the second most important anthropogenic greenhouse gas in terms of radiative forcing following carbon dioxide (CO_2) . While it is less abundant in the atmosphere, the global warming potential of CH_4 by mass unit is significantly greater than that of CO_2 (Masson-Delmotte et al., 2021). However, thanks to its much shorter atmospheric lifetime of around a decade (Prather et al., 2012; Li et al., 2022), reducing CH_4 emissions will have a decisive impact on climate on a short timescale, so that rapid action can support measures to limit global warming to well below $2^{\circ}C$ above pre-industrial levels. Carbon monoxide (CO) is a reactive gas that is formed as a by-product during incomplete combustion and oxidation of hydrocarbons, including emissions from wildfires as a natural source. It contributes indirectly to climate change by depleting hydroxyl radicals (OH), which are critical for removing other gases that contribute to global warming, such as CH_4 . At the same time, the oxidation of CO produces CO_2 . Under certain conditions, CO also participates in photochemical reactions forming tropospheric ozone, which is itself a greenhouse gas. With a typical lifetime of 1 to 2 months, CO is a useful tracer for atmospheric air masses of anthropogenic origin. For sources that emit both CO and CO_2 simultaneously, it is feasible to use CO as a proxy for CO_2 emissions by using emission factors (Silva et al., 2013; Wu et al., 2022; Schneising et al., 2024). Because of these reasons, monitoring both gases helps to better understand atmospheric chemistry and guide efforts to mitigate climate change.

Satellite remote sensing has emerged as a useful method for tracking global distributions of CH₄ and CO. It thus offers unique insights into the underlying sources, sinks, and atmospheric transport processes. In particular, measuring upwelling shortwave infrared (SWIR) radiances is especially useful because of the sensitivity to changes in trace gas abundance throughout the entire atmospheric column. Instruments such as MOPITT (Terra) (Drummond et al., 2010), SCIAMACHY (ENVISAT) (Burrows et al., 1995; Bovensmann et al., 1999), and TANSO-FTS (GOSAT, GOSAT-2) (Kuze et al., 2016; Suto et al., 2021) have contributed important data on CH₄, CO, or both, depending on which spectral range each sensor covers.

Launched on 13 October 2017, TROPOMI on board ESA's Sentinel-5 Precursor satellite measures radiances across eight spectral bands from the ultraviolet (UV) to the SWIR (Veefkind et al., 2012) with daily global coverage and relatively high

spatial resolution $(5.5 \times 7 \,\mathrm{km^2}$ at nadir in the SWIR bands, after August 2019). The unique capabilities of TROPOMI enable unprecedented mapping of CH₄ and CO distributions, supporting the detection of large-scale patterns as well as localised emission sources in a single satellite overpass. The data can be combined with targeted high-resolution airborne or satellite-based measurements with limited coverage (e.g., from GHGSat (Jervis et al., 2021)) in a tip and cue approach to zoom in on and quantify individual point sources detected by TROPOMI (Maasakkers et al., 2022; Schuit et al., 2023). In addition to the operational TROPOMI products for CH₄ (Hu et al., 2016; Hasekamp et al., 2022) and CO (Landgraf et al., 2016, 2022), the TROPOMI/WFMD product, which retrieves both gases simultaneously from a common spectral window (Schneising et al., 2019, 2023), has proven valuable as an independent data set in geophysical applications and in sensitivity studies to assess the robustness of findings with respect to the specific selection of the underlying data product (Veefkind et al., 2023; Nüß et al., 2025; Lindqvist et al., 2024).

A non-linear machine learning quality screening algorithm based on a Random Forest Classifier was implemented for the first time in the original TROPOMI/WFMD combined XCH₄ and XCO retrieval to exclude measurements that are insufficiently characterised by the tabulated forward model, which assumes rather simple physical conditions (e.g., cloud-free scenes) for fast processing (Schneising et al., 2019). Similar machine learning-based filtering techniques are now widely used in greenhouse gas retrievals from multiple satellite instruments (Keely et al., 2023; Borsdorff et al., 2024; Barr et al., 2025), reflecting a broader shift towards data-driven quality control in this field of remote sensing.

In this article, we present the recent updates that have been incorporated into the latest version of the TROPOMI/WFMD product (version 2.0). In particular, the Random Forest Classifier previously used for quality filtering has been replaced with the more efficient high-performance XGBoost algorithm, and the training data have been improved. The following sections provide a detailed account of these modifications, a comprehensive validation of the resulting data products, and demonstrate the consequential enhancements in data quality relative to the previous product version.

2 TROPOMI/WFMD algorithm improvements

The Weighting Function Modified DOAS (WFMD) algorithm retrieves column-averaged dry-air mole fractions of methane (XCH₄) and carbon monoxide (XCO) from SWIR radiances in the $2.3\,\mu m$ spectral range measured by TROPOMI and is described in detail in Schneising et al. (2019, 2023). Therefore, only the main aspects are briefly summarised here. WFMD uses a least-squares approach to scale pre-defined vertical profiles and fits a linearised radiative transfer model based on SCIATRAN (Rozanov et al., 2002, 2014) to the logarithm of the sun-normalised radiance. A look-up table enables efficient retrievals of the vertical columns of the targeted species by covering various atmospheric conditions. The retrieved columns are converted to XCH₄ and XCO using dry air columns from the European Centre for Medium-Range Weather Forecasts (ECMWF) adjusted for the higher resolved actual surface elevation of the individual satellite scenes. A machine learning-based classifier filters low-quality scenes using cloud data from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi NPP (Hutchison and Cracknell, 2005) in the training phase. To mitigate residual albedo-related biases in XCH₄, a random forest regressor with shallow decision trees (leaf nodes \ll training scenes \ll all scenes) is trained on a small spatio-temporally constrained

90

subset using a small number of features and the SLIMCH4 climatology (Noël et al., 2022) as a low-resolution reference. This post-processing correction method is statistically robust and generalises effectively to unseen data (Schneising et al., 2023). No similar correction is required for XCO due to its larger natural variability and relaxed quality requirements.

2.1 General processing improvements

TROPOMI/WFMD v2.0 introduces several improvements aimed at enabling more robust results in scientific applications. It consistently uses TROPOMI Level 1b V02.01.XX files as input, ensuring the inclusion of the latest instrument calibration. The first part of the split spectral fitting window described in Schneising et al. (2019) contains a continuum-like region (with virtually no absorption by atmospheric constituents), which serves to determine the apparent albedo in the preprocessing step in order to disentangle surface reflection and molecular abundances in the actual fitting procedure. In v2.0, the first part of the retrieval window has been slightly extended by 0.4 nm at the long-wavelength end and now covers the spectral range from 2311-2315.9 nm, while the enclosed near-continuum itself remains unchanged. The extension aims at improving the transition to the region with stronger molecular absorption features captured in the second part of the fitting window (2320-2338 nm) and may enhance the signal-to-noise ratio and baseline fitting, thereby supporting more stable and precise retrievals. The position of the fitting window and the continuum-like interval it contains is shown together with the corresponding molecular absorption features in Appendix A in an example spectral fit.

Another update in v2.0 is the usage of a hybrid sigma-pressure vertical coordinate system consisting of 31 layers to provide the prior profiles and averaging kernels, replacing the previous pure sigma coordinate system with 20 layers, in which each layer represented an equal fraction of the total surface pressure. Figure 1 compares the two vertical discretisations using an example of surface elevation variation. The new hybrid layering combines terrain-following characteristics near the surface with enhanced vertical resolution in the lower atmosphere and fixed reference levels in the upper atmosphere. The increased near-surface vertical detail in the prior and averaging kernel information supports the consideration of surface pressure mismatches during comparison with other measurements (e.g., for validation) or during assimilation in inverse modelling frameworks. Such mismatches can occur due to local horizontal displacement relative to comparison measurements or from the coarse horizontal resolution of models. The enhanced vertical representation may therefore facilitate better harmonisation of these inherent differences, especially over complex terrain.

2.2 XGBoost-based quality filtering

In earlier versions of the product, quality filtering was accomplished using a Random Forest Classifier (Schneising et al., 2019, 2023), since it delivers robust results that are largely insensitive to fine-tuning of the hyperparameters (Tantithamthavorn et al., 2019). Random Forest is a bagging-based ensemble learning method that trains the involved decision trees in parallel. In the standard implementation, these trees are deep and unpruned. All trees train independently on bootstrapped subsets of the training data, with a random subset of features made available at each split (Breiman, 2001). This double randomisation of the training process implies that each tree is created from a different subset of data and features, which decorrelates the individual trees from each other and reduces overfitting by means of the imposed diversity within the ensemble. The final predictions are

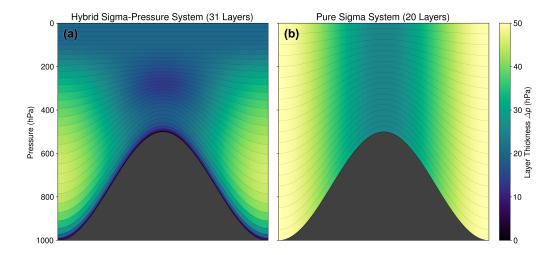


Figure 1. Comparison of **(a)** the 31-layer hybrid sigma-pressure vertical coordinate system used in TROPOMI/WFMD v2.0 with **(b)** the previous 20-layer pure sigma coordinate system. The dark grey area illustrates exemplary surface elevation variation in x-direction. The associated pressure layer thicknesses are colour-coded. The perceptual uniform colormap used here and in many other figures is described in Appendix B.

made by majority voting among the trees, which reduces variance, as the collective decision-making process aggregates the results of the heterogeneous ensemble members.

The latest product TROPOMI/WFMD v2.0 now uses Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) to address the rising need for more accurate results and higher computational efficiency. XGBoost builds trees sequentially, with each new tree aiming to correct the residual errors of the preceding ensemble. To achieve this, the respective new tree is trained to predict the negative gradient of the current loss function in order to determine the direction and magnitude of the required correction. By iteratively adding these correction trees, XGBoost reduces bias and variance, often surpassing the predictive performance of bagging-based models. The one-time training process is slower due to its sequential nature, but the resulting model tends to be shallower and more optimised, which is beneficial when used in resource-constrained environments. Unlike Random Forest, which usually performs well with default settings, XGBoost is more sensitive to hyperparameter optimisation due to the complex way its tuning parameters interact with each other. For the TROPOMI/WFMD v2.0 quality filter, the Python package *xgboost* is used, and tuning efforts focussed on balancing model simplicity with generalisation ability, resulting in the following parameter values, which demonstrate the importance of carefully tuning XGBoost to create a maximally robust and generalisable model.

To prevent overfitting, a conservative learning_rate = 0.03 was chosen to shrink the weights for the corrections by new trees, with the trade-off that more boosting rounds are required to compensate for the slower (but more accurate) learning. The complexity of the individual trees was constrained with max_depth = 8 and min_child_weight = 4 in order to obtain suitable pruning without uncontrolled growth. An increase in the generalisation capability to unseen data was achieved by

150

adding a random component to the training process via subsample = 0.7 and colsample_bytree = 0.7. This means that each tree of the model is trained on randomly selected 70% of the training data using 70% of the available features, which makes the model less likely to fit to noise or irrelevant patterns in the training data. Besides the tree construction and sampling parameters, there are also other regularisation parameters in addition to the already discussed learning rate: gamma = 0.2 requires that nodes in a single tree are only added if the associated loss reduction is large enough, thus impeding unnecessary splits; lambda = 1 controls the L2 regularisation of the leaf weights by encouraging the model to find a simpler solution that generalises better to unseen data. While lambda is applied during tree creation, learning_rate scales down the final tree weights at the moment it is added to the ensemble.

The XGBoost classifier was trained using data from 38 randomly chosen days across 2020 and 2021 to cover a wide variety of atmospheric conditions while keeping the data set size manageable. The training truth for the quality filter was informed by an updated cloud product from the Visible Infrared Imaging Radiometer Suite (VIIRS; S5P S-NPP Cloud processor version V01.03.00 based on the VIIRS Enterprise Cloud Mask) and the TROPOMI Aerosol Index (V02.04.00), aiming at improved identification of cloudy scenes and mitigation of issues arising from specific aerosol events over bright surfaces. The classification task involves a clear class imbalance, with good quality observations (class 0) representing a minority (p = 0.152). The set of 26 features used in XGBoost remains identical to the quality filter of v1.8 (Schneising et al., 2023) and comprises only intrinsic parameters available from preceding processing. This means that the quality filter remains independent of real-time availability of external cloud and aerosol information during the actual quality prediction.

