

High-resolution terrestrial water storage dynamics in Central Asia: Evaluating hydrological forcing datasets for GRACE downscaling

Shuxian Liu¹, Timo Schaffhauser², Roland Pail¹

¹Chair of Astronomical and Physical Geodesy, Technical University of Munich, Munich, 80333, Germany

²Chair of Hydrology and River Basin Management, Technical University of Munich, Munich, 80333, Germany

Correspondence to: Shuxian Liu (shuxian.liu@tum.de)

Abstract. The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions provide highly valuable large-scale observations of terrestrial water storage (TWS), but their coarse spatial (~200 km) and temporal (~monthly) resolutions limit their direct use in regional applications. In this study, we implement and refine a three-step

10 downscaling framework to downscale GRACE-based TWS changes (TWSCs) to daily, 1 km resolution over the Naryn – Kara Darya basins and Fergana valley in Central Asia by integrating GRACE data with high-resolution hydrological forcing datasets, including precipitation, evapotranspiration, and runoff from Global Land Data Assimilation System (GLDAS), Famine Early Warning Systems Network Land Data Assimilation System Central Asia (FLDAS-CA), the land component of the Fifth Generation European ReAnalysis (ERA5-Land), and a mixed combination (Mix) comprising the Multi-Source
15 Weighted-Ensemble Precipitation (MSWEP), the Global Land Evaporation Amsterdam Model (GLEAM), and the Global Flood Awareness System (GloFAS). Temporal downscaling corrects daily water-balance-derived storage changes using spline interpolation constrained by monthly GRACE observations. Spatial downscaling employs a Partial Least Squares regression to map coarse GRACE anomalies onto fine-scale predictors, and a post-bias correction ensures consistency with the original GRACE signal. Given the lack of in situ data in the study region, we implement three validation strategies: comparison with
20 the ITSG-Grace2018 daily solution, an “upscale-back” consistency test, and event-based analysis. The results show that all forcing scenarios capture the broad seasonal and interannual variability of GRACE, but their performance differs substantially. GLDAS retains grid-like artefacts, FLDAS-CA systematically underestimates long-term declines and seasonal amplitudes, and ERA5-Land introduces high-frequency noise in the daily TWSCs. In contrast, the Mix forcing achieves the best overall performance, yielding the highest correlation coefficients (up to 0.8) with ITSG-Grace2018, the most satisfactory Nash-
25 Sutcliffe Efficiency (NSE) distribution (mean = 0.65) relative to GRACE signals in the upscaling-back test, and a realistic negative long-term trend (-5.7 mm yr⁻¹) compared with -8.3 mm yr⁻¹ from GRACE. The Mix-based downscaled product also captures short-term hydrological events, such as the significant January 2006 snow event, and human-induced impacts associated with potential return flows from surface water irrigation. These results highlight the importance of carefully selecting input hydrological datasets in downscaling applications. Additionally, the presented framework is computationally
30 flexible and transferable, allowing specification of target resolutions and adaptation of input hydrological datasets accordingly for applications in other regions.

1 Introduction

Spatio-temporal analyses of terrestrial water storage (TWS) are fundamental to understanding how hydrological systems respond to climatic variability and human influences ([Rodell et al., 2018](#); [Tapley et al., 2019](#)). TWS was adopted as a new 35 Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS) as part of the 2022 GCOS Implementation Plan. Over the past two decades, the Gravity Recovery and Climate Experiment (GRACE) and its successor, GRACE Follow-On (GRACE-FO), have provided observations of Earth's time-variable gravity field, offering invaluable insights into changes in TWS, which reflects the integrated signal in surface water, groundwater, soil moisture, snow, and glacier storages ([Rodell and Famiglietti, 2001](#)). These data have enabled global assessments of land water storage, ice mass balance, sea level change, 40 and ocean bottom pressure, thereby improving our understanding of climate-driven Earth system variations ([Tapley et al., 2019](#)). However, GRACE's coarse spatial (~200 km) and temporal (~monthly) resolutions limit their direct application in regional hydrological studies.

To address this limitation, a range of downscaling approaches has been developed to enhance the spatial and temporal resolution of GRACE data. These methods are generally classified as dynamic, statistical, or machine learning-based. Dynamic 45 downscaling employs physically based numerical models, e.g. regional climate or hydrological models, to generate high-resolution (HR) outputs while preserving underlying physical processes ([Maraun et al., 2010](#)). In contrast, statistical downscaling derives fine-scale estimates from coarse-resolution data by establishing relationships between large-scale predictors and local-scale predictands ([Maraun et al., 2010](#)). The latter is data-driven, computationally efficient, and thus widely used in GRACE applications. In recent years, machine learning techniques have been increasingly applied in GRACE 50 downscaling to capture complex, non-linear relationships between large-scale gravity signals and high-resolution hydroclimatic variables.

Various studies have demonstrated the potential of such downscaling approaches. [Vishwakarma et al. \(2021\)](#) integrated GRACE observations with $0.5^\circ \times 0.5^\circ$ water storage outputs from the Water – Global Assessment and Prognosis (WaterGAP) hydrological model (WGHM), combined with precipitation (P), evapotranspiration (ET), and runoff (R) data from multiple 55 sources, to produce high-resolution TWS change (TWSC) fields. [Yin et al. \(2018\)](#) enhanced the spatial resolution of GRACE-derived groundwater storage anomalies in the North China Plain from 110 km to 2 km by incorporating ET data, thereby capturing sub-grid groundwater heterogeneity. [Kalu et al. \(2014\)](#) downscaled GRACE-derived TWSCs from $1.0^\circ \times 1.0^\circ$ to $0.05^\circ \times 0.05^\circ$ over a large hydrogeologic basin in northern Australia using P, ET, and R data from the Australian Water Outlook. Most recently, [Pellet et al. \(2024\)](#) developed a hybrid statistical dynamical approach to produce daily TWSC estimates 60 at 1 km resolution by integrating GRACE data with auxiliary variables such as P, ET, and river network topography. [Jyolsna et al. \(2021\)](#) applied multi-linear regression (MLR) and random forest (RF) techniques to downscale GRACE-derived terrestrial water storage anomalies (TWSA) from 1° to 0.25° , using a range of land surface and hydroclimatic variables.

Despite these advances, limited attention has been paid to GRACE downscaling in high-mountain catchments of Central Asia. The southern Tien Shan, a critical water source for downstream regions, is characterised by runoff primarily derived from

65 snow and glacier melt ([Pritchard, 2019](#); [Immerzeel et al., 2020](#)). Although hydrologically important, this area remains understudied in GRACE-based analyses. This region presents particular challenges due to its complex topography, strong seasonal variability ([Barandun et al., 2021](#)), scarcity of in-situ observations ([Siegfried et al., 2012](#); [Li et al., 2025](#)), and strong upstream – downstream linkages ([Pritchard, 2019](#)). These factors make remote sensing data such as GRACE particularly valuable for hydrological assessment, yet also difficult to interpret at local scales without appropriate downscaling strategies.

70 Another crucial but often overlooked aspect concerns the choice of hydrological forcing datasets used for downscaling. Most existing studies rely on a fixed set of forcing variables, such as P, ET, or R, derived from reanalysis or land surface models (e.g. [Arshad et al., 2022](#); [Pellet et al., 2024](#); [Kalu et al., 2024](#)). However, the accuracy, resolution, and physical consistency of these datasets vary considerably, especially in topographically complex and data-scarce regions. As a result, different input hydrological data may introduce varying degrees of uncertainty into the downscaled TWS estimates, affecting their reliability

75 and hydrological interpretability. A systematic evaluation of how input hydrological forcing data selection influences downscaling performance is therefore essential but remains largely absent from current literature.

In this study, we downscale GRACE-based TWS changes to a target resolution of daily (temporally) and 1 km (spatially). This study aims to investigate the following research questions, on the example of a study region in Central Asia:

1. How can GRACE-derived TWS changes be physically downscaled in space and time?
2. To what extent and how does the choice of input hydrological forcing data affect the accuracy and robustness of downscaled GRACE products?
3. How can the downscaled TWS products be validated in data-scarce regions?
4. How can high-resolution TWS estimates improve our understanding of regional hydrological processes?

2 Study region

85 The study area is a transboundary catchment in Central Asia ([Fig. 1](#)), covering approximately 120,000 km². The dashed lines delineate three subregions, from east to west, corresponding to the Naryn Basin, Kara Darya Basin and the Fergana Valley, which straddle Kyrgyzstan and eastern Uzbekistan. The Naryn Basin, together with the Kara Darya, forms the Upper Syr Darya which is one of the two headwater catchments of the Syr Darya River in the Aral Sea Basin. The Naryn originates from the Big and Small Naryn rivers in the Tian Shan Mountains of Kyrgyzstan and flows westward through Fergana Valley into

90 Uzbekistan, where it joins the Kara Darya ([Hagg et al., 2013](#)). In this study, we refer to our transboundary catchment as the USD-FV. The basin is predominantly fed by glacio-nival rivers originating from high-altitude zones. Elevation ranges sharply from over 5,000 m in the glaciated peaks to around 200 m in the foothills. Precipitation, seasonal snow and glacier melt are the main sources of runoff, making this region crucial for sustaining downstream agriculture and water supply within the Syr Darya system ([Zheng et al., 2019](#); [Sadyrov et al., 2025](#)).

95 This region exhibits pronounced climatic contrasts driven by its complex topography. The Upper Syr Darya Basin is characterized by a typical continental and semi-arid climate with hot summers and cold winters ([Bocchiola et al., 2017](#)). Mean

temperatures generally range between -18°C and 17°C ([Zheng et al., 2019](#)). In the Naryn Basin, the winter temperatures occasionally drop below -50°C and summer temperatures exceed 40°C ([Hill et al., 2017](#)). Annual precipitation is relatively low, between 270 and 450 mm ([Chen et al., 2022](#); [Schaffhauser et al., 2023](#)). In contrast, the Fergana Valley has a milder continental climate with moderately cold winters and hot summers. Precipitation is particularly low, averaging only $100 - 200$ mm yr^{-1} , whereas potential evapotranspiration can reach up to 1300 mm ([Conrad et al., 2013](#)). In addition, the valley is one of Central Asia's most important agricultural regions ([Abdullaev et al., 2009](#)).

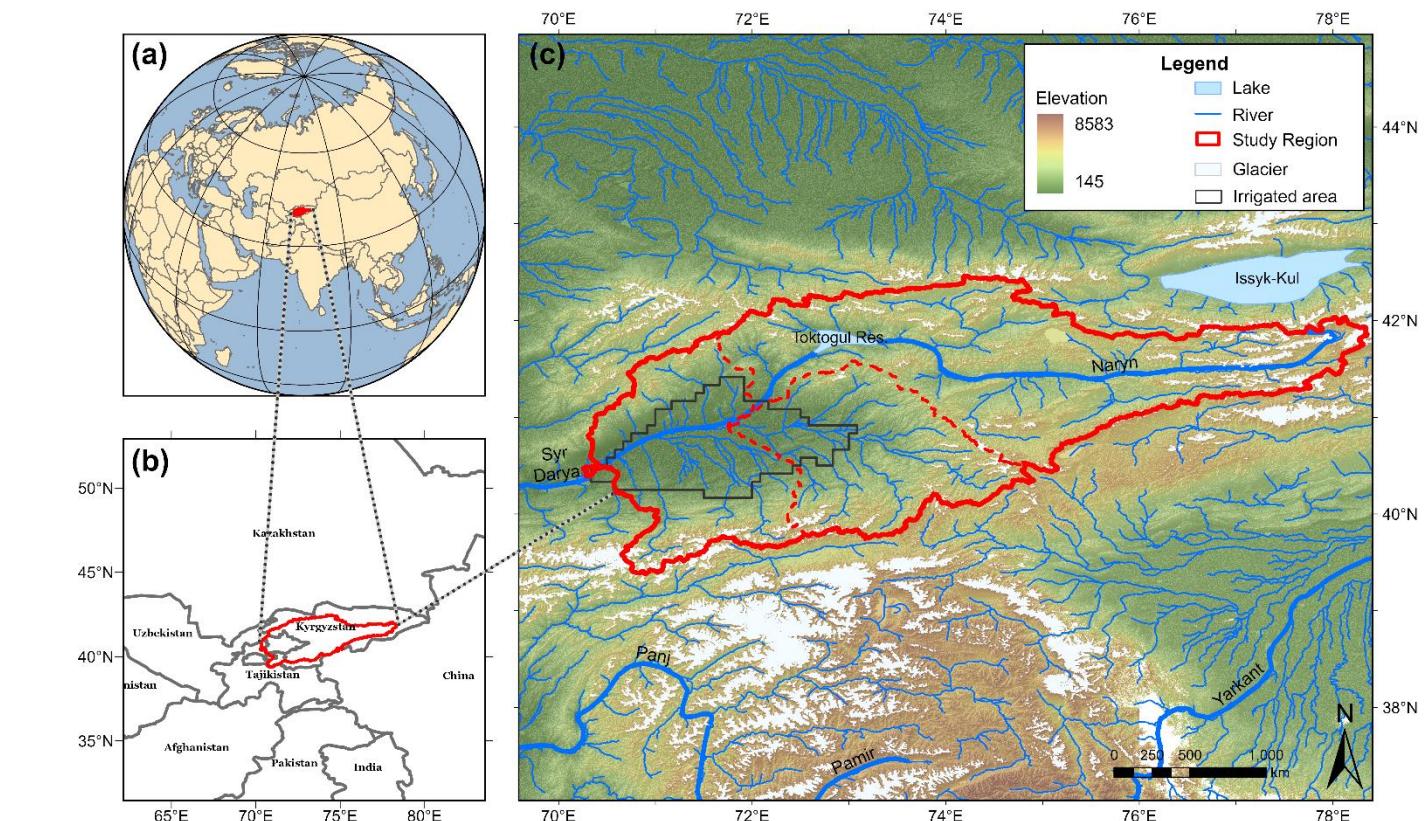


Figure 1: Overview of the study region outlined in red, showing elevations, river networks, glaciers and lakes. The dashed lines delineate three subregions from east to west: the Naryn Basin, the Kara Darya Basin, and the Fergana Valley. The black line delineates the irrigated area in the downstream region.

