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Abstract. Droughts are gaining attention in temperate regions, as underscored by the severe European droughts of 2018 and 

2022. In Denmark, these events caused widespread agricultural losses, degradation of surface waters and ecosystems, and 

infrastructure damage from soil subsidence. Although historical drought trends in northern Europe are uncertain, climate 10 

projections indicate more frequent and intense droughts. Hydrological drought propagation from precipitation deficit to soil 

moisture, streamflow and groundwater is shaped by topography, soil, vegetation, hydrogeology, and human activity. While 

streamflow and soil moisture droughts have been widely studied, groundwater droughts remain underexplored despite their 

importance for baseflow and water supply. In Denmark, where groundwater and surface water are closely linked, and 

groundwater resources are heavily relied upon, an integrated approach to drought assessment is essential. In this study, we 15 

compile a high-quality observational dataset, including soil moisture, streamflow, and groundwater levels, to systematically 

evaluate model-simulated drought and its propagation throughout all hydrological compartments by the National 

Hydrological Model of Denmark (DK-model), an integrated, distributed hydrological model. The DK-model’s nationwide 

coverage, combined with Denmark’s dense hydrological monitoring network, enables a detailed assessment of the model’s 

ability to simulate drought events. This includes model skill in reproducing observed anomalies, drought response times, and 20 

propagation dynamics. The DK-model was found to reproduce drought indices very well for groundwater levels and 

streamflow compared to respective observational time series. For soil moisture, model performance was lower. Drought 

propagation, evaluated by accumulation periods for precipitation with optimal correlation to hydrological drought, is 

likewise reproduced well for streamflow and groundwater. In contrast, the model struggles with the soil moisture signal. By 

evaluating the DK-model’s performance in simulating drought propagation, this study contributes to improving large-scale 25 

hydrological drought modelling and enhances the understanding of the strengths and weaknesses of this approach, while 

increasing its potential for drought analysis, monitoring, and forecasting. The findings provide critical insights into drought 

dynamics in temperate regions and support sustainable water resource management in a changing climate. 

https://doi.org/10.5194/egusphere-2025-5373
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

1 Introduction 

In recent years, droughts have received increasing attention due to numerous major drought events worldwide. Freshwater 30 

changes in the hydrological cycle over land have been identified as one of the nine planetary boundaries that have been 

transgressed (Richardson et al., 2023). This issue is closely linked to climate change and the risk of severe impacts from 

prolonged droughts (Gleeson et al., 2020), as well as tipping points, such as the dieback of the Amazon rainforest (Flores et 

al., 2024). In Europe, several major droughts have been registered in recent decades (Hanel et al., 2018; Rossi et al., 2023; 

Spinoni et al., 2018), with the 2018 and 2022 events among the most severe (Bakke et al., 2020; Wanders et al., 2024; 35 

Zscheischler and Fischer, 2020).  

Historically, drought research has focused on warmer and drier regions (Hoerling et al., 2012). However, recent European 

drought events have demonstrated that temperate northern climates are also vulnerable (Teutschbein et al., 2022). In 

Denmark, the 2018 and 2022 summer droughts resulted in extensive agricultural losses, estimated to 4.1 billion DKK for 

2018 (Schou, 2019). Besides that, the droughts caused surface water degradation, and infrastructural damage due to soil 40 

subsidence (Danmarks Statistik, 2018; Henriksen et al., 2022; Jensbye et al., 2025). While trends in historical drought 

occurrence remain ambiguous in northern Europe (Bordi et al., 2009; Gudmundsson and Seneviratne, 2015; Hisdal et al., 

2001; Karlsson et al., 2014), climate change studies suggest that drought frequency and severity may increase in the future 

(Chan et al., 2021; Häberli et al., 2025; Rossi et al., 2023; Spinoni et al., 2018). Such developments pose growing challenges 

for water resilience, both in Denmark (Jørgensen et al., 2024) and in European cities in general (Hinsby et al., 2024; 45 

Quevauviller et al., 2024) as well as for agricultural productivity and ecosystems (Olesen and Bindi, 2002; Rasmussen et al., 

2012; Söller et al., 2024). 