Model performance was assessed using completely independent data from 2022, a year that was not involved at all in the training process. To monitor and prevent overfitting, *early stopping* was applied during training (early_stopping_rounds = 16) using the *Logloss* metric for progress tracking. Logloss was chosen because it corresponds directly to the objective function that is minimised in XGBoost training, thus ensuring consistency of the evaluation step with the underlying optimisation process. As a performance measure, Logloss evaluates the calibration quality of predicted probabilities across all classes. Early stopping intervened after 8000 boosting rounds (n_estimators) because the Logloss on the validation set had not improved in 16 consecutive rounds, revealing that the learning progress had already levelled off significantly. According to Figure 2, the corresponding validation Logloss curve decreases monotonically during the 8000 boosting rounds to values substantially below the baseline entropy of $-(p \log(p) + (1-p) \log(1-p)) \approx 0.426$ expected under the prevalence p of class 0.

To interpret the magnitude of potential overfitting, we quantify the achieved gain on the validation set as the decrease in Logloss relative to the baseline entropy and define the relative gap metric η to be the ratio of the final training-validation gap to this gain. This metric offers an intuitive way to assess overfitting and how well a model generalises to unknown data that was not used in training. In the present case, η is only about 8%, demonstrating that the final training-validation gap is negligible relative to the validation improvement and that the vast majority of the model's fitted relationships generalise effectively, with overfitting being negligible when assessed in terms of Logloss.

In addition to the previous assessment, potential overfitting was further evaluated using the *Area Under the Precision-Recall Curve (AUPRC)*, which is particularly suitable for the present application due to the considerable class imbalance. The AUPRC is specifically meaningful under these conditions as it captures the trade-off between recall (coverage of actual positives) and

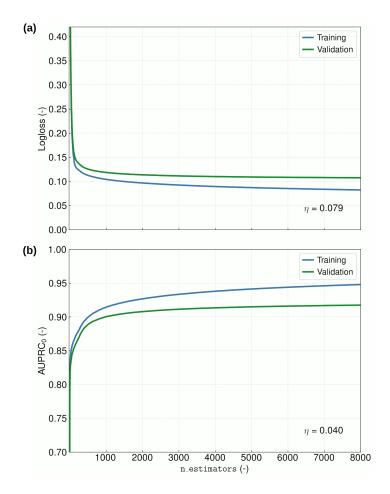


Figure 2. Training and validation performance, measured by (a) Logloss and (b) the Area Under the Precision-Recall Curve (AUPRC, see main text for details) for class 0 (good quality), as a function of boosting rounds, illustrating stable convergence without notable overfitting. The relative gap metric η quantifies how large the final training-validation gap is relative to the achieved gain on the validation set over the baseline. A small value of η indicates that the fitted model generalises effectively to unseen data.

precision (correctness of positive predictions). It penalises false positives more than other metrics such as the Area Under the Receiver Operating Characteristic Curve (AUROC). This emphasis is in line with practical considerations in quality filtering, where false positives (e.g., cloudy scenes that incorrectly pass the quality filter) can introduce systematic retrieval biases, as such scenes are typically not well characterised by the tabulated forward model.

Since a random classifier would produce an AUPRC close to the prevalence p, any substantial improvement over this baseline clearly signals successful distinction between classes. Analogous to the Logloss evaluation, the relative gap metric η is defined as the ratio of the final training-validation gap to the gain achieved and quantifies potential overfitting in terms of AUPRC. As shown in Figure 2, the AUPRC curve of the validation data set rises monotonically to high values close to the theoretical maximum of 1.0 and reaches approximately 0.92 after the completed 8000 boosting rounds, which is about six times the

180

185

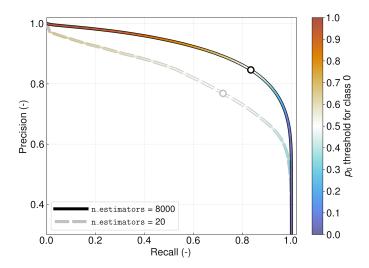


Figure 3. Final precision-recall curve of the XGBoost classifier for class 0 (good quality) evaluated on the validation set compared to a respective curve for an early boosting round. The curves are colour-coded according to the corresponding decision threshold p_0 , illustrating how model performance changes as the threshold varies. The circles represent the standard threshold $p_0 = 0.5$ used for assigning the class label 0 in the TROPOMI/WFMD v2.0 quality filter.

prevalence baseline. The corresponding η is a mere 4%, showing that the final difference between the training and validation curves is negligible compared to the improvement achieved on the validation set, which is consistent with the conclusions from the Logloss analysis. Overall, the consistent performance across the complementary evaluation metrics Logloss and AUPRC shows that the implemented XGBoost model validly distinguishes between classes under imbalanced conditions, without showing appreciable signs of overfitting.

The resulting precision-recall curve is shown in Figure 3 with colour-coded decision threshold p_0 , which is the minimum level of prediction probability for assigning an instance to class 0 (good quality). The graph illustrates the classifier performance trend when varying the threshold, supporting a more reasonable choice of p_0 based on the required balance between precision and recall. Increasing the threshold results in higher precision (reducing the number of false positives) but at the expense of lower recall, meaning that more true positives are missed. Conversely, a lower threshold raises recall, but it also leads to more false positives. For the TROPOMI/WFMD v2.0 quality filter, the standard threshold $p_0 = 0.5$ is used to assign class labels. This value reflects the point at which the model is equally confident in assigning either class, which is commonly chosen when there is no strong preference for favouring precision over recall. In this context, it is helpful to recognise that recall and data yield of the quality filter are positively correlated.

To further minimise remaining outliers in the data, we refined the additional empirical quality filter from Schneising et al. (2023), which is applied after the machine learning quality prediction. This extra step in quality control has two key components: (1) Filtering based on the root mean square of the fit residuals $\epsilon_{\rm RMS}$ as a function of the sun-normalised continuum radiance $I_{\rm con}$ (see Appendix A for a definition of fit residual and $I_{\rm con}$). Measurements with $\epsilon_{\rm RMS} > 0.03$ or $\epsilon_{\rm RMS} > a \cdot (I_{\rm con} + b)^{-1} + c$

195

200

205

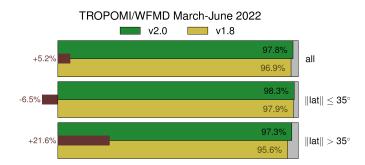


Figure 4. Precision of the quality filter concerning identification of cloud-free scenes in versions 1.8 and 2.0, shown for selected latitude ranges. Precision is defined as the percentage of actually cloud-free scenes according to VIIRS among those passing the quality filter. The brown bars highlight the change in the absolute number of good quality scenes (v2.0 relative to v1.8).

are flagged as bad quality, where the parameters a=0.0015, b=0.07, and c=0.011 were determined empirically to separate typical values of $\epsilon_{\rm RMS}(I_{\rm con})$ from outliers. The purpose of this filter is to remove specific scenes where the fit quality is worse than for other scenes with similar radiance. Such anomalies can arise, for example, from high aerosol concentrations or other unusual atmospheric conditions. (2) Downward outlier detection in three-dimensional (latitude, longitude, XCH₄)-space on a daily basis with the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996). This clustering algorithm groups spatially dense points and marks points in low-density regions as outliers. It is utilised instead of the previously used Local Outlier Factor (LOF) as it tends to be more robust in areas where data points are distributed more sparsely. Together, these two filtering steps remove roughly 3.5% of the data that initially passed the machine learning quality screening; about 1.2% are rejected by the $\epsilon_{\rm RMS}$ filter and about 2.3% by DBSCAN's outlier detection. The overall removal rate corresponds almost exactly to that of the previous method.

As a follow-up to the performance evaluation of the XGBoost-based quality filter with unseen data, the precision in identifying cloud-free retrievals is analysed in the subsequent statistical analysis. To this end, Figure 4 compares the percentage of actually cloud-free scenes (*confidently cloudy* sub-scene fraction below 0.1 according to VIIRS) among all scenes that pass the quality filter for v2.0 and v1.8. At all latitude bands considered, v2.0 consistently achieves better precision than v1.8, reflecting an improvement in the reliability of cloud filtering as there is less misclassified data falsely passing quality screening. Nevertheless, the data yield is generally increasing at the same time, especially in the mid and high latitudes, as the brown bars in the figure indicate. The only exception is the band closer to the equator, which also includes regions with frequent aerosol exposure like the Sahara Desert; there is a small decline in scenes classified as good, contrary to the general trend. This decrease suggests that certain aerosol-affected scenes are better removed, which was intended by including the TROPOMI Aerosol Index in the training of the quality filter.

Overall, these results suggest that version 2.0 delivers both improved data quality and increased data yield, except under certain challenging conditions, such as those involving desert aerosols. However, this observation still needs to be confirmed by validation with independent reference data (see Section 3) and a detailed analysis of the regional patterns of the satellite data

210 (see Section 4). It needs to be emphasised that the subsequent shallow machine learning calibration, based on a Random Forest Regressor, to reduce the remaining systematic errors in the XCH₄ data remains the same as in v1.8. Specifically, the training regions, the maximum tree growth limit, and the small set of input features, mainly related to albedo, have not been changed. Even though the settings remain identical, this post-processing correction might perform better with the current version as the improved quality filter produces more consistent data, helping the regressor model to learn the core relationships more effectively.

3 Validation

220

230

240

3.1 Random and spatial systematic errors

TCCON is a global network of ground-based Fourier-transform spectrometers that measure direct solar radiation in the nearand shortwave-infrared spectral region to retrieve precise column-averaged abundances of trace gases such as XCH₄ and XCO, serving as a benchmark for satellite data validation (Wunch et al., 2011a). All sites operate similar instrumentation (Bruker IFS 125HR) and use a standardised retrieval algorithm. Data are tied to the WMO trace gas scale using airborne in-situ measurements with species-specific scaling factors, yielding estimated accuracies of about 4 ppb for XCH₄ and 2 ppb for XCO in the GGG2020 version used here (Laughner et al., 2024).

To enable a quantitative comparison with satellite data, the differences in instrument sensitivity and prior profiles must be taken into account. This involves adjusting the measurements for the influence of their native prior profiles using a common prior (Rodgers, 2000; Dils et al., 2014; Schneising et al., 2019), here taken from the TCCON:

$$\hat{c}_{\text{adj}} = \hat{c} + \frac{1}{m_0} \sum_{l} m_l (1 - A_l) (x_{a,T}^l - x_a^l)$$
(1)

where \hat{c} is the original TROPOMI retrieval, A_l the satellite averaging kernel, x_a and $x_{a,T}$ the TROPOMI and TCCON prior profiles, respectively. m_l denotes the dry air mass in layer l from pressure differences corrected for water vapour, and m_0 is the total dry air mass. The averaging kernels of the satellite data product are illustrated in Figure 5, demonstrating that the retrievals are sensitive to all atmospheric layers.

Theoretically, smoothing errors can be further reduced by adjusting the TCCON results \hat{c}_T before the comparison with \hat{c}_{adj} using the retrieved TCCON profile scaling factors in conjunction with the satellite averaging kernels (Rodgers and Connor, 2003; Wunch et al., 2011b; Schneising et al., 2019). However, this second correction step is omitted in the present analysis for the sake of simplicity, as it became apparent in the past that this adjustment is negligible in the validation of TROPOMI/WFMD. Since the satellite averaging kernels in the lower atmosphere are sufficiently close to 1.0, the resulting correction would be in the sub-ppb range, which is significantly smaller than the systematic errors associated with the TROPOMI and TCCON retrievals.

To account for surface elevation differences between TROPOMI observations and TCCON measurements, a height correction is applied to the retrieved column-averaged dry-air mole fractions \hat{c} , such that the collocated data pairs are referenced to a common surface pressure (Sha et al., 2021). Specifically, this height correction estimates the mole fraction that would be retrieved by the satellite measurement, had the retrieval been performed at the surface pressure, P_T , of the TCCON station,

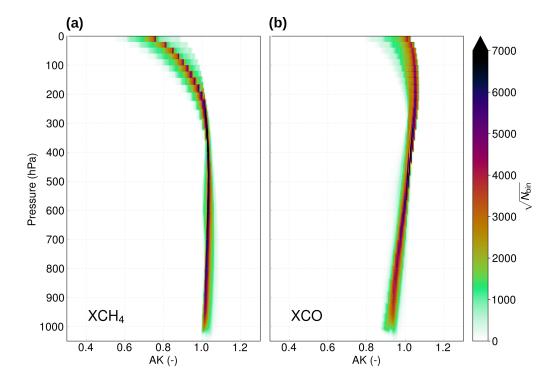


Figure 5. Averaging kernels of the TROPOMI/WFMD v2.0 satellite data product used in the prior profile adjustment of (1). Shown are the averaging kernels of all measurements from every second day of a given year for (a) XCH₄ and (b) XCO, illustrating the vertical sensitivities of the satellite retrievals.

rather than at the original TROPOMI surface pressure, P. This adjustment incorporates the retrieved TROPOMI profile scaling factor $\hat{\gamma}$, assuming that the scaling factor does not change but the associated profile x_a is suitably extended or truncated consistent with the updated surface pressure. The complete height-correction is given by

245
$$\hat{c}_{P \to P_T} = \left(\hat{c} \cdot P + \hat{\gamma} \int_{P}^{P_T} x_a(p) \, dp\right) P_T^{-1}$$
 (2)

where the integral accounts for the additional or missing air mass resulting from the difference in surface pressure. The generic prior x_a is available across all realistic pressures and can therefore be applied when $P_T > P$ as well. The integral inherently yields the correct sign depending on whether P or P_T is greater.