3 Data

3.1 GRACE-based TWS

The GRACE and GRACE-FO missions provide monthly gravity field solutions disseminated by several processing centres at different levels. Level-2 products are represented by spherical harmonic (SH) coefficients that require filtering and post-processing to obtain Level-3 gridded fields, typically provided at $1^{\circ} \times 1^{\circ}$ resolution. An alternative is the mass concentration (mascon) approach, which directly estimates mass variations over predefined surface elements. Mascon solutions are produced

either directly from Level-1B data (e.g. NASA Goddard Space Flight Centre and Jet Propulsion Laboratory) or by post-processing Level-2 SH fields (e.g. Centre for Space Research).

115 We use the Jet Propulsion Laboratory (JPL) mascon monthly TWS product at $0.5^\circ \times 0.5^\circ$ resolution for April 2002 – December 2023. Note that the JPL solution is originally estimated on $\sim 3^\circ$ equal-area blocks; the commonly used 0.5° grid is an interpolated version and does not add additional observational information ([Watkins et al., 2015](#); [Wiese et al., 2016](#)). Within our study region, this corresponds to 74 0.5° grid cells, which are subsequently downscaled to the target resolution.

3.2 Hydrological datasets and other auxiliary information

120 Dynamical downscaling uses precipitation, evapotranspiration, and runoff at the target daily and $1 \text{ km} \times 1 \text{ km}$ resolution. We evaluate four hydrological forcing sets, each comprising a combination of P, E, and R from the same model or multiple datasets, hereafter referred to as GLDAS, FLDAS-CA, ERA5-Land and Mix ([Table 1](#)). The following subsections summarise each dataset used in this study.

Table 1: The four P – ET – R combinations used in this study.

Name	Precipitation	Evapotranspiration	Runoff	Temporal Resolution	Spatial Resolution
GLDAS		GLDAS		3-hourly	$0.25^\circ \times 0.25^\circ$
FLDAS-CA		FLDAS-CA		Daily	$0.01^\circ \times 0.01^\circ$
ERA5-Land		ERA5-Land		Hourly	$0.1^\circ \times 0.1^\circ$
Mix	MSWEP	GLEAM	GloFAS	Daily	P/ET: $0.1^\circ \times 0.1^\circ$; R: $0.05^\circ \times 0.05^\circ$

125 3.2.1 GLDAS

The Global Land Data Assimilation System (GLDAS) integrates satellite and ground-based observations with land surface modelling to provide globally consistent hydrological fields ([Rodell et al., 2004b](#)). We use P, ET, and R at 0.25° and 3-hourly resolution from the GLDAS Noah V2.1 model. Daily totals are obtained by summing 3-hourly values, then resampled to $1 \text{ km} \times 1 \text{ km}$ using cubic interpolation ([Arshad et al., 2022](#)).

130 3.2.2 FLDAS Central Asia

The Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) is a NASA-developed modelling framework designed for food and water security monitoring in data-scarce regions ([McNally et al., 2022](#)). FLDAS Central Asia model (FLDAS-CA) produces daily output including P, ET, and R at 0.01° spatial resolution over the Central Asia domain (30 to 100 $^\circ$ E, 21 to 56 $^\circ$ N).

135 3.2.3 ERA5-Land

The land component of the Fifth Generation European ReAnalysis (ERA5-Land; [Muñoz-Sabater et al., 2021](#)) is a global land-focused reanalysis dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It provides

hourly land variables at 0.1° , forced consistently by ERA5. We derive daily P, ET, and R from the daily accumulated outputs (00:00 records) and resample to $1 \text{ km} \times 1 \text{ km}$.

140 3.2.4 MSWEP

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset combines gauge observations, satellite products, and reanalysis data to provide global precipitation from 1979 ([Beck et al., 2019](#)). We use daily data at 0.1° , interpolated to $1 \text{ km} \times 1 \text{ km}$.

3.2.5 GLEAM

145 The Global Land Evaporation Amsterdam Model (GLEAM) estimates terrestrial evapotranspiration and its components from remote sensing inputs combined with a simplified land surface model ([Miralles et al., 2011](#)). We use GLEAM V4 ([Miralles et al., 2025](#)) daily ET at 0.1° , resampled to $1 \text{ km} \times 1 \text{ km}$.

3.2.6 GloFAS

150 The Global Flood Awareness System (GloFAS), developed by the European Commission and ECMWF, is a global hydrological forecasting and monitoring system that couples meteorological forcing with a hydrological model to simulate river discharge and flood hazard ([Alfieri et al., 2013](#)). We use daily runoff fields at 0.05° from version 4.0 and resample them to $1 \text{ km} \times 1 \text{ km}$.

3.2.7 River network

155 The river network is derived from Hydrologic Derivative for Modelling and Analysis (HDMA) database developed by U.S. Geological Survey ([Verdin, 2017](#)), which provides digital elevation model (DEM)-based flow direction and flow accumulation at global scale. To match our target resolution, the flow direction grid is upscaled to 1 km .

3.2.8 Irrigation area

160 The Global Map of Irrigation Areas (GMIA; [Siebert et al., 2013](#)) provides the proportion of land equipped for irrigation around the year 2005 in percentage of the total area on a 5 minute resolution raster. This dataset is used to delineate the agricultural zone of the Fergana valley.

3.2.9 Overview of hydrological forcing datasets

[Figure 2](#) provides an overview of the input hydrological variables used for GRACE TWS downscaling. From left to right, the columns show the average values of precipitation, evapotranspiration, and runoff for the period April 2002 – December 2023. The first three rows correspond to GLDAS, FLDAS-CA, and ERA5-Land, while the last row represents the Mix dataset

165 combining MSWEP, GLEAM, and GloFAS. All occurrences of “mm” in this manuscript refer to millimetres of water equivalent (mm w.e.).

170 Across all variables, ERA5-Land shows the highest magnitudes, while FLDAS-CA consistently yields the lowest. For precipitation, ERA5-Land exceeds 5 mm d^{-1} , whereas the other three datasets remain below 2 mm d^{-1} . Despite differences in magnitude, FLDAS-CA, ERA5-Land, and MSWEP identify similar wet hotspots, whereas GLDAS displays an unrealistic spatial pattern. In particular, GLDAS indicates higher precipitation over the Fergana valley than in surrounding mountain regions, contradicting the well-established climatic knowledge (see [Sect. 2](#)), which shows the valley to be considerably drier.

175 Among the four datasets, FLDAS-CA appears most realistic in both spatial distribution and magnitude. For evapotranspiration, ERA5-Land produces the largest values up to 2 mm d^{-1} , followed by GLDAS and GLEAM, while FLDAS-CA remains below 0.5 mm d^{-1} . The spatial pattern of ERA5-Land closely resembles GLEAM, whereas GLDAS and FLDAS-CA display elevated ET over the valley region. GLDAS further exhibits grid-like artefacts akin to a random distribution. Notably, only FLDAS-CA shows an ET distribution that differs from its precipitation pattern, while in the other datasets, P and ET exhibit spatial consistency. In the GLEAM product, the narrow yellow band in the northeast denotes missing data over Song-Kul Lake. For runoff, ERA5-Land and GloFAS both reach values above 3 mm d^{-1} , whereas GLDAS and FLDAS-CA remain near 0.5 mm d^{-1} . The spatial distribution of runoff in ERA5-Land is broadly consistent with GloFAS, while GLDAS and FLDAS-CA lack clear runoff hotspots.

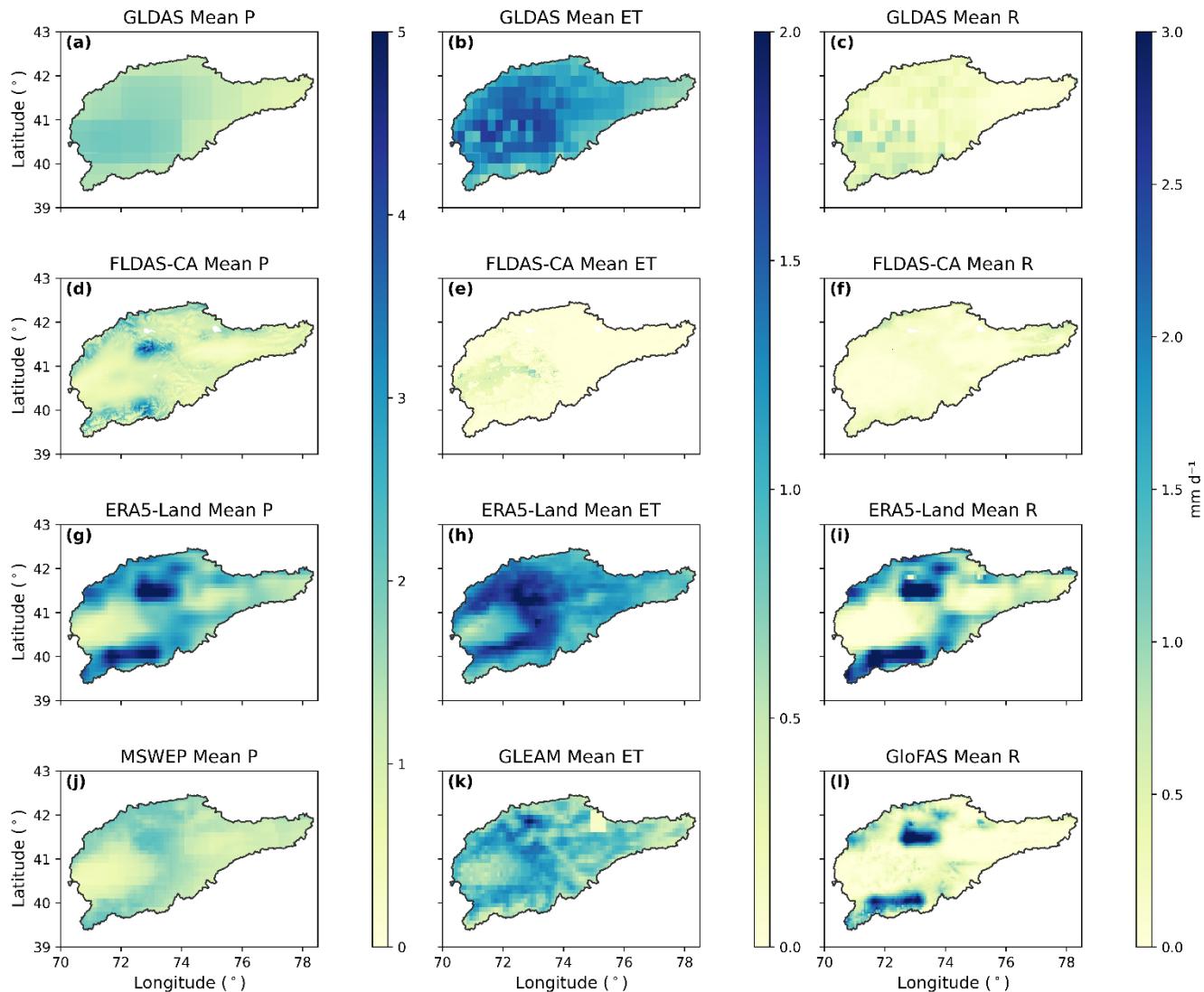


Figure 2: Spatial distribution of hydrological forcing variables used in this study, averaged over the study period. Columns represent (from left to right) precipitation, evapotranspiration, and runoff; rows correspond (from top to bottom) to the four forcing scenarios: GLDAS, FLDAS-CA, ERA5-Land, and Mix.

185 4 Methods

4.1 Data pre-processing

GRACE products provide monthly terrestrial water storage anomalies relative to the long-term mean, defined as $TWSA = TWS - \bar{TWS}$. To analyse temporal variations in storage, we compute the time derivative of TWSA ($dTWS/dt$) in units of mm per month using a centred difference scheme applied to the JPL mascon data ([Kalu et al., 2024](#)):

190
$$\frac{dTWS}{dt}|_{\text{month}} = \frac{dTWSA}{dt} \approx \frac{TWSA_{m_{i+1}} - TWSA_{m_{i-1}}}{2} = \frac{TWS_{m_{i+1}} - TWS_{m_{i-1}}}{2}, \quad (1)$$

where m_{i-1} , m_i , m_{i+1} denote three consecutive months. Forward and backward differences are used at the beginning and end of the time series, respectively.

195 [Figure 3](#) outlines the workflow for GRACE data downscaling and validation of downscaled results. The process begins with data pre-processing, during which all input hydrological variables (P, ET, R) are resampled to 1 km \times 1 km using cubic interpolation. The flow direction dataset is upscaled to the same resolution based on the D8 algorithm, which assigns each grid cell a direction of deepest descent towards one of its eight neighbouring cells. Each direction is encoded by a unique power-
 200 of-two value: east (1), southeast (2), south (4), southwest (8), west (16), north (64), and northeast (128). The original 90 m resolution flow direction raster is aggregated to approximately 1 km using a block-wise mode approach. Firstly, an aggregation factor of 11 is defined since 1 km \approx 90 m \times 11. Next, the input raster is systematically partitioned into non-overlapping tiles of 11×11 pixels. At last, for each tile, the most frequent valid flow direction value is assigned to the corresponding upscaled pixel (NoData values are ignored). If all values are NoData, the output pixel is set to NoData. The affine transform is adjusted accordingly to yield a new pixel size of ~ 990 m.