When meteorological drought caused by precipitation deficits persists, its effects propagate through the hydrological cycle 

(Van Loon, 2015). Impacts typically first appear in the root zone (soil moisture or agricultural drought), followed by changes 

in surface waters and shallow groundwater, and finally in deeper aquifers (hydrological drought). Deeper groundwater 50 

systems respond slowly and are mostly sensitive to precipitation deficits during recharge season. Consequently, groundwater 

can act as a drought buffer (Hellwig et al., 2022; Taylor et al., 2013), and strongly influence streamflow droughts (Van 

Lanen et al., 2013). In Denmark, where surface water and groundwater are closely coupled (Sechu et al., 2022), and 

groundwater supplies nearly all drinking water (Jørgensen and Stockmarr, 2009), winter precipitation deficits are of concern 

as they can lead to groundwater droughts.  55 

Drought propagation depends on numerous factors including topography (Brakkee et al., 2022), soil type (Barker et al., 

2016), vegetation, hydrogeology (Lorenzo-Lacruz et al., 2013), system interconnections (Sutanto and Van Lanen, 2022), and 

human influences (Haas and Birk, 2017; Yuan et al., 2017). Thus, drought propagation is highly variable in space (Barker et 

al., 2016; Sutanto et al., 2024), requiring diverse data and, ideally, integrated hydrological modelling frameworks. 

Several approaches exist to quantify and evaluate drought propagation, such as correlation analysis between meteorological 60 

drought indices calculated for different accumulation periods (often the Standardized Precipitation Index, SPI), and different 
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hydrological drought indices (Barker et al., 2016; Odongo et al., 2023), lag time analyses between compartments (timing of 

onset, e.g. Van Loon, 2015), and these are often identified using autocorrelation between indices (Bloomfield and Marchant, 

2013). More complex methods, for example based on run theory (Ho et al., 2021) or duration ratios in the different 

compartments of the hydrometeorological cycle (Odongo et al., 2023), have been suggested.  65 

Data sources include in-situ observations of precipitation, streamflow (Kumar et al., 2016) or groundwater levels 

(Bloomfield and Marchant, 2013), remote sensing products of climate variables or soil moisture (Ho et al., 2021), or blended 

data products such as reanalysis (Odongo et al., 2023), and model outputs from hydrological models of various nature, such 

as semi-distributed rainfall-runoff models or fully-distributed integrated models (e.g. von Gunten et al., 2016; Sutanto et al., 

2024). 70 

While many studies have explored drought propagation from precipitation to streamflow (e.g., Barker et al., 2016; Meresa et 

al., 2023; Wang et al., 2021), and from precipitation to soil moisture (e.g., Ho et al., 2021; Odongo et al., 2023), far fewer 

have explicitly addressed propagation into groundwater or through the entire hydrological cycle (e.g., Bloomfield et al., 

2015; Kumar et al., 2016; Soleimani Motlagh et al., 2017; Sutanto et al., 2024). This is despite recognition of the crucial role 

of groundwater in drought propagation and mitigation (e.g., Hellwig et al., 2022; Odongo et al., 2023), combined with the 75 

complexity of drought propagation to groundwater preventing simple projections from meteorological to groundwater 

drought (Christelis et al., 2024). This scarcity largely reflects limited data availability across all hydrological compartments, 

in particular groundwater (e.g., El Bouazzaoui et al., 2024; Sutanto et al., 2024), especially at large scale. 

To cover these limitations, hydrological models are valuable tools for providing complete datasets across compartments, as 

demonstrated in studies like Kumar et al. (2022) and Sutanto et al. (2024), and more rarely with fully integrated models (von 80 

Gunten et al., 2016). However, explicit validation of a model’s ability to reproduce drought anomalies and propagation 

across the entire hydrological cycle remains rare. Even comprehensive projects such as WATCH (Van Loon et al., 2011) or 

WaterMIP (Van Loon et al., 2012) mostly perform qualitative assessments of drought propagation, and are often limited to 

streamflow. Other examples of qualitative drought evaluations include those by Tallaksen et al. (2009). Other studies have 

validated drought performance for individual compartments – for example streamflow across Europe or European 85 

catchments (Forzieri et al., 2014; Gudmundsson et al., 2012; Prudhomme et al., 2011; Tallaksen and Stahl, 2014), or across 

catchments worldwide (Kumar et al., 2022). For soil moisture drought, a mHM model for Germany used as part of the 

