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Abstract. Marine heatwaves (MHWSs) are increasingly studied in climate sciences for their ecological impacts, for which
accurate real-time bulletins and forecasts are essential. Yet, methodological choices in their detection affect metric estimates,
underlining the need to better assess these sensitivities. This study provides a thorough assessment of the impact of Sea Surface
Temperature (SST) product choice on MHW statistics, focusing on the tropical Pacific. MHW detection was performed on six
daily gridded SST datasets: four widely used blended satellite observational products, one ocean reanalysis, and a multi-dataset
ensemble mean computed from the four observational products. Sensitivity to SST products was evaluated for six MHW
metrics (MHW days per year, number of events per year, duration, maximum intensity, cumulative intensity and onset rate)
and for the Degree Heating Weeks (DHW), a widely used proxy for coral bleaching. Inter-product comparisons revealed a
significant dispersion among MHW metric estimates, with the reanalysis GLORYS12v1 detecting fewer, longer and less
intense MHWSs while OISST detected more MHWSs of shorter duration and higher intensity, likely related to their weak and
strong high-frequency SST variability (periods shorter than 2 weeks) respectively. The sensitivity analysis showed that the
onset rate was the most sensitive metric to SST product choice and the maximum intensity the most robust. Metrics
uncertainties were quantified inside seven regions of the basin and were largest in the western Pacific Warm Pool. Co-
occurrence analyses of MHWs revealed that, over the basin, 10 to 80% of MHW days were detected simultaneously by all
products, with the western Pacific Warm Pool showing the lowest agreement (10-40%). Filtering MHWSs by size also revealed
that the detection of large-scale MHWs (> 5°x5°) was more consistent across products than smaller ones. Finally, over the
studied period, inter-product differences tend to decrease with time. The DHW also revealed to be sensitive to SST products,
with inter-product differences on DHW annual maximum reaching more than 1°C.weeks™ and percentages of bleaching alert
days (DHW=>4°C.weeks™) in common across products reaching 70% at most across much of the basin. These findings
contribute to a better understanding of how methodological choices affect the characterization of MHWs and DHW, and their

associated uncertainties.
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1- Introduction

Between April 2023 and July 2024, global ocean surface temperatures reached their highest level ever registered (Terhaar et
al., 2025). These extremes observed in global mean Sea Surface Temperatures (SST), partly related to an EI Nifio event, would
not have been reached without the acceleration of ocean warming over the last decades (Merchant et al., 2025). They manifest
locally as “marine heatwaves” (MHWs), a term first introduced by Pearce et al. (2011). Hobday et al. (2016) further formalized
the definition of a MHW as an episode of temperatures above a climatological threshold for at least five consecutive days,
characterized by its duration, intensity, rate of evolution and spatial extent. Due to their significant ecological and biological
impacts (Capotondi et al., 2024), MHWs have become a hot topic in ocean science, more so as climate models predict
significant increases in their frequency, intensity and duration due to global warming (Frélicher et al., 2018; Oliver et al.,
2019).

Real-time MHW information and forecasts are of crucial interest to managers and stakeholders as they support marine
conservation and fisheries management (Holbrook et al., 2020; Hartog et al., 2023; Hobday et al., 2023; Kajtar et al., 2024;
Spillman et al., 2025). Such bulletins must provide accurate information, ideally combined with uncertainty estimates.
Explicitly accounting for the methodological choices in MHW detection (Farchadi et al., 2025), and, consequently, quantifying
the associated uncertainties, are key to MHW research and to assess their socio-ecological impacts.

MHW detection implies several methodological choices: the choice of the SST product, the length of the climatological
baseline, whether or not to detrend the SST time series, and the definition of the MHW threshold (Farchadi et al., 2025). If the
scientific community agrees on the general methodology - use of 30-year climatology, no detrending and seasonally varying
90th percentile, Hobday et al., 2016 - different options can lead to significantly different results in MHW metrics evaluation
potentially leading to different policy responses to MHWs (Capotondi et al., 2024).

While the effects of the choice of the climatological baseline (Amaya et al., 2023), of detrending (Smith et al., 2025) and of
the use of a fixed threshold (Langlais et al., 2017) have been investigated and discussed, the impact of SST product choice on
MHW detection statistics remains little explored. If this step appears crucial for MHW analysis (Farchadi et al., 2025), most
MHW studies rely on a single blended SST product, either satellite-only or satellite combined with in situ data, or an ocean
reanalysis. A similar issue applies to the Degree Heating Weeks (DHW) computation, a widely-used metric for coral bleaching
risk that represents accumulated heat stress which can lead to coral bleaching and mortality (Skirving et al., 2020). This metric
is also computed from a single SST product in most coral studies. Yet, SST products differ in their data sources, processing
and interpolation methods, and they consequently show variability between themselves (Martin et al., 2012; Dash et al., 2012;
Okuro et al., 2014).

Several studies have focused on intercomparing satellite-derived SST products, particularly with regard to trends (Menemenlis
et al., 2025) or through validations using in-situ observations (Fiedler et al., 2019). Nevertheless, while some studies have
shown that MHW characteristics can be biased depending on the chosen SST product (Wang et al., 2024; Lal et al., 2025), the

sensitivity of MHW metrics to the choice of SST product has been scarcely investigated, and to our knowledge, has never been
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quantified at global or regional scales. Marin et al. (2021) identified locations where significant differences between products
occur, but for coastal MHWSs. For DHW, several studies showed significant differences between datasets in specific areas (Neo
et al. 2023 compared four datasets in the north western and south western Australian reefs; Margaritis et al. 2025 compared
two datasets in the Caribbean).

Such quantification would help to improve the consistency of MHW information and forecasts, which is crucial in basins like
the tropical Pacific where communities heavily rely on marine resources (Holbrook et al., 2022; Lal et al., 2025). In this large
zone (almost half of the tropics), MHWs are modulated by EI Nifio Southern Oscillation (ENSO) (Holbrook et al., 2019; Sen
Gupta et al., 2020; Pagli et al., 2025), although other phenomena, such as the Madden Julian Oscillation (MJO) (Madden and
Julian 1971,1972) and tropical cyclones, can also influence MHW life cycle (Dutheil et al., 2024). There, societies and
environments are particularly vulnerable to MHWSs (Andréfouét et al., 2015; Smith et al., 2021, 2024), making the tropical
Pacific an area of strong interest to MHW research.

The present study consequently provides a quantitative assessment of the sensitivity of MHW metrics to the choice of the SST
product, focusing on the tropical Pacific. Six SST datasets are compared: four blended satellite observational products, one
reanalysis product, and an ensemble-mean product computed as the average of the four SST observational products. Six MHW
metrics (number of MHW days per year, number of events per year, duration, maximum intensity, cumulative intensity and
onset rate) are analyzed to determine which metrics are more robust to SST product choice. In addition, the sensitivity to SST
products is assessed for the DHW index. A regional approach is also conducted by dividing the tropical Pacific into seven
regions and providing spatially averaged uncertainties for MHW metrics and DHW inside these regions, in line with the
recommendations of Farchadi et al. (2025) who highlight the importance of accounting for regional variability in MHW studies.
The present study is organized as follows. Section 2 describes the data and methodology. Section 3 first provides a comparison
of MHW metrics across SST products revealing the impact of high frequency SST variability on MHW detection. A
quantitative assessment of the uncertainty associated with the SST product choice is then conducted for each metric at both
basin and regional scales, highlighting the highest sensitivity in the western Pacific Warm Pool. Lastly, similar analysis and

evaluation of DHW uncertainties linked to the SST choices is also performed. Finally, the results are discussed in section 4.