Thereafter, a sparse connectivity matrix $Q \in \mathbb{R}^{n \times n}$ is constructed, where n denotes the number of 1 km \times 1 km pixels within the study area. Each non-zero entry represents downstream connectivity:

205
$$Q(p, q) = 1 \quad \text{if flow from pixel } q \text{ drains into pixel } p. \quad (2)$$

Daily changes in terrestrial water storage (dS_t , mm d $^{-1}$) are then derived from the water balance (WB) equation:

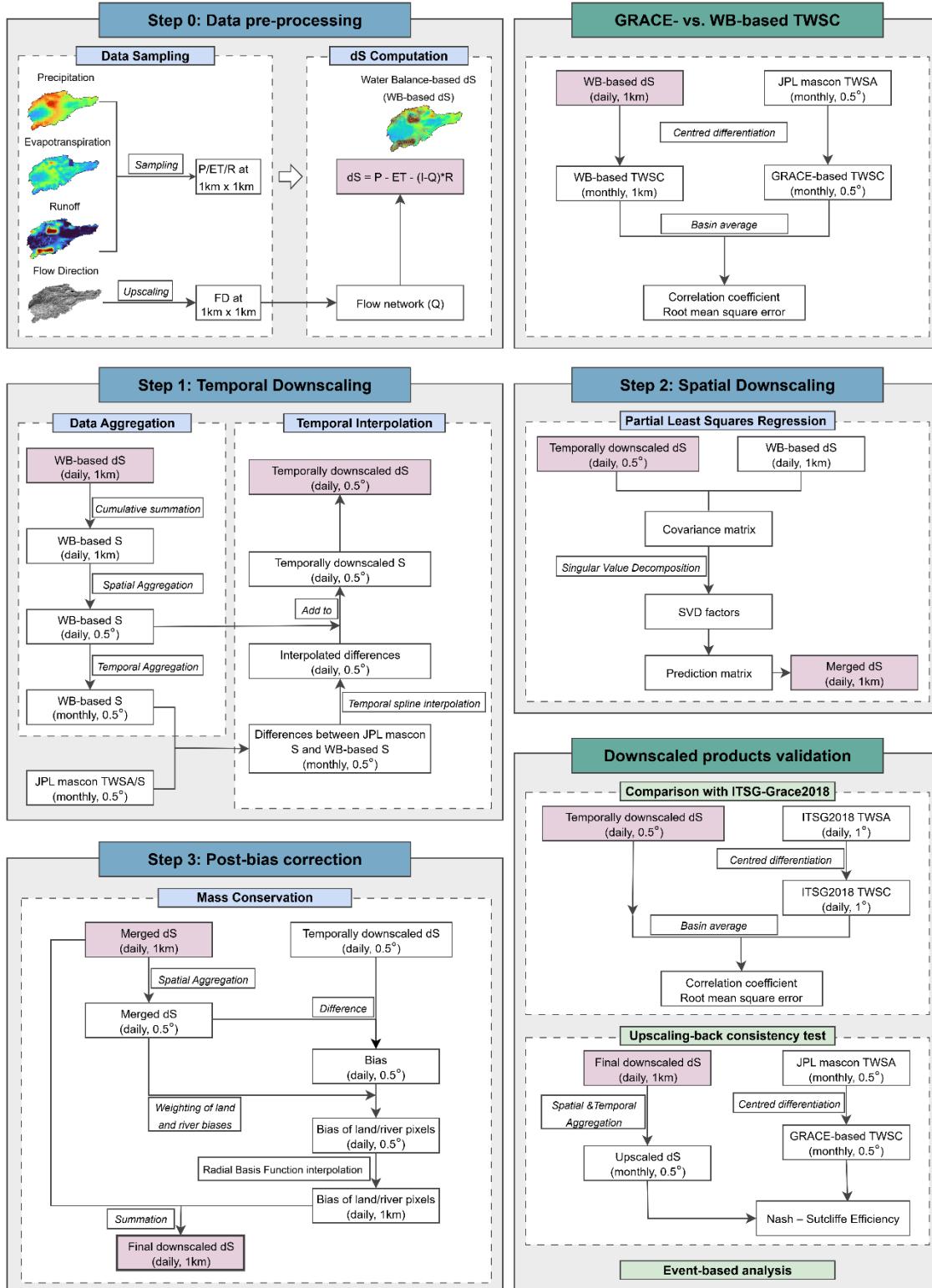
$$dS_t = \frac{dTWS}{dt}|_{\text{day}} = P_t - ET_t - (I - Q) \cdot R_t \quad (3)$$

where P_t , ET_t , R_t are precipitation, evapotranspiration, and runoff on day t , and I is the identity matrix.

210 Since daily fluxes are available, GRACE-based monthly TWS changes can be compared with WB-derived estimates. Following [Rodell et al. \(2004\)](#) and [Humphrey et al. \(2023\)](#), monthly TWS changes based on WB-derived data are computed by Eq. (1) and

$$TWS_{m_i} = \frac{1}{d_e^{m_i} - d_s^{m_i+1}} \sum_{d=d_s^{m_i}}^{d_e^{m_i}} \sum_{t=1}^d dS_t + TWS_{d=0} \quad (4)$$

where $d_s^{m_i}$ and $d_e^{m_i}$ denote the start and end days of month m_i .



215 **Figure 3: Workflow of GRACE data downscaling and evaluation of results.**

4.2 GRACE downscaling

4.2.1 Temporal downscaling

The downscaling of GRACE TWSA data is implemented through a three-step framework adapted from [Pellet et al. \(2024\)](#) and reorganized for clarity ([Fig. 3](#)). We provide a computation example in the Supplement. Step 1 involves temporal downscaling, 220 which aims to transfer the low-frequency GRACE signal onto high-frequency WB estimates and to produce a daily TWSC series on the GRACE-compatible grid for subsequent spatial downscaling. Starting from daily water storage changes (dS) at 1 km resolution derived from the WB equation, daily storage anomalies S are reconstructed by cumulative summation. These S values are then aggregated to the 0.5° GRACE grid by averaging across all 1 km pixels within each cell. The high-frequency series are segmented according to GRACE observation periods, and the mean value of each segment is computed for each grid 225 cell. Afterwards, the monthly differences between the JPL mascon TWSA and WB-based S are interpolated in time using temporal splines to produce a daily correction term, which is added to the WB-based storage series to ensure temporal consistency with GRACE. At last, daily storage changes dS at 0.5° are then obtained by numerical differentiation of the corrected daily storages. Note that these computations are carried out for each mascon pixel individually.

4.2.2 Spatial downscaling

230 Step 2 applies a Partial Least Squares (PLS) regression to relate GRACE-derived TWSA at coarse resolution to WB-based estimates at fine resolution. PLS is chosen for its ability to exploit spatial gradients and covariance structures across entire images. The regression establishes a statistical relationship between the temporally downscaled 0.5° TWSA and the 1 km WB-based predictors. The detailed steps can be found in [Vishwakarma et al. \(2021\)](#) and [Pellet et al. \(2024\)](#).

4.2.3 Post-bias correction

235 Step 3 ensures overall consistency between the downscaled high-resolution product and the original GRACE observations by correcting residual biases. The spatially downscaled daily dS fields are first aggregated to the 0.5° grid, and the differences with the temporally downscaled dS (Step 1) are quantified for each GRACE mascon and month. Following [Pellet et al. \(2024\)](#), the 1 km downscaled dS is multiplied by land and river masks that are then aggregated separately to 0.5° . For each cell, the amplitudes of land- and river-based time series are used to determine their bias ratio. The resulting bias fields are spatially 240 interpolated to 1 km using a Radial Basis Function (RBF) approach and added to the downscaled product in Step 2. This yields the final high-resolution (1 km, daily) TWSC product that preserves GRACE's large-scale integrity while enhancing spatial detail for regional hydrological analysis.

4.3 Evaluation

Before downscaling, it is essential to assess the consistency between GRACE observations and WB-based ones. [Figure 4](#)

245 compares the basin-average monthly TWS changes from the JPL mascon product with water balance estimates derived from four forcing scenarios (GLDAS, FLDAS-CA, ERA5-Land, and Mix) for 2002 – 2023. Panel (a) shows monthly TWSCs from both sources, and panel (b) depicts their differences. All datasets reproduce the pronounced seasonal cycle of storage changes, with positive values in spring and early summer and negative values in late summer to winter. However, the amplitude varies substantially among datasets. GLDAS and Mix show the highest agreement with the JPL solution in both, phase and magnitude, 250 with correlation coefficients of 0.82 and 0.84 and root mean square errors (RMSEs) of 22.1 and 25.7 mm per month, respectively. To place these error magnitudes in context, we also compute the mean total annual TWSC, defined as the mean of the annual sums of absolute monthly TWSCs, which represents the typical annual amplitude of storage variation. The resulting values are approximately 326 and 252 mm yr^{-1} for GLDAS and Mix, respectively, compared to 317 mm yr^{-1} for the JPL mascon product. For ERA5-Land and FLDAS-CA, the corresponding values are 409 and 117 mm yr^{-1} . ERA5-Land 255 captures the seasonal dynamics but overestimates the peaks, resulting in a correlation of 0.75 and RMSE of 39.1 mm per month, suggesting potential precipitation overestimation. FLDAS-CA performs weakest, with a damped seasonal signal ($r = 0.48$; RMSE = 29.4 mm per month) and systematic underestimation of seasonal extremes. Although GLDAS reproduces the basin-mean TWS changes well, its unrealistic spatial distribution pattern particularly in precipitation ([Fig. 2](#)) warrants caution in interpreting local results.

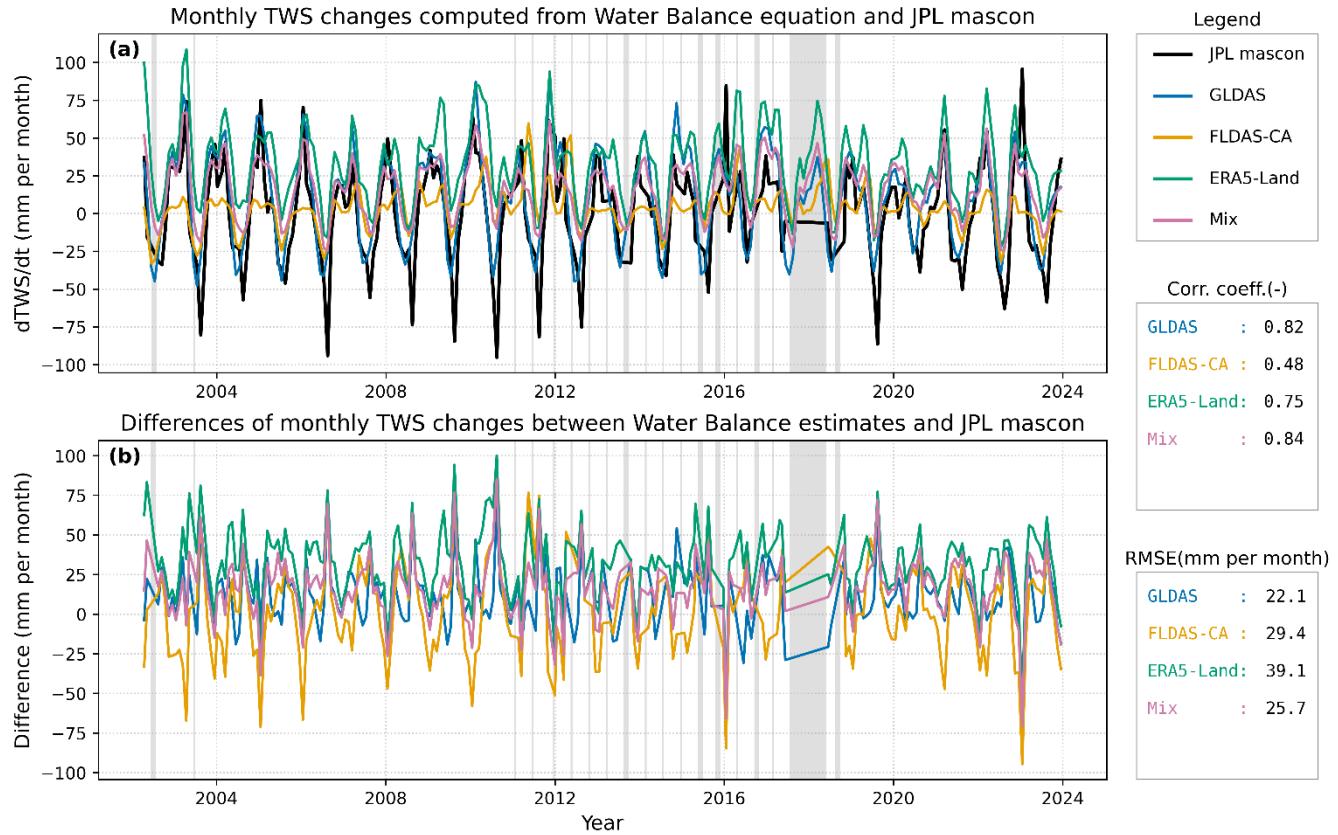


Figure 4: Comparison of monthly TWSCs between April 2002 and December 2023 derived from four hydrological forcing scenarios (GLDAS, FLDAS-CA, ERA5-Land, and Mix) and the JPL mascon solution, averaged over the study region. Panel (a) shows monthly TWSCs computed from hydrological forcing datasets alongside the JPL mascon solution, while panel (b) presents their differences relative to JPL mascon. Grey-shaded areas indicate data gaps in the GRACE record. Correlation coefficients and root mean square errors with respect to the JPL mascon solution are shown on the right.

265

Validation of GRACE downscaling results is often performed using independent in situ observations such as ground water level measurements. However, the lack of publicly available well data in this region prevents such comparison. Instead, three validation strategies are established as shown in the bottom right panel of Fig. 3. Firstly, the temporally downscaled products are compared with the ITSG-Grace2018 (hereafter ITSG2018) daily solution using the Pearson correlation coefficient and RMSE, which reveals systematic differences among the four forcing scenarios.

270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700

Nash – Sutcliffe Efficiency (NSE) to quantify their agreement. As a widely used performance metric in hydrology, NSE measures how well the simulated values (here, the upscaled results) reproduce observed dynamics (GRACE mascon data), simultaneously considering both the mean and variance of the time series. An NSE value of 1 indicates perfect agreement, 0 280 signifies that the simulation performs no better than the long-term mean of the observations, and negative values imply poorer performance. Moreover, the long-term secular trends and seasonal amplitudes of TWS provide additional diagnostic validation. The linear trend and annual harmonic components are estimated by fitting the time series with offset, slope, and annual sine and cosine terms.