German Drought Monitor, was evaluated for its simulation of soil moisture dynamics and anomalies against observations 

from various sources (Boeing et al., 2022). Few studies have explicitly validated simulated groundwater droughts. Li and 

Rodell (2015) assessed the performance of the Catchment Land Surface Model for simulating a groundwater drought index, 90 

finding moderate correlations with observed groundwater levels across U.S. states. Even fewer studies perform multi-

compartment evaluation, such as Hanel et al. (2018), who validated the mHM model across Europe using streamflow, 

evapotranspiration, and total water storage anomalies derived from GRACE satellite data. Another notable study is the 

validation of groundwater and baseflow drought using a large-scale MODFLOW model covering all of Germany, against an 

extensive dataset of long-term groundwater head and streamflow observations (Hellwig et al., 2020). 95 
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This study addresses the gap in the literature regarding the validation of integrated hydrological models’ ability to simulate 

drought indices across multiple compartments of the hydrological cycle. 

The National Hydrological Model of Denmark (DK-model) is an integrated, distributed model that represents all major 

compartments of the hydrological cycle. Given Denmark’s diverse geological and soil type setting, comprised of glacial 

unconsolidated deposits from Weichsel and Saale and fractured chalk and limestone, substantial regional variations in 100 

drought response are expected (Seidenfaden et al., 2022a). Combined with the comparably large availability of hydrological 

data in Denmark, this provides a unique opportunity to evaluate multiple drought types and their interconnections across the 

hydrological cycle. Validating a hydrological model’s ability to capture drought propagation and occurrences demands a 

rigorous evaluation of its capability to simulate drought events accurately. This is especially true as conventional 

hydrological model calibration and validation focus on statistics favouring high flows, for example Kling-Gupta efficiency 105 

(KGE) and Nash-Sutcliffe efficiency (NSE) (Teegavarapu et al., 2022), without direct evaluation of drought performance, 

even if low flow performance measures are included in calibration routines (e.g., Garcia et al., 2017; Pfannerstill et al., 

2014). To address this, we compile and apply a comprehensive, quality-assured observational dataset suited for drought 

analysis covering soil moisture, streamflow, and groundwater. 

The present study aims to assess whether the integrated, physically based DK-model can accurately reproduce drought 110 

dynamics and propagation from meteorological drought to soil moisture, streamflow, and groundwater by: 

• Compiling a comprehensive, quality-assured observational dataset for drought evaluation across soil moisture, 

streamflow, and groundwater 

• Assessing the DK-model’s ability to simulate drought indices and propagation dynamics across the hydrological 

cycle. 115 

• Evaluating the model’s potential for drought analysis, monitoring, and forecasting 

2 Data and methods 

2.1 Study area: Denmark 

Denmark is located in northern Europe, covering approximately 43,000 km². The country has a temperate oceanic climate 

(Cfb, Köppen–Geiger classification) characterized by mild winters and warm summers, with a mean annual temperature of 120 

about 8–9 °C and a mean annual precipitation ranging between roughly 600 mm and 1000 mm, with a general east-west 

gradient and highest values in the west. Precipitation is relatively evenly distributed throughout the year (DMI, 2025). 

The topography is low-lying, with elevations generally below 100 m a.s.l., and the landscape was shaped during the last 

glaciations, resulting in heterogeneous glacial deposits that in some parts cover shallow chalk and limestone aquifers locally 

affected by glaciotectonics (Schack Pedersen et al., 2018) and karstification (Nilsson et al., 2023). Quaternary glacial tills, 125 

meltwater sands, and clays dominate the near-surface geology in the eastern parts of Denmark, while western parts of 

Denmark and deeper layers comprise Neogene, Paleogene, and Cretaceous marine sediments. This results in a complex 
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hydrogeological setting with interbedded aquifers and aquitards of varying permeability which are locally intersected by 

buried valleys primarily developed under ice sheets (Sandersen and Jørgensen, 2017). This gives rise to complex 

groundwater flow systems, varying groundwater age and travel time distributions both in shallow and deep aquifers (Hinsby 130 

et al., 2001; Troldborg et al., 2008), consequently affecting vulnerability of aquifers to droughts. 