2- Data and methodology
2.1- SST products

Six SST datasets were used in the study: four observation-based products, their ensemble-mean, and one reanalysis. We used
four daily global L4 (Level 4, gap-free, gridded) SST analysis products : the NOAA Advanced very High Resolution
Radiometer (AVHRR) Optimum Interpolation (Ol) ¥4 degree daily SST v2.0 Analysis data (hereafter designed as OISST), the
ESA C3S global Sea Surface and Sea Ice Temperature Reprocessed product (hereafter designed as C3S), the global ocean
OSTIA SST and Sea Ice reprocessed product, and the NOAA Coral Reef Watch (CRW) version 3.1 daily global 5km SST

product known as CoralTemp. These products are among the most commonly used in MHW studies. We also used the ocean

3



99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114

https://doi.org/10.5194/egusphere-2025-5417
Preprint. Discussion started: 13 November 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

reanalysis GLORYS12v1 as: 1) reanalyses are widely used in MHW research to better understand MHW vertical extent and
driving mechanisms (Capotondi et al., 2024; Dutheil et al., 2024), 2) this reanalysis is also used for MHW reports/forecasts by
Mercator-Ocean for Copernicus Marine Servicel. The GLORYS12v1 reanalysis used here is a 1/12° reanalysis using the
NEMO (Nucleus for European Modelling of the Ocean, Madec et al., 2024) ocean model, forced by ECMWF ERA-Interim
atmospheric reanalysis (Dee et al, 2011), complemented by ERAS re-analyses (Hersbach et al., 2020) for recent years (from
January 1st 2019). This reanalysis assimilates sea level anomalies (SLA), observed SST (OISST), sea ice concentration and in
situ temperature and salinity vertical profiles (Lellouche et al., 2021).

For MHW inter-comparison, C3S, OSTIA, CRW and GLORYS12v1 were regridded on the OISST 0.25° grid using the
conservative method “remapcon” from CDO software (Schulzweida et al., 2023). Finally, a sixth dataset hereafter referred to
as “COMPOSITE”, was constructed to evaluate the relevance of a multi-product approach for MHW analysis. More precisely,
the daily 0.25° COMPOSITE was computed as the mean of the four SST observation-based products: the three re-gridded
C3S, CRW and OSTIA, and the raw OISST. The reanalysis GLORYS12v1 was not included in the COMPOSITE since it

differs by definition from observation-based products. MHW detection was thus performed on these six 0.25° daily datasets.

A summary of information for these datasets is provided in Table 1.

Table 1: Description of the SST datasets.

Product Time coverage and Spatial Depth Description and data sources
Reference temporal resolution resolution
C3s 31/08/1981-30/12/2024 0.05°x0.05° Representative of the Reprocessed SST analysis using
E.U. Copernicus Daily 20cm depth. temperature from satellites: L3U (A)ATSR,
Marine Service SLSTR, AVHRR, AMSR-E, AMSR-2 v3.0
Information of ESA SST_cci CRD and ICDR and
(CMEMS). Marine EOCIS. It is independent from in-situ data.
Data Store (MDS)
d0i:10.48670/moi-
00169
Coral Temp 01/01/1985-present 0.05°x0.05° Representative of the Reprocessed SST analysis
NOAA Coral Reef Daily 20cm depth. derived using a combination of 3 L4
Watch (CRW) nighttime-only satellite SST datasets (two
Skirving et al., 2020 NOAA Geo Polar SST products - Near Real
Time and reprocessed - and the 1985-2002
daily global nighttime only foundation SST
from OSTIA).
OSTIA 30/09/1981 - 31/05/2022 0.05°x0.05° SST foundation i.e. SST Reprocessed SST analysis using satellite
E.U CMEMS. MDS Daily free of diurnal variability. data (re-processed ESA SST CCl, C3S

doi:10.48670/moi- This is very similar to the [RD.2] EUMETSAT and REMSS) and in-

00168 temperature measured situ data from the HadlOD dataset (ships

nominally at a depth of and buoys).
0.2-1m just before sunrise
(Donlon et al., 2012)

1 https://www.mercator-ocean.eu/ocean-intelligence/ocean-bulletins-and-insights/marine-heatwaves-archive/
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OISSTv2 01/09/1981 - present 0.25°x0.25° Representative of the Reprocessed SST analysis using satellite
NOAA Daily 20cm depth. data (AMSR, AVHRR and AVHRR-Only)
Reynolds et al., 2007 and in-situ data from ships, buoys and Argo
Huang et al., 2021 floats.
GLORYS12v1 31/12/1992 - 26/05/2025 0.08x0.08° 0.49m (minimum depth of Ocean reanalysis. Assimilated temperature
E.U CMEMS. MDS Daily the 50 vertical levels) observations : OISST (Reynolds 0.25°
d0i:10.48670/moi- AVHRR-only SST), in situ temperature
00021 profiles from Copernicus Marine
CORAWvA4.1 database.
COMPOSITE 01/01/1993-31/12/2021 0.25°x0.25° - Mean of the four SST analysis products :
C3S, CRW and OSTIA all three re-gridded
at 0.25°, and OISST.

2.2- MHW and DHW analyses
2.2.1- Study area

MHW and DHW analyses were performed over the tropical Pacific (30°S - 25°N; 125°E - 70°W, Fig. 1A) at 0.25° spatial
resolution. The latitudinal coverage is not symmetric, extending further south to include islands of the southern subtropical
Pacific, notably French Polynesia (30°S - 0°S; 165°W - 130°W). As MHW characteristics and ocean processes vary within
this area (Holbrook et al., 2019, 2022; Lal et al., 2025), the sensitivity analysis was detailed at regional scale for both MHW
metrics and DHW. Seven regions were defined based on the Longhurst et al. (2007) provinces which reflect the ocean’s
physical and biogeochemical properties. As will be shown later, these regions also correspond to areas with distinct MHW
characteristics, and represent different physical regimes in the tropical Pacific. Results of the basin-scale sensitivity analysis
were thus aggregated within these regions. They are illustrated in Fig. 1a and named following Longhurst et al. (2007): the
North Pacific Subtropical Gyre West (NPSW), North Pacific Tropical Gyre (NPTG), West Pacific Warm Pool (WARM),
North Pacific Equatorial Countercurrent (PNEC), Pacific Equatorial Divergence (PEQD), Archipelagic Deep Basins (ARC)
and the South Pacific Subtropical Gyre Province (SPSG) (Fig. 1a). Minor adjustments were made to the original WARM
province of Longhurst et al. (2007), with a small extension further east to better capture the coherent dispersion patterns of
MHW metrics.
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Figure 1: (a) Mean SST (1993-2021) from the COMPOSITE in the tropical Pacific, with the regions of study. (b-g) Ensemble mean
of MHW metrics in the tropical Pacific (1993-2021; cf. section 2.3.1), with the limits of the regions defined in (a).

2.2.2- MHW and DHW computation

MHW detection was performed for each pixel of the six datasets presented in section 2.1 on the 0.25° common grid over the
tropical Pacific, following the Hobday et al. (2016) method. A MHW event was defined as a period of at least five consecutive
days during which SST exceeded the local 90" percentile threshold. Gaps of less than two days within an event were ignored.
The analysis was conducted over 1993-2021, which served as the common climatological baseline across the SST products
(Table 1, common period to all products). No detrending was applied to the SST time series in order to account for differences
in long-term SST trends among products (Menemenlis et al., 2025). The sensitivity analysis was carried out for six MHW

metrics: (1) the number of MHW days per year, (2) number of events per year, (3) event duration, (4) maximum intensity, (5)
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cumulative intensity, and (6) onset rate. The number of MHW days per year and the number of events per year were defined
as the total number of days and events over 1993-2021 divided by the 29 years of the analysis period. Maximum and cumulative
intensities were expressed relative to climatology, with cumulative intensity calculated as the sum of daily intensities over
each event’s duration. The onset rate was defined as the rate of temperature increase from the start of a MHW to its maximum
intensity (Hobday et al., 2016).

