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Abstract. Marine heatwaves (MHWs) are increasingly studied in climate sciences for their ecological impacts, for which 13 

accurate real-time bulletins and forecasts are essential. Yet, methodological choices in their detection affect metric estimates, 14 

underlining the need to better assess these sensitivities. This study provides a thorough assessment of the impact of Sea Surface 15 

Temperature (SST) product choice on MHW statistics, focusing on the tropical Pacific. MHW detection was performed on six 16 

daily gridded SST datasets: four widely used blended satellite observational products, one ocean reanalysis, and a multi-dataset 17 

ensemble mean computed from the four observational products. Sensitivity to SST products was evaluated for six MHW 18 

metrics (MHW days per year, number of events per year, duration, maximum intensity, cumulative intensity and onset rate) 19 

and for the Degree Heating Weeks (DHW), a widely used proxy for coral bleaching. Inter-product comparisons revealed a 20 

significant dispersion among MHW metric estimates, with the reanalysis GLORYS12v1 detecting fewer, longer and less 21 

intense MHWs while OISST detected more MHWs of shorter duration and higher intensity, likely related to their weak and 22 

strong high-frequency SST variability (periods shorter than 2 weeks) respectively. The sensitivity analysis showed that the 23 

onset rate was the most sensitive metric to SST product choice and the maximum intensity the most robust. Metrics 24 

uncertainties were quantified inside seven regions of the basin and were largest in the western Pacific Warm Pool. Co-25 

occurrence analyses of MHWs revealed that, over the basin, 10 to 80% of MHW days were detected simultaneously by all 26 

products, with the western Pacific Warm Pool showing the lowest agreement (10–40%). Filtering MHWs by size also revealed 27 

that the detection of large-scale MHWs (> 5°x5°) was more consistent across products than smaller ones. Finally, over the 28 

studied period, inter-product differences tend to decrease with time. The DHW also revealed to be sensitive to SST products, 29 

with inter-product differences on DHW annual maximum reaching more than 1°C.weeks-1 and percentages of bleaching alert 30 

days (DHW≥4°C.weeks-1) in common across products reaching 70% at most across much of the basin. These findings 31 

contribute to a better understanding of how methodological choices affect the characterization of MHWs and DHW, and their 32 

associated uncertainties. 33 

2 the Tropical Pacific 
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1- Introduction 34 

Between April 2023 and July 2024, global ocean surface temperatures reached their highest level ever registered (Terhaar et 35 

al., 2025). These extremes observed in global mean Sea Surface Temperatures (SST), partly related to an El Niño event, would 36 

not have been reached without the acceleration of ocean warming over the last decades (Merchant et al., 2025). They manifest 37 

locally as “marine heatwaves” (MHWs), a term first introduced by Pearce et al. (2011). Hobday et al. (2016) further formalized 38 

the definition of a MHW as an episode of temperatures above a climatological threshold for at least five consecutive days, 39 

characterized by its duration, intensity, rate of evolution and spatial extent. Due to their significant ecological and biological 40 

impacts (Capotondi et al., 2024), MHWs have become a hot topic in ocean science, more so as climate models predict 41 

significant increases in their frequency, intensity and duration due to global warming (Frölicher et al., 2018; Oliver et al., 42 

2019). 43 

Real-time MHW information and forecasts are of crucial interest to managers and stakeholders as they support marine 44 

conservation and fisheries management (Holbrook et al., 2020; Hartog et al., 2023; Hobday et al., 2023; Kajtar et al., 2024; 45 

Spillman et al., 2025). Such bulletins must provide accurate information, ideally combined with uncertainty estimates. 46 

Explicitly accounting for the methodological choices in MHW detection (Farchadi et al., 2025), and, consequently, quantifying 47 

the associated uncertainties, are key to MHW research and to assess their socio-ecological impacts.  48 

MHW detection implies several methodological choices: the choice of the SST product, the length of the climatological 49 

baseline, whether or not to detrend the SST time series, and the definition of the MHW threshold (Farchadi et al., 2025). If the 50 

scientific community agrees on the general methodology - use of 30-year climatology, no detrending and seasonally varying 51 

90th percentile, Hobday et al., 2016 - different options can lead to significantly different results in MHW metrics evaluation 52 

potentially leading to different policy responses to MHWs (Capotondi et al., 2024).  53 

While the effects of the choice of the climatological baseline (Amaya et al., 2023), of detrending (Smith et al., 2025) and of 54 

the use of a fixed threshold (Langlais et al., 2017) have been investigated and discussed, the impact of SST product choice on 55 

MHW detection statistics remains little explored. If this step appears crucial for MHW analysis (Farchadi et al., 2025), most 56 

MHW studies rely on a single blended SST product, either satellite-only or satellite combined with in situ data, or an ocean 57 

reanalysis. A similar issue applies to the Degree Heating Weeks (DHW) computation, a widely-used metric for coral bleaching 58 

risk that represents accumulated heat stress which can lead to coral bleaching and mortality (Skirving et al., 2020). This metric 59 

is also computed from a single SST product in most coral studies. Yet, SST products differ in their data sources, processing 60 

and interpolation methods, and they consequently show variability between themselves (Martin et al., 2012; Dash et al., 2012; 61 

Okuro et al., 2014). 62 

Several studies have focused on intercomparing satellite-derived SST products, particularly with regard to trends (Menemenlis 63 

et al., 2025) or through validations using in-situ observations (Fiedler et al., 2019). Nevertheless, while some studies have 64 

shown that MHW characteristics can be biased depending on the chosen SST product (Wang et al., 2024; Lal et al., 2025), the 65 

sensitivity of MHW metrics to the choice of SST product has been scarcely investigated, and to our knowledge, has never been 66 
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quantified at global or regional scales. Marin et al. (2021) identified locations where significant differences between products 67 

occur, but for coastal MHWs. For DHW, several studies showed significant differences between datasets in specific areas (Neo 68 

et al. 2023 compared four datasets in the north western and south western Australian reefs; Margaritis et al. 2025 compared 69 

two datasets in the Caribbean). 70 

Such quantification would help to improve the consistency of MHW information and forecasts, which is crucial in basins like 71 

the tropical Pacific where communities heavily rely on marine resources (Holbrook et al., 2022; Lal et al., 2025). In this large 72 

zone (almost half of the tropics), MHWs are modulated by El Niño Southern Oscillation (ENSO) (Holbrook et al., 2019; Sen 73 

Gupta et al., 2020; Pagli et al., 2025), although other phenomena, such as the Madden Julian Oscillation (MJO) (Madden and 74 

Julian 1971,1972) and tropical cyclones, can also influence MHW life cycle (Dutheil et al., 2024). There, societies and 75 

environments are particularly vulnerable to MHWs (Andréfouët et al., 2015; Smith et al., 2021, 2024), making the tropical 76 

Pacific an area of strong interest to MHW research. 77 

The present study consequently provides a quantitative assessment of the sensitivity of MHW metrics to the choice of the SST 78 

product, focusing on the tropical Pacific. Six SST datasets are compared: four blended satellite observational products, one 79 

reanalysis product, and an ensemble-mean product computed as the average of the four SST observational products. Six MHW 80 

metrics (number of MHW days per year, number of events per year, duration, maximum intensity, cumulative intensity and 81 

onset rate) are analyzed to determine which metrics are more robust to SST product choice. In addition, the sensitivity to SST 82 

products is assessed for the DHW index. A regional approach is also conducted by dividing the tropical Pacific into seven 83 

regions and providing spatially averaged uncertainties for MHW metrics and DHW inside these regions, in line with the 84 

recommendations of Farchadi et al. (2025) who highlight the importance of accounting for regional variability in MHW studies.  85 

The present study is organized as follows. Section 2 describes the data and methodology. Section 3 first provides a comparison 86 

of MHW metrics across SST products revealing the impact of high frequency SST variability on MHW detection. A 87 

quantitative assessment of the uncertainty associated with the SST product choice is then conducted for each metric at both 88 

basin and regional scales, highlighting the highest sensitivity in the western Pacific Warm Pool. Lastly, similar analysis and 89 

evaluation of DHW uncertainties linked to the SST choices is also performed. Finally, the results are discussed in section 4. 90 

