
Supplementary figures 

 

Figure S1. The seasonal variations of particulate matter concentrations suspended in urban air. 
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Figure S2. Crtot concentrations in the particular fractions of the particulate matter studied during the year. 
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Figure S3. Chromium(III/VI) speciation in the airborne particulate matter in Radom over a year. 
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Figure S4. Cr(VI) concentrations in the particulate matter fractions studied during a year. 
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Figure S5. Correlation curves between total chromium concentration in PM10 and in finer airborne particulate matter 

fractions (a) PM2.5 (b) PM1 and (c) PM0.25. 
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Figure S6. Correlation curves between chromium(VI) concentration in PM10 and in finer airborne particulate matter 

fractions: (a) PM2.5. (b) PM1 and (c) PM0.25. 
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Supplementary tables 

Table S1. The concentration of chromium in PM according the literature data. 

Location 

(City/Country) 
Sampling site Fraction 

Concentration (mean ± SD) 
Reference 

Cr [ng/m3] Cr(VI) [ng/m3] 
Agra, India agricultural site PM2.5 19.3 - [Sah et al., 2019] 

 

Baoding, China rural-urban fringe 

zone 

PM2.5 33.5 (winter); 

6.3 (summer) 

 [Xie et al., 2019] 

Beijing and 

Qingdao, China 

urban area, the 

anthropogenic 

emission sources 

PM2.5 3.831 (Beijing) 

3.707 (Qingdao) 

0.140±0.065 

0.091±0.073 

[Wang et al., 

2023] 

Beijing, China winter haze days PM2.5 41.6  [Duan  et.al., 

2014] 

Beijing, China urban area TSP 

PM2.5 

21.4 

6.9 

 

 [Schleicher et al., 

2011] 

Budapest, 

Hungary 

an area with high 

traffic density  

PM10 5.7 (winter) 

7.7 (summer) 

 [Muránszky et al., 

2011] 

Edinburgh, U.K. urban background air 

in the city 

PM2.5 

PM10 

0.49 

1.6 

 

 [Heal et al., 2005] 

Ewekoro, 

Nigeria  

industrial town PM2.5 11.4  [Anake et al., 

2020   

Flemish region, 

Belgium 

near and far from an 

anthropogenic source 

PM10 96 

34 

 

1.2 

5.2 

 

[Tirez et al., 

2011] 

Guangzhou, 

China 

urban area PM2.5 7.693 

 

 [Feng et al., 2009] 

Hamilton, 

Canada 

industrial areas PM10 5-19 0.1-1.6 

av. 0.55 

[Bell end Hipfner, 

1997] 

Isfahan, Iran industrial areas TSP 20.6-31.7 5.4 – 8.2 [Talebi, 2003] 

Katowice, 

Poland 

 

urban traffic site PM1 

 

PM2.5 

6.9±2.0 (winter); 

5.5±0.6 (summer) 

8.5±2.1 (winter) 

8.2±4.8 (summer) 

 [Widziewicz et 

al., 2016] 

Katowice, 

Poland 

traffic emissions, 

urban area 

PM1 

 

PM2.5 

 

PM10 

4.48  (highway); 

6.73 (crossroads); 

1.87 (highway); 

2.05 (crossroads); 

2.39 (highway); 

2.86 (crossroads) 

 [Rogula-

Kozłowska, 2015] 

Ljubljana, 

Slovenia 

 

urban background 

location in the city 

PM10 6.22  [Turšič et al., 

2008] 

Nanjing, China 

 

industrial zone and 

main transportation 

hub 

PM2.5 26.61±6.718 

(Xianlin); 

26.14±6.781 

(Gulou) 

 [Li et al., 2015] 

New Jersey 

(Meadowlands 

district), USA 

 

close to a major U.S. 