The validation is performed using the latest TCCON data version GGG2020 (Laughner et al., 2024) and the 26 sites listed in Table C1. The used collocation criteria balance representativity and statistical robustness: Satellite data must be within 100 km horizontally and 500 m vertically of the TCCON site, with a maximum time difference of 2 hours between observations. Since sources in the vicinity of Edwards and Xianghe limit the representability, the collocation radius for these two locations is reduced to 50 km (Schneising et al., 2019).

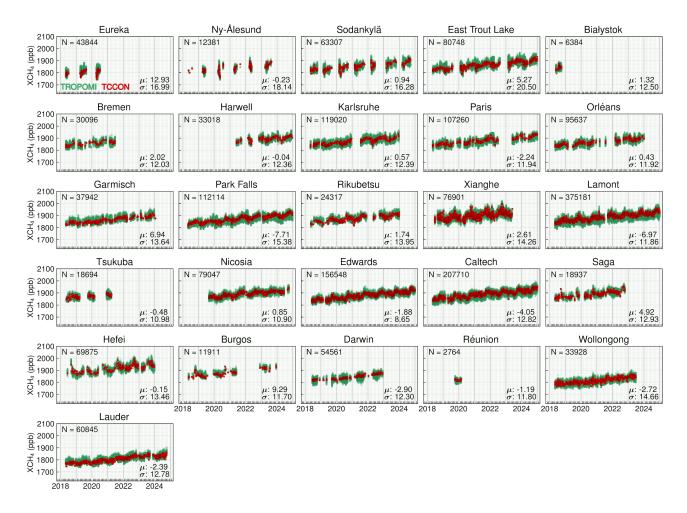


Figure 6. Comparison of the TROPOMI/WFMD v2.0 XCH₄ time series (green) with ground based measurements from the TCCON (red). For each site, N is the number of collocations, μ corresponds to the mean local bias and σ to the scatter of the satellite data relative to TCCON in ppb.

The validation results are summarised in Figures 6 and 7 including the mean local offsets μ and the scatter σ relative to the TCCON for each site. The results for the individual sites are condensed to the following figures of merit for the overall quality assessment of the satellite data: the global offset $\bar{\mu}$ is defined as the mean of the local biases at the individual sites, the random error $\bar{\sigma}$ is the site-wise mean scatter relative to the TCCON, and the spatial systematic error $\sigma(\mu)$ is the standard deviation of the local offsets relative to the TCCON at the individual sites as a measure of the station-to-station biases. For XCH₄, the global offset amounts to $\bar{\mu}=0.65\,\mathrm{ppb}$, the random error is $\bar{\sigma}=13.35\,\mathrm{ppb}$, and the spatial systematic error is given by $\sigma(\mu)=4.46\,\mathrm{ppb}$. For XCO, the corresponding values are $\bar{\mu}=-0.44\,\mathrm{ppb}$, $\bar{\sigma}=5.55\,\mathrm{ppb}$, and $\sigma(\mu)=2.67\,\mathrm{ppb}$. Thus, the estimated spatial systematic errors for both species are on the order of the estimated (station-to-station) accuracy of the TCCON. In the case of XCH₄, the largest scatter σ relative to TCCON is observed at high northern latitude sites, with the largest

270

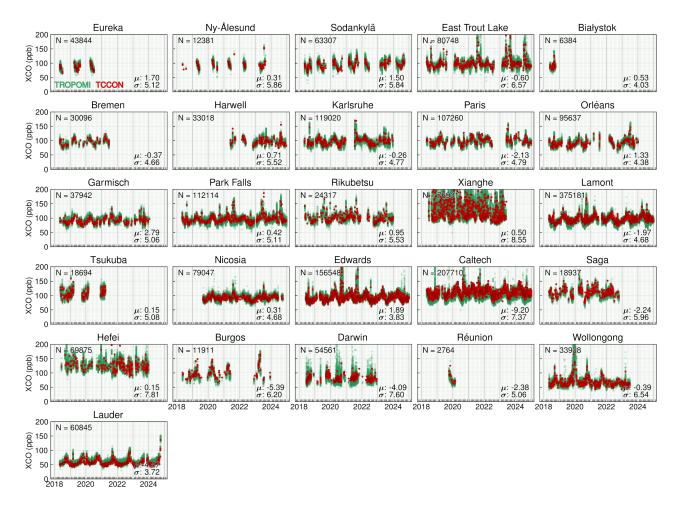


Figure 7. As Figure 6 but for XCO. Individual collocated pairs with lower agreement are typically associated with wildfire events, e.g., when there is a true XCO enhancement in a distant satellite scene but not directly at the TCCON site or vice versa (representation error).

local offset μ at Eureka. These features are attributed to the influence of the polar vortex, which can introduce representation errors when the vortex boundary lies between the TCCON site and individual satellite measurements, leading to genuine differences in XCH₄ between the two data sets (Hachmeister et al., 2025).

Figure 8 shows how the validation results compare to the previous version 1.8. Overall, the number of collocations has increased by about 10% in version 2.0, thanks to better data coverage. In the Arctic in particular, coverage improved by roughly 40%, which reflects the enhanced data yield under challenging conditions, such as high solar zenith angles and low surface reflectivity. Even though the number of collocations N is larger, which often introduces more variability, both the random and systematic errors have actually improved in v2.0, indicating more consistent and reliable retrievals. The only exception is the spatial systematic XCO error, which remains mostly unchanged. Furthermore, the global offset $\bar{\mu}$ of XCH₄ relative to the TCCON has been significantly reduced and is now nearly zero. While this former global offset was not a critical quality

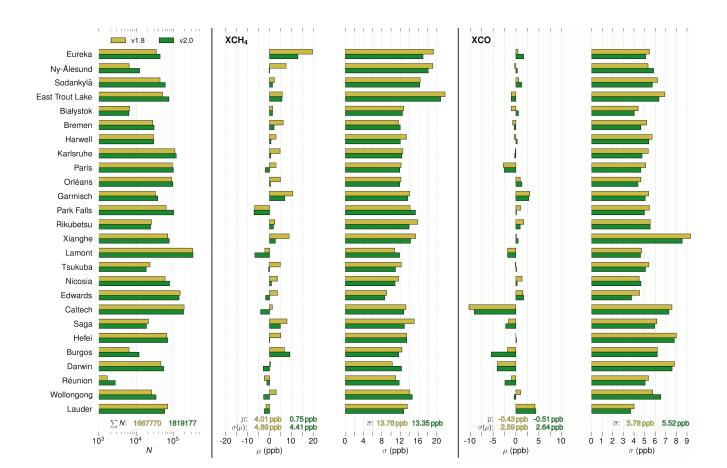


Figure 8. Comparison of the retrieval results for TROPOMI/WFMD v1.8 and v2.0. The comparison was limited to the period during which both product versions were available (May 2018-June 2024). As a result, the numbers differ slightly from those in the full validation of v2.0.

issue since it could be easily corrected with a dedicated bias correction, the fact that it is improved aligns well with the better accuracy of the new v2.0 data product.

275 3.2 Seasonal biases

280

In order to further analyse the intra-annual variability of the discrepancies between the collocated TROPOMI and TCCON data, the site-specific mean offsets μ are first subtracted from the differences of the individual data pairs to remove the already discussed spatial bias component. The resulting anomalies are then grouped by season and categorised as January-March (JFM), April-June (AMJ), July-September (JAS), and October-December (OND). To summarise joint seasonal characteristics, the sites are additionally divided into broad latitudinal bands, namely Arctic (90°N-66.5°N), Northern mid-latitudes (66.5°N-23.5°N), Tropics (23.5°N-23.5°S), and Southern mid-latitudes (23.5°S-66.5°S). Since there are many TCCON sites in the Northern Hemisphere's mid-latitudes, this band is further separated into smaller sub-regions based on longitude (North America, Europe, and Asia). The associated spatio-temporal averages are only included in the analysis for those combinations of

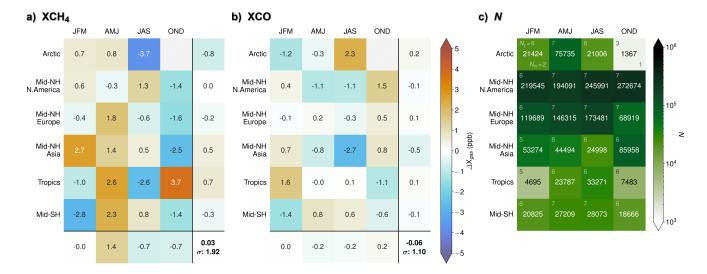


Figure 9. Seasonal mean biases for (a) XCH₄ and (b) XCO relative to the TCCON for the analysed regions. Masked cells indicate insufficient coverage (see main text for details). Row and column averages further summarise the overarching regional and seasonal variability. The standard deviation of the seasonal biases across all regions is interpreted as the overall seasonal bias and indicated in the bottom-right corner. (c) Number of collocations N for the different combinations of region and season. The number of contributing years N_y is shown in the top-left corner of each cell; the number of calendar months $N_{\rm m}$ contributing data to the corresponding 3-month season is displayed in the bottom-right corner of each cell, only if it is smaller than the maximum value of 3.

region and season that contain data from at least three different years for more than one calendar month of the respective season in order to ensure statistical robustness.

The results are displayed as heat maps in Figure 9, where the average bias values are annotated on the corresponding cells and entries with insufficient sampling are masked. In addition, the row and column mean values provide an average overview of regional and seasonal variations, respectively. The total seasonal bias relative to the TCCON is then calculated as the standard deviation of the individual biases across all regions and seasons, resulting in 1.92 ppb for XCH₄ and 1.10 ppb for XCO.

290 3.3 Uncertainties

285

295

The individual uncertainties of the TROPOMI/WFMD measurements are provisionally estimated during the inversion process by error propagation based on the uncorrelated spectral errors provided in the TROPOMI Level 1 files. However, this estimate does not take into account pseudo-noise components that may arise from specific atmospheric conditions or instrumental characteristics, nor systematic uncertainties associated with spectroscopic parameters. For this reason, the initial uncertainty estimates tend to underestimate the actual measurement error and are therefore inflated by a simple linear adjustment to provide more realistic values (Schneising, 2025).

The resulting final uncertainties σ_{unc} reported in the TROPOMI/WFMD v2.0 product are checked by comparison with the actual measured scatter relative to the TCCON. To this end, a data-driven adaptive binning approach based on k-means++

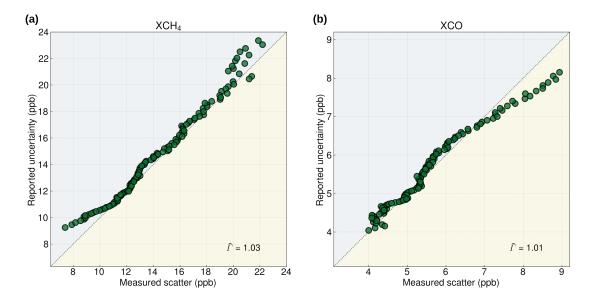


Figure 10. Comparison of reported uncertainties in the TROPOMI/WFMD v2.0 product with the measured scatter relative to the TCCON for (a) XCH₄ and (b) XCO. In the blue-shaded areas, reported uncertainties exceed the observed scatter (overestimation), whereas in the yellow-shaded areas, they fall below it (underestimation).

clustering (Arthur and Vassilvitskii, 2007) is applied as a preparatory step. This approach divides the data into discrete bins of similar uncertainty by minimising the within-cluster variance. For each of these bins, the mean reported uncertainty is calculated and compared to the actual observed scatter of the differences relative to the TCCON. The results presented in Figure 10 demonstrate that the uncertainty estimates provided are generally realistic, as evidenced by the fact that the mean uncertainty ratio $\bar{\Gamma}$, defined as the reported uncertainty divided by the measured scatter, is close to 1.0 (1.03 for XCH₄ and 1.01 for XCO), which is what one would expect from a reliable, high-quality uncertainty estimate. There is a slight overall tendency to overestimate the uncertainties on average ($\bar{\Gamma} > 1$), with the exception of the rather rare cases of poor XCO precision, where the reported uncertainties of the satellite data appear to be somewhat underestimated.

3.4 Surface albedo sensitivity

300

305

310

To investigate possible albedo-related biases in the TROPOMI/WFMD product, the sensitivity of TROPOMI to TCCON discrepancies with respect to surface albedo variability is examined on a daily basis, taking into account site-specific offsets that could complicate the determination of such a relationship. Although the local offsets determined during the validation are probably largely independent of albedo, it cannot be entirely excluded that albedo also contributes to some extent to the site-specific biases. To rigorously account for this by disentangling these components, a joint hierarchical Bayesian linear regression model from the probabilistic programming library *PyMC* (Abril-Pla et al., 2023) is applied, which allows comprehensive uncertainty quantification and propagation, enabling a fully probabilistic characterisation of albedo sensitivity. In this framework, site-

320

325

330

340

345

specific offsets are modelled as random intercepts informed by the previous validation results, while the relationship between surface albedo and the difference to the TCCON is represented by a global fixed regression slope β across all sites. Consequently, the hierarchical approach leaves the model free to attribute parts of the estimated local biases to albedo, thus yielding a more realistic estimate of β .

