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Figure S1. The seasonal variations of particulate matter concentrations suspended in urban air.
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Figure S2. Crwt concentrations in the particular fractions of the particulate matter studied during the year.
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Figure S3. Chromium(I11/V1) speciation in the airborne particulate matter in Radom over a year.
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Figure S4. Cr(VI) concentrations in the particulate matter fractions studied during a year.
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Figure S5. Correlation curves between total chromium concentration in PM10 and in finer airborne particulate matter
fractions (a) PM2.5 (b) PM1 and (c) PMO0.25.
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Figure S6. Correlation curves between chromium(V1) concentration in PM10 and in finer airborne particulate matter
fractions: (a) PM2.5. (b) PM1 and (c) PMO0.25.




Supplementary tables

Table S1. The concentration of chromium in PM according the literature data.

Location S i it Fracti Concentration (mean + SD) Ref.
(City/Country) ampiing site raction Cr [ng/m?] Cr(VI) [ng/m’] clerence
Agra, India agricultural site PM2.5 19.3 - [Sah et al., 2019]
Baoding, China rural-urban fringe PM2.5 33.5 (winter); [Xie et al., 2019]

zone 6.3 (summer)
Beijing and urban area, the PM2.5 3.831 (Beijing) 0.140+0.065 [Wang et al.,
Qingdao, China anthropogenic 3.707 (Qingdao) 0.091+0.073 2023]
emission sources
Beijing, China winter haze days PM2.5 41.6 [Duan et.al.,
2014]
Beijing, China urban area TSP 214 [Schleicher et al.,
PM2.5 6.9 2011]
Budapest, an area with high PM10 5.7 (winter) [Muranszky et al.,
Hungary traffic density 7.7 (summer) 2011]
Edinburgh, U.K.  urban background air PM2.5 0.49 [Heal et al., 2005]
in the city PM10 1.6
Ewekoro, industrial town PM2.5 11.4 [Anake et al.,
Nigeria 2020
Flemish region, near and far from an PM10 96 1.2 [Tirez et al.,
Belgium anthropogenic source 34 5.2 2011]
Guangzhou, urban area PM2.5 7.693 [Feng et al., 2009]
China
Hamilton, industrial areas PM10 5-19 0.1-1.6 [Bell end Hipfner,
Canada av. 0.55 1997]
Isfahan, Iran industrial areas TSP 20.6-31.7 54-8.2 [Talebi, 2003]
Katowice, urban traffic site PM1 6.9£2.0 (winter); [Widziewicz et
Poland 5.540.6 (summer) al., 2016]
PM2.5 8.542.1 (winter)
8.24+4.8 (summer)
Katowice, traffic emissions, PM1 4.48 (highway); [Rogula-
Poland urban area 6.73 (crossroads); Koztowska, 2015]
PM2.5 1.87 (highway);
2.05 (crossroads);
PM10 2.39 (highway);
2.86 (crossroads)
Ljubljana, urban background PM10 6.22 [Tursic et al.,
Slovenia location in the city 2008]
Nanjing, China industrial zone and PM2.5 26.61+6.718 [Lietal., 2015]
main transportation (Xianlin);
hub 26.14+6.781
(Gulou)
New Jersey close to a major U.S. PM2.5 0.13£0.06 [Yuetal., 2014]
(Meadowlands Highway (summer)
district), USA 0.02+0.01
(winter)
New Jersey, USA  urban area PM10 0.94-1.41 ng/m®  [Huang et al.,
(winter) 2014]
0.86-1.56
ng/m® (summer)
Ota, Nigeria industrial estate PM2.5 9.03 [Anake at al.,
2017]
Regensburg, urban areas TSP 0.21-1.58 0.16-1.22 [Nusko and
Germany Heuman, 1997]
Rome and urban area and a rural PM2.5 3.1 (rural) [Astolfi et al.,
Fontechiari, Italy ~ environment 5.7 (urban) 2006]
PM10 2.9 (rural)

7.4 (urban)