Denmark’s hydrology is also strongly influenced by its land use. Almost two-thirds of the land area is agricultural, and 

artificial drainage systems are widespread, also in forests, to improve soil trafficability and vegetation growth (Olesen, 

2009). Groundwater plays a central role in the Danish water cycle: Nearly all water supply (drinking water, industrial water 

use, irrigation in agriculture) is abstracted from groundwater resources (Henriksen et al., 2024). Moreover, there exist 135 

65,000 km of water courses in Denmark, most of them only a few metres wide (Danish Agricultural Agency, 2025), with 

close interaction between surface and groundwater (Duque et al., 2023). Similarly, there exist 120,000 lakes with an area 

above 100 m2. The uppermost groundwater table is found close to the surface, within a few metres below ground, for most of 

the country (Koch et al., 2021). Consequently, drought impacts in Denmark are not only reflected in meteorological deficits 

but also propagate through soil moisture and groundwater storage, potentially affecting streamflow and groundwater 140 

availability on seasonal to multi-annual timescales. 

2.2 The National Hydrological Model (DK-model) 

The DK-model is a distributed, integrated hydrological model covering all of Denmark, except for some smaller islands, at 

500 m or 100 m horizontal resolution (Henriksen et al., 2003; Højberg et al., 2013; Stisen et al., 2019b). It has been under 

constant development over the last three decades (Henriksen, 2001), driven by projects for public authorities and research 145 

initiatives. It is being used as the basis for water resource assessments (Henriksen et al., 2024), climate change impact 

assessments (Schneider et al., 2022c; Seidenfaden et al., 2022b), hydrological monitoring and early warning (Henriksen et 

al., 2018), nutrient transport studies (Andersen et al., 2025), or estimation of groundwater age and travel time (Musy et al., 

2023). 

2.2.1 MIKE SHE model code 150 

The DK-model is set up in the MIKE SHE model code (Abbott et al., 1986; DHI, 2024). It couples a 3D finite difference 

representation of groundwater flow with a 2D description of overland flow, a 1D representation of root zone processes, and a 

simple routing of streamflow. It allows the inclusion of anthropogenic influence on the water cycle. In the DK-model, the 

unsaturated zone is described using the so-called 2-layer-method of MIKE SHE, which lumps the root zone into a single 

layer. 155 

2.2.2 Model input and forcing 

In this study, the DK-model with a 500 m horizontal resolution is used. It is a transient model driven with gridded daily 

climate forcing products provided by the Danish Meteorological Institute: precipitation at 10 km (Scharling, 1999b) and 
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temperature and potential evapotranspiration at 20 km resolution (Scharling, 1999a). Measured precipitation was bias-

corrected for wind undercatch (Stisen et al., 2011). The saturated zone is described by a layered model, with unit-based 160 

parameterisation. Its basis is a hydrogeological model of Denmark (Arvidsen et al., 2020), simplified to 9 to 11 

computational layers of varying thickness. Vegetation-related parameters such as root depth are parameterised based on a 

MODIS and Landsat-derived climatology of vegetation development in combination with soil type (Soltani et al., 2021). 

Further soil parameters are distributed according to a Danish map of soil types (Børgesen et al., 2009). Anthropogenic 

impacts are included: Groundwater abstractions from all waterworks are implemented based on data from the national 165 

borehole database Jupiter (National well database JUPITER). Irrigation in agriculture is included based on data on irrigation 

well location and water use permits, and applied dynamically according to simulated crop water demand. Irrigation is 

concentrated on the more sandy soils in the western parts of the country (Liu et al., 2025a). Artificial drainage is represented 

using a conceptual formula in MIKE SHE parameterised by a drain depth and time constant. These variables are distributed 

according to land use (Schneider et al., 2022b). 170 

2.2.3 Model calibration 

The nature of the DK-model, as an integrated hydrological model, together with a requirement for adequate representation of 

various aspects of the hydrological cycle based on its diverse applications, and its large-scale distributed nature with high 

computational demand, necessitates an efficient multi-objective optimization procedure. We chose the Pareto Archived 

Dynamically Dimensioned Search (PADDS) algorithm (Asadzadeh and Tolson, 2013), as implemented in the OSTRICH 175 

package (Matott, 2017). In the optimization, various objective functions are included: Groundwater heads from roughly 

39,000 wells across Denmark, using a CRPS-based objective function (Schneider et al., 2022a), seasonal groundwater level 

amplitudes from 400 monitoring wells, and streamflow performance at 305 streamflow stations based on the KGE (Gupta et 

al., 2009). Moreover, acknowledging its significant impact on hydrology in Denmark, the artificial drain fraction was 

included as a calibration target (Schneider et al., 2025). The calibration period was the years 2000 to 2010, while the model 180 

was later run for drought index validation for the period 1990 to 2023. 