2- Data and methodology  91 

2.1- SST products 92 

Six SST datasets were used in the study: four observation-based products, their ensemble-mean, and one reanalysis. We used 93 

four daily global L4 (Level 4, gap-free, gridded) SST analysis products : the NOAA Advanced very High Resolution 94 

Radiometer (AVHRR) Optimum Interpolation (OI) ¼ degree daily SST v2.0 Analysis data (hereafter designed as OISST), the 95 

ESA C3S global Sea Surface and Sea Ice Temperature Reprocessed product (hereafter designed as C3S), the global ocean 96 

OSTIA SST and Sea Ice reprocessed product, and the NOAA Coral Reef Watch (CRW) version 3.1 daily global 5km SST 97 

product known as CoralTemp. These products are among the most commonly used in MHW studies. We also used the ocean 98 
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reanalysis GLORYS12v1 as: 1) reanalyses are widely used in MHW research to better understand MHW vertical extent and 99 

driving mechanisms (Capotondi et al., 2024; Dutheil et al., 2024), 2) this reanalysis is also used for MHW reports/forecasts by 100 

Mercator-Ocean for Copernicus Marine Service1. The GLORYS12v1 reanalysis used here is a 1/12° reanalysis using the 101 

NEMO (Nucleus for European Modelling of the Ocean, Madec et al., 2024) ocean model, forced by ECMWF ERA-Interim 102 

atmospheric reanalysis (Dee et al, 2011), complemented by ERA5 re-analyses (Hersbach et al., 2020) for recent years (from 103 

January 1st 2019). This reanalysis assimilates sea level anomalies (SLA), observed SST (OISST), sea ice concentration and in 104 

situ temperature and salinity vertical profiles (Lellouche et al., 2021).  105 

For MHW inter-comparison, C3S, OSTIA, CRW and GLORYS12v1 were regridded on the OISST 0.25° grid using the 106 

conservative method “remapcon” from CDO software (Schulzweida et al., 2023). Finally, a sixth dataset hereafter referred to 107 

as “COMPOSITE”, was constructed to evaluate the relevance of a multi-product approach for MHW analysis. More precisely, 108 

the daily 0.25° COMPOSITE was computed as the mean of the four SST observation-based products: the three re-gridded 109 

C3S, CRW and OSTIA, and the raw OISST. The reanalysis GLORYS12v1 was not included in the COMPOSITE since it 110 

differs by definition from observation-based products. MHW detection was thus performed on these six 0.25° daily datasets. 111 

A summary of information for these datasets is provided in Table 1. 112 

 113 

Table 1: Description of the SST datasets. 114 

Product 

Reference 

Time coverage and 

temporal resolution 

Spatial 

resolution 

Depth Description and data sources 

C3S 

E.U. Copernicus 

Marine Service 

Information 
(CMEMS). Marine 

Data Store (MDS) 

doi:10.48670/moi-
00169  

31/08/1981-30/12/2024 

Daily  

0.05°x0.05° 

 

Representative of the 

20cm depth. 

Reprocessed SST analysis using 

temperature from satellites: L3U (A)ATSR, 

SLSTR, AVHRR, AMSR-E, AMSR-2 v3.0 

of ESA SST_cci CRD and ICDR and 
EOCIS. It is independent from in-situ data. 

Coral Temp 

NOAA Coral Reef 
Watch (CRW) 

Skirving et al., 2020 

 

01/01/1985-present 

Daily 

0.05°x0.05° Representative of the 

20cm depth. 
 

Reprocessed SST analysis 

derived using a combination of 3 L4 
nighttime-only satellite SST datasets (two 

NOAA Geo Polar SST products - Near Real 

Time and reprocessed - and the 1985-2002 
daily global nighttime only foundation SST 

from OSTIA).  

OSTIA 

E.U CMEMS. MDS 

doi:10.48670/moi-
00168  

30/09/1981 - 31/05/2022 

Daily 

0.05°x0.05° SST foundation i.e. SST 

free of diurnal variability.  

This is very similar to the 
temperature measured 

nominally at a depth of 

0.2-1m just before sunrise 
(Donlon et al., 2012) 

Reprocessed SST analysis using satellite 

data (re-processed ESA SST CCI, C3S 

[RD.2] EUMETSAT and REMSS) and in-
situ data from the HadIOD dataset (ships 

and buoys). 

                                                           
1 https://www.mercator-ocean.eu/ocean-intelligence/ocean-bulletins-and-insights/marine-heatwaves-archive/  
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OISSTv2  
NOAA 

Reynolds et al., 2007 

Huang et al., 2021 

01/09/1981 - present 
Daily 

0.25°x0.25° Representative of the 
20cm depth. 

Reprocessed SST analysis using satellite 
data (AMSR, AVHRR and AVHRR-Only) 

and in-situ data from ships, buoys and Argo 

floats. 

GLORYS12v1 

E.U CMEMS. MDS 

doi:10.48670/moi-
00021 

31/12/1992 - 26/05/2025 

Daily 

 

0.08x0.08° 

 

0.49m (minimum depth of 

the 50 vertical levels) 

 

Ocean reanalysis. Assimilated temperature 

observations : OISST (Reynolds 0.25° 

AVHRR-only SST), in situ temperature 
profiles from Copernicus Marine 

CORAv4.1 database. 

 

COMPOSITE 01/01/1993-31/12/2021 0.25°x0.25° - Mean of the four SST analysis products : 

C3S, CRW and OSTIA all three re-gridded 
at 0.25°, and OISST. 

2.2- MHW and DHW analyses 115 

2.2.1- Study area 116 

MHW and DHW analyses were performed over the tropical Pacific (30°S - 25°N; 125°E - 70°W, Fig. 1A) at 0.25° spatial 117 

resolution. The latitudinal coverage is not symmetric, extending further south to include islands of the southern subtropical 118 

Pacific, notably French Polynesia (30°S - 0°S; 165°W - 130°W). As MHW characteristics and ocean processes vary within 119 

this area (Holbrook et al., 2019, 2022; Lal et al., 2025), the sensitivity analysis was detailed at regional scale for both MHW 120 

metrics and DHW. Seven regions were defined based on the Longhurst et al. (2007) provinces which reflect the ocean’s 121 

physical and biogeochemical properties. As will be shown later, these regions also correspond to areas with distinct MHW 122 

characteristics, and represent different physical regimes in the tropical Pacific. Results of the basin-scale sensitivity analysis 123 

were thus aggregated within these regions. They are illustrated in Fig. 1a and named following Longhurst et al. (2007): the 124 

North Pacific Subtropical Gyre West (NPSW), North Pacific Tropical Gyre (NPTG), West Pacific Warm Pool (WARM), 125 

North Pacific Equatorial Countercurrent (PNEC), Pacific Equatorial Divergence (PEQD), Archipelagic Deep Basins (ARC) 126 

and the South Pacific Subtropical Gyre Province (SPSG) (Fig. 1a). Minor adjustments were made to the original WARM 127 

province of Longhurst et al. (2007), with a small extension further east to better capture the coherent dispersion patterns of 128 

MHW metrics. 129 

https://doi.org/10.5194/egusphere-2025-5417
Preprint. Discussion started: 13 November 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

 130 

Figure 1: (a) Mean SST (1993-2021) from the COMPOSITE in the tropical Pacific, with the regions of study. (b-g) Ensemble mean 131 
of MHW metrics in the tropical Pacific (1993-2021; cf. section 2.3.1), with the limits of the regions defined in (a).  132 

2.2.2- MHW and DHW computation 133 

MHW detection was performed for each pixel of the six datasets presented in section 2.1 on the 0.25° common grid over the 134 

tropical Pacific, following the Hobday et al. (2016) method. A MHW event was defined as a period of at least five consecutive 135 

days during which SST exceeded the local 90th percentile threshold. Gaps of less than two days within an event were ignored. 136 

The analysis was conducted over 1993-2021, which served as the common climatological baseline across the SST products 137 