Third, event-based analyses can offer insight into the ability of the downscaled products to capture short-term hydrological 285 extremes in data-scarce regions. In addition, the downstream Fergana valley, which is extensively irrigated, warrants separate examination. Accordingly, this area is defined as the “highly irrigated area” ([Fig. 1](#)), while the remaining portion of the study region is referred to as the “non-irrigated area”. The boundary between the two zones is delineated using the GMIA. It should be noted that the “non-irrigated area” does not imply a complete absence of irrigation but rather denotes where the proportion of irrigated lands is below 10%. Conversely, the “highly-irrigated area” refers to zones within the Fergana valley where more 290 than 70% of the land is under irrigation.

5 Results

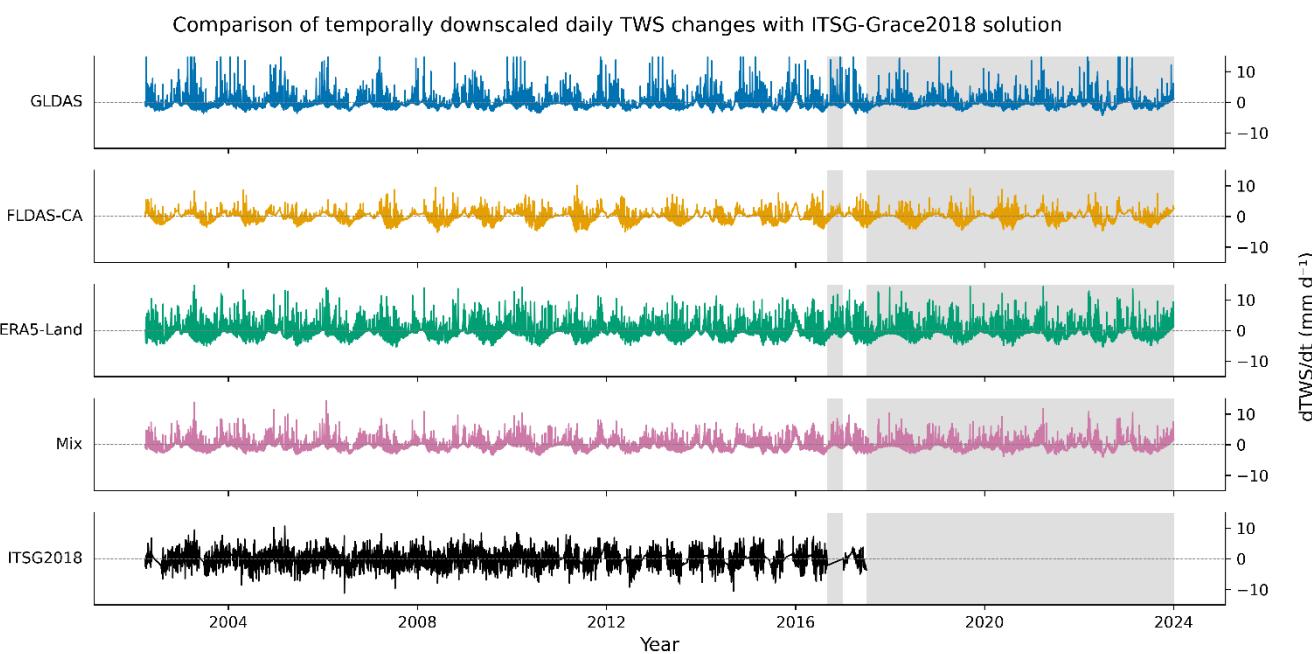
5.1 Temporally downscaled TWSCs

In this section, the results of temporal downscaling ([Sect. 4.2.1](#)) are validated against the ITSG-Grace2018 daily solution. [Figure 5](#) compares basin-averaged daily TWSCs (dS) derived from the four hydrological forcing scenarios (GLDAS, FLDAS-295 CA, ERA5-Land, and Mix) with ITSG2018 for 2002 – 2023. Grey-shaded areas indicate periods when ITSG2018 data are unavailable (October – December 2016 and after mid-2017). Although the available ITSG2018 period is shorter than that of the input hydrological datasets, it still covers over 70% of the study period, providing a reliable basis for validating the temporally downscaled results. The ITSG2018 TWSCs mostly range between -5 and +5 mm d^{-1} . All downscaled datasets reproduce the seasonal variability observed in ITSG2018 but exhibit more pronounced seasonal fluctuations and differing 300 noise characteristics. GLDAS exhibits the highest variability, with frequent fluctuations exceeding 10 mm d^{-1} . While this indicates a high sensitivity to short-term forcing, it also suggests that GLDAS may introduce non-reasonable noise. In contrast, FLDAS-CA produces the lowest variability, yielding a smoother but reduced signal. Although this suppresses noise, it also appears to dampen genuine seasonal dynamics relative to ITSG2018. ERA5-Land lies between these two extremes, capturing seasonal cycles reasonably well but tending to produce stronger peaks than ITSG2018. The Mix scenario provides the most 305 balanced representation, closely matching ITSG2018 in both amplitude and variability while avoiding the excessive noise seen in GLDAS.

To quantitatively assess performance, the Pearson correlation coefficient and RMSE are calculated between the temporally downscaled TWSCs and ITSG2018 as a function of the averaging window (1 – 30 d) ([Fig. 6a](#)). For unsmoothed daily data,

RMSE values range from 2.5 to 3.2 mm d⁻¹ and correlations from 0.25 to 0.38, with Mix performing best and GLDAS worst.

310 Increasing the averaging window systematically reduces RMSE and improves correlations, indicating effective suppression of high-frequency noise and stronger consistency with ITSG2018 at coarser temporal scales. The most notable improvement occurs when applying a 5 d moving average, beyond which further smoothing yields marginal gains, implying that temporal downscaling introduces appreciable noise at the daily scale. Differences among the four scenarios diminish progressively with increased averaging. In the absence of smoothing, GLDAS and ERA5-Land yield substantially higher RMSEs compared with 315 the other two and also record the lowest correlation coefficients. By a 5 d window, ERA5-Land slightly surpasses FLDAS-CA in correlation. Ultimately, RMSE values stabilise near 0.75 mm d⁻¹ and correlations converge to approximately 0.77 across all scenarios when smoothing by a 30 d window. To further illustrate short-term dynamics, [Fig. 6b](#) presents a zoomed-in example for May 2010 – October 2011, showing basin-averaged daily TWSCs smoothed by a 10 d moving average. The time series of 320 daily TWSCs from the four downscaling scenarios shows overall good agreement with the ITSG2018 solution. The downscaled series align well with ITSG2018, reproducing major fluctuations and seasonal cycles, confirming that short-term smoothing effectively suppresses high-frequency noise. Nonetheless, certain negative peaks during spring 2011 observed in ITSG2018 are not fully captured, likely due to uncertainties in the input forcing data. Some discrepancies in amplitude remain, particularly, with FLDAS-CA and ERA5-Land occasionally exhibiting larger deviations.



325 **Figure 5: Results of temporal downscaling (Step 1) compared with the daily ITSG-Grace2018 solution. Shown are basin-averaged daily TWSCs at 0.5° resolution, computed from the four hydrological forcing scenarios (GLDAS, FLDAS-CA, ERA5-Land, and Mix) and from ITSG-Grace2018. Grey-shaded areas indicate periods when ITSG-Grace2018 data are unavailable.**

Comparison of temporally downscaled daily TWS changes with ITSG-Grace2018 solution

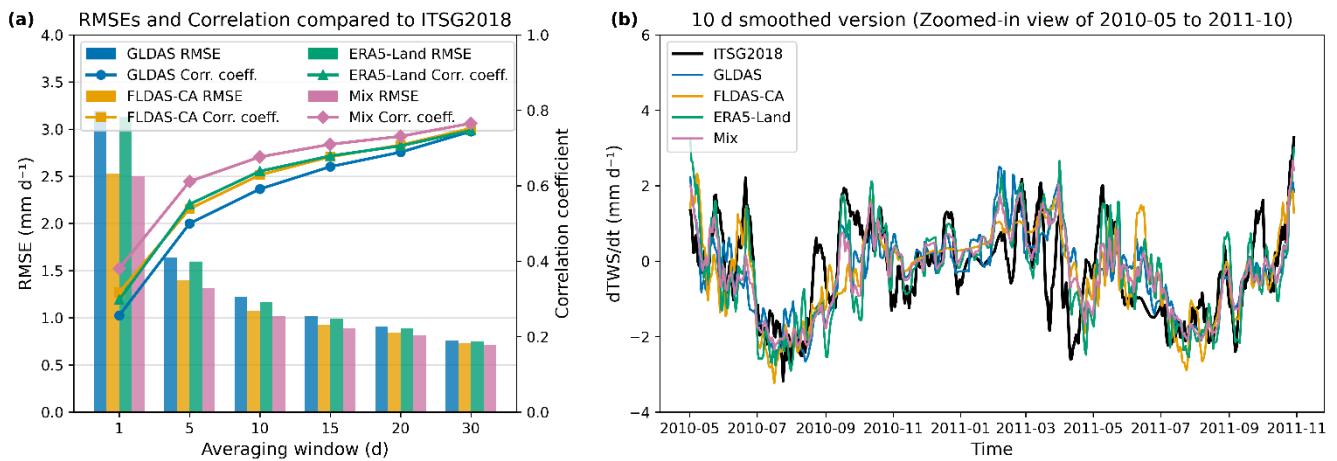


Figure 6: (a) RMSEs (left axis) and correlation coefficients (right axis) between daily TWSCs derived from temporal downscaling and from the ITSG-Grace2018 solution. Both metrics are computed only for periods when ITSG-Grace2018 data are available. (b) Example time series of daily TWSCs between May 2010 and October 2011 from the four hydrological forcing scenarios and the ITSG-Grace2018 solution, smoothed using a 10 day moving window.

5.2 Final downscaled results

High resolution (daily, 1 km) terrestrial water storage change (dS) products are obtained through applying PLS regression (Sect. 4.2.2) followed by post-bias correction (Sect. 4.2.3). Figure 7 illustrates, for 11 October 2023, the daily TWSC maps derived from WB-based, temporally downscaled, and final downscaled results across the four forcing scenarios (GLDAS, FLDAS-CA, ERA5-Land, and Mix). The WB-based dS maps (first column) exhibit fine-scale heterogeneity with patchy spatial patterns and marked differences among scenarios. ERA5-Land (g) and Mix (j) show more pronounced negative anomalies (dark red), suggesting stronger reductions in water storage. In contrast, GLDAS (a) and FLDAS-CA (d) display comparatively moderate changes closer to neutral (light red to light blue). Noisy local patches, particularly in the mountainous regions of ERA5-Land (g) and Mix (j), likely stem from uncertainties in runoff estimates under complex topography, where the insufficient representation of cryospheric processes often leads to imbalances in the water balance budget. The temporally downscaled dS maps (second column) appear spatially smoother, reflecting large-scale variations constrained by GRACE observations. Their magnitudes and spatial distribution differ from the WB-based fields because the temporal downscaling enforces GRACE consistency at coarse resolution. GLDAS and FLDAS-CA show relatively moderate daily changes, ERA5-Land exhibits a pervasive negative signal, and Mix provides an intermediate response. In the final downscaled results (third column), spatial details are restored, producing fine-scale patterns that merge large-scale trends with local variability. This demonstrates that the final downscaling effectively reconciles GRACE-derived temporal information with high-resolution hydrological features, though inter-dataset differences remain. Across all scenarios, a consistent progression is evident, from fine but unconstrained WB-based maps, to smoothed temporally downscaled fields, to spatially refined final products that reintroduce heterogeneity while retaining GRACE consistency. Notably, grid-aligned artefacts appear in GLDAS results,

manifesting as striping along model boundaries, reflecting the coarse native grid of GLDAS and potentially reducing fine-scale realism. ERA5-Land yields the strongest negative TWSC, whereas FLDAS-CA exhibits the weakest magnitudes, confirming that the final downscaled results remain highly sensitive to the choice of hydrological forcing dataset.