Highway  

 

PM2.5  0.13±0.06 

(summer) 

0.02±0.01 

(winter) 

[Yu et al., 2014] 

New Jersey, USA urban area PM10  0.94-1.41 ng/m3 

(winter) 

0.86-1.56 

ng/m3 (summer) 

[Huang et al., 

2014] 

Ota, Nigeria 

 

industrial estate PM2.5 9.03  [Anake at al., 

2017] 

Regensburg, 

Germany 

urban areas TSP 0.21-1.58 0.16-1.22 [Nusko and 

Heuman, 1997] 

Rome and 

Fontechiari, Italy 

urban area and a rural 

environment 

PM2.5 

 

PM10 

3.1 (rural) 

5.7 (urban) 

2.9 (rural) 

7.4 (urban) 

 [Astolfi et al., 

2006] 



Rome and Tunis 

Italy  

industrial areas and 

peri-urban site 

PM10 2 to 5 (peri-urban 

site); 

6 to 25 (industrial 

area) 

< LOD (peri-

urban site); 

0.5-2.8 

 (industrial area) 

[Catrambone et 

al., 2013] 

San Nicolas, 

Argentina 

suburban influenced 

by road transport 

PM10 17.0±16.0 (winter) 

11.0±6 (summer) 

 

 [Fujiwara et al., 

2006] 

Santiago, Chile industrial zone and 

peripheral urban site 

PM10 14.25 (industrial 

zone); 

9.33 (peripheral 

urban site) 

 [Rubio et al., 

2018] 

Santiago, Chile urban areas polluted 

by anthropogenic 

sources 

PM10 240 (1997); 

920 (2003) 

5.0 [Richter at al., 

2007] 

Sihwa, Banwol, 

Ulsan, Yeosu, 

Onsan, Gumi, 

Deasan, Pohang, 

Korea 

industrial areas and 

neighboring 

residential areas 

  0.09 -1.4 [Kang et al., 

2016] 

Singapore, 

Singapore 

 

haze and non-haze PM2.5 117 (haze); 

34.8 (non-haze) 

 [Betha et al., 

2014] 

Sydney, Australia residential 

industrial 
  0.14 

0.2-1.3 
[Li et al., 2002] 

Telde, Gran 

Canaria, Spain 

urban area TSP 0.702  [Cancio et al., 

2013] 

Ulaanbaatar, 

Mongolia 

urban area, 

anthropogenic 

sources 

PM2.5 

PM2.5-10 

7.4-36.5 (av. 14.9) 

3.5-12.0 (av. 8.83) 

 [Gunchin et al., 

2021] 

Upper Silesia, 

Poland 

industrial zone near 

power plant 

PM1 8.6 

 

 [Zajusz-Zubek et 

al., 2015] 

Upper Silesia, 

Poland 

power plant PM2.5 7.8  [Zajusz-Zubek 

and Mainka, 

2015] 

Volos, Greece harbor activities PM10 4.482.36 (2014) 

4.832.51 (2015) 

 [Manoli et al., 

2017] 

Welgegund, 

western 

Bushveld 

Complex, South 

Africa 

industrial area PM2.5 

PM2.5-10 

 < LOD (0.84) 

4.6 

[Venter et al., 

2016] 

Xi’an, China urban area PM2.5 409.3 (winter) 

269.8 (summer) 

 [Wu et al., 2021] 
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Table S2. Concentrations of total chromium, chromium(VI) and chromium(III) in PM10, PM2.5, PM1, and PM0.25 in Radom. 