(Table 1, common period to all products). No detrending was applied to the SST time series in order to account for differences 138 

in long-term SST trends among products (Menemenlis et al., 2025). The sensitivity analysis was carried out for six MHW 139 

metrics: (1) the number of MHW days per year, (2) number of events per year, (3) event duration, (4) maximum intensity, (5) 140 
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cumulative intensity, and (6) onset rate. The number of MHW days per year and the number of events per year were defined 141 

as the total number of days and events over 1993-2021 divided by the 29 years of the analysis period. Maximum and cumulative 142 

intensities were expressed relative to climatology, with cumulative intensity calculated as the sum of daily intensities over 143 

each event’s duration. The onset rate was defined as the rate of temperature increase from the start of a MHW to its maximum 144 

intensity (Hobday et al., 2016). 145 

 146 

Daily Degree-Heating Weeks (DHW) values were computed following Skirving et al. (2020) for each pixel of the six SST 147 

datasets of section 2.1 at 0.25° resolution. First, daily temperature anomalies (HotSpot) were calculated relative to the local 148 

Maximum of Monthly Mean (MMM), defined as the maximum of monthly climatological means over 1993-2021. DHW 149 

values on a given day were then computed as the sum over the preceding 12 weeks of daily HotSpot anomalies exceeding 1°C. 150 

This accumulated sum was divided by 7 to express DHW in °C weeks
−1

. Due to its ecological relevance, we investigated the 151 

impact of SST product choice on the yearly maximum DHW values in the tropical Pacific. More precisely, this metric 152 

quantifies the maximum accumulated heat during a year that can potentially stress marine organisms such as corals. 153 

2.2.3- Filtering MHWs by size 154 

In order to better understand the origin of inter-product differences in MHW metric estimates, MHWs were filtered by size. 155 

The sensitivity analysis was carried out for micro (maximum area ≤ 5°x5°) and macro (maximum area > 5°x5°) events, 156 

separately. More precisely, for each day, all pixels where MHWs were detected were assigned a MHW area, defined as the 157 

number of contiguous pixels to the studied pixel also experiencing a MHW. These joint pixels were detected thanks to the 158 

label function from python package scipy.ndimage (method inspired from Bonino et al., 2023). In a pixel, a MHW was thus 159 

associated with a series of areas over its duration. The maximum area reached during the event was associated with each MHW 160 

in the evaluated pixel. Events with a maximum area smaller than 25 square degrees were classified as micro-scale, whereas 161 

those with a maximum area exceeding 25 square degrees were defined as macro-scale (Lal et al., 2025).  162 

2.3- Sensitivity analysis 163 

2.3.1- Inter-product differences and uncertainty quantification 164 

Inter-product differences in MHW detection were illustrated by maps of mean MHW metrics for each SST product over the 165 

tropical Pacific. For duration, maximum intensity, cumulative intensity and onset rate, these maps were defined at each pixel 166 

as the mean value across all MHWs detected between 1993 and 2021. For the number of MHW days per year and the number 167 

of events per year, the maps were defined at each pixel as in 2.2.2.  168 

To better highlight the inter-product differences on MHW metrics, anomalies were also mapped over the tropical Pacific. For 169 

each product and metric, the product anomaly at each pixel was defined as the difference between the metric value for that 170 
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product (as defined above) and the ensemble mean value of the metric over the 6 products (i.e. the mean of six values, hereafter 171 

designated as “ensemble mean” metric) (Eq. 1):  172 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑚𝑒𝑡𝑟𝑖𝑐𝑖 , 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗 , 𝑝𝑖𝑥𝑒𝑙𝑘)  =  𝑚𝑒𝑡𝑟𝑖𝑐𝑖(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗 , 𝑝𝑖𝑥𝑒𝑙𝑘) −  𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑒𝑎𝑛( 𝑚𝑒𝑡𝑟𝑖𝑐𝑖 , 𝑝𝑖𝑥𝑒𝑙𝑘)                                    (1) 173 

where 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑒𝑎𝑛(𝑚𝑒𝑡𝑟𝑖𝑐𝑖 , 𝑝𝑖𝑥𝑒𝑙𝑘)  =  (∑ 𝑚𝑒𝑡𝑟𝑖𝑐𝑖(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗 , 𝑝𝑖𝑥𝑒𝑙𝑘)) 6
𝑗=1 / 6, with i varying from 1 to 6 and representing the 174 

six evaluated metrics, j varying from 1 to 6 and representing the 6 evaluated products, and k representing the pixel number in 175 

the domain. The same maps were produced for the temporal mean of DHW annual maxima (section 2.2.2). 176 

         177 

The sensitivity of each MHW metric to SST product choice was evaluated at each pixel by computing the dispersion of the 178 

metric across the six SST products (hereafter designated as “ensemble dispersion”, Eq. 2).  179 

𝜎 = 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝑚𝑒𝑡𝑟𝑖𝑐𝑖, 𝑝𝑖𝑥𝑒𝑙
𝑘
)  = √

1

6
∑ [6

𝑗=1 (𝑚𝑒𝑡𝑟𝑖𝑐
𝑖
(𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑗
, 𝑝𝑖𝑥𝑒𝑙

𝑘
)  −  𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚𝑒𝑎𝑛(𝑚𝑒𝑡𝑟𝑖𝑐𝑖, 𝑝𝑖𝑥𝑒𝑙𝑘))2]                (2) 180 

The ensemble dispersion was also computed for DHW. Maps of dispersion over the tropical Pacific were produced for each 181 

metric. These values of ensemble dispersion were defined as the “uncertainty” of the metric with respect to SST product choice. 182 

In order to quantify and compare metrics sensitivity, the ensemble dispersion at each pixel was also expressed as a percentage 183 

by dividing the ensemble dispersion by the ensemble mean value of the metric at that pixel, and then multiplying by 100.  184 

 185 

The co-occurrence of MHWs across SST products was also assessed by computing the percentage of common MHW days 186 

over the basin. At each pixel, this percentage was defined as the number of days detected simultaneously as a MHW in all six 187 

products divided by the ensemble mean number of total MHW days at that pixel. Similar analysis was conducted for DHW, 188 

by computing the percentage of common bleaching alerts of level 1 (days for which DHW≥4°C.weeks-1) across products.  189 

2.3.2- Temporal evolution 190 

The temporal evolution of MHW metrics sensitivity to SST product choice was evaluated by computing yearly time series of 191 

ensemble dispersion for each metric and region. For this purpose, yearly maps of MHW metrics and ensemble dispersion over 192 

the tropical Pacific were produced, following the method described in section 2.3.1. The year attribution of a MHW was based 193 

on its time start. Then, spatial averages of these yearly values of ensemble dispersion were computed within each region, to 194 

yield one annual dispersion value per metric and region. The spatial average of ensemble dispersion values inside a region was 195 

computed for a given year if dispersion values could be computed for at least 10% of the pixels of the region. 196 

 197 

The temporal evolution of metrics sensitivity to SST product choice was also assessed by computing yearly time series of 198 

inter-product spatial correlation within all regions (hereafter designated as “ensemble spatial correlation”). For each region 199 

and year, spatial correlation between pairs of products was quantified using the uncentered statistic of pattern correlation 200 

methods (Barnett and Schlesinger, 1987), which correlates fields without removing the spatial means. The uncentered statistic 201 

was used here since IPCC reports argue that it is better suited for detection in pattern correlation studies as it includes the 202 
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response in the global mean, while the centered statistic is more appropriate for attribution because it better measures the 203 

similarity between spatial patterns (IPCC, 2001). The uncentered pattern correlation statistic is defined in Eq. 3: 204 

  𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑎, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑏)  =  
∑ 𝑎𝑘 𝑏𝑘

𝑛
𝑘=1

√∑ 𝑎𝑘
2𝑛

𝑘=1 ∑ 𝑏𝑘
2𝑛

𝑘=1

                                                                    (3)  205 

where a and b represent yearly metric values for two SST products inside the region evaluated (n pixels in the region).  206 

The value of pattern correlation was considered when the associated p_value (based on t-test) was inferior to 0.01. For a given 207 

metric, region and year, the pattern correlation was computed for all 15 product pairs, and these 15 values were averaged to 208 

give the yearly value of the ensemble spatial correlation in the region studied. The spatial correlation inside a region was 209 

computed for a given year if ensemble spatial correlation values could be computed for at least 10% of the pixels of the region. 210 

3- Results 211 

3.1- MHW characteristics in the Tropical Pacific 212 

Ensemble mean MHW metrics over 1993-2021 are shown in Fig. 1 in the tropical Pacific, with patterns reflecting spatial 213 

variability associated with ENSO. In the central and eastern Equatorial Pacific (PEQD), ENSO largely drives MHW risk 214 