Daily Degree-Heating Weeks (DHW) values were computed following Skirving et al. (2020) for each pixel of the six SST
datasets of section 2.1 at 0.25° resolution. First, daily temperature anomalies (HotSpot) were calculated relative to the local
Maximum of Monthly Mean (MMM), defined as the maximum of monthly climatological means over 1993-2021. DHW
values on a given day were then computed as the sum over the preceding 12 weeks of daily HotSpot anomalies exceeding 1°C.
This accumulated sum was divided by 7 to express DHW in °C weeks . Due to its ecological relevance, we investigated the
impact of SST product choice on the yearly maximum DHW values in the tropical Pacific. More precisely, this metric

quantifies the maximum accumulated heat during a year that can potentially stress marine organisms such as corals.

2.2.3- Filtering MHWs by size

In order to better understand the origin of inter-product differences in MHW metric estimates, MHWSs were filtered by size.
The sensitivity analysis was carried out for micro (maximum area < 5°x5°) and macro (maximum area > 5°x5°) events,
separately. More precisely, for each day, all pixels where MHWSs were detected were assigned a MHW area, defined as the
number of contiguous pixels to the studied pixel also experiencing a MHW. These joint pixels were detected thanks to the
label function from python package scipy.ndimage (method inspired from Bonino et al., 2023). In a pixel, a MHW was thus
associated with a series of areas over its duration. The maximum area reached during the event was associated with each MHW
in the evaluated pixel. Events with a maximum area smaller than 25 square degrees were classified as micro-scale, whereas

those with a maximum area exceeding 25 square degrees were defined as macro-scale (Lal et al., 2025).

2.3- Sensitivity analysis
2.3.1- Inter-product differences and uncertainty quantification

Inter-product differences in MHW detection were illustrated by maps of mean MHW metrics for each SST product over the
tropical Pacific. For duration, maximum intensity, cumulative intensity and onset rate, these maps were defined at each pixel
as the mean value across all MHWSs detected between 1993 and 2021. For the number of MHW days per year and the number
of events per year, the maps were defined at each pixel as in 2.2.2.

To better highlight the inter-product differences on MHW metrics, anomalies were also mapped over the tropical Pacific. For

each product and metric, the product anomaly at each pixel was defined as the difference between the metric value for that
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product (as defined above) and the ensemble mean value of the metric over the 6 products (i.e. the mean of six values, hereafter
designated as “ensemble mean” metric) (Eq. 1):

anomaly(metric;, product;, pixely) = metric;(product;, pixely) — ensemble,,eqn( metric;, pixely) Q)
where ensemblepyeqn(metric;, pixel,) = (9., metrici(product;, pixely)) / 6, with i varying from 1 to 6 and representing the
six evaluated metrics, j varying from 1 to 6 and representing the 6 evaluated products, and k representing the pixel number in

the domain. The same maps were produced for the temporal mean of DHW annual maxima (section 2.2.2).

The sensitivity of each MHW metric to SST product choice was evaluated at each pixel by computing the dispersion of the

metric across the six SST products (hereafter designated as “ensemble dispersion”, Eq. 2).

0 = ensemblegg,ersion(Metric;, pixel,) = \[%Zle[(metrici(productj,pixelk) - ensemblemean(metrici,pixelk))z] 2

The ensemble dispersion was also computed for DHW. Maps of dispersion over the tropical Pacific were produced for each
metric. These values of ensemble dispersion were defined as the “uncertainty” of the metric with respect to SST product choice.
In order to quantify and compare metrics sensitivity, the ensemble dispersion at each pixel was also expressed as a percentage

by dividing the ensemble dispersion by the ensemble mean value of the metric at that pixel, and then multiplying by 100.

The co-occurrence of MHWSs across SST products was also assessed by computing the percentage of common MHW days
over the basin. At each pixel, this percentage was defined as the number of days detected simultaneously as a MHW in all six
products divided by the ensemble mean number of total MHW days at that pixel. Similar analysis was conducted for DHW,

by computing the percentage of common bleaching alerts of level 1 (days for which DHW=>4°C.weeks1) across products.

2.3.2- Temporal evolution

The temporal evolution of MHW metrics sensitivity to SST product choice was evaluated by computing yearly time series of
ensemble dispersion for each metric and region. For this purpose, yearly maps of MHW metrics and ensemble dispersion over
the tropical Pacific were produced, following the method described in section 2.3.1. The year attribution of a MHW was based
on its time start. Then, spatial averages of these yearly values of ensemble dispersion were computed within each region, to
yield one annual dispersion value per metric and region. The spatial average of ensemble dispersion values inside a region was

computed for a given year if dispersion values could be computed for at least 10% of the pixels of the region.

The temporal evolution of metrics sensitivity to SST product choice was also assessed by computing yearly time series of
inter-product spatial correlation within all regions (hereafter designated as “ensemble spatial correlation”). For each region
and year, spatial correlation between pairs of products was quantified using the uncentered statistic of pattern correlation
methods (Barnett and Schlesinger, 1987), which correlates fields without removing the spatial means. The uncentered statistic

was used here since IPCC reports argue that it is better suited for detection in pattern correlation studies as it includes the

8
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response in the global mean, while the centered statistic is more appropriate for attribution because it better measures the
similarity between spatial patterns (IPCC, 2001). The uncentered pattern correlation statistic is defined in Eq. 3:
Z’l}:lak by (3)

2
Z‘},cl=1 ak2 2%:1 bk

where a and b represent yearly metric values for two SST products inside the region evaluated (n pixels in the region).

PatternCorrelation (product,, product,) =

The value of pattern correlation was considered when the associated p_value (based on t-test) was inferior to 0.01. For a given
metric, region and year, the pattern correlation was computed for all 15 product pairs, and these 15 values were averaged to
give the yearly value of the ensemble spatial correlation in the region studied. The spatial correlation inside a region was

computed for a given year if ensemble spatial correlation values could be computed for at least 10% of the pixels of the region.

3- Results
3.1- MHW characteristics in the Tropical Pacific

Ensemble mean MHW metrics over 1993-2021 are shown in Fig. 1 in the tropical Pacific, with patterns reflecting spatial
variability associated with ENSO. In the central and eastern Equatorial Pacific (PEQD), ENSO largely drives MHW risk
(Holbrook et al., 2019; Capotondi et al., 2022). Although MHW occurrences are relatively low in this area (Fig. 1c¢), the number
of MHW days per year is highest, exceeding 32-34 days (Fig. 1b). Here, MHWSs have longer durations as they last between 30
to more than 50 days on average (Fig. 1d), and exhibit the highest maximum intensity (more than 3.5°C, Fig. 1f) and cumulative
intensity (more than 100°C.days, Fig. 1e) (Holbrook et al., 2019; Oliver et al., 2021). The highly intense MHWSs observed in
a narrow band along the Equator (2°S-2°N) near the South American Coast are also associated with the highest onset rates of
the tropical Pacific (more than 0.3°C/days, Fig. 19).