Rome and Tunis  industrial areas and PM10 2 to 5 (peri-urban <LOD (peri- [Catrambone et
Italy peri-urban site site); urban site); al., 2013]
6 to 25 (industrial 0.5-2.8
area) (industrial area)
San Nicolas, suburban influenced PM10 17.0+£16.0 (winter) [Fujiwara et al.,
Argentina by road transport 11.046 (summer) 2006]
Santiago, Chile industrial zone and PM10 14.25 (industrial [Rubio et al.,
peripheral urban site zone); 2018]
9.33 (peripheral
urban site)
Santiago, Chile urban areas polluted PM10 240 (1997); 5.0 [Richter at al.,
by anthropogenic 920 (2003) 2007]
sources
Sihwa, Banwol, industrial areas and 0.09-1.4 [Kang et al.,
Ulsan, Yeosu, neighboring 2016]
Onsan, Gumi, residential areas
Deasan, Pohang,
Korea
Singapore, haze and non-haze PM2.5 117 (haze); [Betha et al.,
Singapore 34.8 (non-haze) 2014]
Sydney, Australia  residential 0.14 [Li et al., 2002]
industrial 0.2-1.3
Telde, Gran urban area TSP 0.702 [Cancio et al.,
Canaria, Spain 2013]
Ulaanbaatar, urban area, PM2.5 7.4-36.5 (av. 14.9) [Gunchin et al.,
Mongolia anthropogenic PM2.5-10 3.5-12.0 (av. 8.83) 2021]
sources
Upper Silesia, industrial zone near PM1 8.6 [Zajusz-Zubek et
Poland power plant al., 2015]
Upper Silesia, power plant PM2.5 7.8 [Zajusz-Zubek
Poland and Mainka,
2015]
Volos, Greece harbor activities PM10 4.48+2.36 (2014) [Manoli et al.,
4.83+2.51 (2015) 2017]
Welgegund, industrial area PM2.5 <LOD (0.84) [Venter et al.,
western PM2.5-10 4.6 2016]
Bushveld
Complex, South
Africa
Xi’an, China urban area PM2.5 409.3 (winter) [Wu et al., 2021]
269.8 (summer)
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Table S2. Concentrations of total chromium, chromium(VI) and chromium(III) in PM10, PM2.5, PM1, and PM0.25 in Radom.

PM10 PM2.5 PM1 PMO.25
Sample | Crut Cr(VI) Cr(IIn Cruot Cr(vI) Cr(IIn Cruo Cr(VI) Cr(1) Cruo Cr(VI) Cr(In
[ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’]
Spring
P1 2.30 0.381 1.92 1.45 0.219 1.23 1.13 0.195 0.94 0.44 0.155 0.28
P2 2.62 0.140 2.48 2.17 0.133 2.04 1.87 0.116 1.75 1.07 0.092 0.98
P3 1.54 0.072 1.47 1.29 0.072 1.21 0.89 0.072 0.81 0.38 0.063 0.32
P4 1.13 0.052 1.08 1.00 0.052 0.95 0.81 0.045 0.77 0.44 <LOD 0.44
PS5 1.50 0.185 1.32 1.38 0.185 1.20 1.03 0.156 0.88 0.86 0.156 0.70
P6 0.78 0.133 0.64 0.66 0.095 0.56 0.35 0.090 0.26 0.26 0.043 0.21
Av. 1.64+0.70  0.161+0.12 1.48+0.64 1.33+0.51 0.126+0.066 1.201+0.48 1.01+0.50  0.112+0.056 0.90+0.48  0.57+£0.32  0.085+0.062 0.49+0.30
Summer
P7 0.82 0.077 0.74 0.64 0.050 0.59 0.42 0.013 0.41 0.08 0.013 0.07
P8 2.28 0.295 1.99 2.22 0.271 1.95 1.71 0.216 1.49 1.22 0.100 1.12
P9 1.30 0.232 1.07 1.06 0.164 0.90 0.73 0.074 0.66 0.63 0.016 0.61
P10 2.19 0.352 1.83 1.81 0.241 1.57 1.36 0.096 1.26 0.79 0.040 0.75
P11 1.76 0.126 1.64 1.42 0.126 1.30 1.25 0.126 1.12 0.95 0.038 0.91
P12 1.07 0.013 1.06 0.75 0.013 0.74 0.70 <LOD 0.70 0.23 <LOD 0.23
Av. 1.5740.60 0.18+0.13 1.39+0.50 1.3240.62 0.14+0.10 1.17+0.53 1.03+0.49  0.088+0.079 0.94+0.42 0.65+0.43  0.035+0.036 0.61+0.40
Autumn
P13 0.88 0.093 0.78 0.65 0.093 0.55 0.51 0.093 0.42 0.17 0.061 0.11
P14 4.09 0.420 3.67 3.18 0.371 2.81 2.02 0.332 1.68 0.94 0.193 0.75
P15 1.65 0.496 1.16 1.22 0.461 0.76 1.07 0.380 0.69 0.71 0.142 0.57
P16 0.75 0.209 0.54 0.71 0.209 0.51 0.42 0.147 0.28 0.28 0.116 0.17