(Holbrook et al., 2019; Capotondi et al., 2022). Although MHW occurrences are relatively low in this area (Fig. 1c), the number 215 

of MHW days per year is highest, exceeding 32-34 days (Fig. 1b). Here, MHWs have longer durations as they last between 30 216 

to more than 50 days on average (Fig. 1d), and exhibit the highest maximum intensity (more than 3.5°C, Fig. 1f) and cumulative 217 

intensity (more than 100°C.days, Fig. 1e) (Holbrook et al., 2019; Oliver et al., 2021). The highly intense MHWs observed in 218 

a narrow band along the Equator (2°S-2°N) near the South American Coast are also associated with the highest onset rates of 219 

the tropical Pacific (more than 0.3°C/days, Fig. 1g).  220 

In the northeastern tropical Pacific (NPTG), MHWs occur on more than 30 days per year (Fig. 1b) but the number of events is 221 

low (~ 1 per year, Fig. 1c). These events are relatively long (30 days, Fig. 1d) and intense (cumulative intensity of 40-222 

50°C.days, Fig. 1e). In contrast, the PNEC experiences one of the highest numbers of events (more than 2.5 per year, Fig. 1c, 223 

also observed by Holbrook et al., 2019; Oliver et al., 2021). This area, influenced by the equatorial countercurrent dynamics, 224 

is characterized by short (less than 15 days, Fig. 1d) but intense events, with maximum intensity reaching 2.5°C (Fig. 1f). 225 

These features are likely linked to the high SST variability of the region, which favors strong MHW intensities (Oliver et al., 226 

2021). 227 

In the southwest tropical Pacific (mainly ARC), MHW occurrence is modulated by La Niña conditions (Sen Gupta et al., 2020; 228 

Lal et al., 2025). Mesoscale eddies close to the eastern Australian coast (Bian et al., 2023; Chapman et al., 2025) along with 229 

downwelling Rossby waves and downwelling-favourable winds also favor MHW development (Misra et al., 2021; Li et al., 230 

2023). In this region, MHWs are relatively frequent (more than 2 events per year, Fig. 1c) but short (less than 15 days Fig. 1d, 231 

Holbrook et al., 2019). Both the number of MHW days and the maximum intensities are close to the tropical Pacific average 232 

(around 25 days and 1.5°C, respectively, Fig. 1b,f). Similar MHW characteristics are observed in the western SPSG and in 233 
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NPSW. The northeastern part of the SPSG close to the PEQD is rather influenced by ENSO, with fewer MHWs of longer 234 

duration and lower onset rate. The shortest MHWs (less than 10 days, Fig. 1d) are observed in the WARM region. Here, the 235 

number of MHW days per year, as well as the cumulative and maximum intensities reach their lowest levels in the tropical 236 

Pacific (~15 days per year, <10°C.days and 1°C, respectively). Nevertheless, this region records a high number of events with 237 

more than 2.5 events per year close to the Indonesian coast (Fig. 1c, also observed in Holbrook et al., 2019; Oliver et al., 2021).  238 

3.2- Inter-product comparison and ranking 239 

The MHW analysis performed over the six SST datasets reveals significant differences across products, as illustrated by the 240 

MHW days per year computed for each product (Fig. 2a-f). The associated maps of anomalies (Fig. 2g-l; section 2.3.1) allow 241 

us to more easily identify potential outliers. Figures S1-S5 extend the inter-product comparison to the other metrics. 242 

If the main spatial patterns of mean MHW metrics described in section 3.1 are common between all products, Fig. 2 and Fig. 243 

S1-S5 highlight that values can differ by almost a factor of two between products. For the MHW days per year (Fig. 2a-f), the 244 

largest differences are observed in the WARM region, with GLORYS12v1 detecting 30 MHW days per year while OISST 245 

detects around 15 days per year. Anomalies relative to the ensemble mean range approximately between ±5 days per year 246 

inside the tropical Pacific, with some areas showing even larger anomalies (Fig. 2g-l). The strongest positive (negative) 247 

anomalies are observed for GLORYS12v1 (OISST). GLORYS12v1 systematically detects more MHW days than the other 248 

products, and OISST less MHW days. C3S and OSTIA show smaller anomalies for this metric. For all products, anomalies 249 

are closer to zero in the PEQD, a region of strong influence of ENSO where the longest MHWs are observed (section 3.1). 250 

For the other metrics, anomalies generally remain within ±0.5 events per year, ±10 days for MHW duration, ±0.25°C for 251 

maximum intensity, ±15°C.days for cumulative intensity and ±0.15°C/days for onset rate over the tropical Pacific 252 

(Supplementary Fig S1-S5). As for the MHW days per year, anomalies for the other metrics reveal that GLORYS12v1 and 253 

OISST show the largest anomalies, whereas C3S, CRW and OSTIA are closer to the ensemble mean - except near the 254 

Indonesian coast where OSTIA shows strong positive anomalies in event frequency and onset rate. Unlike the number of 255 

MHW days per year, anomalies for other metrics vary substantially in space, and can be either positive or negative within the 256 

tropical Pacific for the same product (especially for the number of events per year).  257 
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 258 

Figure 2: (a-f) Number of MHW days per year over the period 1993-2021 for the six SST products. (g-l) Anomalies of MHW days 259 
per year for each product relative to the ensemble mean (section 2.3.1). Black lines indicate regions' limits. 260 

 261 

To summarize inter-product differences, the average of MHW metrics for all events detected in the tropical Pacific during 262 

1993-2021 were computed for each product (Fig. 3). In the study area, OISST ranks first for maximum intensity, onset rate, 263 

and the number of events detected. By “ranking”, we only mean to compare products but not to determine if one performs 264 

better than another. Conversely, OISST shows the lowest ranking for the number of MHW days, duration and cumulative 265 

intensity (Fig. 3). The opposite pattern is observed for GLORYS12v1 reanalysis which shows the highest ranking for duration, 266 

cumulative intensity and the number of MHW days detected, while it ranks last for MHW maximum intensity and onset rate. 267 

The COMPOSITE product tends to follow the rankings of GLORYS12v1, with radar charts showing similar shapes (Fig. 3). 268 

OISST and GLORYS12v1 therefore stand out in this study, consistently occupying either the lowest or highest ranks across 269 

MHW metric estimates. By contrast, C3S shows a more “balanced” radar chart, with no clear overestimation or 270 

underestimation compared to other products. These findings are consistent with the anomaly analysis presented in Fig. 2 and 271 

Fig. S1-S5. 272 
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 273 

Figure 3: The radar chart is a comparison of all product metrics. The average of MHW metrics are computed for all events detected 274 
in the tropical Pacific over 1993-2021 for each product, and normalized by the product that reaches the maximum metric so that all 275 
values of the radar chart vary between 0 and 1 (plotted along the radial axes). 276 
 277 

The comparison of MHW metrics between products thus highlighted significant differences which vary spatially and 278 

between metrics. In the next section, the robustness of the different metrics regarding SST choices is evaluated by quantifying 279 

the uncertainty linked to the SST product choice for each metric at both tropical Pacific and regional scales.  280 

3.3- Uncertainty in MHW metrics due to the SST product choice 281 

3.3.1- Basin-scale overview and regional quantification 282 

The MHW co-occurrence analysis (section 2.3.1) reveals that over the basin, between 10 and 80% of MHW days are detected 283 

simultaneously by all six products (Fig. 4a). Excluding the PEQD region, where percentages reach their maximum ranging 284 

between 60 and 80%, MHW days in common do not exceed 50% over the tropical Pacific and even drop below 20% in a large 285 

part of the basin, in the WARM and PNEC regions. The spatial patterns of common MHW days match well with precipitation 286 

contours in the basin (Fig. 4a), an aspect further discussed in section 4.2.  287 

The ensemble dispersion normalized by the ensemble mean for each MHW metric (Fig. 4b-g, section 2.3.1) highlights that the 288 

onset rate is the most sensitive metric to inter-product variability. Dispersion for this metric exceeds 30% across much of the 289 

tropical Pacific, reaching values above 50% in the southeastern part of the basin (around 10°S-130W, Fig. 4g), where onset 290 

rates are small (Fig. 1g). MHW duration also exhibits high sensitivity to the choice of SST product, with normalized dispersion 291 

ranging between 20 and 30% over the basin, closely followed by the cumulative intensity and the number of events per year 292 