In the northeastern tropical Pacific (NPTG), MHWs occur on more than 30 days per year (Fig. 1b) but the number of events is
low (~ 1 per year, Fig. 1c). These events are relatively long (30 days, Fig. 1d) and intense (cumulative intensity of 40-
50°C.days, Fig. 1e). In contrast, the PNEC experiences one of the highest numbers of events (more than 2.5 per year, Fig. 1c,
also observed by Holbrook et al., 2019; Oliver et al., 2021). This area, influenced by the equatorial countercurrent dynamics,
is characterized by short (less than 15 days, Fig. 1d) but intense events, with maximum intensity reaching 2.5°C (Fig. 1f).
These features are likely linked to the high SST variability of the region, which favors strong MHW intensities (Oliver et al .,
2021).

In the southwest tropical Pacific (mainly ARC), MHW occurrence is modulated by La Nifia conditions (Sen Gupta et al., 2020;
Lal et al., 2025). Mesoscale eddies close to the eastern Australian coast (Bian et al., 2023; Chapman et al., 2025) along with
downwelling Rossby waves and downwelling-favourable winds also favor MHW development (Misra et al., 2021; Li et al.,
2023). In this region, MHWs are relatively frequent (more than 2 events per year, Fig. 1c) but short (less than 15 days Fig. 1d,
Holbrook et al., 2019). Both the number of MHW days and the maximum intensities are close to the tropical Pacific average

(around 25 days and 1.5°C, respectively, Fig. 1b,f). Similar MHW characteristics are observed in the western SPSG and in
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NPSW. The northeastern part of the SPSG close to the PEQD is rather influenced by ENSO, with fewer MHWs of longer
duration and lower onset rate. The shortest MHWSs (less than 10 days, Fig. 1d) are observed in the WARM region. Here, the
number of MHW days per year, as well as the cumulative and maximum intensities reach their lowest levels in the tropical
Pacific (~15 days per year, <10°C.days and 1°C, respectively). Nevertheless, this region records a high number of events with

more than 2.5 events per year close to the Indonesian coast (Fig. 1c, also observed in Holbrook et al., 2019; Oliver et al., 2021).

3.2- Inter-product comparison and ranking

The MHW analysis performed over the six SST datasets reveals significant differences across products, as illustrated by the
MHW days per year computed for each product (Fig. 2a-f). The associated maps of anomalies (Fig. 2g-I; section 2.3.1) allow
us to more easily identify potential outliers. Figures S1-S5 extend the inter-product comparison to the other metrics.

If the main spatial patterns of mean MHW metrics described in section 3.1 are common between all products, Fig. 2 and Fig.
S1-S5 highlight that values can differ by almost a factor of two between products. For the MHW days per year (Fig. 2a-f), the
largest differences are observed in the WARM region, with GLORYS12v1 detecting 30 MHW days per year while OISST
detects around 15 days per year. Anomalies relative to the ensemble mean range approximately between +5 days per year
inside the tropical Pacific, with some areas showing even larger anomalies (Fig. 2g-1). The strongest positive (negative)
anomalies are observed for GLORYS12v1 (OISST). GLORYS12v1 systematically detects more MHW days than the other
products, and OISST less MHW days. C3S and OSTIA show smaller anomalies for this metric. For all products, anomalies
are closer to zero in the PEQD, a region of strong influence of ENSO where the longest MHWSs are observed (section 3.1).
For the other metrics, anomalies generally remain within 0.5 events per year, £10 days for MHW duration, £0.25°C for
maximum intensity, +15°C.days for cumulative intensity and *0.15°C/days for onset rate over the tropical Pacific
(Supplementary Fig S1-S5). As for the MHW days per year, anomalies for the other metrics reveal that GLORYS12v1 and
OISST show the largest anomalies, whereas C3S, CRW and OSTIA are closer to the ensemble mean - except near the
Indonesian coast where OSTIA shows strong positive anomalies in event frequency and onset rate. Unlike the number of
MHW days per year, anomalies for other metrics vary substantially in space, and can be either positive or negative within the

tropical Pacific for the same product (especially for the number of events per year).
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Figure 2: (a-f) Number of MHW days per year over the period 1993-2021 for the six SST products. (g-I) Anomalies of MHW days
per year for each product relative to the ensemble mean (section 2.3.1). Black lines indicate regions' limits.

To summarize inter-product differences, the average of MHW metrics for all events detected in the tropical Pacific during
1993-2021 were computed for each product (Fig. 3). In the study area, OISST ranks first for maximum intensity, onset rate,
and the number of events detected. By “ranking”, we only mean to compare products but not to determine if one performs
better than another. Conversely, OISST shows the lowest ranking for the number of MHW days, duration and cumulative
intensity (Fig. 3). The opposite pattern is observed for GLORYS12v1 reanalysis which shows the highest ranking for duration,
cumulative intensity and the number of MHW days detected, while it ranks last for MHW maximum intensity and onset rate.
The COMPOSITE product tends to follow the rankings of GLORYS12v1, with radar charts showing similar shapes (Fig. 3).
OISST and GLORYS12v1 therefore stand out in this study, consistently occupying either the lowest or highest ranks across
MHW metric estimates. By contrast, C3S shows a more “balanced” radar chart, with no clear overestimation or
underestimation compared to other products. These findings are consistent with the anomaly analysis presented in Fig. 2 and
Fig. S1-S5.

11



273

274
275
276
277
278

279
280

281

282

283
284
285
286
287
288
289
290
291
292
293
294

https://doi.org/10.5194/egusphere-2025-5417
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

C3S

CRW
GLORYS
OSTIA
OISST
COMPOSITE

Duration NB. events

A

Cum. Int. MHW days

Max. Int. Onset Rate

Figure 3: The radar chart is a comparison of all product metrics. The average of MHW metrics are computed for all events detected
in the tropical Pacific over 1993-2021 for each product, and normalized by the product that reaches the maximum metric so that all
values of the radar chart vary between 0 and 1 (plotted along the radial axes).

The comparison of MHW metrics between products thus highlighted significant differences which vary spatially and
between metrics. In the next section, the robustness of the different metrics regarding SST choices is evaluated by quantifying

the uncertainty linked to the SST product choice for each metric at both tropical Pacific and regional scales.

3.3- Uncertainty in MHW metrics due to the SST product choice
3.3.1- Basin-scale overview and regional quantification

The MHW co-occurrence analysis (section 2.3.1) reveals that over the basin, between 10 and 80% of MHW days are detected
simultaneously by all six products (Fig. 4a). Excluding the PEQD region, where percentages reach their maximum ranging
between 60 and 80%, MHW days in common do not exceed 50% over the tropical Pacific and even drop below 20% in a large
part of the basin, in the WARM and PNEC regions. The spatial patterns of common MHW days match well with precipitation
contours in the basin (Fig. 4a), an aspect further discussed in section 4.2.

The ensemble dispersion normalized by the ensemble mean for each MHW metric (Fig. 4b-g, section 2.3.1) highlights that the
onset rate is the most sensitive metric to inter-product variability. Dispersion for this metric exceeds 30% across much of the
tropical Pacific, reaching values above 50% in the southeastern part of the basin (around 10°S-130W, Fig. 4g), where onset
rates are small (Fig. 1g). MHW duration also exhibits high sensitivity to the choice of SST product, with normalized dispersion
ranging between 20 and 30% over the basin, closely followed by the cumulative intensity and the number of events per year
(Fig. 4c,d,e). The MHW days per year and the maximum intensity show the lowest dispersion, with values ranging between
0-5% (in the PEQD) and 20% (30%) for the maximum intensity (total MHW days) (Fig. 4b,f).
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The high ensemble dispersion values observed in the WARM region across all metrics (Fig. 4b-g) is consistent with the small
fraction of MHW days detected simultaneously by all six products in this area (between 10 and 20%, Fig. 4a). The spatial
patterns of common MHW days also show good correspondence with dispersion patterns of the total MHW days per year and

maximum intensity (Fig. 4b,f), with high dispersion coinciding with a low percentage of common days, and vice versa.
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Figure 4: (a) Percentage of MHW days detected simultaneously by the six SST products (section 2.3.1), with ERA5 precipitation
contours overlaid (temporal average over 1993-2021, in mm/day). (b-g) Normalized ensemble dispersion for each MHW metric
(value in %, section 2.3.1). Black lines indicate regions' limits.