Sample 

PM10 PM2.5 PM1 PM0.25 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Spring 

P1 2.30 0.381 1.92 1.45 0.219 1.23 1.13 0.195 0.94 0.44 0.155 0.28 

P2 2.62 0.140 2.48 2.17 0.133 2.04 1.87 0.116 1.75 1.07 0.092 0.98 

P3 1.54 0.072 1.47 1.29 0.072 1.21 0.89 0.072 0.81 0.38 0.063 0.32 

P4 1.13 0.052 1.08 1.00 0.052 0.95 0.81 0.045 0.77 0.44 < LOD 0.44 

P5 1.50 0.185 1.32 1.38 0.185 1.20 1.03 0.156 0.88 0.86 0.156 0.70 

P6 0.78 0.133 0.64 0.66 0.095 0.56 0.35 0.090 0.26 0.26 0.043 0.21 

Av. 1.640.70 0.160.12 1.480.64 1.330.51 0.1260.066 1.200.48 1.010.50 0.1120.056 0.900.48 0.570.32 0.0850.062 0.490.30 

Summer 

P7 0.82 0.077 0.74 0.64 0.050 0.59 0.42 0.013 0.41 0.08 0.013 0.07 

P8 2.28 0.295 1.99 2.22 0.271 1.95 1.71 0.216 1.49 1.22 0.100 1.12 

P9 1.30 0.232 1.07 1.06 0.164 0.90 0.73 0.074 0.66 0.63 0.016 0.61 

P10 2.19 0.352 1.83 1.81 0.241 1.57 1.36 0.096 1.26 0.79 0.040 0.75 

P11 1.76 0.126 1.64 1.42 0.126 1.30 1.25 0.126 1.12 0.95 0.038 0.91 

P12 1.07 0.013 1.06 0.75 0.013 0.74 0.70 < LOD 0.70 0.23 < LOD 0.23 

Av. 1.570.60 0.180.13 1.390.50 1.320.62 0.140.10 1.170.53 1.030.49 0.0880.079 0.940.42 0.650.43 0.0350.036 0.610.40 

Autumn 

P13 0.88 0.093 0.78 0.65 0.093 0.55 0.51 0.093 0.42 0.17 0.061 0.11 

P14 4.09 0.420 3.67 3.18 0.371 2.81 2.02 0.332 1.68 0.94 0.193 0.75 

P15 1.65 0.496 1.16 1.22 0.461 0.76 1.07 0.380 0.69 0.71 0.142 0.57 

P16 0.75 0.209 0.54 0.71 0.209 0.51 0.42 0.147 0.28 0.28 0.116 0.17 



P17 0.56 0.236 0.32 0.41 0.206 0.21 0.35 0.181 0.17 0.16 0.074 0.09 

P18 1.43 0.079 0.35 0.38 0.063 0.32 0.27 0.024 0.24 0.11 0.023 0.09 

P19 1.47 0.196 1.27 0.88 0.200 0.68 0.65 0.196 0.45 0.44 0.117 0.33 

P20 1.47 0.367 1.10 1.28 0.323 0.96 0.92 0.267 0.65 0.51 0.166 0.34 

P21 1.16 0.162 1.00 0.92 0.109 0.81 0.71 0.081 0.632 0.10 0.032 0.07 

Av. 1.51.1 0.250.15 1.11.0 1.070.85 0.220.13 0.840.77 0.770.54 0.190.12 0.580.45 0.380.29 0.1030.059 0.280.24 

Winter 

P22 2.43 0.449 1.98 2.01 0.373 1.64 1.54 0.356 1.19 0.85 0.129 0.72 

P23 1.63 0.447 1.18 1.35 0.282 1.07 0.69 0.267 0.42 0.43 0.186 0.24 

P24 1.71 0.182 1.53 1.44 0.132 1.31 1.26 0.085 1.18 0.58 0.044 0.53 

P25 2.29 1.354 0.94 1.70 1.169 0.53 1.22 0.948 0.27 0.81 0.651 0.16 

P26 1.97 1.308 0.66 1.51 1.159 0.35 1.22 0.920 0.30 0.58 0.488 0.09 

P27 2.15 1.084 1.06 1.62 0.873 0.74 1.37 0.741 0.63 0.65 0.465 0.19 

P28 2.31 0.910 1.40 2.07 0.822 1.25 1.86 0.689 1.17 1.41 0.483 0.93 

P29 3.34 0.961 2.38 2.88 0.753 2.13 2.36 0.646 1.72 1.51 0.459 1.05 

Av. 2.230.53 0.840.43 1.390.56 1.820.50 0.700.39 1.130.59 1.440.50 0.580.31 0.860.53 0.850.40 0.360.21 0.490.38 