Downscaled daily TWS changes on 11th Oct. 2023

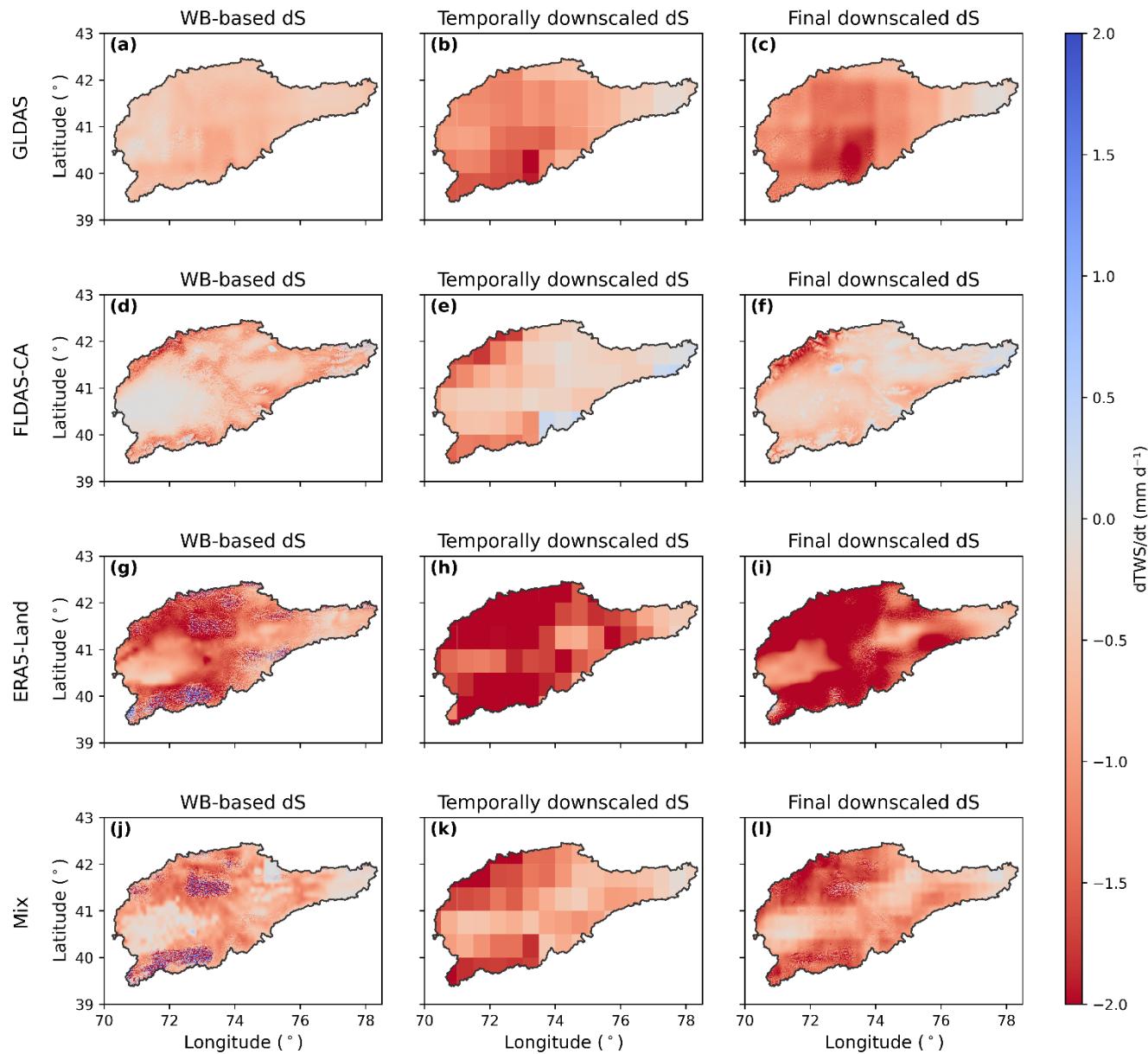
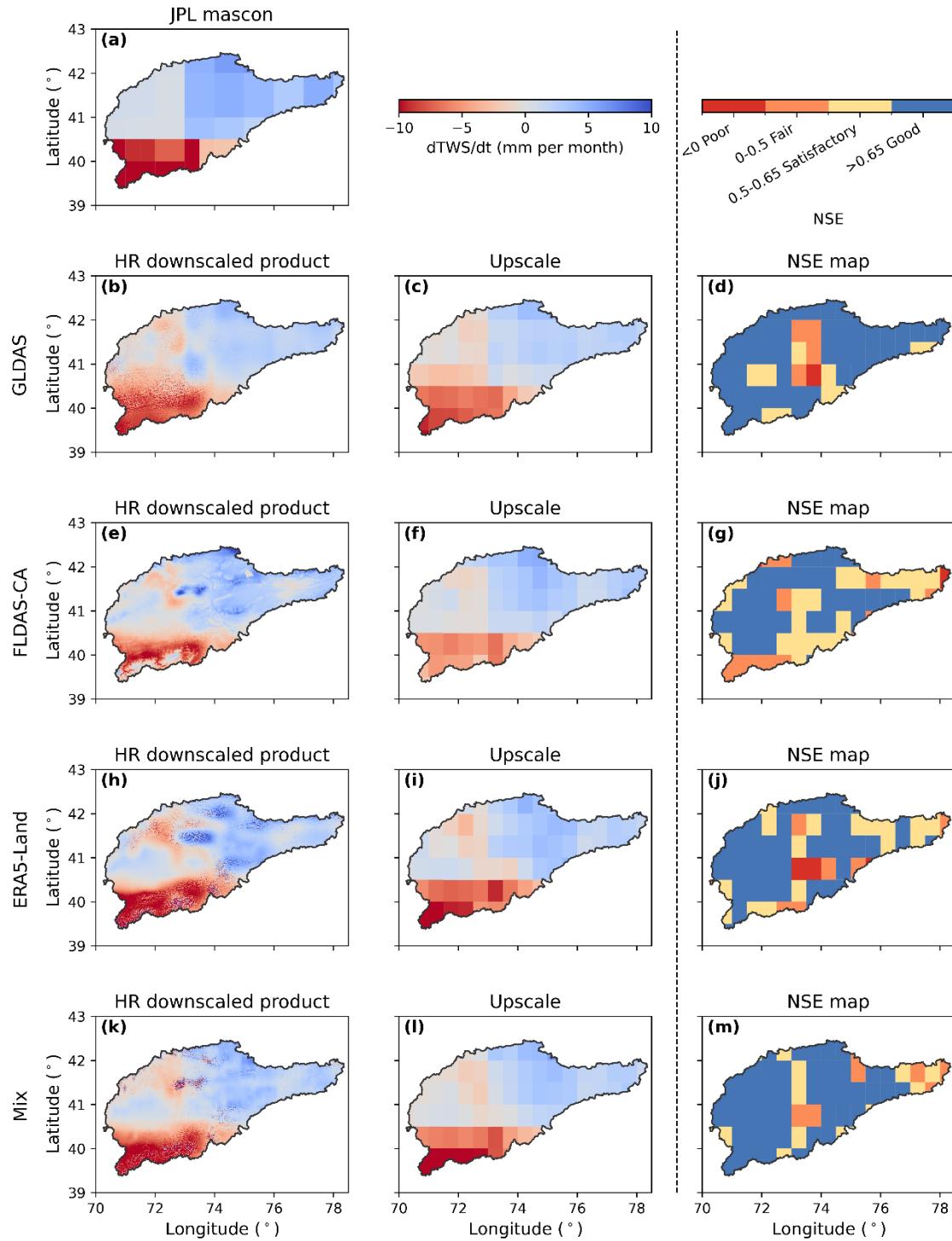


Figure 7: Spatial distribution of daily TWSC (dS) on 11 October 2023. Columns represent, from left to right, the WB-based estimates, temporally downscaled results, and finally downscaled results. Rows correspond, from top to bottom, to the four hydrological forcing scenarios: GLDAS, FLDAS-CA, ERA5-Land, and Mix.

To evaluate the robustness of the final downscaled products, an “upscale-back” consistency test (Sect. 4.3) is performed on
360 the 1 km daily TWSC estimates. Figure 8 uses October 2023 as an example to illustrate monthly TWS changes computed from
HR downscaled products in the four forcing scenarios and from the JPL mascon data. For each scenario, three panels are
shown: the TWSC grid derived from the HR downscaled product at 1 km (left), the upscaled field (middle), and the NSE map
365 between upscaled and mascon-based TWSCs over the entire study period (right). The JPL mascon field (panel a) reveals a
strong negative TWSC in the southern basin and moderate positive signals in the east. The HR downscaled products
successfully reproduce these broad spatial patterns while introducing fine-scale variability. However, positive anomalies occur
370 in the southern part of the FLDAS-CA result that are absent in the other products. The upscaled fields allow direct comparison
at the JPL mascon resolution. Across all scenarios, the main anomaly structures are generally consistent with JPL, though the
amplitudes vary depending on the forcing dataset. GLDAS and FLDAS-CA exhibit lower mass losses in the southern basin
compared with ERA5-Land and Mix, which both produce a stronger depletion of TWS. Nevertheless, all four scenarios
underestimate the magnitude of mass loss in the south relative to the JPL mascon product.

The NSE is classified into four categories to facilitate performance assessment, with values > 0.65 regarded as good, $0.50 - 0.65$ as satisfactory, $0 - 0.50$ as fair, and < 0 as poor (Moriasi et al., 2007). GLDAS performs well in most regions, with a mean NSE of 0.68, but shows a localised area of low NSE in the central basin. Mix achieves predominantly high NSE values (> 0.65) across the study area, with a mean of 0.65 and no poorly performing zones, indicating strong agreement with JPL.
375 ERA5-Land and FLDAS-CA perform satisfactorily overall but exhibit several fair and poor regions, resulting in mean NSE values of 0.55 and 0.50, respectively. It can be observed relatively low NSE values are concentrated in the central basin, which is probably attributed to pronounced climatic and topographic contrasts between the surrounding high mountains and the low-lying Fergana Valley. This transitional zone is characterised by steep elevation gradients, where temperature and precipitation vary sharply over short spatial scales. Such heterogeneity increases the uncertainty of input datasets, particularly for
380 precipitation and evapotranspiration. Moreover, the coexistence of snow- and rain-dominated hydrological regimes enhances the seasonal variability of storage changes, amplifying short-term mismatches between the downscaled and GRACE-based TWSCs.

Monthly TWS change on Oct. 2023 computed from JPL mascon and downscaled products



385 **Figure 8: Monthly TWSC for October 2023 derived from (a) the JPL mascon product and (b, e, h, k) the downsampled products obtained using different hydrological forcing datasets. Panels (c, f, i, l) show the upscaled TWSC fields aggregated from 1 km to 0.5° resolution based on the downsampled products. Panels (d, g, j, m) display the gridded NSE between the monthly TWSC time series derived from the upscaled results and the JPL mascon product.**

390 [Figure 9](#) evaluates the consistency between the downsampled products and the JPL mascon data in terms of long-term TWS trends and annual amplitudes. Panel (a) presents the basin-averaged TWS time series from April 2002 to December 2023. All downsampled products reproduce the seasonal cycle and interannual variability observed in the JPL mascon solution. However, 395 notable differences exist in long-term trends. The JPL mascon indicates a declining trend of -8.3 mm yr^{-1} , with pronounced losses after 2010. GLDAS and ERA5-Land closely follow this pattern, with trends of -6.1 and -6.0 mm yr^{-1} , respectively. The Mix product also captures a negative trend (-5.7 mm yr^{-1}), albeit weaker than JPL. In contrast, FLDAS-CA substantially underestimates the long-term decline, yielding only -4.1 mm yr^{-1} . The spatial patterns of TWS trends (panels b – f) further emphasise these differences. The JPL mascon trend map reveals strong negative trends concentrated in the southern basin. GLDAS, ERA5-Land and Mix broadly reproduce this spatial pattern with enhanced detail at 1 km resolution, whereas FLDAS-CA depicts a much weaker decline and fails to capture the pronounced negative signal in the south.

400 Panel (g) isolates the annual component of TWS, showing the amplitude and phase of the seasonal cycle. All downsampled products are consistent with JPL in phase, correctly reproducing the timing of recharge and depletion. Nonetheless, differences in amplitude exist. The JPL mascon yields a basin-averaged amplitude of 63.8 mm. GLDAS (56.7 mm) provides comparable though slightly weaker amplitudes, while ERA5-Land (49.2 mm) and Mix (47.3 mm) are moderate. FLDAS-CA again underestimates the signal considerably, with an amplitude of only 31.9 mm. The spatial distributions of amplitudes (panels h – l) confirm these results. JPL shows the strongest seasonal variation in the southern basin, which is captured with finer spatial detail by GLDAS, ERA5-Land and Mix, although the latter two tend to underestimate magnitude. FLDAS-CA produces the 405 weakest amplitudes throughout the basin, suggesting a systematic dampening of seasonal variability. As noted previously, the noisy structures observed in the southern region are likely associated with glacierised areas in the high mountains, while the noise in the upper central basin may be linked to the Toktogul Reservoir, where complex and human-regulated water level changes dominate the local hydrological signal.