The model inference is performed by Markov Chain Monte Carlo sampling using the No-U-Turn Sampler (NUTS), an adaptive Hamiltonian Monte Carlo algorithm that efficiently explores high-dimensional posterior distributions, even in the presence of complex hierarchical structures. In the specific case presented here, six independent chains are run in parallel and their convergence to a common posterior distribution is evaluated using the potential scale reduction factor \hat{R} (Vehtari et al., 2021), which compares the variance between multiple chains to the within-chain variance. Values of \hat{R} close to 1.0 indicate that the chains have mixed well, i.e., they have sufficiently explored the parameter space and converged to virtually the same posterior distribution.

To inform plausible data-driven values for the slope parameter β , the observed albedo range is divided into bins of fixed width. Within each bin, the median values of albedo, ΔXCH_4 and ΔXCO (satellite minus collocated TCCON measurements) are calculated, and the respective slopes for all possible pairs of bins are computed to obtain an empirical distribution that reflects the variability over the entire domain. The median absolute deviation (MAD) of these pairwise slopes is then used to conservatively estimate the variability σ_{β} . Assuming a normal prior centered at zero, this defines a weakly informative normal prior for the slope parameter β .

With i denoting individual daily averaged observations and j indexing TCCON sites, the complete hierarchical model includes hyperpriors on site-level intercepts, additional informative validation-based anchor data, a linear predictor combining site biases and albedo dependence, and a likelihood assuming normally distributed observational uncertainties:

$$a_{j} \sim \mathcal{N}(\mu_{a}, \sigma_{a}) \quad \text{with } \mu_{a} \sim \mathcal{N}(\bar{\mu}, \sigma(\mu)), \quad \sigma_{a} \sim \mathcal{H}\mathcal{N}(\sigma(\mu)),$$

$$\hat{a}_{j} \sim \mathcal{N}(a_{j}, \sigma_{\text{eff}, j}) \quad \text{with } f \sim \mathcal{B}(2, 2), \quad \sigma_{\text{eff}, j} = \frac{\sigma_{j}}{\sqrt{f \cdot N_{j}}},$$

$$\xi_{i} = a_{j[i]} + \beta \cdot \alpha_{i} \quad \text{with } \beta \sim \mathcal{N}(0, \sigma_{\beta}),$$

$$\Delta_{i} \sim \mathcal{N}(\xi_{i}, \sigma_{\text{obs}, i}) \quad \text{with } \sigma_{\text{res}, j[i]} \sim \mathcal{H}\mathcal{N}(\frac{1}{2}\bar{\sigma}_{\text{unc}}), \quad \sigma_{\text{obs}, i}^{2} = \sigma_{\text{unc}, i}^{2} + \sigma_{\text{res}, j[i]}^{2}$$

$$(3)$$

where \mathcal{N} denotes a normal distribution, $\mathcal{H}\mathcal{N}$ denotes a half-normal distribution, and \mathcal{B} a Beta distribution. The systematic errors $\bar{\mu}$ and $\sigma(\mu)$ estimated from the preceding validation are used to construct the prior for a_j , which describes the site-specific bias for site j. The local biases are further informed by observed validation-based estimates \hat{a}_j , which are treated as noisy measurements with effective standard errors $\sigma_{\text{eff},j}$ reflecting the corresponding uncertainties of the previously obtained local offset estimates μ_j from validation. Thereby, the co-fitted factor $f \in (0,1)$ shrinks the collocation sample size N_j in computing the standard error from the scatter σ_j relative to the TCCON. The parameters μ_j , σ_j , and N_j are defined as in Figures 6 and 7 but for daily averages. The quantity ξ_i is the mean response predicted by the model for observation i (where j[i] refers to the site associated with i), α_i denotes the associated surface albedo, and Δ_i are the observed differences to TCCON, incorporating both the daily averaged reported observational uncertainty $\sigma_{\text{unc},i}$ (see previous subsection) and site-level residual variability $\sigma_{\text{res},j[i]}$. The additional σ_{res} may be elevated at specific sites, for example due to representation errors during wildfire

355

360

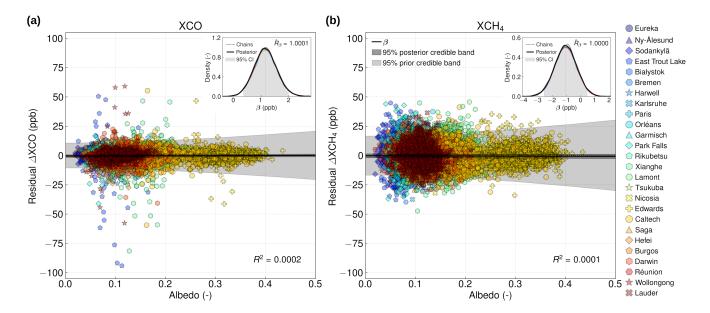


Figure 11. Assessment of the surface albedo sensitivity of TROPOMI/WFMD v2.0 (a) XCO and (b) XCH₄ based on daily means. Residual ΔXCO and ΔXCH₄ were obtained by subtracting the posterior mean site-specific intercepts from the observed differences to remove siteto-site biases. The fitted slope β and its 95% credible band are overlaid illustrating the inferred sensitivity to surface albedo for each trace gas. The insets show the respective marginal posterior distribution of the albedo sensitivity parameter β from the hierarchical model. The width of the distribution reflects the inferred uncertainty in the slope, with the peak indicating the most probable value.

events, when for some Δ_i the two involved data sets are differently affected by corresponding XCO enhancements as a result of spatial separation.

In Figure 11, the posterior mean values of the site-specific intercepts a_i have been subtracted from the observed ΔXCH_4 and ΔXCO values to focus on their dependence on surface albedo. The resulting residuals are free of site-to-site biases and are thus ideally suited to analyse the pure albedo sensitivity β of the data. The arising marginal posterior distributions of the albedo sensitivity parameter are shown as insets in the figure together with the results of the individual Markov Chains. The excellent agreement between the individual resulting distributions, with an associated potential scale reduction factor R_{β} close to 1.0 in both cases, demonstrates that the sampling chains have reliably converged to a common posterior distribution.

The found surface albedo sensitivity in the case of XCO is $\beta = 1.2 \pm 0.8$ ppb for a unit increase in albedo ($\Delta \alpha = 1$), with a coefficient of determination $R^2 = 0.0002$. This means that there is a statistically significant positive relationship between surface albedo and ΔXCO , but albedo explains only a marginal fraction of the overall variance. Some additional uncertainty arises from the fact that the TCCON collocations may not fully represent the entire range of naturally occurring surface albedos. For XCH₄, the estimated sensitivity is $\beta = -1.1 \pm 1.5$ ppb per unit albedo, with $R^2 = 0.0001$ suggesting that there is no significant bias due to surface albedo. If we consider only the two neighbouring sites, Edwards and Caltech, whose combined albedo range already extends from 0.1 to 0.4, the sensitivities for both gases are very similar to those obtained in the

370

375

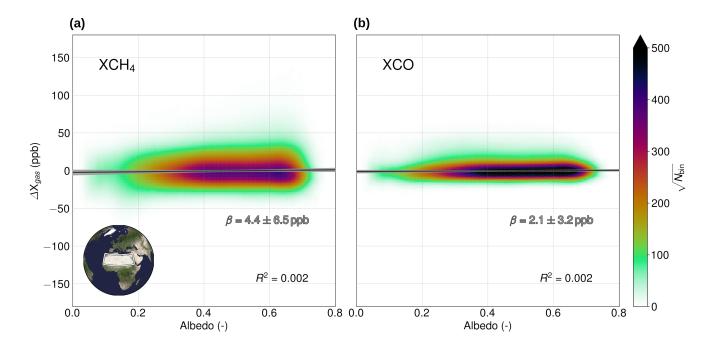


Figure 12. Assessment of the surface albedo sensitivity of TROPOMI/WFMD v2.0 over the Sahara (white region) for (a) XCH_4 and (b) XCO after subtracting the seasonal and level components of a fitted Dynamic Linear Model (DLM). The fitted slope β and its 95% credible band are overlaid illustrating the inferred sensitivity to surface albedo for each trace gas.

full analysis, albeit with increased uncertainty. Since albedo is a dimensionless quantity with values ranging from 0 to 1, and typical observed albedo values cover a considerably narrower subrange, the practical influence of surface albedo on XCO and XCH₄ is correspondingly even smaller. Thus, the albedo-induced bias under typical conditions is limited to the sub-ppb range. These results imply that surface albedo has a minor impact on the XCO retrievals and a negligible effect on XCH₄ in terms of retrieval biases.

Because the albedo range covered by the TCCON comparison is limited ($\alpha \lesssim 0.4$), an additional analysis independent of the TCCON is performed to further assess albedo sensitivity. In the absence of a reference data set to serve as ground truth, a region with negligible methane emissions has to be selected. For this reason, the Sahara is used here (see Figure 12), which also has high albedo variability and is therefore well-suited for this analysis. To remove the influence of the seasonal cycle and the long-term methane increase, the seasonal and level components of a Dynamic Linear Model (DLM) (Hachmeister et al., 2024) based on daily data are subtracted from the time series of individual satellite observations, yielding an anomaly ΔX_{gas} for each measurement. The albedo sensitivity is then estimated as the slope parameter β of a linear regression fit between these anomalies and surface albedo. To assess uncertainty, we use a subsampling bootstrap technique, in which random subsets of 1000 data points are repeatedly drawn from the complete data set and linear regression is re-performed on each subset. This yields empirical distributions of the regression parameters, from which uncertainties are quantified using the corresponding 95% credible bands.

Table 1. Figures of merit from the quality assessment of TROPOMI/WFMD v2.0 using TCCON GGG2020. The total systematic error is defined as the root-sum-square of the spatial and seasonal systematic errors. Also shown is the derived albedo sensitivity from the TCCON-independent time series analysis over the Sahara in italics.

	$\mathrm{XCH_4}$	XCO
Random Error $\bar{\sigma}$ (ppb)	13.35	5.55
Global Offset $\bar{\mu}$ (ppb)	0.65	-0.44
Spatial Systematic Error $\sigma(\mu)$ (ppb)	4.46	2.67
Seasonal Systematic Error (ppb)	1.92	1.10
Total Systematic Error (ppb)	4.86	2.89
Uncertainty Ratio $\bar{\Gamma}$ [reported/measured] (-)	1.03	1.01
Albedo sensitivity (ppb)	-1.1 ± 1.5	1.2 ± 0.8
Albedo sensitivity [Sahara] (ppb)	4.4 ± 6.5	$\textit{2.1} \pm \textit{3.2}$

The findings align with the TCCON-based results and show that there is no evidence of critical albedo-related biases in the TROPOMI/WFMD data. In fact, the estimated surface albedo sensitivities β are of the same order of magnitude as in the TCCON assessment and do not differ significantly from zero. The magnitude of the uncertainty estimates is about four times greater than that of the TCCON analysis. Specifically, the sensitivities are $\beta = 4.4 \pm 6.5 \,\mathrm{ppb}$ per unit albedo for XCH₄ and $\beta = 2.1 \pm 3.2 \,\mathrm{ppb}$ for XCO, with a coefficient of determination of $R^2 = 0.002$ in both cases.

3.5 Summary of validation results

380

385

390

395

Independent ground-based measurements from the TCCON confirmed that the updated TROPOMI/WFMD $v2.0~XCH_4$ and XCO products have higher quality than the previous version. The refined retrievals are not only more accurate and precise, but also provide increased data yield at mid and high latitudes, including observationally challenging regions such as the Arctic. The broader coverage of v2.0 is beneficial for all types of applications, whether at the regional level, such as quantifying local hotspot emissions, or on a larger scale, like analysing growth rates of latitude bands. According to the review of the uncertainties reported for each measurement, the estimates are reasonable and realistic. Furthermore, the analysis showed that surface albedo does not introduce any relevant biases into the data products. This is an important finding as albedo-related biases are often a concern in the application of TROPOMI methane retrievals (Barré et al., 2021; Balasus et al., 2023).

The quality assessment results are summarised in Table 1, including metrics that measure both random and systematic errors of the data product. These figures of merit give a clear overview of how well the TROPOMI/WFMD v2.0 products perform and are helpful benchmarks for users intending to use the data in scientific research.