2.2.4 A fixed-abstraction version of the DK-model 

To simulate drought and its propagation through the hydrological cycle, where drought is defined as a natural phenomenon, 

and not an anomaly or water scarcity caused by human activities (see definition in Van Loon and Van Lanen, 2013), it was 

necessary to run the DK-model in a forward-run with fixed abstraction rates. Usually, groundwater abstractions are 185 

incorporated in the DK-model with annually changing pumping amounts as reported to the Jupiter database. If these variable 

abstraction amounts were applied, the drought signal would be locally dominated by changes in abstraction patterns and a 

general reduction in water consumption since the 1990s (Thorling et al., 2024), which would disturb the drought analysis. 

Therefore, in this version of the DK-model, the yearly varying amounts were changed to constant average abstractions across 

the reference period. Similarly, wastewater outflows from sewage plants into streams are used as yearly varying amounts in 190 
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calibration and the original DK-model; but for the drought analysis version, an average across the reference period was used. 

This choice also impacted the selection of observational time series for model validation, as will be described below. 

2.3 Quality assuring the observational dataset 

The observational data for validating the simulated drought indices consists of three independent datasets: groundwater 

levels, streamflow, and soil moisture. Ideally, these data should cover the entire reference period, be continuous with at least 195 

monthly data, and have a wide spatial coverage. In addition, they should be minimally affected by direct anthropogenic 

factors such as groundwater abstraction, and therefore fluctuations in the observed time series should mainly be attributed to 

climatic variations. However, for some of the variables, the data temporal coverage requirements must be loosened due to 

data scarcity. Below, the selection process to identify data suitable for evaluating the drought indices simulated by the DK-

model is described for each data source. 200 

2.3.1 Groundwater levels 

The Jupiter database contains all reported geological profiles and groundwater level monitoring data in Denmark, including 

well lithologies. However, most boreholes with water level data contain only a single or a few water level measurements 

over time, and thus are not suited for the evaluation of drought indices. The database was screened for potential groundwater 

level data by selecting wells with at least 20 years of data in the period 1990 to 2023, and at least bi-monthly observation 205 

frequency, and fewer than 20% of months with missing data during the observation period. All time series passing the initial 

screening are then assessed following a thorough two-step quality assurance process. 

First, the time series are analysed for correlation to climate time series (precipitation and potential evapotranspiration) using 

nonlinear transfer function noise models (TFN) in the Pastas python tool (Collenteur et al., 2021). TFN models have 

previously been used in connection with drought evaluation, for example in the Netherlands (Brakkee et al., 2022), where it 210 

was used to track the spread of drought conditions in the groundwater system in 2018. Here, we evaluate whether an 

observed time series of groundwater levels can be explained based on the climate forcing alone. If not, this is an indication 

that groundwater levels are affected by other phenomena, such as groundwater abstractions. Those time series are excluded 

from further analysis as we are interested in drought as a meteorological phenomenon, and not man-made water scarcity. 

The TFN models are versatile and can adapt to trends, accumulated effects, and different lag times. A high correlation 215 

between the observation and the respective TFN-derived time series indicates that the variability of the observation is 

dominated by climatic variability. Initially, a threshold was set at a coefficient of determination (R2) of 0.70, above which a 

time series was considered suitable for the final selected validation dataset. Time series with an R2 above 0.70 were manually 

inspected through expert judgment in the second step. Two hydrogeologists evaluated them first independently and then 

jointly to ensure that the datasets met the criteria for the evaluation tests. A low R2 value is a good indicator for time series 220 

whose variability cannot be explained by variability in climate, even if accumulation or lag times are considered. However, 

to ensure that all applicable time series are exploited, time series with R2 below 0.70 were also evaluated, and a few time 
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series were added to the analysis, e.g. where there was evidence of poor TFN performance due to outliers or measurement 

errors that could be corrected. 