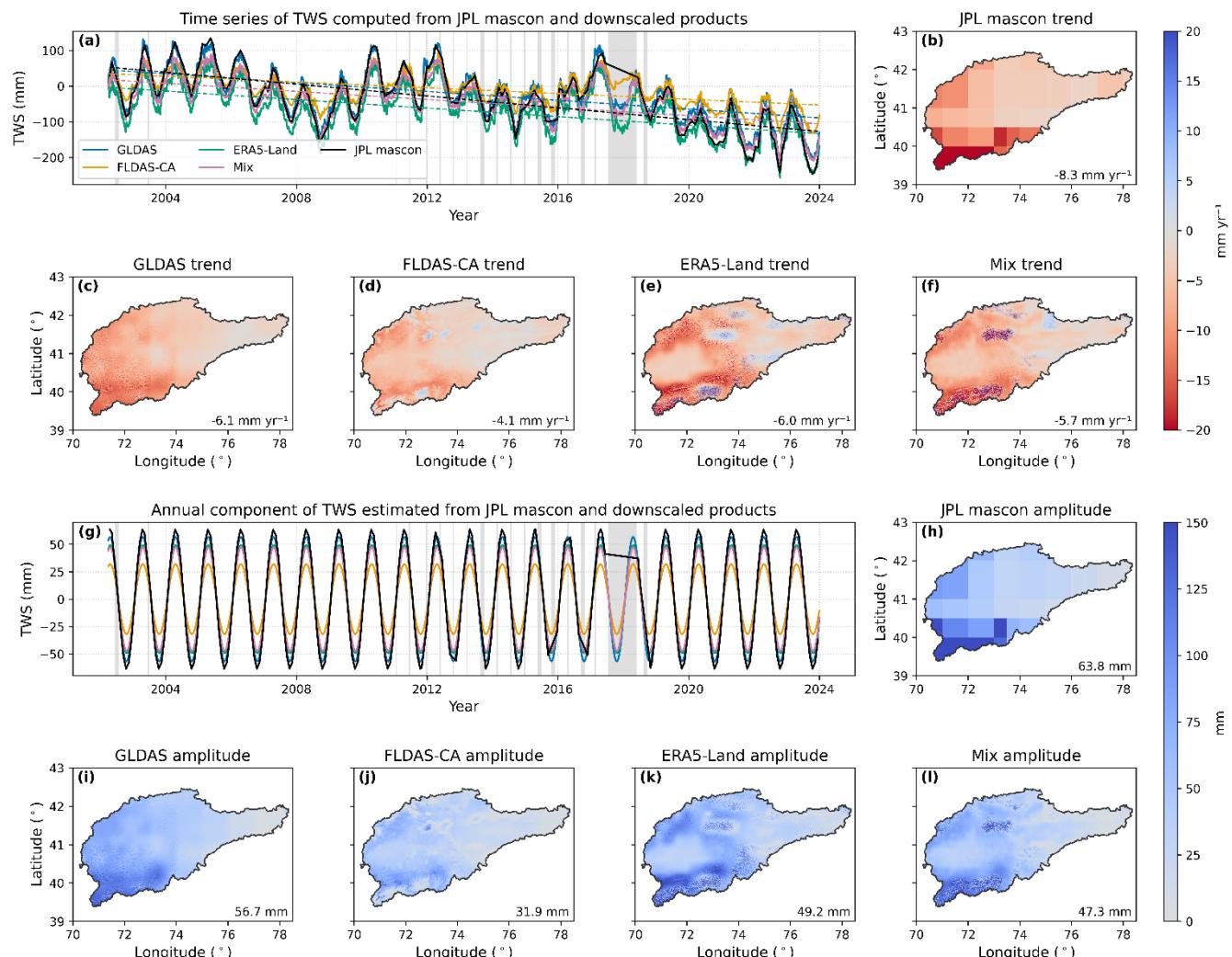
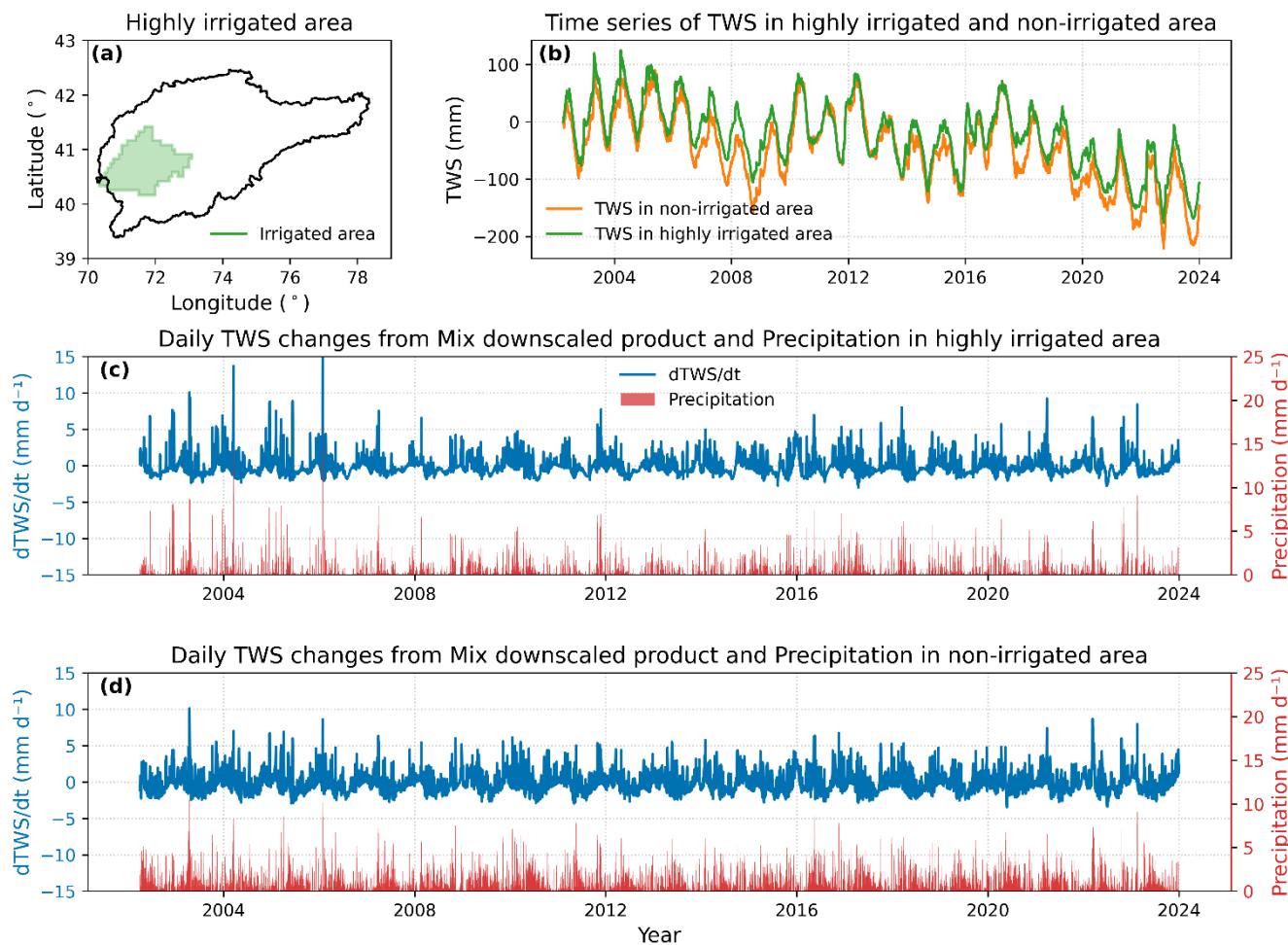


Figure 9: (a) Time series of TWS between April 2002 and December 2023 derived from the downscaled products in the four hydrological forcing scenarios (GLDAS, FLDAS-CA, ERA5-Land, and Mix) and from the JPL mascon solution. Dashed lines indicate the estimated long-term linear trends. Panels (b – f) show the spatial distribution of linear trends (mm yr^{-1}) estimated from the JPL mascon product and the four downscaled datasets. The numbers in the lower right corners denote the basin-averaged secular trends corresponding to panel (a). Panel (g) presents the annual components of the TWS time series from the same datasets. Panels (h – l) display the gridded amplitudes (mm) estimated from the JPL mascon product and the downscaled results.

5.3 Analysis in the irrigated area

Based on the analyses presented above, the Mix downscaled product, based on the combination of MSWEP, GLEAM, and GloFAS, demonstrates the best overall performance in capturing temporal variability and maintaining consistency with the large-scale GRACE signals. Therefore, the Mix product is selected for subsequent sub-basin spatio-temporal and event-based analyses.

The downstream basin is mainly occupied by irrigation identified in [Fig. 10a](#) (same as [Fig. 1](#)). [Figure 10](#) illustrates the differences in TWS dynamics between the highly irrigated and non-irrigated regions. Panel (b) compares the basin-averaged TWS time series from 2002 to 2023. Both regions exhibit a pronounced seasonal cycle and an overall declining long-term trend, but the irrigated area shows a systematically weaker TWS reduction than the non-irrigated one. Panels (c) and (d) show daily TWS changes from the Mix downscaled product alongside daily precipitation in irrigated and non-irrigated areas, respectively. In both regions, the correlation coefficients between P and TWSC are approximately 0.9, confirming the dominant role of P in driving short-term water storage variations. On average, precipitation in the highly irrigated area is roughly half that in the non-irrigated region, while evapotranspiration magnitudes are comparable between the two. Nevertheless, clear differences emerge in the long-term TWS behaviour. In the non-irrigated area ([Fig. 10d](#)), negative TWSC values are more frequent and persist longer, particularly during summer and early autumn. In contrast, in the highly-irrigated area ([Fig. 10c](#)), the seasonal decline is less severe, suggesting a potential contribution from surface irrigation return flow that partially offsets storage losses.

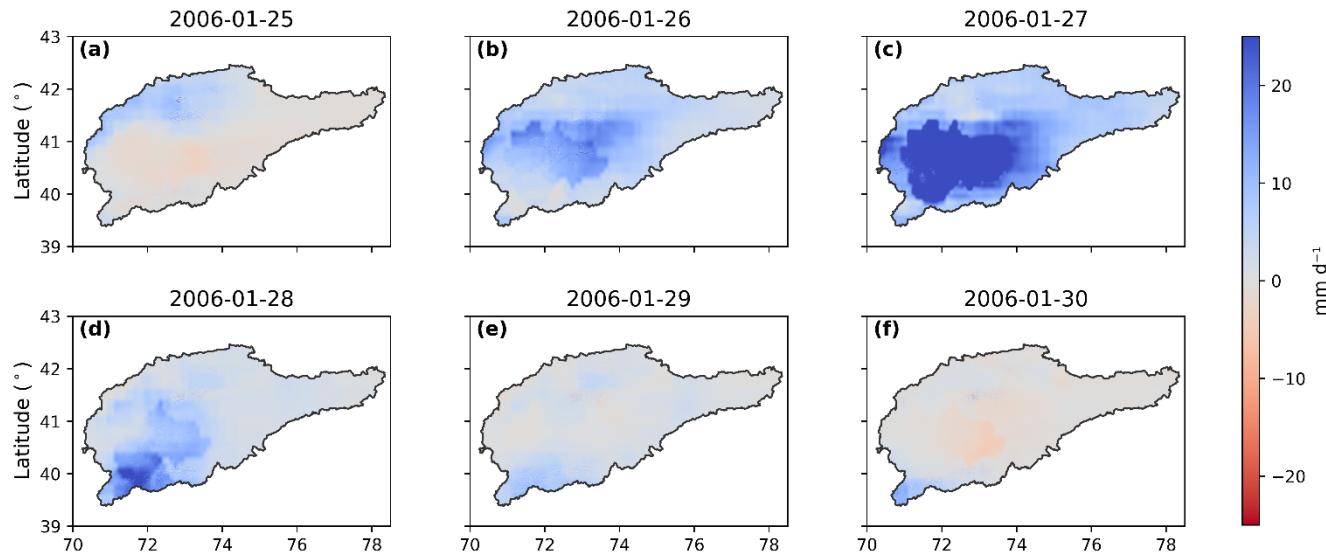


435 **Figure 10: (a) The location of highly irrigated areas within the study region. (b) Time series of TWS averaged over highly irrigated and non-irrigated areas between April 2002 and December 2023. (c, d) Daily TWSCs (left axis) from the Mix downscaled product and precipitation (right axis) in highly irrigated and non-irrigated areas, respectively.**

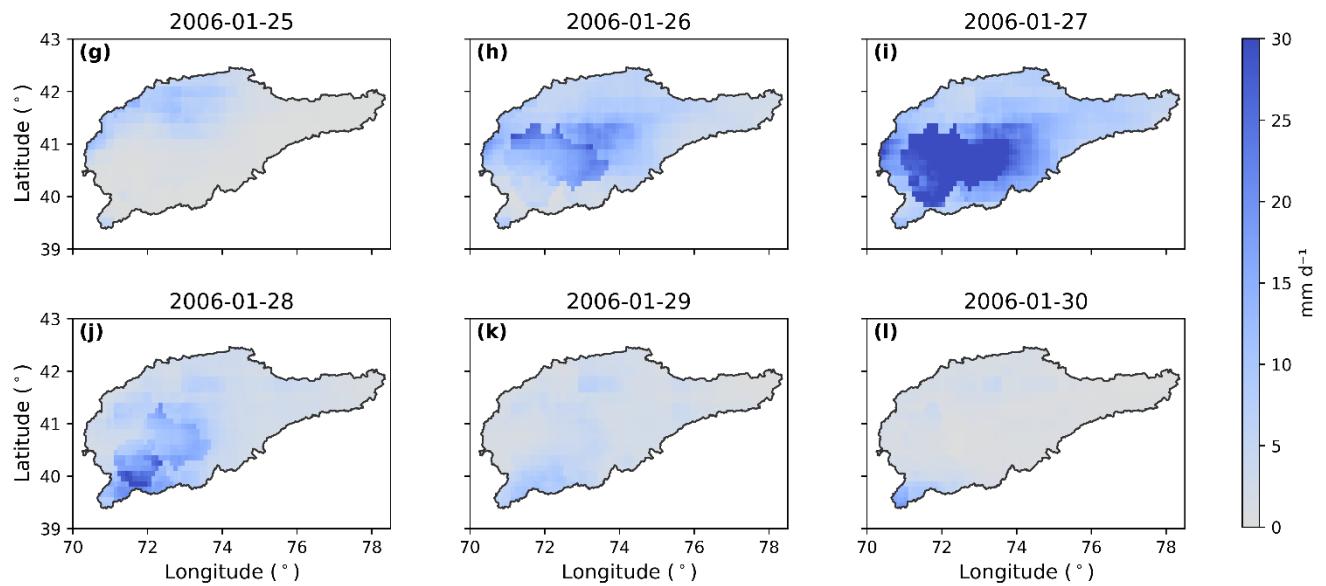
There is a distinct positive peak observed in both regions at the beginning of 2006, as shown in [Fig. 10c](#) and [Fig. 10d](#), corresponding to the day of maximum TWS increase and precipitation. [Figure 11](#) illustrates the spatial distribution of daily 440 TWS changes and precipitation from 25 and 30 January 2006. According to [ReliefWeb \(2006\)](#), a strong snowfall event occurred between 26 and 28 January 2006, which is clearly reflected in both the precipitation fields (Part II, panels h – j) and the downscaled daily TWS changes from the Mix product (Part I, panels b – d). On 26 January, the onset of snowfall produced 445 moderate precipitation across the basin, accompanied by positive TWSC values of $5 - 10 \text{ mm d}^{-1}$ in the central and southern regions. The event peaked on 27 January, when heavy snowfall exceeded 25 mm d^{-1} over the southern basin (panel i), and the TWSC response surpassed 20 mm d^{-1} (panel c), indicating rapid accumulation of water mass within the snowpack. Residual positive anomalies persisted on 28 January (panels d and j), reflecting continued storage of snow water equivalent even after the main precipitation had subsided. By 29 – 30 January, both precipitation and storage changes returned to near-background levels.

Meteorological records from ground stations ([Menne et al., 2012](#)) corroborate this event ([Fig. 12](#)), which shows daily 450 precipitation at the FERGANA ($40.4^\circ\text{N}, 71.8^\circ\text{E}$) and ANDIZAN ($40.8^\circ\text{N}, 72.3^\circ\text{E}$) stations between January and February 2006. Both stations record peaks exceeding 20 mm on 27 January 2006, consistent with our analysis from the downscaled results. This case study highlights the ability of the downscaled GRACE product to capture short-term hydrological responses to extreme events. The strong spatial and temporal correspondence between the recorded snowstorm and the positive TWS 455 changes demonstrates that the Mix downscaled product effectively detects daily water mass variations associated with snow accumulation. In contrast, GLDAS fails to reproduce the event, while FLDAS-CA captures a TWSC peak on 27 January consistent with the Mix product ([Fig. 11](#)), but with a much lower magnitude. ERA5-Land, by contrast, shows a one-day delay, with the TWSC peak occurring on 28 January and being spatially displaced (see Supplement). Across all products, precipitation signals are mirrored by TWSCs, confirming that short-term TWS variability is primarily driven by precipitation, and reinforcing the central role of hydrological forcing data quality in determining downscaling performance.

Part I: Daily TWS changes from the Mix downscaled product



Part II: Daily precipitation



460

Figure 11: Daily TWS changes (Part I) from the Mix downscaled product and corresponding precipitation patterns (Part II) for the period 25 – 30 January 2006.