The spatial variability of the previous results supports the need of a regional approach in our sensitivity analysis. Consequently,

spatial boxplots of dispersion values within each region are represented in Fig. 5. Across regions, the dispersion distributions
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for each metric differ significantly (Mann—Whitney test, p < 0.05). The spatial average of dispersion values within each region
is detailed in Fig. 5 (exact value), providing the uncertainties for each metric and region.

The regional analysis (Fig. 5) confirms the basin-scale findings (Fig. 4): the onset rate and duration metrics are the most
sensitive metrics to SST product choice, with uncertainties exceeding 10% of the regional means in all regions and peaking in
the WARM (33.2% for the onset rate, Fig. 5). Cumulative intensity also shows uncertainties larger than 10% in all regions
except NPSW and ARC. The number of events per year exceeds 10% uncertainties in three of the seven regions - WARM,
PNEC and PEQD (Fig. 5). Finally, the total MHW days per year and maximum intensity are the least impacted metrics with
uncertainty lower than 10% in all regions except WARM (and PNEC for MHW days per year).

Fig. 5 also highlights the WARM as the most sensitive region to SST product choice, since percentages of dispersion are higher
than 10% whatever the metric. It is closely followed by the PNEC, with uncertainties higher than 10% for all metrics except
maximum intensity. Conversely, NPSW and ARC are the regions that exhibit the lowest uncertainties. The PEQD shows some
of the lowest dispersion values among all regions for the total MHW days per year and maximum intensity, but for all other
metrics dispersion exceeds 10% of the ensemble mean. Moreover, the PEQD shows important dispersion outliers for all metrics
which are two to three times larger than in other regions for the duration and cumulative intensity (reaching 20 days and
35°C.days, respectively, a pattern also observed in SPSG probably due to ENSO induced variability). The outliers are
important as they provide further insights on metrics uncertainties. For example, in PEQD, MHWSs detected have an uncertainty
of £0.11°C in maximum intensity with respect to inter-product differences (average dispersion value, Fig. 5). However, some
dispersion values inside this region can reach more than 0.5°C (Fig. 5), suggesting that MHW analyses inside PEQD should

be interpreted with caution if based on a single dataset (almost 1°C of uncertainty for some pixels inside this region).
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Figure 5: Spatial boxplots of the ensemble dispersion values from Fig. 4b-g for each region. Boxes contain 50% of the values (limits
are the first quartile Q1 and third quartile Q3), with the green marker representing the mean value. Whiskers (lines extending from
the box) represent the typical range of data; they extend from Q1 — 1.5 x (Q3-Q1) to Q3 + 1.5 x (Q3-Q1). The dots outside the
whiskers are considered as “outliers”. The exact mean value (green marker) is indicated at the top of each boxplot (1st number from
the top), along with its equivalence in percentage of the ensemble mean in the region (2nd number from the top). Mean dispersions
higher than 10% of the regional mean value are highlighted in bold.

3.3.2- Metrics uncertainty as a function of MHW size

We now examine whether the metrics sensitivity to the SST product depends on the size of the MHWSs. We investigated this
hypothesis by filtering MHWSs by size (section 2.2.3), and ensemble dispersion was then computed separately for macro and
micro-scale events. Spatial patterns of macro (> 5°x5°) and micro events (Fig. 6a,b,c,d) show that macro events occur mainly
in regions influenced by ENSO (PEQD and southeastern SPSG) while micro events are mainly concentrated near coastlines
and at the southern and northern limits of the study area (in the PNEC, WARM, ARC, but also northern NPSW and in SPSG
near the shore).

Very few micro-scale MHW days are detected simultaneously by all SST products (Fig. 6f): percentages of MHW common
days range between 40% in areas where micro-scale events are numerous and less than 5% where they are fewer. In contrast,

percentages of MHW days in common for macro scale events range between 20% in the WARM (where they are fewer) and
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80% in the PEQD (Fig. 6e). Differentiating macro and micro-scale events highlights that dispersion is generally lower for
macro-scale events (Fig. 6g). This is particularly striking for the total MHW days per year and number of events per year, for
which ensemble dispersion decreases by more than two between micro- and macro-scale events (spatial average over the
basin). Dispersion for cumulative intensity, maximum intensity and onset rate remains slightly lower for macro-scale events

compared to micro-scale events, but is slightly higher for duration.
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Figure 6: (a) Percentage of macro-scale MHWSs among all events detected over 1993-2021 (i.e. ensemble mean of the total number
of macro events divided by the ensemble mean of the total number of MHWs of all types, multiplied by 100). (b) Same as (a) for
micro-scale MHWs. (c) Ensemble mean of total MHW days per year for macro scale events. (d) Same as (c) for micro-scale MHWs,
(e) Percentage of MHW days detected in common by all six products (section 2.3.1) over 1993-2021 for macro scale events. (f) Same

as (e) for micro-scale MHWs. (g) Spatial average over the tropical Pacific of dispersion values for each metric for macro-scale MHWSs
(blue bars) and micro-scale MHWSs (orange bars).
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3.3.3- Temporal variability of the dispersion

Having quantified inter-product differences, we investigated their temporal evolution to assess both long-term trends and the
influence of ENSO events on their temporal variability. The yearly time series of MHW metrics averaged over the tropical
Pacific for each product highlight the inter-annual variability of inter-product differences (black line Fig. 7), which appears to
vary between metrics. Over the basin, differences between products are rather stable through years for the maximum intensity
and onset rate while they seem to increase for years marked by strong El Nifio events (1997-98, 2015-16) for the other metrics
(Fig. 7). The particularly high values in 2015 compared to 2016 for the metrics duration, cumulative intensity, maximum
intensity and rate of onset is explained by the year attribution of MHWs to its time start and the starting of the strong El Nifio
event in 2015.

(a) MHW days per year (days) (b) Number of events per year
4
C3s —e— OSTIA —e— COMP.
100 4 —— CRW —e— OISST =— Max-Min i 1
2 -
50
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Figure 7: (a-f) Yearly time series of MHW metrics averaged over the tropical Pacific for each product. Inside each panel, the black
line represents the largest inter-product difference value for each year (maximum-minimum). The red and blue backgrounds
indicate years of strong El Nifio and La Nifia, respectively, according to the Meiv2 index.

The yearly time series of the ensemble dispersion and spatial correlation within each region (section 2.3.2, Fig. 8 and Fig. S6)
provide more insights on the temporal evolution of inter-product differences, and highlight four main points. First, the
ensemble dispersion and ensemble spatial correlation values are coherent: metrics showing the lowest dispersion (maximum
intensity and MHW days per year) also exhibit the highest ensemble spatial correlation (values ranging between 0.8 and 1),
whereas metrics showing the highest dispersion (onset rate) show the lowest ensemble spatial correlation (values ranging

between 0.4 and 0.6). The number of events per year, the duration and the cumulative intensity fall in an intermediate range.
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The WARM region also shows some of the highest and lowest values of dispersion and spatial correlation, respectively, across
all metrics.

Second, yearly ensemble dispersion values are higher than those computed on the mean of metrics as in Fig. 4 since the yearly
filter implies more restrictions in MHW comparison. This suggests that ensemble dispersion might be underestimated when
computed on the mean of metrics over a long period.

