
Appendix A1.- Estimation of tectonic uplift produced in upper Miocene formations due to 

transpressional deformation at the TSZ, from kinematic models 

 

Tectonic uplift can be defined as the difference in the vertical distance z to a reference layer 

produced by tectonics in a time interval t0 – t1: 

 

U(dt) = z(t1) – z(t0)        (Eq. A1.1) 

 

Schulmann et al. (2003) defined z(t1) as proportional to z(t0), where both vertical distances are 

measured with respect to a level of no vertical displacement, whose depth is defined as the 

Rigid Floor Depth (RFD). The definition of the RFD in natural systems depends on their 

rheological conditions. As such, in lithospheric shear zones, there is no such rigid floor but 

rather an exhumation compensation level from which downward motion controlled by isostasy 

can be expected (see Schulmann et al., and references therein). However, in most crustal 

systems, the RFD would be defined by the basal detachment surface of the shear zone. 

From a purely kinematic point of view, transpression in tabular-shaped shear zones is defined as 

the simultaneous combination of (1) a coaxial component of infinitesimal deformation 

producing shortening orthogonal to the shear zone boundaries and extrusion parallel to them and 

(2) simple shearing parallel to the shear zone boundaries (Fernández and Díaz-Azpiroz, 2009). 

According to this definition, uplifting due to transpression is produced inside the shear zone 

mainly by the extrusion due to the coaxial component and, in the uplifted block, outside the 

shear zone, by the up-dip component of simple shearing. In the present case-study, we focus on 

the first situation. The main angle in this geometric configuration is , the angle between the 

extrusion direction of the coaxial strain and the dip direction of the shear zone. 

Assuming deformation is steady-state, the resulting transpression is reproduced by a 3 x 3 finite 

strain tensor F, whose specific form depends on the main geometrical parameters of the 

transpressional system. The main diagonal of F is defined by the particle motion due to coaxial 

deformation along the direction of the three main finite strain axes, such that F22 is shortening 

across the shear zone, F33 is extrusion along the shear zone that forms an angle  with the dip 

direction and F11 is the motion parallel to the shear zone and normal to F33. From this, it is 

obvious that the uplift due to the coaxial component of transpression is function of F33. 

Therefore, for monoclinic transpression in vertical shear zones with pure shear as the coaxial 

component, defined by the F tensor (Schulmann et al., 2003) 

 

𝐹 =  (
1

𝛾̇

𝜀̇
 [1 − exp(𝜀̇𝑡)] 0

0 exp (−𝜀̇𝑡) 0
0 0 exp (𝜀̇𝑡)

)      (Eq. A1.2) 

 

the vertical distance to the RFD at a time t1 is defined as: 

 

𝑧(𝑡1) = 𝑧(𝑡0) exp (𝜀̇𝑡)         (Eq. A1.3) 



 

where 𝜀̇ is the strain rate of the coaxial component and t is time. Note from F that the coaxial 

component is pure shear (plane deformation), where shortening across the shear zone (F22) is 

completely compensated by uplifting (F33). 

Analogously, for triclinic transpression in vertical shear zones with variable  angle, defined by 

the F tensor (Fernández and Díaz-Azpiroz, 2009) 

 

𝐹 =  (

𝑐𝑜𝑠2 𝜐 +  𝑠𝑖𝑛2 𝜐 ∙  exp(𝜀̇𝑡) 𝐹12 cos 𝜐 sin 𝜐 [1 − exp(𝜀̇𝑡)]

0 exp (−𝜀̇𝑡) 0

cos 𝜐 sin 𝜐 [1 − exp(𝜀̇𝑡)] 𝐹32 𝑠𝑖𝑛2 𝜐 + 𝑐𝑜𝑠2 𝜐 ∙  exp(𝜀̇𝑡)

) (Eq. A1.4) 

 

the vertical distance to the RFD due to the coaxial component of transpression at a time t1 is 

thus defined as: 

 

𝑧(𝑡1) = 𝑧(𝑡0) [𝑠𝑖𝑛2 𝜐 +  𝑐𝑜𝑠2 𝜐 ⋅  exp (𝜀̇𝑡)]     (Eq. A1.5) 

 

In the case of non-vertical shear zones, the entire system must be rigidly rotated toward the 

actual position of the analyzed case. Therefore, the final vertical distance to the RFD at a time t1 

is also function of the dip angle of the shear zone (): 

 

𝑧′(𝑡1) = sin 𝛿 ∙ 𝑧(𝑡0) [𝑠𝑖𝑛2 𝜐 +  𝑐𝑜𝑠2 𝜐 ⋅ exp(𝜀̇𝑡)]     (Eq. A1.6) 

 

By substituting Eq. A1.6 into Eq. A1.1, we obtain the tectonic uplift produced by coaxial 

deformation in an inclined triclinic transpressional zone with oblique extrusion: 

 

𝑈(𝑑𝑡) = 𝑧(𝑡0) {sin 𝛿 [𝑠𝑖𝑛2 𝜐 + 𝑐𝑜𝑠2 𝜐 ⋅  exp (𝜀̇𝑡)] − 1}   (Eq. A1.7) 

 

See Díaz-Azpiroz et al., 2014 for further information. 
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