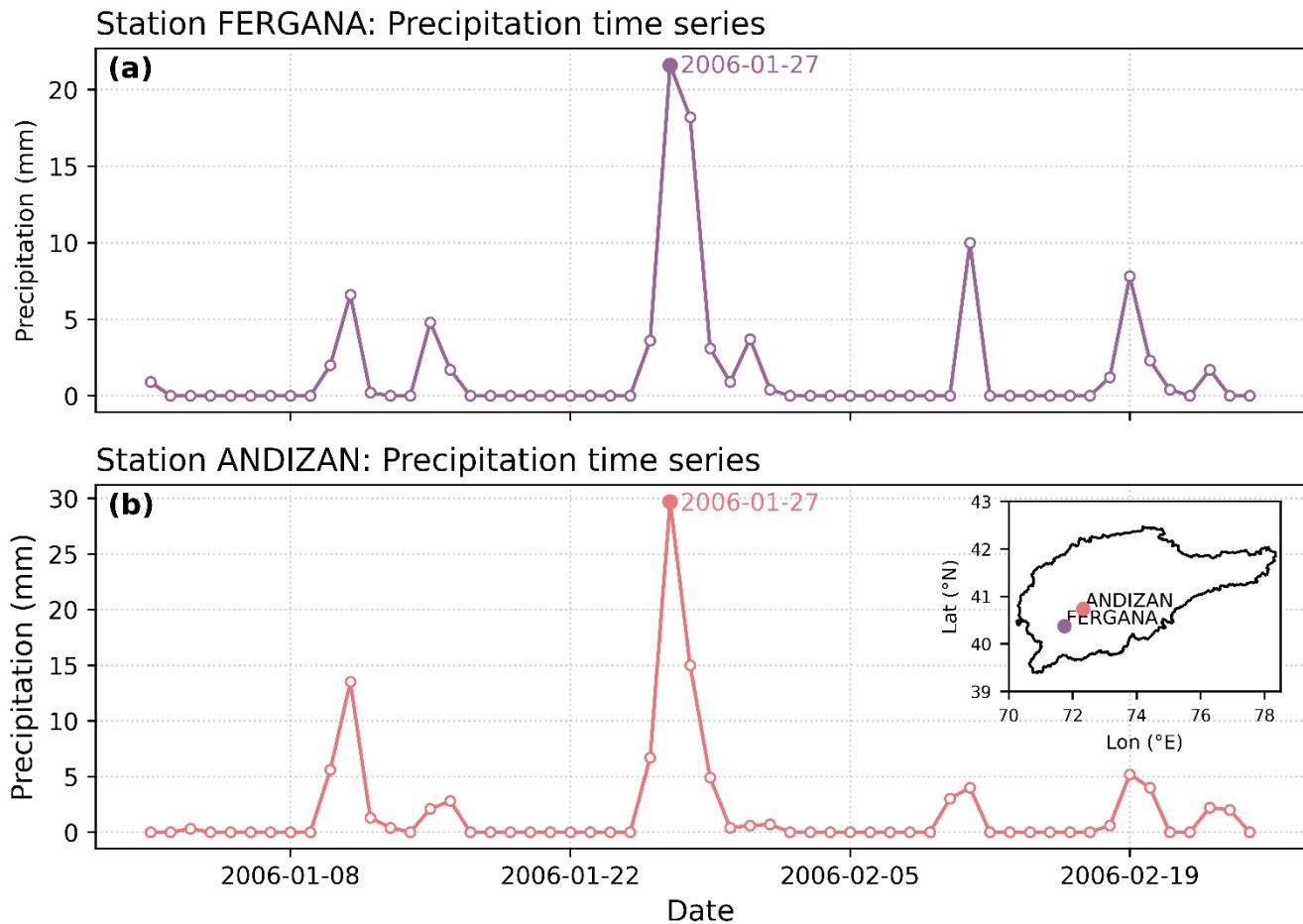


Figure 12: Precipitation records from the meteorological stations between 1 January and 25 February 2006. The inset in panel (b) indicates their locations within the study region.

465

6 Discussions

This study demonstrates both the potential and limitations of integrating GRACE observations with high-resolution hydrological forcing datasets to produce daily and kilometre-scale estimates of terrestrial water storage changes. A key factor influencing the final downscaled product is the choice and quality of input data, including both the GRACE product and the 470 input hydrological forcing data. To minimise uncertainties related to post-processing of GRACE data, this study employs the JPL mascon solution as input rather than GRACE Level-2 SH coefficients. The downscaling framework successfully preserves the coarse-scale integrity of GRACE while enhancing spatial and temporal detail. However, several sources of uncertainty remain in this process. Firstly, the use of high-resolution forcing data may introduce both meaningful daily variability and undesired high-frequency noise. Secondly, the relationship between coarse and fine-scale variables may also be partially 475 captured by the predictors used in PLS regression. Additional uncertainty arises from imperfect water balance closure, as

inconsistencies among hydrological datasets, anthropogenic influences, and complex surface – subsurface interactions can cause the simplified water balance equation to deviate from actual storage dynamics. For instance, in the study region, irrigation relies primarily on surface water from precipitation, snow and glacier melt rather than groundwater extraction, which affects local recharge processes. Despite these potential inconsistencies, their fine-scale spatial information from hydrological forcing 480 datasets remains valuable for incorporating high-frequency variability and spatial distribution on smaller scales in the GRACE data.

Previous studies have explored various strategies for GRACE downscaling, spanning physically based dynamic models to data-driven statistical and machine learning approaches. Most existing work focuses on single spatial downscaling schemes (e.g. [Kalu et al., 2014](#); [Yin et al., 2018](#)), whereas only a few studies have attempted to combine dynamic and statistical methods 485 within a unified framework to exploit their complementary strengths and limitations. The framework adopted in this study follows a hybrid statistical – physical concept similar to [Pellet et al. \(2024\)](#), but we reorganise the process into a clearer, stepwise workflow and provide explicit computational guidance (see Supplement). In contrast to most previous studies (e.g. [Arshad et al., 2022](#); [Pellet et al., 2024](#)), which generally applied a single forcing dataset (typically GLDAS or ERA5) for downscaling, our analysis systematically evaluates the influence of multiple hydrological forcing datasets. This inter-490 comparison reveals the sensitivity of downscaled results to input data quality and the representation of surface fluxes. Beyond magnitude differences, our results demonstrate that inconsistencies in forcing data can alter the spatial coherence, temporal smoothness, and overall stability of the derived water storage changes. Although studied for the Naryn – Kara Darya basins and Fergana valley, the framework is transferable to other data-scarce and topographically complex regions. It allows substitution of different forcing datasets or regional hydrological models, provided that daily flux estimates and flow direction 495 information are available.

Validation of downscaled GRACE products remains a major challenge, particularly in data-scarce regions such as Central Asia. Some studies have incorporated ground-based observations, such as well water levels or river discharge, to evaluate local performance ([Li et al., 2019](#); [Arshad et al., 2022](#)). However, these quantities are often obtained through signal separation of downscaled TWS, which introduces additional uncertainties, as the non-groundwater components used for isolation are 500 typically derived from model simulations with their own biases. In our study region, where reliable in situ observations are unavailable, the adopted validation framework provides a balanced and pragmatic assessment of the downscaled results in terms of temporal, spatial, and process-based consistency. This strategy offers a feasible way for evaluating GRACE downscaling performance in regions where direct ground validation cannot be achieved.

In addition, the rapid progress in GRACE downscaling research offers great potential for strengthening the link between 505 experimental developments and practical hydrological applications. Much of the recent work, driven by the GRACE and remote sensing communities, has provided valuable advances in algorithmic refinement and methodological intercomparison. Building on these achievements, future efforts could further enhance the integration of downscaled GRACE products into operational hydrological models, drought monitoring systems, and water management frameworks.

7 Conclusions

510 This study applies a three-step framework to downscale GRACE and GRACE-FO terrestrial water storage data to daily, 1 km resolution across the Upper Syr Darya – Fergana basin in Central Asia. The method integrates GRACE observations with high-resolution hydrological forcing datasets of precipitation, evapotranspiration, and runoff from four scenarios: GLDAS, FLDAS-CA, ERA5-Land, and a mixed combination (MSWEP + GLEAM + GloFAS), through temporal spline correction, spatial regression, and post-bias adjustment. The downscaling framework effectively preserves the coarse-scale integrity of GRACE
515 while reconstructing physically consistent, high-resolution fields that reveal sub-mascon hydrological variability.

520 The hydrological forcing information exhibits distinct behaviours in P, ET, and R, underscoring the importance of dataset selection. Among them, ERA5-Land consistently produces the highest magnitudes (mean P, ET, and R up to 5, 2, and 3 mm d⁻¹, respectively), especially tending to overestimate P, while FLDAS-CA provides the lowest values (< 2, 0.5, and 0.5 mm d⁻¹). In terms of spatial patterns, GLDAS displays unrealistic patterns in P and ET, whereas FLDAS-CA tends to dampen spatial variability, particularly for ET and R. These inconsistencies directly affect the realism of water balance closure and the resulting downscaled outcomes. The water balance-based TWSCs using P, ET, and R reproduce the seasonal and interannual variability of GRACE, with correlation coefficients of 0.82 and 0.84 and RMSEs of 22.1 and 25.7 mm per month for GLDAS and Mix, respectively. FLDAS-CA and ERA5-Land yield lower correlations (0.48 and 0.75) and higher RMSEs (29.4 and 39.1 mm per month), which demonstrates the strong dependence of downscaling accuracy on the choice of hydrological forcing.

525 Given the scarcity of ground observations in the study region, three validation approaches are implemented: (i) comparison with the ITSG-Grace2018 daily solution, (ii) an upscaling-back consistency test, and (iii) event-based evaluation. The four forcing scenarios show clear performance differences. In the comparison with ITSG2018, GLDAS exhibits the weakest agreement with $r = 0.25$ and RMSE = 3.2 mm d⁻¹, while Mix achieves the best performance with $r = 0.38$ and RMSE = 2.5 mm d⁻¹. FLDAS and ERA5-Land performs comparably with the correlation coefficient of approximately 0.3, though ERA5-
530 Land yields higher RMSE (3.2 mm d⁻¹) with respect to FLDAS-CA (2.5 mm d⁻¹). Increasing the smoothing window improves all scenarios, with RMSE stabilising near 0.75 mm d⁻¹ and correlations converging to approximately 0.77 across all scenarios at a 30 d window, indicating that temporal downscaling introduces appreciable high-frequency noise. In the “upscale-back” test, GLDAS and Mix perform well with mean NSE values of 0.68 and 0.65, followed by ERA5-Land (0.55) and FLDAS-CA (0.5). Mix is the only one without “poor” cells in the gridded NSE map, while FLDAS-CA produces the smallest number of
535 “good” grid cells. In terms of the long-term TWS trend, the estimates derived from the downscaled products reveal consistent basin-wide depletion with -6.1, -4.1, -6.0, and -5.7 mm yr⁻¹ for GLDAS, FLDAS-CA, ERA5-Land, and Mix, compared with -8.3 mm yr⁻¹ from GRACE observations. Across all datasets, differences in long-term trend and seasonal amplitude reach approximately 20%, underlining the importance of carefully selecting or combining input hydrological forcing datasets for GRACE downscaling, particularly in topographically complex and data-scarce regions. Among our tested data, FLDAS-CA
540 reproduces the temporal variability reasonably well but underestimates long-term changes with a damped amplitude of nearly 50%. Both GLDAS and ERA5-Land introduce much high frequency noise. However, when aggregated to the basin

scale, GLDAS performs well, despite its unrealistic grid-like spatial artefacts. ERA5-Land tends to exaggerate seasonal peaks and introduce excessive short-term fluctuations. The Mix dataset achieves the best balance, with highest correlation and lowest RMSE relative to ITSG2018, no “poor” cells in the “upscale-back” test, and a realistic representation of the negative long-term trend.

545 The downscaled products capture both long-term and short-term hydrological processes. In the Mix downscaled result, seasonal cycles are well represented, and the framework successfully reproduces short-term hydrological events such as the January 2006 snowstorm, where strong precipitation and snowfall were reflected as rapid positive TWSC anomalies. Furthermore, human-induced influences are also evident when comparing highly irrigated and non-irrigated areas. Although 550 quantification and validation require further investigation, the observed differences in TWS dynamics suggest that irrigation mitigates the magnitude of seasonal storage decline, likely due to surface water return flows.

The results of this study demonstrate the potential of GRACE downscaling for high-resolution water storage monitoring in data-scarce and topographically complex regions. In the future, several aspects warrant further improvement. First, the 555 accuracy of the downscaled products remains constrained by the quality and physical consistency of the forcing datasets. Ensemble-based or data-assimilation approaches that integrate multiple P, ET, and R products could mitigate input-related uncertainties. Second, explicit representation of snow and glacier processes is required to better capture cryospheric contributions, which are critical in high-mountain Central Asia. Third, the next-generation gravity mission, the Mass Change and Geophysics International Constellation (MAGIC) will provide higher-resolution gravity field data, which offers new opportunities to improve the downscaling accuracy.

560 The framework presented in this study can be easily generalized to other regions, and the computation example provided in the Supplement offers region-independent computational procedures. It is computationally flexible and transferable. Users can specify their own spatial or temporal target resolutions (e.g. a target spatial resolution as 0.25°), and the input hydrological forcing datasets can be replaced with variables from other sources, provided that their resolution matches the target resolution. On the other hand, users may also choose to perform only temporal or spatial downscaling, depending the research objectives.

565 In such cases, the input hydrological forcing data should be adjusted accordingly. For instance, when applying temporal downscaling alone, the hydrological variables must have the same temporal resolution as the target temporal resolution, while their spatial resolution need not match that of the GRACE data. Conversely, when applying spatial downscaling only, the hydrological variables should be consistent with the target spatial resolution but retain the same monthly temporal resolution as the GRACE data.