Third, the long-term trends suggest a reduction in the inter-product dispersion and an increase in the spatial correlation over
the period 1993-2021 for all metrics and regions (Fig. 8 and Fig. S6). In all regions, the largest decreases in ensemble dispersion
are observed for the total MHW days per year and the onset rate (-6.6%/dec in WARM and -7.2%/dec in NPSW, respectively,
p_values<0.05) while the lowest ones are observed for the maximum intensity (between -1.1%/dec and -2.7%/dec in SPSG
and WARM, respectively, p_value<0.05). The highest increasing rates of ensemble spatial correlation are also observed for
the total MHW days per year and the onset rate, reached in the WARM and NPSW, respectively.

Fourth, ensemble dispersion and spatial correlation show an interannual variability partly linked to ENSO variability. For both
statistics, MHW days per year shows the highest interannual variability which is marked by the strong El Nifio years of 1997 -
98 and 2015-16 (minima of dispersion and maxima of spatial correlation). On the contrary, the maximum intensity shows the
lowest interannual variability among metrics (Fig. 8 and SP7). Yet, the effects of ENSO variability on ensemble dispersion
and spatial correlation depend on various factors. They can vary between metrics inside a same region: in the PEQD (where
the effects of ENSO are strong), dispersion is lower for strong El Nifio years (1997-98, 2015-16) for the total MHW days per
year while it is higher for the duration, number of events per year, cumulative intensity and onset rate (Fig. 8a-f). Similar
results are observed in the WARM and SPSG. The effects of ENSO variability can also vary between regions for a same
metric: duration shows higher spatial correlations for strong El Nifio years in most regions but not in WARM and SPSG where

spatial correlation is lower these years and maxima is reached in 2011 (La Nina) in SPSG (Fig. 8i).
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Figure 8: (a-f) Yearly time series of ensemble dispersion (in percentage) for PEQD, WARM, ARC and SPSG. The dashed lines
indicate the significant linear trends (p_value<0.05). The red and blue backgrounds indicate years of strong El Nifio and La Nifia,
respectively, according to the Meiv2 index. (g-1) Same as (a-f) for the ensemble spatial correlation (section 2.2.3). Time series in the

PNEC, NPTG and NPSW are represented in Supplementary Fig. S6.

Once inter-products differences were quantified for MHW metrics, they were also analysed for the DHW index, a

widely used proxy for coral bleaching.

3.4- Uncertainty in the bleaching alerts (Degrees Heating Weeks)

The temporal mean of DHW annual maxima over 1993-2021 in the tropical Pacific (Fig. 9a-f) highlights the influence of

ENSO on the DHW, with highest values being observed in the central and eastern Equatorial Pacific (more than 5 °C.weeks"

1 for all products. Such influence is also seen on the yearly time series of DHW annual maximum for each product (Fig. 10a,
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spatial average over the tropical Pacific), with maxima observed in strong El Nifio years of 1997-98 and 2015-16. Figure 9
highlights significant inter-product differences for DHW annual maximum, with anomalies ranging between +0.5°C.weeks™!
(Fig. 9g-1), and even higher in the western and central eastern equatorial part of the basin. Over the tropical Pacific, the highest
positive anomalies are observed for OISST and C3S while the highest negative anomalies are observed for GLORYS12v1.
Inter-product differences of more than 1°C.weeks™ are observed between C3S and GLORYS12v1 in the PEQD close to the
south American coast (80°W, 0°) and between OISST and GLORYS12v1 in a large area around (140°E, 10°S), between
northern Australia and Indonesia.
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Figure 9: (a-f) Temporal mean of DHW annual maximum over the period 1993-2021 for the six SST products. (g-1) Anomalies of the
temporal mean of DHW annual maximum for each product relative to the ensemble mean (section 2.3.1). Black lines indicate regions'
limits.

Figure 10a confirms that over the years, OISST detects the highest annual maxima of DHW, except in years of strong El Nifio
(1997-98, 2015-16) where C3S shows the highest annual DHW maximum (averaged values over the basin). As in Fig. 5,
spatial boxplots of ensemble dispersion in DHW annual maxima within each region are represented in Fig. 10c. Across regions,

the spatial averages of dispersion (green markers and values in Fig. 10c) range between 0.25 and 0.49°C.weeks™, reached in
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the NPSW and PEQD, respectively. Such uncertainties, with outliers reaching more than 1°C.weeks™ in all regions except
NPSW, appear critical when comparing DHW values to the bleaching level of alert of 4°C.weeks™? defined by the NOAA
(level 1 alert). This is further illustrated in Fig. 10b,d which show the number of level 1 alerts (ensemble mean) in the tropical
Pacific, and the associated percentage of common alerts between all six products. The spatial average over the basin of the
number of level 1 alerts for each product (not shown) revealed that OISST detected the most alerts closely followed by C3S,
while the COMPOSITE detected the fewest, closely followed by CRW and GLORYS12v1. These results are in line with the
maps of anomalies of Figure 9g-1 and the previous observations. In most of the basin, the proportion of level 1 common alerts
i.e. the common days for which DHW>=4°C.weeks™ across products ranges between less than 50% and 80% (Fig. 10d). In
large areas of the basin (in ARC, in PEQD close to the south American coast and in PNEC), percentages of common alerts
between all six products reach 70% at maximum. They even drop lower than 50% south of New Caledonia and in the Coral
Sea (ARC). This means that among all bleaching alert days in these areas (which range between 1 and 2 weeks per year over
1993-2021 for ARC, Fig. 10b), at least one third or even a half was not detected by at least one of the six products evaluated

here. These results confirm that SST product choice is also crucial to the DHW index.
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Figure 10: DHW analysis. (a) Yearly time-series of DHW annual maxima averaged over the tropical Pacific for each product. The
black line represents the largest inter-product difference value for each year (maximum-minimum). The red and blue backgrounds
indicate years of strong EIl Nifio and La Nifia, respectively, according to the Meiv2 index. (b) Ensemble mean of the number of level
1 alert days (DHW>=4°C.weeks™) per year, for each pixel of the tropical Pacific over 1993-2021. (c) Spatial boxplot of ensemble
dispersion on DHW annual maxima within the study regions. The green marker represents the mean value, for which the exact
value is indicated on top of the associated boxplot. (d) Percentage of common alerts of level 1 among the six SST products.
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4- Discussion and conclusions

In this study, we have quantified the sensitivity of MHW metrics and DHW index to the SST product chosen in the tropical
Pacific over 1993-2021, at both basin and regional scales. Uncertainties associated with the choice of the SST product were

assessed using ensemble dispersion for each metric and region.

4.1- Inter-product differences and uncertainties

MHW mean metrics and temporal means of DHW annual maxima show similar spatial patterns in the tropical Pacific across
the six SST products evaluated. The observed spatial patterns of MHW metrics are consistent with previous regional (Holbrook
et al., 2022; Lal et al., 2025; Pagli et al., 2025) and global MHW studies (Oliver et al., 2021). However, products show
significant differences in the absolute values of the mean metrics and DHW index, which can go up to a factor of two (between
OISST and GLORYS12v1). Over the basin, OISST detects the largest maximum intensity, onset rate, number of events and
number of bleaching alerts, but the lowest duration, cumulative intensity and number of MHW days per year. On the opposite,
the reanalysis GLORYS12v1 shows the largest number of MHW days per year, duration and cumulative intensity along with
the lowest onset rate and second lowest maximum intensity, number of events and number of bleaching alerts. Such behaviors
for MHW metrics were also observed by Lal et al. (2025) in the South Pacific island countries and by Wang et al. (2024) in
the Northwest Pacific. The observed differences between these two products can be notably related to their strong and weak
high-frequency SST variability (periods shorter than 2 weeks) respectively (cf. following section).