(Fig. 4c,d,e). The MHW days per year and the maximum intensity show the lowest dispersion, with values ranging between 293 

0-5% (in the PEQD) and 20% (30%) for the maximum intensity (total MHW days) (Fig. 4b,f). 294 
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The high ensemble dispersion values observed in the WARM region across all metrics (Fig. 4b-g) is consistent with the small 295 

fraction of MHW days detected simultaneously by all six products in this area (between 10 and 20%, Fig. 4a). The spatial 296 

patterns of common MHW days also show good correspondence with dispersion patterns of the total MHW days per year and 297 

maximum intensity (Fig. 4b,f), with high dispersion coinciding with a low percentage of common days, and vice versa.  298 

 299 

Figure 4: (a) Percentage of MHW days detected simultaneously by the six SST products (section 2.3.1), with ERA5 precipitation 300 
contours overlaid (temporal average over 1993-2021, in mm/day). (b-g) Normalized ensemble dispersion for each MHW metric 301 
(value in %, section 2.3.1). Black lines indicate regions' limits. 302 
 303 
The spatial variability of the previous results supports the need of a regional approach in our sensitivity analysis. Consequently, 304 

spatial boxplots of dispersion values within each region are represented in Fig. 5. Across regions, the dispersion distributions 305 
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for each metric differ significantly (Mann–Whitney test, p < 0.05). The spatial average of dispersion values within each region 306 

is detailed in Fig. 5 (exact value), providing the uncertainties for each metric and region.  307 

The regional analysis (Fig. 5) confirms the basin-scale findings (Fig. 4): the onset rate and duration metrics are the most 308 

sensitive metrics to SST product choice, with uncertainties exceeding 10% of the regional means in all regions and peaking in 309 

the WARM (33.2% for the onset rate, Fig. 5). Cumulative intensity also shows uncertainties larger than 10% in all regions 310 

except NPSW and ARC. The number of events per year exceeds 10% uncertainties in three of the seven regions - WARM, 311 

PNEC and PEQD (Fig. 5). Finally, the total MHW days per year and maximum intensity are the least impacted metrics with 312 

uncertainty lower than 10% in all regions except WARM (and PNEC for MHW days per year). 313 

Fig. 5 also highlights the WARM as the most sensitive region to SST product choice, since percentages of dispersion are higher 314 

than 10% whatever the metric. It is closely followed by the PNEC, with uncertainties higher than 10% for all metrics except 315 

maximum intensity. Conversely, NPSW and ARC are the regions that exhibit the lowest uncertainties. The PEQD shows some 316 

of the lowest dispersion values among all regions for the total MHW days per year and maximum intensity, but for all other 317 

metrics dispersion exceeds 10% of the ensemble mean. Moreover, the PEQD shows important dispersion outliers for all metrics 318 

which are two to three times larger than in other regions for the duration and cumulative intensity (reaching 20 days and 319 

35°C.days, respectively, a pattern also observed in SPSG probably due to ENSO induced variability). The outliers are 320 

important as they provide further insights on metrics uncertainties. For example, in PEQD, MHWs detected have an uncertainty 321 

of ±0.11°C in maximum intensity with respect to inter-product differences (average dispersion value, Fig. 5). However, some 322 

dispersion values inside this region can reach more than 0.5°C (Fig. 5), suggesting that MHW analyses inside PEQD should 323 

be interpreted with caution if based on a single dataset (almost 1°C of uncertainty for some pixels inside this region). 324 
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 325 
Figure 5: Spatial boxplots of the ensemble dispersion values from Fig. 4b-g for each region. Boxes contain 50% of the values (limits 326 
are the first quartile Q1 and third quartile Q3), with the green marker representing the mean value. Whiskers (lines extending from 327 
the box) represent the typical range of data; they extend from Q1 − 1.5 × (Q3-Q1) to Q3 + 1.5 × (Q3-Q1). The dots outside the 328 
whiskers are considered as “outliers”. The exact mean value (green marker) is indicated at the top of each boxplot (1st number from 329 
the top), along with its equivalence in percentage of the ensemble mean in the region (2nd number from the top). Mean dispersions 330 
higher than 10% of the regional mean value are highlighted in bold. 331 

3.3.2- Metrics uncertainty as a function of MHW size 332 

We now examine whether the metrics sensitivity to the SST product depends on the size of the MHWs. We investigated this 333 

hypothesis by filtering MHWs by size (section 2.2.3), and ensemble dispersion was then computed separately for macro and 334 

micro-scale events. Spatial patterns of macro (> 5°x5°) and micro events (Fig. 6a,b,c,d) show that macro events occur mainly 335 

in regions influenced by ENSO (PEQD and southeastern SPSG) while micro events are mainly concentrated near coastlines 336 

and at the southern and northern limits of the study area (in the PNEC, WARM, ARC, but also northern NPSW and in SPSG 337 

near the shore). 338 

Very few micro-scale MHW days are detected simultaneously by all SST products (Fig. 6f): percentages of MHW common 339 

days range between 40% in areas where micro-scale events are numerous and less than 5% where they are fewer. In contrast, 340 

percentages of MHW days in common for macro scale events range between 20% in the WARM (where they are fewer) and 341 
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80% in the PEQD (Fig. 6e). Differentiating macro and micro-scale events highlights that dispersion is generally lower for 342 

macro-scale events (Fig. 6g). This is particularly striking for the total MHW days per year and number of events per year, for 343 

which ensemble dispersion decreases by more than two between micro- and macro-scale events (spatial average over the 344 

basin). Dispersion for cumulative intensity, maximum intensity and onset rate remains slightly lower for macro-scale events 345 

compared to micro-scale events, but is slightly higher for duration.  346 

 347 

Figure 6: (a) Percentage of macro-scale MHWs among all events detected over 1993-2021 (i.e. ensemble mean of the total number 348 
of macro events divided by the ensemble mean of the total number of MHWs of all types, multiplied by 100). (b) Same as (a) for 349 
micro-scale MHWs. (c) Ensemble mean of total MHW days per year for macro scale events. (d) Same as (c) for micro-scale MHWs. 350 
(e) Percentage of MHW days detected in common by all six products (section 2.3.1) over 1993-2021 for macro scale events. (f) Same 351 
as (e) for micro-scale MHWs. (g) Spatial average over the tropical Pacific of dispersion values for each metric for macro-scale MHWs 352 
(blue bars) and micro-scale MHWs (orange bars). 353 
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3.3.3- Temporal variability of the dispersion 354 

Having quantified inter-product differences, we investigated their temporal evolution to assess both long-term trends and the 355 

influence of ENSO events on their temporal variability. The yearly time series of MHW metrics averaged over the tropical 356 

Pacific for each product highlight the inter-annual variability of inter-product differences (black line Fig. 7), which appears to 357 

vary between metrics. Over the basin, differences between products are rather stable through years for the maximum intensity 358 

and onset rate while they seem to increase for years marked by strong El Niño events (1997-98, 2015-16) for the other metrics 359 

(Fig. 7). The particularly high values in 2015 compared to 2016 for the metrics duration, cumulative intensity, maximum 360 

intensity and rate of onset is explained by the year attribution of MHWs to its time start and the starting of the strong El Niño 361 

event in 2015. 362 

 363 

Figure 7: (a-f) Yearly time series of MHW metrics averaged over the tropical Pacific for each product. Inside each panel, the black 364 
line represents the largest inter-product difference value for each year (maximum-minimum). The red and blue backgrounds 365 
indicate years of strong El Niño and La Niña, respectively, according to the Meiv2 index. 366 
 367 