Overall, the TROPOMI/WFMD v2.0 product performs reliably in retrieving XCH₄ and XCO from actual TROPOMI data, achieving accuracy and precision levels well within the mission requirements after appropriate quality filtering. In concrete terms, this means that the products meet the strict limits of less than 1.5% bias and 1.0% random error for XCH₄, as well as

420

425

less than 15% bias and 10% random error for XCO, confirming the suitability of the algorithm for quasi-operational processing of TROPOMI measurements.

4 Regional assessments

To elucidate how the improvements in TROPOMI/WFMD v2.0 manifest in the retrieval results, this section examines regional patterns in the data products. While previous sections focussed on evaluating the trained quality filter using unseen data and validation with independent reference measurements from the TCCON, the spatially resolved assessment here reveals how these refinements translate specifically into increased regional coverage. While this section mainly discusses XCH₄ because of its stricter quality requirements, it is worth noting that the data coverage for XCO is exactly the same across all cases.

Depending on the intended application, this assessment is carried out by means of selected examples based on temporal averaging on a $0.1^{\circ} \times 0.1^{\circ}$ grid or daily swath data.

As a first step, Figure 13 presents the global distribution of the retrieved XCH₄ and XCO mole fractions for the years 2022 and 2023. There are clear differences between the hemispheres with higher values in the Northern Hemisphere, where most emission sources are concentrated. This gradient is further modified by additional increases over key regions, such as China, India, and Southeast Asia, which are caused by the many anthropogenic sources located there. For XCH₄, elevated abundances are also observed over tropical wetlands and specific hotspots, such as California's Central Valley and the Po Valley in northern Italy. For XCO, additional enhanced values are primarily associated with biomass burning in Africa and South America, as well as with major urban agglomerations including Mexico City and Tehran. The coverage over land is generally high, although persistent cloud cover and low surface reflectivity result in some data gaps near the equator. Coverage over oceans and inland waters is more limited, as good measurements mainly occur under favourable observational conditions, such as sun-glint geometries or certain sea ice scenarios.

To further assess the performance of the updated quality filter, regional coverage and temporal variability are analysed using monthly data. Figures 14 and 15 present the differences between v1.8 and v2.0 for February and October 2023. An obvious change in v2.0 is the slight decrease in coverage over the Sahara, attributable to stricter aerosol filtering. Conversely, coverage at higher latitudes has improved, in line with the results of Section 3. For a given grid cell, v2.0 shows less variation within a month, especially in desert and mountain areas, which is reflected in reduced scatter σ . While the standard deviation for each grid cell partly captures natural changes, the overall reduction indicates that more low-quality observations have been filtered out.

In addition to temporally averaged products, individual Level 2 swath data help evaluate how the updated quality filter performs under specific atmospheric conditions, such as dust storm events over the Sahara. Figure 16 shows two example days where the v2.0 filter more effectively removes aerosol-contaminated observations than v1.8. In these cases, the number of retained observations in v2.0 is reduced by 19% and 12%, respectively. In particular, spurious high values linked to elevated aerosol loading or cloud edges are removed more reliably, e.g., those from dust plumes originating from the Bodélé Depression in Chad. The result is a much more spatially homogeneous methane distribution in v2.0 compared to v1.8.

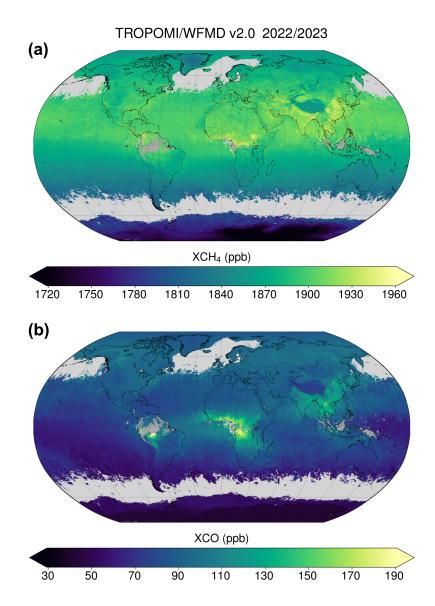


Figure 13. Biennial mean (2022/2023) of retrieved TROPOMI/WFMD v2.0 (a) XCH₄ and (b) XCO.

The v2.0 quality filter also improves cloud screening and increases data coverage at mid- and high latitudes. Figures 17–19 show example satellite overpasses over Central Europe and Siberia for both XCH₄ and XCO. While both versions correlate well and effectively remove cloudy scenes, v2.0 allows more valid observations under cloud-free conditions, thereby boosting the data yield. In these examples, the number of soundings passing the filter increases by about 10–20% over Central Europe, and by 60% and 15% for the two example overpasses in Siberia. Better coverage also enables improved estimation of emissions sources, some examples of which are easily identifiable in the presented images. In Figure 17, methane emissions from the Upper Silesian Coal Basin in Poland are evident on both observation days, while the Siberian enhancements in Figure 19 are

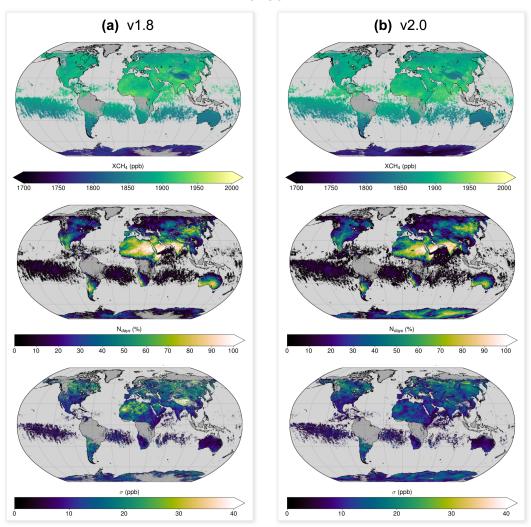


Figure 14. Comparison of monthly averages for (a) TROPOMI/WFMD v1.8 and (b) v2.0 using the example of February 2023. The top row shows the XCH_4 , the middle row the number of days that contribute to the monthly average as a percentage (100% corresponds to 28 days in this example), and the bottom row the standard deviation of XCH_4 per grid cell. As at least two values are required to calculate a meaningful standard deviation, only grid cells with two or more measurements are shown in the bottom row.

associated with methane leakage from oil and gas infrastructure. Figure 18 displays major carbon monoxide emissions from steel production plants in Central Europe, particularly in Germany, Poland, Slovakia, and the Czech Republic (Schneising et al., 2024; Leguijt et al., 2025).

These figures use various Suomi NPP/VIIRS band combinations to highlight cloud cover, which helps to visually identify observations that should be excluded. In the examples for Central Europe, the background image displays a True Colour

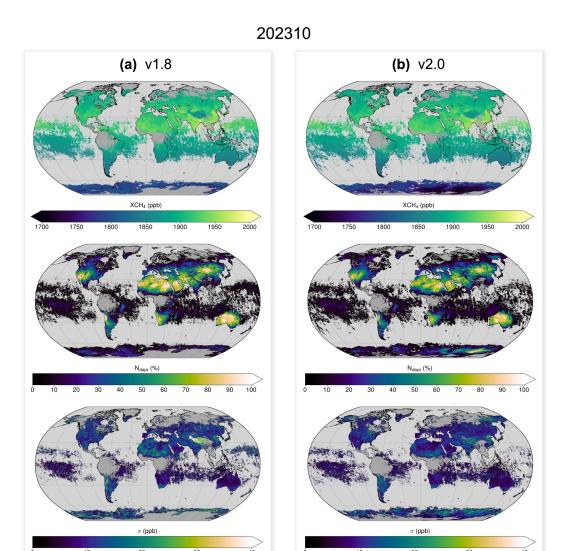


Figure 15. As Figure 14 but for October 2023.

composite (bands I1-M4-M3), which closely resembles the natural appearance of land, ocean, and atmospheric features as perceived by the human eye. In this representation, the clouds appear white due to the approximately equal scattering of light across the visible bands used.

For the Siberian case, a false-colour composite (bands M3-I3-M11) is used instead, because it more effectively distinguishes clouds from snow and ice, which look similar in standard true-colour images. In this representation, snow and ice appear bright red because they strongly reflect visible light (band M3, centered at $0.49\,\mu\mathrm{m}$), while they strongly absorb in the shortwave infrared (SWIR) range (band I3: $1.61\,\mu\mathrm{m}$; band M11: $2.25\,\mu\mathrm{m}$). Vegetation appears green as it reflects strongly in band I3 but

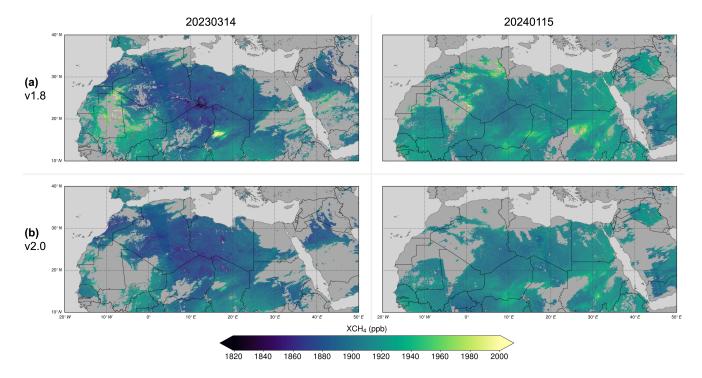


Figure 16. Comparison of (a) TROPOMI/WFMD v1.8 and (b) v2.0 XCH₄ for two example days (columns) over the Sahara demonstrating the improved filtering of spurious high values associated with individual aerosol events or cloud edges in v2.0.

much less in the other two bands. Water clouds are warm off-white with a pale orange or beige tint, while high cirrus clouds appear pastel pink as a result of scattering by small ice crystals.

5 Conclusions

450

455

460

The TROPOMI/WFMD v2.0 product represents a substantial advance in the remote sensing of atmospheric XCH₄ and XCO from space. This improvement is mainly the result of implementing refined quality filtering based on Extreme Gradient Boosting (XGBoost) in order to address the increasing demands for enhanced retrieval accuracy and computational efficiency. Thorough quality assessments have shown that the updated algorithm delivers higher data yield with better precision and accuracy, as well as robust estimates of uncertainty. In particular, dedicated analyses have confirmed that there are no critical biases related to albedo in the TROPOMI/WFMD data product. This finding helps to defuse a frequent concern associated with using TROPOMI methane observations for certain applications. The demonstrated quality of this data product broadens its suitability for a more extensive range of scientific investigations.

With a steadily growing data record of currently seven years, the advanced TROPOMI/WFMD v2.0 product is well-positioned for integration into comprehensive monitoring systems that combine complementary information from accurate local in-situ measurements and global satellite observations within an inverse modelling framework. The proven performance

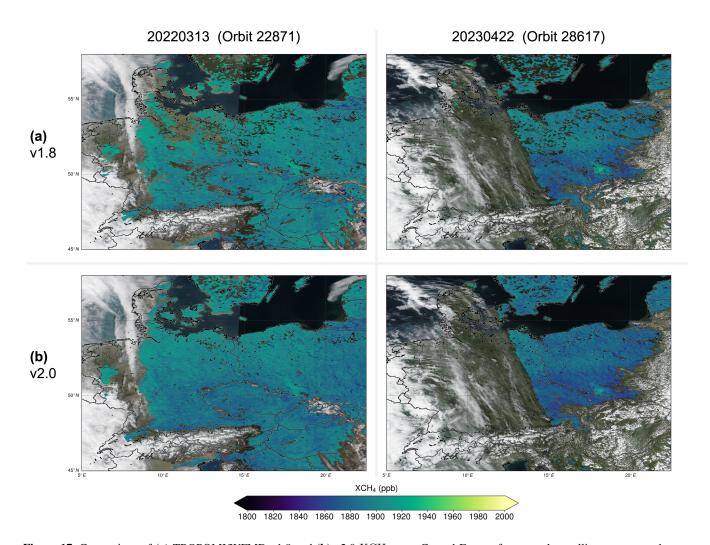


Figure 17. Comparison of **(a)** TROPOMI/WFMD v1.8 and **(b)** v2.0 XCH₄ over Central Europe for example satellite overpasses demonstrating the improved cloud screening in v2.0. The background shows the corresponding Suomi NPP/VIIRS True Colour image (bands I1-M4-M3) to highlight the position of the clouds. Elevated methane abundances associated with emissions from the Upper Silesian Coal Basin in Poland are clearly visible on both days.