Inter-product differences can lead to very different interpretations of the same extreme temperature event. As an example, SST
time-series from the six products at one location off the eastern Australian Coast (147°E, 13°S) are shown for 2016, when a
massive MHW occurred across the Southwest Pacific (Dutheil et al., 2024) causing important damage at the Great Barrier
Reef (Great Barrier Reef Marine Park Authority report, 2017). The different time series reveal that this MHW was detected
by all products (temperatures are above the 90" percentile from approximately February 2016 to September 2016, Fig. 11),
but in very different ways (Fig. 11). The number of MHW events detected over the time period ranges from 3 (GLORY S12v1)
to 9 (OSTIA), and the cumulative intensity of the MHWSs detected from 78.9°C.days (OSTIA) to 182.1°C.days
(GLORYS12v1). Consequently, interpretations linked to the biological impacts of such events, (e.g., which metrics have the
greatest impact on ecosystems: the number of events? duration? recovery time?) can drastically vary from one SST product to
another. Same issue applies to the DHW: for the example of Fig. 11, the level 1 alert for coral bleaching was not reached for
C3S (3.34 °C.weeks™), and maximum DHW barely reached the alert threshold for GLORYS12v1 (4.09°C.weeks™?) while it
largely exceeded it for CRW (5.57°C.weeks™). More broadly, the percentage of level 1 bleaching alerts in common among the
six products reaches at maximum ~60-70% in large areas of the tropical Pacific, especially in the ARC and PEQD close to
coastal areas, where MHW biological impacts are crucial (Smith et al., 2024). Neo et al. (2023) also showed inconsistency in
coral bleaching risk indicators between temperature data sources (among four evaluated) in northwestern and southeastern

Australia. Let’s note that DHW values computed here are lower than the ones of the NOAA CRW daily global 5km satellite
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coral bleaching DHW product, probably due to differences in the MMM climatological baseline (1993-2021 in our study while
years 1985-1990 plus 1993 only are used for CRW DHW product, Heron et al., 2014).
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Figure 11: SST time-series of the six products at the same pixel (147E, 13S; off the eastern Australian coast) during the MHW event
of 2016. The main MHW characteristics identified over the event period (January 2016 - November 2016) are indicated in the tables
at the bottom left of each panel. Values in brackets represent the minimum and maximum duration and cumulative intensity of the
detected events.

Regarding metrics sensitivity to the SST product choice, the onset rate is the most affected metric with the highest ensemble
dispersion (between 24.2% in the ARC and 33.2% in the WARM) and lowest spatial correlation across all regions of the
tropical Pacific. This metric should therefore be considered very carefully in MHW studies, especially since the onset rate
determines the reaction window to a MHW, a key index for marine decision makers (Spillman et al., 2021). In contrast, the
maximum intensity shows low ensemble dispersion (between 5.6% in the NPTG and 10.4% in the WARM) and high ensemble
spatial correlation values in all regions, with a low interannual variability of both parameters in all regions, making it a robust
metric regarding inter-product SST variability. Metrics with intermediate sensitivity - duration, cumulative intensity, number
of events per year and number of MHW days per year - should be considered carefully as their ensemble dispersion, spatial
correlation and interannual variability show high spatial differences. Consequently, SST product choice, region and study year

might all influence these metrics.
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Our results regarding MHW metrics differ from those of Marin et al. (2021). In their coastal MHW analysis, mean intensity -
strongly correlated with maximum intensity - showed the largest inter-product differences among the four datasets considered.
This discrepancy may arise from several factors. First, methodological differences: Marin et al. (2021) assessed each product’s
deviation from the ensemble mean metric using a threshold based on ensemble dispersion to identify outliers and hotspot
regions of inter-product differences (pixels with at least one outlier product). Such results depend on the individual product
and ensemble mean MHW metrics, whereas our study gives an absolute value of the metric uncertainty by solely focusing on
the ensemble dispersion. Second, we studied different types of events in different areas: Marin et al. (2021) focused on coastal
MHWs worldwide on detrended SST time series while we studied all MHWs in the tropical Pacific without detrending. Third,
the SST datasets differ: our ensemble includes both reanalysis and multi-product SST which show higher number of events
and durations, whereas Marin et al. (2021) used only satellite-derived analyses.
Despite differences in metric robustness, our sensitivity analysis revealed that ensemble dispersion decreased and spatial
correlation increased over time for all metrics and regions, reflecting the growing coherence between satellite SST datasets
(Yang et al., 2021) and hence improvements in reanalysis products such as GLORYS12v1 (which assimilates satellite SST
data) over the last decades. The intercomparison study of eight global gap-free SST products by Yang et al. (2021) indeed
highlighted that global mean SST time series showed larger differences among products during the early period of the satellite
era (1982-2002) when there were fewer observations.
To estimate an uncertainty in MHW metrics and DHW index, our sensitivity analysis also confirms the need for a regional
approach, since ensemble dispersion values and their interannual variability vary across regions and metrics. A summary of
uncertainties in each region for the six studied MHW metrics is provided in Fig. 5 and in Fig. 10 for the annual maximum of
DHW. Within this regional framework, the WARM region particularly stands out across all MHW metrics, with dispersion
values among products higher than 10% of the regional ensemble mean, making SST product choice particularly critical in
this area for MHW analysis. Regarding DHW, the PEQD particularly stands out with uncertainty reaching 0.5°C.weeks™,
which appears crucial when comparing to the level 1 of alert for coral bleaching.

Overall, the present inter-product comparison provides scientists uncertainty estimates and informs them about SST

product limitations regarding the scope of their research.

4.2- Potential explanations of these differences

The use of different data sources (satellites with infrared or microwave sensors, geo-stationary or not , use of in-situ data or
not, and if yes of various types - ships, drifting buoys, moored buoys, Argo), depths of SST estimations (skin layer, foundation),
time of SST estimations (dusk to dawn, night-time only, daily mean) and the different data interpolation methods or
assimilation methods in the SST products certainly explain the observed inter-product differences (Martin et al., 2012; Dash
etal., 2012; Okuro et al. 2014; Fiedler et al., 2019; Huang et al., 2023). The MHW detection and DHW computation methods,

both relying on thresholds, then amplifies small differences when computing MHW metrics and DHW.
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Our results suggest that MHW detection is particularly sensitive to the high frequency variability of the SST signal. The
combined analysis of the standard deviation of the high frequency SST signal (filtered at 15 days) in Appendix A (Fig. Al)
and the radar chart of Fig. 3 suggest that spiky signals with stronger high frequency variability like OISST and OSTIA detect
higher maximum intensity, onset rate and number of events, but lower duration, cumulative intensity and number of MHW
days per year. On the opposite, smoother products like GLORYS12v1 or the COMPOSITE with lower high frequency
variability (Fig. Al) detect lower maximum intensity, onset rate and number of events, but higher duration, cumulative
intensity and number of MHW days per year (Fig. 3). Thus, the similarity of behaviours between GLORYS12v1 and the
COMPOSITE (Fig. 3) might reflect the smoothing effect induced by the multi-product mean SST. These effects of high
frequency variabilities were also seen in the SST time series of Fig. 11 : climatological levels were similar between products,
but OISST and OSTIA signals showed larger high frequency variability (confirmed by Fig. Al), which resulted in the detection
of more MHWs of shorter durations (that duration reached 73 and 74 day maximum, respectively, Fig. 11), while
GLORYS12v1 or the COMPOSITE showed smoother signals and detected fewer MHWSs but of longer durations (duration of
maximum 162 days for GLORYS12v1, Fig. 11).