570 Data availability

The JPL GRACE mascon product ([Wiese et al., 2023](#)) used in this study is available at <https://doi.org/10.5067/TEMSC-3JC634>. The GLDAS Noah V2.1 data ([Beaudoing and Rodell, 2020](#)) is available at <https://doi.org/10.5067/E7TYRXPJKWQO>. The FLDAS-Central Asia product ([Slinski and Sarmiento, 2023](#)) is available at

575 <https://doi.org/10.5067/C4IOYF41EEZB>. The ERA5-Land hourly data ([Muñoz-Sabater, 2019](#)) are available at <https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview>. The MSWEP product ([Beck et al., 2019](#)) is available at <https://www.gloh2o.org/mswep/>. The GLEAM4 datasets ([Miralles et al., 2025](#)) are available at <https://www.gleam.eu/>. The runoff data by GloFAS ([Grimaldi et al., 2022](#)) is available at <https://doi.org/10.24381/cds.ff1aef77>. The river flow direction data ([Verdin, 2017](#)) is available at <https://doi.org/10.3133/ds1053>. The irrigation maps of GMIA ([Siebert et al., 2013](#)) are available at <https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/>. The daily precipitation data ([Menne et al., 2012](#)) for the FERGANA and ANDIZAN stations are obtained from <https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily>. The GRACE downscaled TWSC estimates in this study ([Liu et al., 2025](#)) are available at <https://doi.org/10.5281/zenodo.17466845>.

580

Author contribution

585 SL and TS designed the experiment; SL performed the computations, analyses, and visualization; TS and RP contributed to conceptualization and data analysis; SL wrote the manuscript draft; TS and RP reviewed and edited the manuscript. RP supervised the study.

Competing interests

The authors declare that they have no conflict of interest.

590 **Acknowledgements**

This study was funded by the TUM Innovation Network "Twin Earth Methodologies for Biodiversity, Natural Hazards, and Urbanization (Earthcare)", Technical University of Munich.

References

595 Abdullaev, I., Kazbekov, J., Jumaboev, K., and Manthritilake, H.: Adoption of integrated water resources management principles and its impacts: lessons from Ferghana Valley, Water Int., 34(2), 230–241, <https://doi.org/10.1080/02508060902843710>, 2009.

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, <https://doi.org/10.5194/hess-17-1161-2013>, 2013.

600 Arshad, A., Mirchi, A., Samimi, M., and Ahmad, B.: Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB), *Sci. Total Environ.*, 838, 156044, <https://doi.org/10.1016/j.scitotenv.2022.156044>, 2022.

Barandun, M., Pohl, E., Naegeli, K., McNabb, R., Huss, M., Berthier, E., Saks, T., and Hoelzle, M.: Hot spots of glacier mass balance variability in Central Asia, *Geophys. Res. Lett.*, 48(11), <https://doi.org/10.1029/2020GL092084>, 2021.

605 Beaudoin, H. and Rodell, M., NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [Data set], doi:10.5067/E7TYRXPJKWOQ, 2020.

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I., McVicar T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment, *Bull. Amer. Meteor. Soc.*, 100(3), 473-500, 610 <https://doi.org/10.1175/BAMS-D-17-0138.1>, 2019.

Bocchiola, D., Pelosi, M. G., and Soncini, A.: Effects of hydrological changes on cooperation in transnational catchments: the case of the Syr Darya, *Water Int.*, 42(7), 852-873, <https://doi.org/10.1080/02508060.2017.1376568>, 2017.

Chen, X., Liu, T., Duulatov, E., Gafurov, A., Omorova, E., and Gafurov, A.: Hydrological Forecasting under Climate Variability Using Modeling and Earth Observations in the Naryn River Basin, Kyrgyzstan, *Water*, 14(17), 2733, 615 <https://doi.org/10.3390/w14172733>, 2022.

Conrad, C., Rahmann, M., Machwitz, M., Stulina, G., Paeth, H., and Dech, S.: Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan, *Glob. Planet. Change*, 110, 88-98, <https://doi.org/10.1016/j.gloplacha.2013.08.002>, 2013.

620 Grimaldi, S., Salamon, P., Disperati, J., Zsoter, E., Russo, C., Ramos, A., Carton De Wiart, C., Barnard, C., Hansford, E., Gomes, G., Prudhomme, C.: River discharge and related historical data from the Global Flood Awareness System, v4.0, European Commission, Joint Research Centre (JRC) [data set], doi: 10.24381/cds.a4fdd6b9, 2022.

Hagg, W., Mayer, C., Lambrecht, A., Kriegel, D., and Azizov, E.: Glacier changes in the big Naryn basin, Central Tian Shan, *Glob. Planet. Change*, 110, 40-50, <https://doi.org/10.1016/j.gloplacha.2012.07.010>, 2013.

Hill, A. F., Minbaeva, C. K., Wilson, A. M., and Satylkanov, R.: Hydrologic controls and water vulnerabilities in the Naryn River Basin, Kyrgyzstan: A socio-hydro case study of water stressors in Central Asia, *Water*, 9(5), 325, 625 <https://doi.org/10.3390/w9050325>, 2017.

Humphrey, V., Rodell, M., and Eicker, A.: Using satellite-based terrestrial water storage data: a review, *Surv Geophys*, 44(5), 1489-1517, <https://doi.org/10.1007/s10712-022-09754-9>, 2023.

630 Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Vivioli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world's water towers, *Nature*, 577(7790), 364-369, <https://doi.org/10.1038/s41586-019-1822-y>, 2020.

Joint Research Center, Copernicus Emergency Management Service: River discharge and related historical data from the
635 Global Flood Awareness System, Early Warning Data Store (EWDS) [data set], doi:10.24381/cds.a4fdd6b9, 2019.

Jyolsna, P. J., Kambhamettu, B. V. N. P., and Gorugantula, S.: Application of random forest and multi-linear regression
methods in downscaling GRACE derived groundwater storage changes, *Hydrol. Sci. J.*, 66(5), 874-887,
<https://doi.org/10.1080/02626667.2021.1896719>, 2021.

Kalu, I., Ndehedehe, C. E., Ferreira, V. G., Janardhanan, S., Currell, M., and Kennard, M. J.: Statistical downscaling of GRACE
640 terrestrial water storage changes based on the Australian Water Outlook model, *Sci. Rep.*, 14(1), 10113,
<https://doi.org/10.1038/s41598-024-60366-2>, 2024.

Slinski, K. and Sarmiento, D. (NASA/GSFC/HSL): FLDAS2 Noah-MP GDAS Land Surface Model L4 Central Asia Daily
0.01 x 0.01 degree, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [Data
set], <https://doi.org/10.5067/C4IOYF41EEZB>, 2023.

645 Li, B., Rodell, M., Kumar, S., Beudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S.,
Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., de
Lannoy, G., Mocko, D., Steele-Dunne, S. C., Save, H., and Bettadpur, S.: Global GRACE data assimilation for groundwater
and drought monitoring: Advances and challenges, *Water Resour. Res.*, 55(9), 7564-7586,
<https://doi.org/10.1029/2018WR024618>, 2019.

650 Li, S., Wei, W., Chen, Y., Duan, W., and Fang, G.: TSWS: An observation-based streamflow dataset of Tianshan Mountains
watersheds (1901–2019), *Sci Data*, 12(1), 708, <https://doi.org/10.1038/s41597-025-05046-0>, 2025.

Liu, S., Schaffhauser, T., and Pail, R.: Downscaled GRACE Total Water Storage Change (TWSC) Dataset at daily and 1 km
resolution for Naryn – Kara Darya basins and Fergana valley (2002–2023), Zenodo [data set],
<https://doi.org/10.5281/zenodo.17466845>, 2025.

655 Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brieren, S., Rust, H. W., Sauter, T.,
Theumeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.:
Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the
end user, *Rev. Geophys.*, 48(3), <https://doi.org/10.1029/2009RG000314>, 2010.

McNally, A., Jacob, J., Arsenault, K., Slinski, K., Sarmiento, D. P., Hoell, A., Pervez, S., Rowland, J., Budde, M., Kumar, S.,
660 Peters-Lidard, C., and Verdin, J. P.: A Central Asia hydrologic monitoring dataset for food and water security applications in
Afghanistan, *Earth Syst. Sci. Data*, 14, 3115–3135, <https://doi.org/10.5194/essd-14-3115-2022>, 2022.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An overview of the Global Historical Climatology
Network-Daily Database, *J. Atmos. Oceanic Technol.*, 29, 897-910, <https://doi.org/10.1175/JTECH-D-11-00103.1>, 2012.

Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface
665 evaporation estimated from satellite-based observations, *Hydrol. Earth Syst. Sci.*, 15, 453–469, <https://doi.org/10.5194/hess-15-453-2011>, 2011.

Miralles, D. G., Bonte, O., Koppa, A., Baez-Villanueva, O. M., Tronquo, E., Zhong, F., Beck, H. E., Hulsman, P., Dorigo, W. A., Verhoest, N. E. C., Haghdoost, S.: GLEAM4: global land evaporation and soil moisture dataset at 0.1° resolution from 1980 to near present, *Sci Data*, 12, 416, <https://doi.org/10.1038/s41597-025-04610-y>, 2025.

670 Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. *Transactions of the ASABE*, 50(3), 885-900, <https://doi.org/10.13031/2013.23153>, 2007.

Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], <https://doi.org/10.24381/cds.e2161bac>, 2019.

675 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, *Earth Syst. Sci. Data*, 13, 4349–4383, <https://doi.org/10.5194/essd-13-4349-2021>, 2021.

Pellet, V., Aires, F., Alfieri, L., and Bruno, G.: A physical/statistical data-fusion for the dynamical downscaling of GRACE data at daily and 1 km resolution, *J. Hydrol.*, 628, 130565, <https://doi.org/10.1016/j.jhydrol.2023.130565>, 2024.

Pritchard, H. D.: Asia's shrinking glaciers protect large populations from drought stress, *Nature*, 569, 649-654, <https://doi.org/10.1038/s41586-019-1240-1>, 2019.

ReliefWeb: Tajikistan: Avalanche – Jan 2006, <https://reliefweb.int/disaster/av-2006-000015-tjk>, last access: 29 October 2025, 2006.

685 Rodell, M., and Famiglietti, J. S.: An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE), *Water Resour. Res.*, 37(5), 1327-1339, <https://doi.org/10.1029/2000WR900306>, 2001.

Rodell, M., Famiglietti, J. S., Chen, J., Seneviratne, S. I., Viterbo, P., Holl, S., and Wilson, C. R.: Basin scale estimates of evapotranspiration using GRACE and other observations, *Geophys. Res. Lett.*, 31(20),

690 <https://doi.org/10.1029/2004GL020873>, 2004a.

Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data assimilation system, *Bull. Amer. Meteor. Soc.*, 85(3), 381-394, <https://doi.org/10.1175/BAMS-85-3-381>, 2004b.

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoin, H. K., Landerer, F. W., and Lo, M. H.: Emerging trends in global freshwater availability, *Nature*, 557(7707), 651-659, <https://doi.org/10.1038/s41586-018-0123-1>, 2018.

Sadyrov, S., Isaev, E., Tanaka, K., Murata, A., and Sidle, R. C: High-resolution assessment of climate change impacts on the surface energy and water balance in the glaciated Naryn River basin, Central Asia, *J. Environ. Manage.*, 374, 124021, <https://doi.org/10.1016/j.jenvman.2024.124021>, 2025.

Schaffhauser, T., Lange, S., Tuo, Y., and Disse, M.: Shifted discharge and drier soils: Hydrological projections for a Central Asian catchment, *J. Hydrol. Reg. Stud.*, 46, 101338, <https://doi.org/10.1016/j.ejrh.2023.101338>, 2023.

Siegfried, T., Bernauer, T., Guiennet, R., Sellars, S., Robertson, A. W., Mankin, J., Bauer-Gottwein, P., and Yakovlev, A.: Will climate change exacerbate water stress in Central Asia?, *Clim. Change*, 112(3), 881-899, <https://doi.org/10.1007/s10584-011-0253-z>, 2012.

705 Siebert, S., Henrich, V., Frenken, K., and Burke, J.: Update of the digital global map of irrigation areas to version 5, *Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany* and *Food and Agriculture Organization of the United Nations, Rome, Italy*, 10(2.1), 2660-6728, 2013.

710 Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of GRACE to understanding climate change, *Nat. Clim. Change*, 9(5), 358-369, <https://doi.org/10.1038/s41558-019-0456-2>, 2019.

Verdin, K. L.: Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database (No. 1053), US Geological Survey [data set], <https://doi.org/10.3133/ds1053>, 2017.

Vishwakarma, B. D., Zhang, J., and Sneeuw, N.: Downscaling GRACE total water storage change using partial least squares regression, *Sci data*, 8, 95, <https://doi.org/10.1038/s41597-021-00862-6>, 2021.

715 Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, F. W.: Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons, *J. Geophys. Res. Solid Earth*, 120(4), 2648-2671, <https://doi.org/10.1002/2014JB011547>, 2015.

Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution, *Water Resour. Res.*, 52, <https://doi.org/10.1002/2016WR019344>, 2016.

720 Wiese, D. N., Yuan, D. N., Boening, C., Landerer, F. W., and Watkins, M. M.: JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height CRI Filtered RL06.3Mv04. Ver. RL06.3Mv04, PO.DAAC, CA, USA [data set], <https://doi.org/10.5067/TEMSC-3JC634>, 2023.

World Bank: Landscape Restoration Opportunities in the Naryn River Basin, the Kyrgyz Republic: Restoration Opportunities Assessment Methodology (ROAM) Report, Washington, DC: World Bank, 2023.

725 Yin, W., Hu, L., Zhang, M., Wang, J., and Han, S. C.: Statistical downscaling of GRACE-derived groundwater storage using ET data in the North China plain, *J. Geophys. Res. Atmos.*, 123(11), 5973-5987, <https://doi.org/10.1029/2017JD027468>, 2018.

Zheng, G., Bao, A., Li, J., Zhang, G., Xie, H., Guo, H., Jiang, L., Chen, T., Chang, C., and Chen, W.: Sustained growth of high mountain lakes in the headwaters of the Syr Darya River, Central Asia, *Glob. Planet. Change*, 176, 84-99, <https://doi.org/10.1016/j.gloplacha.2019.03.004>, 2019.