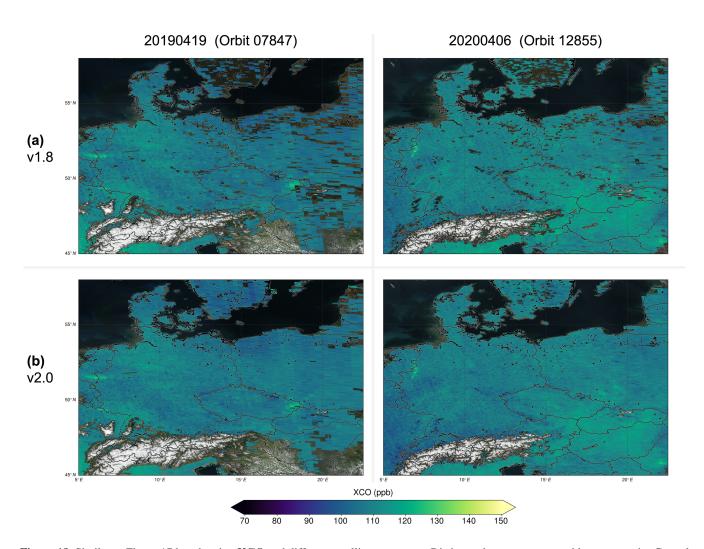


Figure 18. Similar to Figure 17 but showing XCO and different satellite overpasses. Distinct enhancements are evident over major Central European steelworks including those located in Duisburg and Dillingen, Germany.

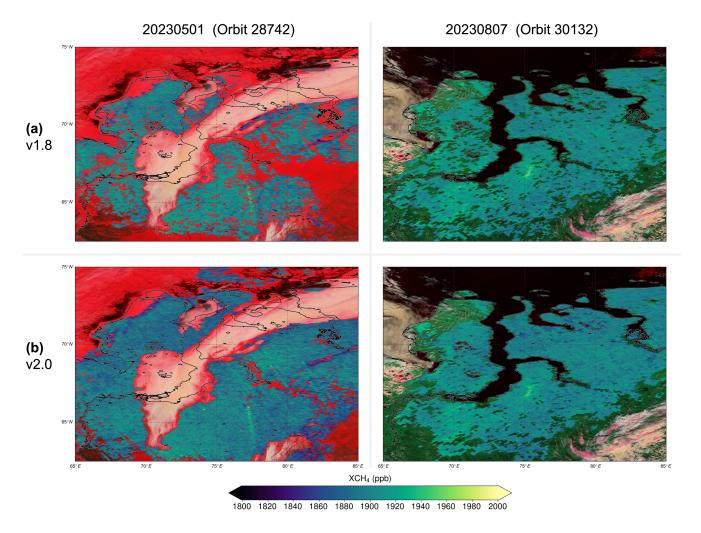


Figure 19. Comparison of (a) TROPOMI/WFMD v1.8 and (b) v2.0 XCH₄ over Siberia for example satellite overpasses demonstrating the improved cloud screening in v2.0. The background shows a specific Suomi NPP/VIIRS false-colour composite (bands M3-I3-M11), which is capable of distinguishing clouds (warm off-white) from snow/ice (bright red). In a true colour image both would appear white and would be indistinguishable. The observed elevated methane abundances are attributed to leakage from oil and gas facilities.

of the data product also supports important applications, such as the quantification of emission sources. The expertise in applying machine learning techniques in the field of satellite retrievals, which was gained during the development of the TROPOMI/WFMD algorithm, establishes a sound basis for similar approaches in future missions, including the Sentinel-5 satellites.

Data availability. The methane and carbon monoxide data products presented in this publication are available at https://www.iup.uni-bremen. de/carbon_ghg/products/tropomi_wfmd/. The Total Carbon Column Observing Network data are available in the TCCON data archive hosted by CaltechDATA at https://tccondata.org.

470 Appendix A: Spectral fit example

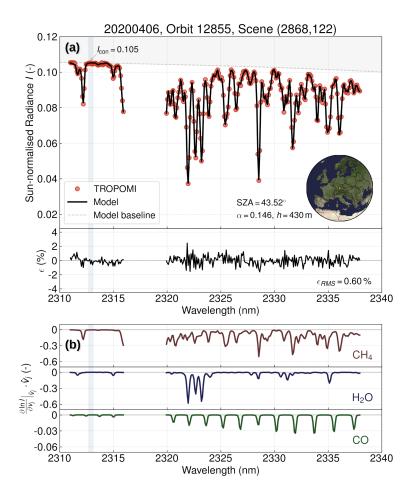


Figure A1. Spectral fit for a sample scene in Bavaria, Germany. (a) The TROPOMI spectral measurements (red circles) are shown together with the fitted radiative transfer model (black line) and the resulting (relative) fit residual ϵ below. The grey dashed line highlights the baseline of the model, i.e., the fitted polynomial without absorption. The difference between the baseline relative to the model or measurement gives a sense of the depth of the individual absorption lines. The blue-shaded interval indicates the virtually absorption-free continuum-like portion used to determine the apparent albedo, which is important to disentangle surface reflection and molecular abundances in the fitting procedure. (b) Weighting functions with respect to the fitted gases j scaled with the respective retrieved columns \hat{v}_j , breaking down which of the measured features are attributable to which absorber. This representation also explicitly reconfirms that none of the gases has any significant absorption in the continuum-like interval used.

The spectral fitting window of TROPOMI/WFMD v2.0 can be seen in the example fit shown in Figure A1. The strong methane band around 2317 nm is generally excluded to retrieve CH_4 and CO simultaneously as accurately as possible (Schneising et al., 2019). The apparent albedo is retrieved in the preprocessing from the measured mean radiance I_{con} in the continuum interval and is then prescribed in the actual fitting procedure. The relative fit residual ϵ is defined as $2 \cdot \frac{\text{Model-TROPOMI}}{\text{Model+TROPOMI}}$.

485

490

475 Appendix B: Perceptual uniform colormap vivian

It is increasingly recognised that scientific visualisation benefits from perceptually uniform colormaps, which enable accurate and accessible interpretation of data. Non-uniform changes in brightness or hue can distort the perception of quantitative values. Many conventional colour scales remain difficult to interpret, especially for viewers with colour vision deficiencies.

The *vivian* colormap, which is available in the Python package *cmuseo*, is designed to be perceptually uniform and accessible to people with colour vision deficiencies. Like the widely used *viridis* colormap, *vivian* targets the needs of scientific visualisation, but is intended to achieve a wider perceptual range. The perceptual gradient curve, used to assess the quality of colormaps, is generated by calculating the colour differences ΔE between adjacent colours using Euclidean distance in CAM02-UCS space, which closely models the human perception of colour. If the ΔE curve remains flat, this means that equal changes in the data translate into equal perceived differences, helping to preserve gradients and fine structures without introducing visual artefacts. We measure this flatness with the normalised root mean square (RMS) deviation $\delta_{RMS}^{\%}$, which is reported as a percentage of the average ΔE . The total perceptual arc length $L = \int_{\mathcal{C}} dE$ of the colormap's trajectory \mathcal{C} in the CAM02-UCS space reflects how large the perceptual range is that the colormap can cover, with larger L values indicating a better ability to reproduce fine details. In addition to ensuring the perceptual uniformity of the original colour information, it is also important that changes in brightness, calculated as $\Delta J' = \Delta E_{(J',0,0)}$, are likewise uniform and monotonic in order to guarantee flawless greyscale representation and better accessibility for viewers with limited colour perception.

Figure B1 shows that *vivian* is perfectly perceptually uniform, both in original colour representation and also when converted to greyscale, and is thus a reliable choice for accurate and accessible data visualisation in science. In line with the intended objective, the colormap offers a slightly larger perceptual range than *viridis* (L = 145.0 versus 123.9).

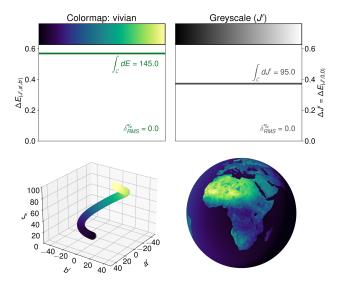


Figure B1. Perceptual analysis of the *vivian* colormap. Shown are perceptual differences along the colormap (top left) and corresponding lightness differences (top right) in CAM02-UCS space. The bottom panel shows the 3D-trajectory of *vivian* and an example figure.

Appendix C: List of TCCON sites

Table C1. TCCON sites used in the validation sorted according to latitude from north to south.

~ ·				5.0
Site	Latitude	Longitude	Altitude	Reference
	(°)	(°)	(km)	
Eureka	80.05	-86.42	0.61	Strong et al. (2022); Batchelor et al. (2009)
Ny-Ålesund	78.92	11.92	0.02	Buschmann et al. (2022)
Sodankylä	67.37	26.63	0.19	Kivi et al. (2022); Kivi and Heikkinen (2016)
East Trout Lake	54.35	-104.99	0.50	Wunch et al. (2022)
Białystok	53.23	23.03	0.19	Petri et al. (2024a); Messerschmidt et al. (2012)
Bremen	53.10	8.85	0.03	Notholt et al. (2022)
Harwell	51.57	-1.32	0.14	Weidmann et al. (2023, 2025)
Karlsruhe	49.10	8.44	0.11	Hase et al. (2024)
Paris	48.85	2.36	0.06	Té et al. (2022)
Orléans	47.97	2.11	0.13	Warneke et al. (2024)
Garmisch	47.48	11.06	0.75	Sussmann and Rettinger (2023)
Park Falls	45.94	-90.27	0.44	Wennberg et al. (2022b)
Rikubetsu	43.46	143.77	0.38	Morino et al. (2022a)
Xianghe	39.80	116.96	0.04	Zhou et al. (2022); Yang et al. (2020)
Lamont	36.60	-97.49	0.32	Wennberg et al. (2022c)
Tsukuba	36.05	140.12	0.03	Morino et al. (2022b)
Nicosia	35.14	33.38	0.19	Petri et al. (2024b)
Edwards	34.96	-117.88	0.70	Iraci et al. (2022)
Caltech	34.14	-118.13	0.24	Wennberg et al. (2022a)
Saga	33.24	130.29	0.01	Shiomi et al. (2022); Ohyama et al. (2015)
Hefei	31.90	119.17	0.04	Liu et al. (2023); Wang et al. (2017)
Burgos	18.53	120.65	0.04	Morino et al. (2022c); Velazco et al. (2017)
Darwin	-12.46	130.93	0.04	Deutscher et al. (2023b, 2010)
Réunion	-20.90	55.49	0.09	De Mazière et al. (2022)
Wollongong	-34.41	150.88	0.03	Deutscher et al. (2023a)
Lauder	-45.04	169.68	0.37	Sherlock et al. (2022); Pollard et al. (2022, 2021)

505

515

520

Author contributions. OS designed and operated the TROPOMI/WFMD satellite retrievals, set up and optimised the machine learning environment, performed the data analysis, and wrote the paper. MiB, JH, MR, HeB, and HaB contributed significantly to the conceptual design of the retrievals and the development of the analysis strategy. MaB, NMD, DWTG, FH, LTI, RK, IM, HO, CP, JR, CR, MKS, KeS, KiS, RS, YT, VAV, MV, WW, TW, DaW, DeW, MZ operated the TCCON retrievals for the various sites and provided support in using the data and interpreting the outcomes. All authors discussed the results and improved the paper.

500 *Competing interests.* At least one of the (co-)authors is a member of the editorial board of Atmospheric Measurement Techniques. None of the authors has any other competing interests.

Acknowledgements. This publication contains modified Copernicus Sentinel data (2018-2024). Sentinel-5 Precursor is an ESA mission implemented on behalf of the European Commission. The TROPOMI payload is a joint development by ESA and the Netherlands Space Office (NSO). The Sentinel-5 Precursor ground-segment development has been funded by ESA and with national contributions from The Netherlands, Germany, and Belgium.

We acknowledge the use of VIIRS imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov/) operated by the NASA/Goddard Space Flight Center Earth Science Data and Information System (ESDIS) project and thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the ERA5 reanalysis.

The colormap *vivian* used in many figures is part of the Python package cmuseo (https://pypi.org/project/cmuseo/). Parts of the results in this work make use of colormaps in the CMasher package (van der Velden, 2020).

Financial support. The research leading to the presented results received funding from the European Space Agency (ESA) via the projects GHG-CCI+ and SMART-CH4 (ESA contract nos. 4000126450/19/I-NB and 4000142730/23/I-NS) and from the German Federal Ministry of Research, Technology and Space (BMFTR) within its project ITMS via grant 01 LK2103A. The TROPOMI/WFMD retrievals presented here were performed on HPC facilities of the IUP, University of Bremen, funded under DFG/FUGG grant nos. INST 144/379-1 and INST 144/493-1.

The TCCON sites at Rikubetsu, Tsukuba, and Burgos are supported in part by the GOSAT series project. Local support for Burgos is provided by the Energy Development Corporation (EDC, the Philippines). The TCCON site at Réunion Island has been operated by the Royal Belgian Institute for Space Aeronomy with financial support since 2014 by the EU project ICOS-Inwire (Grant agreement ID 313169), the ministerial decree for ICOS (FR/35/IC1 to FR/35/C6), ESFRI-FED ICOS-BE project (EF/211/ICOS-BE) and local activities supported by LACy/UMR8105 and by OSU-R/UMS3365 – Université de La Réunion. The Paris TCCON site has received funding from Sorbonne Université, the French research center CNRS, and the French space agency CNES. The Nicosia TCCON site received financial support from the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 856612 (EMME-CARE) and the Cyprus Government.

The article processing charges for this open-access publication were covered by the University of Bremen.