The yearly time series of the ensemble dispersion and spatial correlation within each region (section 2.3.2, Fig. 8 and Fig. S6) 368 

provide more insights on the temporal evolution of inter-product differences, and highlight four main points. First, the 369 

ensemble dispersion and ensemble spatial correlation values are coherent: metrics showing the lowest dispersion (maximum 370 

intensity and MHW days per year) also exhibit the highest ensemble spatial correlation (values ranging between 0.8 and 1), 371 

whereas metrics showing the highest dispersion (onset rate) show the lowest ensemble spatial correlation (values ranging 372 

between 0.4 and 0.6). The number of events per year, the duration and the cumulative intensity fall in an intermediate range. 373 
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The WARM region also shows some of the highest and lowest values of dispersion and spatial correlation, respectively, across 374 

all metrics. 375 

Second, yearly ensemble dispersion values are higher than those computed on the mean of metrics as in Fig. 4 since the yearly 376 

filter implies more restrictions in MHW comparison. This suggests that ensemble dispersion might be underestimated when 377 

computed on the mean of metrics over a long period. 378 

Third, the long-term trends suggest a reduction in the inter-product dispersion and an increase in the spatial correlation over 379 

the period 1993-2021 for all metrics and regions (Fig. 8 and Fig. S6). In all regions, the largest decreases in ensemble dispersion 380 

are observed for the total MHW days per year and the onset rate (-6.6%/dec in WARM and -7.2%/dec in NPSW, respectively, 381 

p_values<0.05) while the lowest ones are observed for the maximum intensity (between -1.1%/dec and -2.7%/dec in SPSG 382 

and WARM, respectively, p_value<0.05). The highest increasing rates of ensemble spatial correlation are also observed for 383 

the total MHW days per year and the onset rate, reached in the WARM and NPSW, respectively. 384 

Fourth, ensemble dispersion and spatial correlation show an interannual variability partly linked to ENSO variability. For both 385 

statistics, MHW days per year shows the highest interannual variability which is marked by the strong El Niño years of 1997-386 

98 and 2015-16 (minima of dispersion and maxima of spatial correlation). On the contrary, the maximum intensity shows the 387 

lowest interannual variability among metrics (Fig. 8 and SP7). Yet, the effects of ENSO variability on ensemble dispersion 388 

and spatial correlation depend on various factors. They can vary between metrics inside a same region: in the PEQD (where 389 

the effects of ENSO are strong), dispersion is lower for strong El Niño years (1997-98, 2015-16) for the total MHW days per 390 

year while it is higher for the duration, number of events per year, cumulative intensity and onset rate (Fig. 8a-f). Similar 391 

results are observed in the WARM and SPSG. The effects of ENSO variability can also vary between regions for a same 392 

metric: duration shows higher spatial correlations for strong El Niño years in most regions but not in WARM and SPSG where 393 

spatial correlation is lower these years and maxima is reached in 2011 (La Nina) in SPSG (Fig. 8i). 394 
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 395 
Figure 8: (a-f) Yearly time series of ensemble dispersion (in percentage) for PEQD, WARM, ARC and SPSG. The dashed lines 396 
indicate the significant linear trends (p_value<0.05). The red and blue backgrounds indicate years of strong El Niño and La Niña, 397 
respectively, according to the Meiv2 index. (g-l) Same as (a-f) for the ensemble spatial correlation (section 2.2.3). Time series in the 398 
PNEC, NPTG and NPSW are represented in Supplementary Fig. S6.  399 
 400 

Once inter-products differences were quantified for MHW metrics, they were also analysed for the DHW index, a 401 

widely used proxy for coral bleaching.  402 

3.4- Uncertainty in the bleaching alerts (Degrees Heating Weeks) 403 

The temporal mean of DHW annual maxima over 1993-2021 in the tropical Pacific (Fig. 9a-f) highlights the influence of 404 

ENSO on the DHW, with highest values being observed in the central and eastern Equatorial Pacific (more than 5 °C.weeks-405 

1) for all products. Such influence is also seen on the yearly time series of DHW annual maximum for each product (Fig. 10a, 406 
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spatial average over the tropical Pacific), with maxima observed in strong El Niño years of 1997-98 and 2015-16. Figure 9 407 

highlights significant inter-product differences for DHW annual maximum, with anomalies ranging between ±0.5°C.weeks-1 408 

(Fig. 9g-l), and even higher in the western and central eastern equatorial part of the basin. Over the tropical Pacific, the highest 409 

positive anomalies are observed for OISST and C3S while the highest negative anomalies are observed for GLORYS12v1. 410 

Inter-product differences of more than 1°C.weeks-1 are observed between C3S and GLORYS12v1 in the PEQD close to the 411 

south American coast (80°W, 0°) and between OISST and GLORYS12v1 in a large area around (140°E, 10°S), between 412 

northern Australia and Indonesia.  413 

 414 

Figure 9: (a-f) Temporal mean of DHW annual maximum over the period 1993-2021 for the six SST products. (g-l) Anomalies of the 415 
temporal mean of DHW annual maximum for each product relative to the ensemble mean (section 2.3.1). Black lines indicate regions' 416 
limits. 417 
 418 

Figure 10a confirms that over the years, OISST detects the highest annual maxima of DHW, except in years of strong El Niño 419 

(1997-98, 2015-16) where C3S shows the highest annual DHW maximum (averaged values over the basin). As in Fig. 5, 420 

spatial boxplots of ensemble dispersion in DHW annual maxima within each region are represented in Fig. 10c. Across regions, 421 

the spatial averages of dispersion (green markers and values in Fig. 10c) range between 0.25 and 0.49°C.weeks-1, reached in 422 
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the NPSW and PEQD, respectively. Such uncertainties, with outliers reaching more than 1°C.weeks-1 in all regions except 423 

NPSW, appear critical when comparing DHW values to the bleaching level of alert of 4°C.weeks-1 defined by the NOAA 424 

(level 1 alert). This is further illustrated in Fig. 10b,d which show the number of level 1 alerts (ensemble mean) in the tropical 425 

Pacific, and the associated percentage of common alerts between all six products. The spatial average over the basin of the 426 

number of level 1 alerts for each product (not shown) revealed that OISST detected the most alerts closely followed by C3S, 427 

while the COMPOSITE detected the fewest, closely followed by CRW and GLORYS12v1. These results are in line with the 428 

maps of anomalies of Figure 9g-l and the previous observations. In most of the basin, the proportion of level 1 common alerts 429 

i.e. the common days for which DHW>=4°C.weeks-1 across products ranges between less than 50% and 80% (Fig. 10d). In 430 

large areas of the basin (in ARC, in PEQD close to the south American coast and in PNEC), percentages of common alerts 431 

between all six products reach 70% at maximum. They even drop lower than 50% south of New Caledonia and in the Coral 432 

Sea (ARC). This means that among all bleaching alert days in these areas (which range between 1 and 2 weeks per year over 433 

1993-2021 for ARC, Fig. 10b), at least one third or even a half was not detected by at least one of the six products evaluated 434 

here. These results confirm that SST product choice is also crucial to the DHW index.  435 

 436 

Figure 10: DHW analysis. (a) Yearly time-series of DHW annual maxima averaged over the tropical Pacific for each product. The 437 
black line represents the largest inter-product difference value for each year (maximum-minimum). The red and blue backgrounds 438 
indicate years of strong El Niño and La Niña, respectively, according to the Meiv2 index. (b) Ensemble mean of the number of level 439 
1 alert days (DHW>=4°C.weeks-1) per year, for each pixel of the tropical Pacific over 1993-2021. (c) Spatial boxplot of ensemble 440 
dispersion on DHW annual maxima within the study regions. The green marker represents the mean value, for which the exact 441 
value is indicated on top of the associated boxplot. (d) Percentage of common alerts of level 1 among the six SST products. 442 
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4- Discussion and conclusions 443 

In this study, we have quantified the sensitivity of MHW metrics and DHW index to the SST product chosen in the tropical 444 

Pacific over 1993-2021, at both basin and regional scales. Uncertainties associated with the choice of the SST product were 445 

assessed using ensemble dispersion for each metric and region.  446 

4.1- Inter-product differences and uncertainties 447 

MHW mean metrics and temporal means of DHW annual maxima show similar spatial patterns in the tropical Pacific across 448 

the six SST products evaluated. The observed spatial patterns of MHW metrics are consistent with previous regional (Holbrook 449 

et al., 2022; Lal et al., 2025; Pagli et al., 2025) and global MHW studies (Oliver et al., 2021). However, products show 450 

significant differences in the absolute values of the mean metrics and DHW index, which can go up to a factor of two (between 451 

OISST and GLORYS12v1). Over the basin, OISST detects the largest maximum intensity, onset rate, number of events and 452 

number of bleaching alerts, but the lowest duration, cumulative intensity and number of MHW days per year. On the opposite, 453 

the reanalysis GLORYS12v1 shows the largest number of MHW days per year, duration and cumulative intensity along with 454 

the lowest onset rate and second lowest maximum intensity, number of events and number of bleaching alerts. Such behaviors 455 

for MHW metrics were also observed by Lal et al. (2025) in the South Pacific island countries and by Wang et al. (2024) in 456 

the Northwest Pacific. The observed differences between these two products can be notably related to their strong and weak 457 

high-frequency SST variability (periods shorter than 2 weeks) respectively (cf. following section).  458 