The spatial variability of common MHW days is also linked to the spatial scales of MHWSs : low (high) percentages of common
days correspond to areas with a high proportion of micro (macro) scale events. Indeed, the detection of macro scale MHWs (>
5°x5°) was shown to be more robust across products compared to micro scale MHWSs (< 5°x5°), with percentages of common
MHW days for macro events largely higher than for micro events. The high proportions of micro MHWSs (Fig. 7b) are also
located in the areas of larger high frequency variability (Fig. Al): in the coastal areas of the PNEC, NPTG, ARC, in northern
NPSW and along the Equator in the PEQD. Also, the duration, cumulative intensity, maximum intensity and onset rate show
slightly higher dispersion values for micro-scale events than for macro-scale ones, but large differences are observed for the
total MHW days and number of events per year, for which dispersion is higher by a factor of 2 for micro-scale events. Lal et
al. (2025) similarly reported strong discrepancies in the number of micro-scale events across products whereas macro-scale
events counts were relatively consistent. Consequently, a better understanding of the sensitivity of MHW detection for these
spatially small events, as well as an improvement of SST products at these fine scales, might help to reduce the observed inter-
product differences.

The spatial correspondence between common MHW days across products and climatological precipitation patterns (i.e high
precipitation; low percentages of common MHW days and vice versa) suggests that atmospheric conditions in convective areas
of the SPCZ and the ITCZ (Brown et al., 2020) influence MHW detection. This effect may be linked to differences in signal
retrieval and the handling of outliers in the presence of clouds and convective rainfall (for instance, there are spurious peaks
in OISST induced by clouds, Reynolds et al., 2007). Alternatively, the particularly higher dispersion and lower ensemble
spatial correlation values in the WARM region could also be explained by the specific MHW characteristics (short, numerous
and spatially confined events that are difficult to detect). Nonetheless, the WARM region also shows the strongest decreasing
rate in ensemble dispersion over time, suggesting that the growing coherence among satellite SST products in recent years

(YYang et al., 2021) might have improved the detection of these short, small spatial scale and weak amplitude events.
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4.3- Recommendations

Firstly, our results highlight the importance for MHW scientists to understand the behaviour of the SST product selected in
their study, particularly its relative “ranking” compared to other products, which varies according to both the metric and the
region considered (section 3.2) but also according to the time period of interest (as magnitude of inter-product differences
varies between years, section 3.3.3). The evaluation of the high frequency variability of the SST signal can also give valuable
information on the product chosen since it strongly influences MHW detection, as explained in section 4.2. Using several
products for robustness is thus essential: because all SST products differ in their construction, we cannot a priori argue for a
“best” dataset to be used for MHW detection without thorough evaluation against in situ and independent SST dataset. Yet,
Fiedler et al., (2019) performed a comparison of SST datasets to in situ data and summed up the key strengths and weaknesses
of various analyses compared to the others. Beyond characterizing product behaviour, MHW studies should also account for
the uncertainty associated with SST product choice when reporting MHW metric estimates. When feasible, the use of several
SST datasets can substantially increase the robustness of the results, by defining upper and lower bounds of metric estimates.
The same recommendations apply for DHW studies, with other studies underlining the need to compare indicators of thermal
stress from different data sets (Neo et al., 2023; Margaritis et al. 2025).

It is also worth noting that the sensitivity of MHW metrics to SST high-frequency variability may partly arise from the event
definition itself: changing the minimum duration threshold (> 5 days) or the maximum gap to consider a continuous event (2
days) might affect the inter-product differences. More continuous indices, such as severity (Hobday et al., 2018; Sen Gupta et
al., 2020) might help to reduce inter-product differences in MHW diagnostics.

Our results should also be interpreted carefully at finer scales, such as in coastal areas. Larger differences between satellite
SST and in-situ temperature data were observed in coastal regions (Castro et al., 2012; Woo et al., 2020) compared to the
overall accuracy of the SST in the global ocean and offshore regions. Woo et al. (2020) identified relationships between errors
and coastal zones of vigorous tidal mixing, shallow bathymetry, and absence of microwave measurements. Significant
differences between satellite and in-situ data were also observed in atolls and lagoons (Van Wynsberge et al., 2017).

Finally, regarding the relevance of a multi-product approach, our results highlight that the COMPOSITE does not show an
intermediate “ranking” but rather follows the behaviour of the reanalysis product. Metric estimates from the COMPOSITE

were influenced by the smoothing applied when averaging temperature data, which introduced biases in MHW statistics.

4.4- Perspectives

Our study focuses on the sensitivity of MHW metrics to the choice of the SST product. Yet, other methodological options not
investigated in this study can also strongly impact the MHW estimates. Since trends in SST products show differences
(Menemenlis et al., 2025), detrending SST time series might influence our results and should be investigated further. Also, as
Smith et al. (2025) highlighted the significant influence of the baseline on MHW results, this choice might also impact our

conclusions. Choosing other thresholds for MHW detection to focus on the most extreme events (e.g 98th percentile) might
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also affect the observed inter-product differences. Similar remarks apply to the DHW, for which changing the accumulation
window size or anomaly cutoff might impact our results. In addition, the re-gridding of SST datasets onto a common 0.25°
grid might also have influenced our results. Indeed, computing spatial means for re-gridding tends to smooth SST time series,
and might impact MHW detection and DHW computation. Since re-gridding is a common practice in MHW studies, more
investigation on how much information is lost in the re-gridding process could help to advance MHW research. In the case of
SST products intercomparison, Huang et al. (2023) showed that the intercomparison is influenced by whether SST products
are in their original grids or preprocessed into common coarse grids.

As in Fiedler et al. (2019) with SST datasets, the comparison of our results to MHW metrics and DHW computed from in-situ
and independent data could add valuable information to the study. Such comparison could help understand how the differences
between SST products and in-situ SST data are translated through the MHW detection algorithm. However, in-situ data long
enough to allow computation of MHWSs are very sparse, and the depths of the estimated SST might differ, adding other biases
in MHW metrics comparison. Extending our analysis at global scale could also give additional valuable information to users.
For DHW computation, the comparison of our results to existing bleaching observations in some focus areas (as done by Neo
et al. 2023 in northwestern and southwestern Australian reefs and Margaritis et al. 2025 in the Caribbean) could help to better
understand the differences and similarities in bleaching risk indicators across datasets.

Including other re-analysis products in addition to GLORYS12v1 in our comparison could also be of interest to better
understand the impact of the model and data-assimilation system considered in the different re-analyses on MHW detection,
including on their vertical extent. This could be done in the framework of the MER-EP (Marine Environment Reanalysis
Evaluation Project), a UN-Decade action led by Mercator-Ocean-International. The comparison of MHW metrics between
multiple re-analyses could also benefit from the Observing System Experiments done in the framework of the Synergistic
Observing Network for Ocean Prediction (SynObs) project (Fuji et al., 2024), if daily outputs are provided. Such comparisons

could also help to quantify the influence of ocean observation systems on MHW metrics estimates.

In conclusion, this study reveals significant dispersion in key MHW metrics and provides new information on how
the choice of the SST product impacts MHW detection and bleaching indices. This sensitivity should be kept in mind in future
research on MHWSs and the ecological impact of extreme temperature events, and the use of multiple SST products in such

studies should be advocated to increase the robustness of the findings.
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649 Figure Al. Standard deviation of the high frequency SST signal (high-pass filtered, half-power period of 15 days) over the period 1993-
650 2021 for the six evaluated products.
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