525 References

540

555

- Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J., Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T., and Zinkov, R.: PyMC: a modern, and comprehensive probabilistic programming framework in Python, PeerJ Computer Science, 9, e1516, https://doi.org/10.7717/peerj-cs.1516, 2023.
- Arthur, D. and Vassilvitskii, S.: k-means++: the advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07, p. 1027–1035, Society for Industrial and Applied Mathematics, USA, ISBN 9780898716245, 2007.
 - Balasus, N., Jacob, D. J., Lorente, A., Maasakkers, J. D., Parker, R. J., Boesch, H., Chen, Z., Kelp, M. M., Nesser, H., and Varon, D. J.: A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases, Atmos. Meas. Tech., 16, 3787–3807, https://doi.org/10.5194/amt-16-3787-2023, 2023.
- Barr, A. G., Landgraf, J., Martinez-Velarte, M., Vrekoussis, M., Sussmann, R., Morino, I., Strong, K., Zhou, M., Velazco, V. A., Ohyama, H., Warneke, T., Hase, F., and Borsdorff, T.: 5 Years of GOSAT-2 Retrievals with RemoTeC: XCO₂ and XCH₄ Data Products with Quality Filtering by Machine Learning, EGUsphere, 2025, 1–40, https://doi.org/10.5194/egusphere-2024-3990, 2025.
 - Barré, J., Aben, I., Agustí-Panareda, A., Balsamo, G., Bousserez, N., Dueben, P., Engelen, R., Inness, A., Lorente, A., McNorton, J., Peuch, V.-H., Radnoti, G., and Ribas, R.: Systematic detection of local CH₄ anomalies by combining satellite measurements with high-resolution forecasts, Atmos. Chem. Phys., 21, 5117–5136, https://doi.org/10.5194/acp-21-5117-2021, 2021.
 - Batchelor, R. L., Strong, K., Lindenmaier, R., Mittermeier, R. L., Fast, H., Drummond, J. R., and Fogal, P. F.: A New Bruker IFS 125HR FTIR Spectrometer for the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada: Measurements and Comparison with the Existing Bomem DA8 Spectrometer, Journal of Atmospheric and Oceanic Technology, 26, 1328–1340, https://doi.org/10.1175/2009JTECHA1215.1, 2009.
- Borsdorff, T., Martinez-Velarte, M. C., Sneep, M., ter Linden, M., and Landgraf, J.: Random Forest Classifier for Cloud Clearing of the Operational TROPOMI XCH₄ Product, Remote Sensing, 16, https://doi.org/10.3390/rs16071208, 2024.
 - Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
- 550 Breiman, L.: Random forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
 - Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W.: SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Acta Astronautica, 35, 445–451, https://doi.org/10.1016/0094-5765(94)00278-T, 1995.
 - Buschmann, M., Petri, C., Palm, M., Warneke, T., and Notholt, J.: TCCON data from Ny-Ålesund, Svalbard (NO), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.nyalesund01.R0, 2022.
 - Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, ACM, https://doi.org/10.1145/2939672.2939785, 2016.
- De Mazière, M., Sha, M. K., Desmet, F., Hermans, C., Scolas, F., Kumps, N., Zhou, M., Metzger, J.-M., Duflot, V., and Cammas, J.-P.:

 TCCON data from Réunion Island (RE), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of
 Technology, https://doi.org/10.14291/tccon.ggg2020.reunion01.R0, 2022.

590

595

- Deutscher, N. M., Griffith, D. W. T., Bryant, G. W., Wennberg, P. O., Toon, G. C., Washenfelder, R. A., Keppel-Aleks, G., Wunch, D., Yavin, Y., Allen, N. T., Blavier, J.-F., Jiménez, R., Daube, B. C., Bright, A. V., Matross, D. M., Wofsy, S. C., and Park, S.: Total column CO₂ measurements at Darwin, Australia site description and calibration against in situ aircraft profiles, Atmos. Meas. Tech., 3, 947–958, https://doi.org/10.5194/amt-3-947-2010, 2010.
- Deutscher, N. M., Griffith, D. W., Paton-Walsh, C., Jones, N. B., Velazco, V. A., Wilson, S. R., Macatangay, R. C., Kettlewell, G. C., Buchholz, R. R., Riggenbach, M. O., Bukosa, B., John, S. S., Walker, B. T., and Nawaz, H.: TCCON data from Wollongong (AU), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.wollongong01.R0, 2023a.
- Deutscher, N. M., Griffith, D. W., Paton-Walsh, C., Velazco, V. A., Wennberg, P. O., Blavier, J.-F., Washenfelder, R. A., Yavin, Y., Keppel-Aleks, G., Toon, G. C., Jones, N. B., Kettlewell, G. C., Connor, B. J., Macatangay, R. C., Wunch, D., Roehl, C., and Bryant, G. W.: TCCON data from Darwin (AU), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.darwin01.R0, 2023b.
- Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., Guerlet, S., Aben, I., Blumenstock, T., Burrows, J. P., Butz, A., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., De Mazière, M., Notholt, J., Sussmann, R., Warneke, T., Griffith, D., Sherlock, V., and Wunch, D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO₂ and CH₄ retrieval algorithm products with measurements from the TCCON, Atmos. Meas. Tech., 7, 1723–1744, https://doi.org/10.5194/amt-7-1723-2014, 2014.
 - Drummond, J. R., Zou, J., Nichitiu, F., Kar, J., Deschambaut, R., and Hackett, J.: A review of 9-year performance and operation of the MOPITT instrument, Adv. Space Res., 45, 760–774, https://doi.org/10.1016/j.asr.2009.11.019, 2010.
- Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, in:

 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 226–231, AAAI Press, 1996.
 - Hachmeister, J., Schneising, O., Buchwitz, M., Burrows, J. P., Notholt, J., and Buschmann, M.: Zonal variability of methane trends derived from satellite data, Atmos. Chem. Phys., 24, 577–595, https://doi.org/10.5194/acp-24-577-2024, 2024.
- Hachmeister, J., Wunch, D., McGee, E., Strong, K., Kivi, R., Notholt, J., Warneke, T., and Buschmann, M.: Reduction of airmass-dependent biases in TCCON XCH₄ retrievals during polar vortex conditions, EGUsphere, 2025, 1–35, https://doi.org/10.5194/egusphere-2024-4055, 2025.
 - Hase, F., Herkommer, B., Groß, J., Blumenstock, T., Kiel, M., and Dohe, S.: TCCON data from Karlsruhe (DE), Release GGG2020.R2. TC-CON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.karlsruhe01.R2, 2024.
 - Hasekamp, O., Lorente, A., Hu, H., Butz, A., aan de Brugh, J., and Landgraf, J.: Algorithm Theoretical Basis Document for Sentinel-5 Precursor Methane Retrieval, https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Methane-retrieval. pdf, 2022.
 - Hu, H., Hasekamp, O., Butz, A., Galli, A., Landgraf, J., Aan de Brugh, J., Borsdorff, T., Scheepmaker, R., and Aben, I.: The operational methane retrieval algorithm for TROPOMI, Atmos. Meas. Tech., 9, 5423–5440, https://doi.org/10.5194/amt-9-5423-2016, 2016.
 - Hutchison, K. D. and Cracknell, A. P.: Visible Infrared Imager Radiometer Suite: A New Operational Cloud Imager, CRC Press of Taylor and Francis, London, 2005.

- Iraci, L. T., Podolske, J. R., Roehl, C., Wennberg, P. O., Blavier, J.-F., Allen, N., Wunch, D., and Osterman, G. B.: TCCON data from Edwards (US), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.edwards01.R0, 2022.
 - Jervis, D., McKeever, J., Durak, B. O. A., Sloan, J. J., Gains, D., Varon, D. J., Ramier, A., Strupler, M., and Tarrant, E.: The GHGSat-D imaging spectrometer, Atmos. Meas. Tech., 14, 2127–2140, https://doi.org/10.5194/amt-14-2127-2021, 2021.
 - Keely, W. R., Mauceri, S., Crowell, S., and O'Dell, C. W.: A nonlinear data-driven approach to bias correction of XCO₂ for NASA's OCO-2 ACOS version 10, Atmospheric Measurement Techniques, 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023, 2023.
- Kivi, R. and Heikkinen, P.: Fourier transform spectrometer measurements of column CO₂ at Sodankylä, Finland, Geoscientific Instrumentation, Methods and Data Systems, 5, 271–279, https://doi.org/10.5194/gi-5-271-2016, 2016.
 - Kivi, R., Heikkinen, P., and Kyrö, E.: TCCON data from Sodankylä (FI), Release GGG2020.R0. TCCON data archive, hosted by Caltech-DATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.sodankyla01.R0, 2022.
- Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., Kataoka, F., Taylor, T. E.,
 and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space, Atmos. Meas. Tech., 9, 2445–2461, https://doi.org/10.5194/amt-9-2445-2016, 2016.
 - Landgraf, J., aan de Brugh, J., Scheepmaker, R., Borsdorff, T., Hu, H., Houweling, S., Butz, A., Aben, I., and Hasekamp, O.: Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements, Atmos. Meas. Tech., 9, 4955–4975, https://doi.org/10.5194/amt-9-4955-2016, 2016.
- Landgraf, J., aan de Brugh, J., Scheepmaker, R. A., Borsdorff, T., Houweling, S., and Hasekamp, O. P.: Algorithm Theoretical Basis Document for Sentinel-5 Precursor: Carbon Monoxide Total Column Retrieval, https://sentinels.copernicus.eu/documents/247904/2476257/ Sentinel-5P-TROPOMI-ATBD-Carbon-Monoxide-Total-Column-Retrieval.pdf, 2022.
- Laughner, J. L., Toon, G. C., Mendonca, J., Petri, C., Roche, S., Wunch, D., Blavier, J.-F., Griffith, D. W. T., Heikkinen, P., Keeling, R. F., Kiel, M., Kivi, R., Roehl, C. M., Stephens, B. B., Baier, B. C., Chen, H., Choi, Y., Deutscher, N. M., DiGangi, J. P., Gross, J., Herkommer,
 B., Jeseck, P., Laemmel, T., Lan, X., McGee, E., McKain, K., Miller, J., Morino, I., Notholt, J., Ohyama, H., Pollard, D. F., Rettinger, M., Riris, H., Rousogenous, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Wofsy, S. C., Zhou, M., and Wennberg, P. O.: The Total Carbon Column Observing Network's GGG2020 data version, Earth System Science Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, 2024.
- Leguijt, G., Maasakkers, J. D., Denier van der Gon, H. A. C., Segers, A. J., Borsdorff, T., van der Velde, I. R., and Aben, I.: Comparing space-based to reported carbon monoxide emission estimates for Europe's iron and steel plants, Atmos. Chem. Phys., 25, 555–574, https://doi.org/10.5194/acp-25-555-2025, 2025.
 - Li, Q., Fernandez, R. P., Hossaini, R., Iglesias-Suarez, F., Cuevas, C. A., Apel, E. C., Kinnison, D. E., Lamarque, J.-F., and Saiz-Lopez, A.: Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century, Nature Communications, 13, 2768, https://doi.org/10.1038/s41467-022-30456-8, 2022.
- Lindqvist, H., Kivimäki, E., Häkkilä, T., Tsuruta, A., Schneising, O., Buchwitz, M., Lorente, A., Martinez Velarte, M., Borsdorff, T., Alberti, C., Backman, L., Buschmann, M., Chen, H., Dubravica, D., Hase, F., Heikkinen, P., Karppinen, T., Kivi, R., McGee, E., Notholt, J., Rautiainen, K., Roche, S., Simpson, W., Strong, K., Tu, Q., Wunch, D., Aalto, T., and Tamminen, J.: Evaluation of Sentinel-5P TROPOMI Methane Observations at Northern High Latitudes, Remote Sensing, 16, https://doi.org/10.3390/rs16162979, 2024.