Inter-product differences can lead to very different interpretations of the same extreme temperature event. As an example, SST 459 

time-series from the six products at one location off the eastern Australian Coast (147°E, 13°S) are shown for 2016, when a 460 

massive MHW occurred across the Southwest Pacific (Dutheil et al., 2024) causing important damage at the Great Barrier 461 

Reef (Great Barrier Reef Marine Park Authority report, 2017). The different time series reveal that this MHW was detected 462 

by all products (temperatures are above the 90th percentile from approximately February 2016 to September 2016, Fig. 11), 463 

but in very different ways (Fig. 11). The number of MHW events detected over the time period ranges from 3 (GLORYS12v1) 464 

to 9 (OSTIA), and the cumulative intensity of the MHWs detected from 78.9°C.days (OSTIA) to 182.1°C.days 465 

(GLORYS12v1). Consequently, interpretations linked to the biological impacts of such events, (e.g., which metrics have the 466 

greatest impact on ecosystems: the number of events? duration? recovery time?) can drastically vary from one SST product to 467 

another. Same issue applies to the DHW: for the example of Fig. 11, the level 1 alert for coral bleaching was not reached for 468 

C3S (3.34 °C.weeks-1), and maximum DHW barely reached the alert threshold for GLORYS12v1 (4.09°C.weeks-1) while it 469 

largely exceeded it for CRW (5.57°C.weeks-1). More broadly, the percentage of level 1 bleaching alerts in common among the 470 

six products reaches at maximum ~60-70% in large areas of the tropical Pacific, especially in the ARC and PEQD close to 471 

coastal areas, where MHW biological impacts are crucial (Smith et al., 2024).  Neo et al. (2023) also showed inconsistency in 472 

coral bleaching risk indicators between temperature data sources (among four evaluated) in northwestern and southeastern 473 

Australia. Let’s note that DHW values computed here are lower than the ones of the NOAA CRW daily global 5km satellite 474 
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coral bleaching DHW product, probably due to differences in the MMM climatological baseline (1993-2021 in our study while 475 

years 1985-1990 plus 1993 only are used for CRW DHW product, Heron et al., 2014). 476 

 477 

Figure 11: SST time-series of the six products at the same pixel (147E, 13S; off the eastern Australian coast) during the MHW event 478 
of 2016. The main MHW characteristics identified over the event period (January 2016 - November 2016) are indicated in the tables 479 
at the bottom left of each panel. Values in brackets represent the minimum and maximum duration and cumulative intensity of the 480 
detected events. 481 
 482 
Regarding metrics sensitivity to the SST product choice, the onset rate is the most affected metric with the highest ensemble 483 

dispersion (between 24.2% in the ARC and 33.2% in the WARM) and lowest spatial correlation across all regions of the 484 

tropical Pacific. This metric should therefore be considered very carefully in MHW studies, especially since the onset rate 485 

determines the reaction window to a MHW, a key index for marine decision makers (Spillman et al., 2021). In contrast, the 486 

maximum intensity shows low ensemble dispersion (between 5.6% in the NPTG and 10.4% in the WARM) and high ensemble 487 

spatial correlation values in all regions, with a low interannual variability of both parameters in all regions, making it a robust 488 

metric regarding inter-product SST variability. Metrics with intermediate sensitivity - duration, cumulative intensity, number 489 

of events per year and number of MHW days per year - should be considered carefully as their ensemble dispersion, spatial 490 

correlation and interannual variability show high spatial differences. Consequently, SST product choice, region and study year 491 

might all influence these metrics.  492 
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Our results regarding MHW metrics differ from those of Marin et al. (2021). In their coastal MHW analysis, mean intensity - 493 

strongly correlated with maximum intensity - showed the largest inter-product differences among the four datasets considered. 494 

This discrepancy may arise from several factors. First, methodological differences: Marin et al. (2021) assessed each product’s 495 

deviation from the ensemble mean metric using a threshold based on ensemble dispersion to identify outliers and hotspot 496 

regions of inter-product differences (pixels with at least one outlier product). Such results depend on the individual product 497 

and ensemble mean MHW metrics, whereas our study gives an absolute value of the metric uncertainty by solely focusing on 498 

the ensemble dispersion. Second, we studied different types of events in different areas: Marin et al. (2021) focused on coastal 499 

MHWs worldwide on detrended SST time series while we studied all MHWs in the tropical Pacific without detrending. Third, 500 

the SST datasets differ: our ensemble includes both reanalysis and multi-product SST which show higher number of events 501 

and durations, whereas Marin et al. (2021) used only satellite-derived analyses. 502 

Despite differences in metric robustness, our sensitivity analysis revealed that ensemble dispersion decreased and spatial 503 

correlation increased over time for all metrics and regions, reflecting the growing coherence between satellite SST datasets 504 

(Yang et al., 2021) and hence improvements in reanalysis products such as GLORYS12v1 (which assimilates satellite SST 505 

data) over the last decades. The intercomparison study of eight global gap-free SST products by Yang et al. (2021) indeed 506 

highlighted that global mean SST time series showed larger differences among products during the early period of the satellite 507 

era (1982-2002) when there were fewer observations. 508 

To estimate an uncertainty in MHW metrics and DHW index, our sensitivity analysis also confirms the need for a regional 509 

approach, since ensemble dispersion values and their interannual variability vary across regions and metrics. A summary of 510 

uncertainties in each region for the six studied MHW metrics is provided in Fig. 5 and in Fig. 10 for the annual maximum of 511 

DHW. Within this regional framework, the WARM region particularly stands out across all MHW metrics, with dispersion 512 

values among products higher than 10% of the regional ensemble mean, making SST product choice particularly critical in 513 

this area for MHW analysis. Regarding DHW, the PEQD particularly stands out with uncertainty reaching 0.5°C.weeks-1, 514 

which appears crucial when comparing to the level 1 of alert for coral bleaching. 515 

Overall, the present inter-product comparison provides scientists uncertainty estimates and informs them about SST 516 

product limitations regarding the scope of their research. 517 

4.2- Potential explanations of these differences 518 

The use of different data sources (satellites with infrared or microwave sensors, geo-stationary or not , use of in-situ data or 519 

not, and if yes of various types - ships, drifting buoys, moored buoys, Argo), depths of SST estimations (skin layer, foundation), 520 

time of SST estimations (dusk to dawn, night-time only, daily mean) and the different data interpolation methods or 521 

assimilation methods in the SST products certainly explain the observed inter-product differences (Martin et al., 2012; Dash 522 

et al., 2012; Okuro et al. 2014; Fiedler et al., 2019; Huang et al., 2023). The MHW detection and DHW computation methods, 523 

both relying on thresholds, then amplifies small differences when computing MHW metrics and DHW. 524 
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Our results suggest that MHW detection is particularly sensitive to the high frequency variability of the SST signal. The 525 

combined analysis of the standard deviation of the high frequency SST signal (filtered at 15 days) in Appendix A (Fig. A1) 526 

and the radar chart of Fig. 3 suggest that spiky signals with stronger high frequency variability like OISST and OSTIA detect 527 

higher maximum intensity, onset rate and number of events, but lower duration, cumulative intensity and number of MHW 528 

days per year. On the opposite, smoother products like GLORYS12v1 or the COMPOSITE with lower high frequency 529 

variability (Fig. A1) detect lower maximum intensity, onset rate and number of events, but higher duration, cumulative 530 

intensity and number of MHW days per year (Fig. 3). Thus, the similarity of behaviours between GLORYS12v1 and the 531 

COMPOSITE (Fig. 3) might reflect the smoothing effect induced by the multi-product mean SST. These effects of high 532 

frequency variabilities were also seen in the SST time series of Fig. 11 : climatological levels were similar between products, 533 

but OISST and OSTIA signals showed larger high frequency variability (confirmed by Fig. A1), which resulted in the detection 534 

of more MHWs of shorter durations (that duration reached 73 and 74 day maximum, respectively, Fig. 11), while 535 