P17 0.56 0.236 0.32 0.41 0.206 0.21 0.35 0.181 0.17 0.16 0.074 0.09

P18 1.43 0.079 0.35 0.38 0.063 0.32 0.27 0.024 0.24 0.11 0.023 0.09
P19 1.47 0.196 1.27 0.88 0.200 0.68 0.65 0.196 0.45 0.44 0.117 0.33
P20 1.47 0.367 1.10 1.28 0.323 0.96 0.92 0.267 0.65 0.51 0.166 0.34
P21 1.16 0.162 1.00 0.92 0.109 0.81 0.71 0.081 0.632 0.10 0.032 0.07
Av. 1.5¢1.1  0.2540.15 1.111.0 1.07£0.85  0.22+0.13  0.8410.77  0.7740.54 0.19+£0.12  0.58+0.45  0.38£0.29  0.103+0.059 0.28+0.24
Winter
P22 243 0.449 1.98 2.01 0.373 1.64 1.54 0.356 1.19 0.85 0.129 0.72
P23 1.63 0.447 1.18 1.35 0.282 1.07 0.69 0.267 0.42 0.43 0.186 0.24
P24 1.71 0.182 1.53 1.44 0.132 1.31 1.26 0.085 1.18 0.58 0.044 0.53
P25 2.29 1.354 0.94 1.70 1.169 0.53 1.22 0.948 0.27 0.81 0.651 0.16
P26 1.97 1.308 0.66 1.51 1.159 0.35 1.22 0.920 0.30 0.58 0.488 0.09
P27 2.15 1.084 1.06 1.62 0.873 0.74 1.37 0.741 0.63 0.65 0.465 0.19
P28 231 0.910 1.40 2.07 0.822 1.25 1.86 0.689 1.17 1.41 0.483 0.93
P29 3.34 0.961 2.38 2.88 0.753 2.13 2.36 0.646 1.72 1.51 0.459 1.05

Av. 2.23+0.53  0.841£0.43  1.39+0.56  1.82+0.50  0.70£0.39  1.13%0.59  1.44%0.50 0.58+0.31 0.860.53  0.85+0.40 0.36:0.21 0.49+0.38

mean 1.71 0.38 1.33 1.38 0.32 1.06 1.06 0.26 0.80 0.61 0.16 0.45
SD 0.83 0.38 0.71 0.69 0.32 0.61 0.55 0.27 0.47 0.39 0.18 0.34
max 4.09 1.354 3.67 3.18 1.169 2.81 236 0.948 1.75 1.51 0.651 1.12
min 0.56 0.013 0.32 0.38 0.013 0.21 0.27 <LOD 0.17 0.08 <LOD 0.07

median 1.63 0.23 1.16 1.35 0.21 0.95 1.03 0.16 0.69 0.58 0.10 0.33




Table S3. Concentrations of total chromium and speciation of chromium in PM3 s.10; PMi.2.5; PMg2s.1 and PMg s in Radom.

PMz.s-10 PMi-2s PMo.25-1 PMo.25
Sample |  Cr Cr(VI) Cr(III) Crot Cr(V) Cr(IIl) Crot Cr(V) Cr(IIN) Cro Cr(VID) Cr(IIN)
[ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’] [ng/m’]
Spring
P1 0.85 0.162 0.69 0.32 0.024 0.29 0.69 0.040 0.65 0.44 0.155 0.28
P2 0.44 0.007 0.44 0.30 0.017 0.29 0.80 0.024 0.77 1.07 0.092 0.98
P3 0.26 <LOD 0.26 0.40 <LOD 0.40 0.50 0.009 0.49 0.38 0.063 0.32
P4 0.13 <LOD 0.13 0.19 0.007 0.18 0.38 0.045 0.34 0.44 <LOD 0.44
PS5 0.12 <LOD 0.12 0.35 0.029 0.32 0.17 <LOD 0.17 0.86 0.156 0.70
P6 0.12 0.039 0.08 0.31 0.005 0.31 0.09 0.047 0.04 0.26 0.043 0.21

Av. 0.32+0.29  0.035+0.064 0.28+0.24 0.312+0.071 0.014%0.012  0.30+0.07 0.44+0.28 0.027+0.020 0.41+£0.28 0.57+0.32 0.085+0.062 0.49+0.30

Summer
P7 0.17 0.027 0.15 0.22 0.037 0.19 0.34 <LOD 0.34 0.08 0.013 0.07
P8 0.06 0.024 0.04 0.51 0.055 0.46 0.49 0.115 0.37 1.22 0.100 1.12
P9 0.24 0.067 0.17 0.33 0.090 0.24 0.11 0.058 0.05 0.63 0.016 0.61
P10 0.38 0.111 0.26 0.46 0.145 0.31 0.57 0.056 0.51 0.79 0.040 0.75
P11 0.34 <LOD 0.34 0.17 <LOD 0.17 0.30 0.088 0.21 0.95 0.038 0.91
P12 0.32 <LOD 0.32 0.05 0.013 0.04 0.47 <LOD 0.47 0.23 <LOD 0.23