mean 1.71 0.38 1.33 1.38 0.32 1.06 1.06 0.26 0.80 0.61 0.16 0.45 

SD 0.83 0.38 0.71 0.69 0.32 0.61 0.55 0.27 0.47 0.39 0.18 0.34 

max 4.09 1.354 3.67 3.18 1.169 2.81 2.36 0.948 1.75 1.51 0.651 1.12 

min 0.56 0.013 0.32 0.38 0.013 0.21 0.27 < LOD 0.17 0.08 < LOD 0.07 

median 1.63 0.23 1.16 1.35 0.21 0.95 1.03 0.16 0.69 0.58 0.10 0.33 

 

  



Table S3. Concentrations of total chromium and speciation of chromium in PM2.5-10; PM1-2.5; PM0.25-1 and PM0.25 in Radom. 

Sample 

PM2.5-10 PM1-2.5 PM0.25-1 PM0.25 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Crtot 

[ng/m3] 

Cr(VI) 

[ng/m3] 

Cr(III) 

[ng/m3] 

Spring 

P1 0.85 0.162 0.69 0.32 0.024 0.29 0.69 0.040 0.65 0.44 0.155 0.28 

P2 0.44 0.007 0.44 0.30 0.017 0.29 0.80 0.024 0.77 1.07 0.092 0.98 

P3 0.26 < LOD 0.26 0.40 < LOD 0.40 0.50 0.009 0.49 0.38 0.063 0.32 

P4 0.13 < LOD 0.13 0.19 0.007 0.18 0.38 0.045 0.34 0.44 < LOD 0.44 

P5 0.12 < LOD 0.12 0.35 0.029 0.32 0.17 < LOD 0.17 0.86 0.156 0.70 

P6 0.12 0.039 0.08 0.31 0.005 0.31 0.09 0.047 0.04 0.26 0.043 0.21 

Av. 0.320.29 0.0350.064 0.280.24 0.3120.071 0.0140.012 0.300.07 0.440.28 0.0270.020 0.410.28 0.570.32 0.0850.062 0.490.30 

Summer 

P7 0.17 0.027 0.15 0.22 0.037 0.19 0.34 < LOD 0.34 0.08 0.013 0.07 

P8 0.06 0.024 0.04 0.51 0.055 0.46 0.49 0.115 0.37 1.22 0.100 1.12 

P9 0.24 0.067 0.17 0.33 0.090 0.24 0.11 0.058 0.05 0.63 0.016 0.61 

P10 0.38 0.111 0.26 0.46 0.145 0.31 0.57 0.056 0.51 0.79 0.040 0.75 

P11 0.34 < LOD 0.34 0.17 < LOD 0.17 0.30 0.088 0.21 0.95 0.038 0.91 

P12 0.32 < LOD 0.32 0.05 0.013 0.04 0.47 < LOD 0.47 0.23 < LOD 0.23 

Av. 0.250.12 0.0380.043 0.210.12 0.290.18 0.0570.054 0.230.14 0.380.17 0.0530.046 0.330.17 0.650.43 0.0350.036 0.610.40 