GLORYS12v1 or the COMPOSITE showed smoother signals and detected fewer MHWs but of longer durations (duration of 536 

maximum 162 days for GLORYS12v1, Fig. 11). 537 

The spatial variability of common MHW days is also linked to the spatial scales of MHWs : low (high) percentages of common 538 

days correspond to areas with a high proportion of micro (macro) scale events. Indeed, the detection of macro scale MHWs (> 539 

5°x5°) was shown to be more robust across products compared to micro scale MHWs (≤ 5°x5°), with percentages of common 540 

MHW days for macro events largely higher than for micro events. The high proportions of micro MHWs (Fig. 7b) are also 541 

located in the areas of larger high frequency variability (Fig. A1): in the coastal areas of the PNEC, NPTG, ARC, in northern 542 

NPSW and along the Equator in the PEQD. Also, the duration, cumulative intensity, maximum intensity and onset rate show 543 

slightly higher dispersion values for micro-scale events than for macro-scale ones, but large differences are observed for the 544 

total MHW days and number of events per year, for which dispersion is higher by a factor of 2 for micro-scale events. Lal et 545 

al. (2025) similarly reported strong discrepancies in the number of micro-scale events across products whereas macro-scale 546 

events counts were relatively consistent. Consequently, a better understanding of the sensitivity of MHW detection for these 547 

spatially small events, as well as an improvement of SST products at these fine scales, might help to reduce the observed inter-548 

product differences.  549 

The spatial correspondence between common MHW days across products and climatological precipitation patterns (i.e high 550 

precipitation; low percentages of common MHW days and vice versa) suggests that atmospheric conditions in convective areas 551 

of the SPCZ and the ITCZ (Brown et al., 2020) influence MHW detection. This effect may be linked to differences in signal 552 

retrieval and the handling of outliers in the presence of clouds and convective rainfall (for instance, there are spurious peaks 553 

in OISST induced by clouds, Reynolds et al., 2007). Alternatively, the particularly higher dispersion and lower ensemble 554 

spatial correlation values in the WARM region could also be explained by the specific MHW characteristics (short, numerous 555 

and spatially confined events that are difficult to detect). Nonetheless, the WARM region also shows the strongest decreasing 556 

rate in ensemble dispersion over time, suggesting that the growing coherence among satellite SST products in recent years 557 

(Yang et al., 2021) might have improved the detection of these short, small spatial scale and weak amplitude events. 558 
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4.3- Recommendations 559 

Firstly, our results highlight the importance for MHW scientists to understand the behaviour of the SST product selected in 560 

their study, particularly its relative “ranking” compared to other products, which varies according to both the metric and the 561 

region considered (section 3.2) but also according to the time period of interest (as magnitude of inter-product differences 562 

varies between years, section 3.3.3). The evaluation of the high frequency variability of the SST signal can also give valuable 563 

information on the product chosen since it strongly influences MHW detection, as explained in section 4.2. Using several 564 

products for robustness is thus essential: because all SST products differ in their construction, we cannot a priori argue for a 565 

“best” dataset to be used for MHW detection without thorough evaluation against in situ and independent SST dataset. Yet, 566 

Fiedler et al., (2019) performed a comparison of SST datasets to in situ data and summed up the key strengths and weaknesses 567 

of various analyses compared to the others. Beyond characterizing product behaviour, MHW studies should also account for 568 

the uncertainty associated with SST product choice when reporting MHW metric estimates. When feasible, the use of several 569 

SST datasets can substantially increase the robustness of the results, by defining upper and lower bounds of metric estimates. 570 

The same recommendations apply for DHW studies, with other studies underlining the need to compare indicators of thermal 571 

stress from different data sets (Neo et al., 2023; Margaritis et al. 2025). 572 

It is also worth noting that the sensitivity of MHW metrics to SST high-frequency variability may partly arise from the event 573 

definition itself: changing the minimum duration threshold (≥ 5 days) or the maximum gap to consider a continuous event (2 574 

days) might affect the inter-product differences. More continuous indices, such as severity (Hobday et al., 2018; Sen Gupta et 575 

al., 2020) might help to reduce inter-product differences in MHW diagnostics. 576 

Our results should also be interpreted carefully at finer scales, such as in coastal areas. Larger differences between satellite 577 

SST and in-situ temperature data were observed in coastal regions (Castro et al., 2012; Woo et al., 2020) compared to the 578 

overall accuracy of the SST in the global ocean and offshore regions. Woo et al. (2020) identified relationships between errors 579 

and coastal zones of vigorous tidal mixing, shallow bathymetry, and absence of microwave measurements. Significant 580 

differences between satellite and in-situ data were also observed in atolls and lagoons (Van Wynsberge et al., 2017).  581 

Finally, regarding the relevance of a multi-product approach, our results highlight that the COMPOSITE does not show an 582 

intermediate “ranking” but rather follows the behaviour of the reanalysis product. Metric estimates from the COMPOSITE 583 

were influenced by the smoothing applied when averaging temperature data, which introduced biases in MHW statistics. 584 

4.4- Perspectives 585 

Our study focuses on the sensitivity of MHW metrics to the choice of the SST product. Yet, other methodological options not 586 

investigated in this study can also strongly impact the MHW estimates. Since trends in SST products show differences 587 

(Menemenlis et al., 2025), detrending SST time series might influence our results and should be investigated further. Also, as 588 

Smith et al. (2025) highlighted the significant influence of the baseline on MHW results, this choice might also impact our 589 

conclusions. Choosing other thresholds for MHW detection to focus on the most extreme events (e.g 98th percentile) might 590 
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also affect the observed inter-product differences. Similar remarks apply to the DHW, for which changing the accumulation 591 

window size or anomaly cutoff might impact our results. In addition, the re-gridding of SST datasets onto a common 0.25° 592 

grid might also have influenced our results. Indeed, computing spatial means for re-gridding tends to smooth SST time series, 593 

and might impact MHW detection and DHW computation. Since re-gridding is a common practice in MHW studies, more 594 

investigation on how much information is lost in the re-gridding process could help to advance MHW research. In the case of 595 

SST products intercomparison, Huang et al. (2023) showed that the intercomparison is influenced by whether SST products 596 

are in their original grids or preprocessed into common coarse grids.  597 

As in Fiedler et al. (2019) with SST datasets, the comparison of our results to MHW metrics and DHW computed from in-situ 598 

and independent data could add valuable information to the study. Such comparison could help understand how the differences 599 

between SST products and in-situ SST data are translated through the MHW detection algorithm. However, in-situ data long 600 

enough to allow computation of MHWs are very sparse, and the depths of the estimated SST might differ, adding other biases 601 

in MHW metrics comparison. Extending our analysis at global scale could also give additional valuable information to users. 602 

For DHW computation, the comparison of our results to existing bleaching observations in some focus areas (as done by Neo 603 

et al. 2023 in northwestern and southwestern Australian reefs and Margaritis et al. 2025 in the Caribbean) could help to better 604 

understand the differences and similarities in bleaching risk indicators across datasets.   605 

Including other re-analysis products in addition to GLORYS12v1 in our comparison could also be of interest to better 606 

understand the impact of the model and data-assimilation system considered in the different re-analyses on MHW detection, 607 

including on their vertical extent. This could be done in the framework of the MER-EP (Marine Environment Reanalysis 608 

Evaluation Project), a UN-Decade action led by Mercator-Ocean-International. The comparison of MHW metrics between 609 

multiple re-analyses could also benefit from the Observing System Experiments done in the framework of the Synergistic 610 

Observing Network for Ocean Prediction (SynObs) project (Fuji et al., 2024), if daily outputs are provided. Such comparisons 611 

could also help to quantify the influence of ocean observation systems on MHW metrics estimates. 612 

 613 

 In conclusion, this study reveals significant dispersion in key MHW metrics and provides new information on how 614 

the choice of the SST product impacts MHW detection and bleaching indices. This sensitivity should be kept in mind in future 615 

research on MHWs and the ecological impact of extreme temperature events, and the use of multiple SST products in such 616 

studies should be advocated to increase the robustness of the findings. 617 

 618 
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APPENDIX A 647 

 648 

Figure A1. Standard deviation of the high frequency SST signal (high-pass filtered, half-power period of 15 days) over the period 1993-649 
2021 for the six evaluated products.  650 
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