Av. 0.25+0.12  0.038+0.043  0.21+0.12  0.29+0.18  0.057+£0.054 0.23+0.14 0.38+0.17 0.053+0.046 0.33£0.17 0.65+0.43 0.035:0.036 0.61+0.40

Autumn
P13 0.23 <LOD 0.23 0.14 <LOD 0.14 0.34 0.032 0.30 0.17 0.061 0.11
P14 0.90 0.048 0.86 1.17 0.039 1.13 1.08 0.139 0.94 0.94 0.193 0.75
P15 0.43 0.035 0.40 0.15 0.081 0.07 0.36 0.238 0.12 0.71 0.142 0.57

P16 0.04 <LOD 0.04 0.29 0.062 0.23 0.14 0.031 0.11 0.28 0.116 0.17



P17 0.15 0.030 0.12 0.06 0.024 0.03 0.19 0.107 0.09 0.16 0.074 0.09
P18 0.05 0.016 0.03 0.12 0.039 0.08 0.15 0.001 0.15 0.11 0.023 0.09
P19 0.59 <LOD 0.59 0.23 <LOD 0.23 0.21 0.078 0.13 0.44 0.117 0.33
P20 0.19 0.044 0.14 0.36 0.056 0.31 0.41 0.101 0.31 0.51 0.166 0.34
P21 0.24 0.053 0.18 0.21 0.028 0.18 0.61 0.049 0.56 0.10 0.032 0.07
Av. 0.31+£0.28  0.025+0.022 0.29+0.28  0.30+0.34  0.037+0.027 0.2740.33  0.3910.30 0.086+0.072  0.30+0.28 0.38+0.29 0.103+£0.059 0.28+0.24
Winter
P22 0.42 0.076 0.34 0.46 0.017 0.45 0.70 0.227 0.47 0.85 0.129 0.72
P23 0.28 0.165 0.11 0.66 0.015 0.65 0.26 0.081 0.18 0.43 0.186 0.24
P24 0.27 0.050 0.22 0.18 0.047 0.13 0.69 0.041 0.64 0.58 0.044 0.53
P25 0.60 0.185 0.41 0.47 0.221 0.25 0.41 0.300 0.12 0.81 0.651 0.16
P26 0.46 0.149 0.31 0.30 0.239 0.06 0.64 0.432 0.21 0.58 0.488 0.09
P27 0.53 0.212 0.32 0.25 0.132 0.11 0.72 0.276 0.44 0.65 0.465 0.19
P28 0.24 0.089 0.15 0.22 0.133 0.08 0.45 0.205 0.24 1.41 0.483 0.93
P29 0.46 0.207 0.25 0.52 0.107 0.41 0.85 0.188 0.66 1.51 0.459 1.05
Av. 0.41+£0.13  0.14210.062 0.26+0.10  0.38+0.17  0.114£0.086 0.27+0.21  0.59+0.20  0.22+0.12  0.37+£0.21 0.85+0.40  0.36+£0.21  0.49+0.38
mean 0.33 0.062 0.27 0.32 0.057 0.27 0.45 0.10 0.35 0.61 0.16 0.45
SD 0.22 0.069 0.19 0.22 0.064 0.22 0.25 0.11 0.24 0.39 0.18 0.34
max 0.90 0.212 0.86 1.17 0.239 1.13 1.08 0.432 0.94 1.51 0.651 1.12
min 0.04 <LOD 0.03 0.05 <LOD 0.03 0.09 <LOD 0.04 0.08 <LOD 0.07
median 0.27 0.039 0.23 0.30 0.037 0.23 0.41 0.06 0.31 0.58 0.10 0.33




Table S4. The values of parameters used in the health risk assessment.

Parameter Acronym Unit Adult Child Reference
Exposure time ET hours/ day 24 24 [US EPA 2014]
Exposure frequency EF day/ year 350 350 [US EPA 2014]
Exposure duration ED year 20 6 [US EPA 2014]
Average exposure time* ATn
For carcinogens hours 613 200 613 200 [US EPA 2014]

For non-carcinogens hours 175 200 52 560 [US EPA 2014]
Inhalation unit risk for Cr IUR (ng/ m?) ! 8.4-102 1.20-102  [US EPA Region 9]
Reference concentration for Cr RfC mg/ m 3 1.00-10* 1.00-10*  [US EPA Region 9]

*The averaging time of exposure for carcinogens was calculated as AT, = 70 years-365 days year-24 h day™; while for non-carcinogens as
AT, = ED years-365 days year'-24 h day .