Autumn 

P13 0.23 < LOD 0.23 0.14 < LOD 0.14 0.34 0.032 0.30 0.17 0.061 0.11 

P14 0.90 0.048 0.86 1.17 0.039 1.13 1.08 0.139 0.94 0.94 0.193 0.75 

P15 0.43 0.035 0.40 0.15 0.081 0.07 0.36 0.238 0.12 0.71 0.142 0.57 

P16 0.04 < LOD 0.04 0.29 0.062 0.23 0.14 0.031 0.11 0.28 0.116 0.17 



P17 0.15 0.030 0.12 0.06 0.024 0.03 0.19 0.107 0.09 0.16 0.074 0.09 

P18 0.05 0.016 0.03 0.12 0.039 0.08 0.15 0.001 0.15 0.11 0.023 0.09 

P19 0.59 < LOD 0.59 0.23 < LOD 0.23 0.21 0.078 0.13 0.44 0.117 0.33 

P20 0.19 0.044 0.14 0.36 0.056 0.31 0.41 0.101 0.31 0.51 0.166 0.34 

P21 0.24 0.053 0.18 0.21 0.028 0.18 0.61 0.049 0.56 0.10 0.032 0.07 

Av. 0.310.28 0.0250.022 0.290.28 0.300.34 0.0370.027 0.270.33 0.390.30 0.0860.072 0.300.28 0.380.29 0.1030.059 0.280.24 

Winter 

P22 0.42 0.076 0.34 0.46 0.017 0.45 0.70 0.227 0.47 0.85 0.129 0.72 

P23 0.28 0.165 0.11 0.66 0.015 0.65 0.26 0.081 0.18 0.43 0.186 0.24 

P24 0.27 0.050 0.22 0.18 0.047 0.13 0.69 0.041 0.64 0.58 0.044 0.53 

P25 0.60 0.185 0.41 0.47 0.221 0.25 0.41 0.300 0.12 0.81 0.651 0.16 

P26 0.46 0.149 0.31 0.30 0.239 0.06 0.64 0.432 0.21 0.58 0.488 0.09 

P27 0.53 0.212 0.32 0.25 0.132 0.11 0.72 0.276 0.44 0.65 0.465 0.19 

P28 0.24 0.089 0.15 0.22 0.133 0.08 0.45 0.205 0.24 1.41 0.483 0.93 

P29 0.46 0.207 0.25 0.52 0.107 0.41 0.85 0.188 0.66 1.51 0.459 1.05 

Av. 0.410.13 0.1420.062 0.260.10 0.380.17 0.1140.086 0.270.21 0.590.20 0.220.12 0.370.21 0.850.40 0.360.21 0.490.38 

mean 0.33 0.062 0.27 0.32 0.057 0.27 0.45 0.10 0.35 0.61 0.16 0.45 

SD 0.22 0.069 0.19 0.22 0.064 0.22 0.25 0.11 0.24 0.39 0.18 0.34 

max 0.90 0.212 0.86 1.17 0.239 1.13 1.08 0.432 0.94 1.51 0.651 1.12 

min 0.04 < LOD 0.03 0.05 < LOD 0.03 0.09 < LOD 0.04 0.08 < LOD 0.07 

median 0.27 0.039 0.23 0.30 0.037 0.23 0.41 0.06 0.31 0.58 0.10 0.33 



Table S4. The values of parameters used in the health risk assessment. 

Parameter  Acronym  Unit Adult Child Reference 

Exposure time  ET hours/ day 24 24 [US EPA 2014] 

Exposure frequency  EF day/ year   350 350 [US EPA 2014] 

Exposure duration ED year 20 6 [US EPA 2014] 

Average exposure time* ATn     

For carcinogens  hours 613 200 613 200 [US EPA 2014] 

For non-carcinogens hours 175 200 52 560 [US EPA 2014] 

Inhalation unit risk for Cr IUR (μg/ m3) − 1 8.4·10-2 1.20·10-2 [US EPA Region 9] 

Reference concentration for Cr RfC mg/ m− 3 1.00·10-4 1.00·10-4 [US EPA Region 9] 
*The averaging time of exposure for carcinogens was calculated as ATn = 70 years⋅365 days year-1⋅24 h day-1; while for non-carcinogens as 

ATn = ED years⋅365 days year-1⋅24 h day-1. 

 

 

 