- Liu, C., Wang, W., Sun, Y., and Shan, C.: TCCON data from Hefei (PRC), Release GGG2020.R1, https://doi.org/10.14291/tccon.ggg2020.hefei01.R1. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, 2023.
 - Maasakkers, J. D., Varon, D. J., Elfarsdottir, A., McKeever, J., Jervis, D., Mahapatra, G., Pandey, S., Lorente, A., Borsdorff, T., Foorthuis, L. R., Schuit, B. J., Tol, P., van Kempen, T. A., van Hees, R., and Aben, I.: Using satellites to uncover large methane emissions from landfills, Science Advances, 8, eabn9683, https://doi.org/10.1126/sciadv.abn9683, 2022.
- Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., eds.: Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021.
- Messerschmidt, J., Chen, H., Deutscher, N. M., Gerbig, C., Grupe, P., Katrynski, K., Koch, F.-T., Lavrič, J. V., Notholt, J., Rödenbeck, C., Ruhe, W., Warneke, T., and Weinzierl, C.: Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in situ measurements and model data, Atmos. Chem. Phys., 12, 6741–6755, https://doi.org/10.5194/acp-12-6741-2012, 2012.
 - Morino, I., Ohyama, H., Hori, A., and Ikegami, H.: TCCON data from Rikubetsu (JP), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.rikubetsu01.R0, 2022a.
- Morino, I., Ohyama, H., Hori, A., and Ikegami, H.: TCCON data from Tsukuba (JP), 125HR, Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.tsukuba02.R0, 2022b.
 - Morino, I., Velazco, V. A., Hori, A., Uchino, O., and Griffith, D. W. T.: TCCON data from Burgos, Ilocos Norte (PH), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.burgos01.R0, 2022c.
- Noël, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Schneising, O., Bovensmann, H., Burrows, J. P., Di Noia, A., Parker, R. J., Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Liu, C., Morino, I., Notholt, J., Oh, Y.-S., Ohyama, H., Petri, C., Pollard, D. F., Rettinger, M., Roehl, C., Rousogenous, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Vrekoussis, M., and Warneke, T.: Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm, Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, 2022.
- Notholt, J., Petri, C., Warneke, T., and Buschmann, M.: TCCON data from Bremen (DE), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.bremen01.R0, 2022.
 - Nüß, J. R., Daskalakis, N., Piwowarczyk, F. G., Gkouvousis, A., Schneising, O., Buchwitz, M., Kanakidou, M., Krol, M. C., and Vrekoussis, M.: Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit, Geoscientific Model Development, 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025, 2025.
- Ohyama, H., Kawakami, S., Tanaka, T., Morino, I., Uchino, O., Inoue, M., Sakai, T., Nagai, T., Yamazaki, A., Uchiyama, A., Fukamachi, T., Sakashita, M., Kawasaki, T., Akaho, T., Arai, K., and Okumura, H.: Observations of XCO₂ and XCH₄ with ground-based high-resolution FTS at Saga, Japan, and comparisons with GOSAT products, Atmos. Meas. Tech., 8, 5263–5276, https://doi.org/10.5194/amt-8-5263-2015.
- Petri, C., Deutscher, N. M., Notholt, J., Warneke, T., and Buschmann, M.: TCCON data from Białystok (PL), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.bialystok01.R0, 2024a.

680

700

- Petri, C., Vrekoussis, M., Rousogenous, C., Warneke, T., Sciare, J., and Notholt, J.: TCCON data from Nicosia (CY), Release GGG2020.R1. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.nicosia01.R1, 2024b.
- Pollard, D. F., Robinson, J., Shiona, H., and Smale, D.: Intercomparison of Total Carbon Column Observing Network (TCCON)

 data from two Fourier transform spectrometers at Lauder, New Zealand, Atmospheric Measurement Techniques, 14, 1501–1510,
 https://doi.org/10.5194/amt-14-1501-2021, 2021.
 - Pollard, D. F., Robinson, J., and Shiona, H.: TCCON data from Lauder (NZ), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.lauder03.R0, 2022.
 - Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, https://doi.org/10.1029/2012GL051440, 2012.
 - Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing, 2000.
 - Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, J. Geophys. Res., 108, https://doi.org/10.1029/2002JD002299, 2003.
- Rozanov, V. V., Buchwitz, M., Eichmann, K.-U., de Beek, R., and Burrows, J. P.: SCIATRAN a new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version, Adv. Space Res., 29, 1831–1835, 2002.
 - Rozanov, V. V., Rozanov, A. V., Kokhanovsky, A. A., and Burrows, J. P.: Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN, J. Quant. Spectrosc. Radiat. Transfer, 133, 13–71, https://doi.org/10.1016/j.jqsrt.2013.07.004, 2014.
 - Schneising, O.: Algorithm Theoretical Basis Document (ATBD) TROPOMI WFM-DOAS (TROPOMI/WFMD) XCH₄, available at: https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/atbd_wfmd.pdf (last access: 1 June 2025), 2025.
- Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P., Borsdorff, T., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Hermans, C., Iraci, L. T., Kivi, R., Landgraf, J., Morino, I., Notholt, J., Petri, C., Pollard, D. F., Roche, S., Shiomi, K., Strong, K., Sussmann, R., Velazco, V. A., Warneke, T., and Wunch, D.: A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor, Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, 2019.
- Schneising, O., Buchwitz, M., Hachmeister, J., Vanselow, S., Reuter, M., Buschmann, M., Bovensmann, H., and Burrows, J. P.: Advances in retrieving XCH₄ and XCO from Sentinel-5 Precursor: improvements in the scientific TROPOMI/WFMD algorithm, Atmos. Meas. Tech., 16, 669–694, https://doi.org/10.5194/amt-16-669-2023, 2023.
 - Schneising, O., Buchwitz, M., Reuter, M., Weimer, M., Bovensmann, H., Burrows, J. P., and Bösch, H.: Towards a sector-specific CO/CO₂ emission ratio: satellite-based observations of CO release from steel production in Germany, Atmos. Chem. Phys., 24, 7609–7621, https://doi.org/10.5194/acp-24-7609-2024, 2024.
 - Schuit, B. J., Maasakkers, J. D., Bijl, P., Mahapatra, G., van den Berg, A.-W., Pandey, S., Lorente, A., Borsdorff, T., Houweling, S., Varon, D. J., McKeever, J., Jervis, D., Girard, M., Irakulis-Loitxate, I., Gorroño, J., Guanter, L., Cusworth, D. H., and Aben, I.: Automated detection and monitoring of methane super-emitters using satellite data, Atmos. Chem. Phys., 23, 9071–9098, https://doi.org/10.5194/acp-23-9071-2023, 2023.
- Sha, M. K., Langerock, B., Blavier, J.-F. L., Blumenstock, T., Borsdorff, T., Buschmann, M., Dehn, A., De Mazière, M., Deutscher, N. M., Feist, D. G., García, O. E., Griffith, D. W. T., Grutter, M., Hannigan, J. W., Hase, F., Heikkinen, P., Hermans, C., Iraci, L. T., Jeseck, P., Jones, N., Kivi, R., Kumps, N., Landgraf, J., Lorente, A., Mahieu, E., Makarova, M. V., Mellqvist, J., Metzger, J.-M., Morino, I., Nagahama, T., Notholt, J., Ohyama, H., Ortega, I., Palm, M., Petri, C., Pollard, D. F., Rettinger, M., Robinson, J., Roche, S., Roehl, C. M.,

730

- Röhling, A. N., Rousogenous, C., Schneider, M., Shiomi, K., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., Uchino, O., Velazco, V. A., Vigouroux, C., Vrekoussis, M., Wang, P., Warneke, T., Wizenberg, T., Wunch, D., Yamanouchi, S., Yang, Y., and Zhou, M.: Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations, Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, 2021.
- Sherlock, V., Connor, B., Robinson, J., Shiona, H., Smale, D., and Pollard, D. F.: TCCON data from Lauder (NZ), 125HR, Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.lauder02.R0, 2022.
 - Shiomi, K., Kawakami, S., Ohyama, H., Arai, K., Okumura, H., Ikegami, H., and Usami, M.: TCCON data from Saga (JP), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.saga01.R0, 2022.
- Silva, S. J., Arellano, A. F., and Worden, H. M.: Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity, Geophys. Res. Lett., 40, 4971–4976, https://doi.org/https://doi.org/10.1002/grl.50954, 2013.
 - Strong, K., Roche, S., Franklin, J. E., Mendonca, J., Lutsch, E., Weaver, D., Fogal, P. F., Drummond, J. R., Batchelor, R., Lindenmaier, R., and McGee, E.: TCCON data from Eureka (CA), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.eureka01.R0, 2022.
- Sussmann, R. and Rettinger, M.: TCCON data from Garmisch (DE), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA,
 California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.garmisch01.R0, 2023.
 - Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R. O., Butz, A., Haun, M., Buijs, H., Shiomi, K., Imai, H., and Kuze, A.: Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit, Atmos. Meas. Tech., 14, 2013–2039, https://doi.org/10.5194/amt-14-2013-2021, 2021.
 - Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K.: The Impact of Automated Parameter Optimization on Defect Prediction Models, IEEE Transactions on Software Engineering, 45, 683–711, https://doi.org/10.1109/TSE.2018.2794977, 2019.
 - Té, Y., Jeseck, P., and Janssen, C.: TCCON data from Paris (FR), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.paris01.R0, 2022.
 - van der Velden, E.: CMasher: Scientific colormaps for making accessible, informative and 'cmashing' plots, The Journal of Open Source Software, 5, 2004, https://doi.org/10.21105/joss.02004, 2020.
- Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 120, 70–83, https://doi.org/10.1016/j.rse.2011.09.027, 2012.
- Veefkind, J. P., Serrano-Calvo, R., de Gouw, J., Dix, B., Schneising, O., Buchwitz, M., Barré, J., van der A, R. J., Liu, M., and Levelt,
 P. F.: Widespread Frequent Methane Emissions From the Oil and Gas Industry in the Permian Basin, Journal of Geophysical Research:
 Atmospheres, 128, e2022JD037479, https://doi.org/https://doi.org/10.1029/2022JD037479, 2023.
 - Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.-C.: Rank-normalization, folding, and localization: An improved \hat{R} for assessing convergence of MCMC, Bayesian Analysis, 16, 667–718, https://doi.org/10.1214/20-BA1221, 2021.
- Velazco, V. A., Morino, I., Uchino, O., Hori, A., Kiel, M., Bukosa, B., Deutscher, N. M., Sakai, T., Nagai, T., Bagtasa, G., Izumi, T., Yoshida,
 Y., and Griffith, D. W. T.: TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia,
 Remote Sensing, 9, 1228, https://doi.org/10.3390/rs9121228, 2017.

- Wang, W., Tian, Y., Liu, C., Sun, Y., Liu, W., Xie, P., Liu, J., Xu, J., Morino, I., Velazco, V. A., Griffith, D. W. T., Notholt, J., and Warneke, T.: Investigating the performance of a greenhouse gas observatory in Hefei, China, Atmos. Meas. Tech., 10, 2627–2643, https://doi.org/10.5194/amt-10-2627-2017, 2017.
- Warneke, T., Petri, C., Notholt, J., and Buschmann, M.: TCCON data from Orléans (FR), Release GGG2020.R1. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.orleans01.R1, 2024.
 - Weidmann, D., Brownsword, R., and Doniki, S.: TCCON data from Harwell (UK), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.harwell01.R0, 2023.
- Weidmann, D., Brownsword, R., and Doniki, S.: The Harwell TCCON observatory, Geoscientific Instrumentation, Methods and Data Systems, 14, 113–129, https://doi.org/10.5194/gi-14-113-2025, 2025.
 - Wennberg, P. O., Roehl, C., Wunch, D., Blavier, J.-F., Toon, G. C., Allen, N. T., Treffers, R., and Laughner, J.: TCCON data from Caltech (US), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.pasadena01.R0, 2022a.
- Wennberg, P. O., Roehl, C. M., Wunch, D., Toon, G. C., Blavier, J.-F., Washenfelder, R., Keppel-Aleks, G., and Allen, N. T.: TCCON data from Park Falls (US), Release GGG2020.R1. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.parkfalls01.R1, 2022b.
 - Wennberg, P. O., Wunch, D., Roehl, C. M., Blavier, J.-F., Toon, G. C., and Allen, N. T.: TCCON data from Lamont (US), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.lamont01.R0, 2022c.
- Wu, D., Liu, J., Wennberg, P. O., Palmer, P. I., Nelson, R. R., Kiel, M., and Eldering, A.: Towards sector-based attribution using intra-city variations in satellite-based emission ratios between CO₂ and CO, Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022, 2022.
 - Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Phil. Trans. R. Soc. A, 369, 2087–2112, https://doi.org/10.1098/rsta.2010.0240, 2011a.
- Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B., Osterman, G. B., Frankenberg, C., Mandrake, L., O'Dell, C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D. W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö, E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F. A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R. J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson, D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A method for evaluating bias in global measurements of CO₂ total columns from space,
 Atmos. Chem. Phys., 11, 12 317–12 337, https://doi.org/10.5194/acp-11-12317-2011, 2011b.
 - Wunch, D., Mendonca, J., Colebatch, O., Allen, N. T., Blavier, J.-F., Kunz, K., Roche, S., Hedelius, J., Neufeld, G., Springett, S., Worthy, D., Kessler, R., and Strong, K.: TCCON data from East Trout Lake, SK (CA), Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.easttroutlake01.R0, 2022.
- Yang, Y., Zhou, M., Langerock, B., Sha, M. K., Hermans, C., Wang, T., Ji, D., Vigouroux, C., Kumps, N., Wang, G., De Mazière, M., and Wang, P.: New ground-based Fourier-transform near-infrared solar absorption measurements of XCO₂, XCH₄ and XCO at Xianghe, China, Earth System Science Data, 12, 1679–1696, https://doi.org/10.5194/essd-12-1679-2020, 2020.
 - Zhou, M., Wang, P., Kumps, N., Hermans, C., and Nan, W.: TCCON data from Xianghe, China, Release GGG2020.R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0, 2022.