2.3.2 Streamflow data 225 

Streamflow data in Denmark has been monitored relatively consistently over the last decades (Overfladevandsdatabasen - 

https://odaforalle.au.dk/main.aspx) and data are generally of high quality, with few gaps. The selection of stations for 

validating the drought indices is based on a previous quality assurance effort when selecting streamflow stations for the 

calibration of the DK-model (Stisen et al., 2019a). This quality assurance focused on stations with a catchment area above 

15 km2, and where streamflow was unaffected by factors such as pumping stations or sluices, and had a data coverage of at 230 

least 98% of all days in the period. The selection criteria for streamflow stations are higher than for groundwater levels and 

soil moisture simply because data are abundant and multiple long time series with good national coverage exist. 

2.3.3 Soil moisture data 

Due to the DK-model’s resolution of 500 m grid scale, it is unsuitable to evaluate its performance using conventional soil 

moisture measurements, which typically represent small soil areas or volumes at the centimetre scale. We only use large-235 

scale soil moisture measurements in the model validation. Unfortunately, large-scale soil moisture measurements are 

generally rare. There are only five sites across Denmark with such measurements, all applying the cosmic ray method 

(CRN). The CRN method is based on the inverse relationship between neutron intensity from cosmic radiation and the water 

content (hydrogen) in the soil (Andreasen et al., 2017). The CRN sensors provide soil moisture within the root zone as 

measurement depth is integrated non-linearly from the soil surface to around 10-75 cm depth in the soil column, depending 240 

on water content (Zreda et al., 2012). The stations have a horizontal footprint of 200-300 m, comparable to the grid size of 

the hydrological model (Andreasen et al., 2017). 

2.4 Drought indices 

At present, hundreds of different drought indices exist and are described in the literature (see e.g., Zargar et al., 2011). They 

often cover different parts of the hydrological cycle, and thus, represent different variables, e.g., precipitation or streamflow. 245 

Often, they are either threshold-based or standardized (de Matos Brandão Raposo et al., 2023), meaning that they are either 

based on drought definitions characterized by crossing a certain threshold (e.g., a percentile of streamflow), or deviations of 

a time series from its normal (e.g., more than two standard deviations from the mean). Newer emerging indices are, for 

example, based on combining existing indices into composite ones (Raible et al., 2017) or indices modified for specific 

conditions, e.g., ephemeral streams (Aon and Biswas, 2024). Indices can be calculated from various observations of the 250 

hydrological cycle (Haas and Birk, 2017), remote sensing products or land surface models (Gaona et al., 2022), as well as 

hydrological models (Sutanto et al., 2024) or a combination of the above. 
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Generally, it is recommended to use standardised indices when comparing drought signals across different regions and 

compartments of the hydrological cycle (de Matos Brandão Raposo et al., 2023; Teutschbein et al., 2022; World 

Meteorological Organization (WMO), 2012). Due to the differences in precipitation regime from east to west in Denmark 255 

(Stisen et al., 2012), standardised indices were also chosen in this study. An overview of the indices used in this study is 

given in Table 1. 

For the meteorological drought signal, we applied the commonly used SPI (Standardized Precipitation Index) (McKee et al., 

1993a) for precipitation, and the SPEI (Standardized Precipitation Evapotranspiration Index) for net precipitation (Vicente-

Serrano et al., 2010), Eq. (1) to (3). For soil moisture, several indices exist, for example, the SSMI (Standardised Soil 260 

Moisture Index) (Hao and AghaKouchak, 2013), SSWI (Standardized Soil Wetness Index) (Torelló-Sentelles and Franzke, 

2022), and SMDI (Soil Moisture Deficit Index) (Narasimhan and Srinivasan, 2005). We applied the SMDI, Eq. (4) to (6), as 

it includes a memory effect of soil moisture deficit in its calculation potentially relevant for drought impacts on vegetation; 

examples of application of the SMDI in literature include (Chan et al., 2021; Gaona et al., 2022; Karlsson et al., 2015). For 

streamflow, standardised indices include the SRI (Standardised Runoff Index) (Shukla and Wood, 2008), SSI (Standardized 265 

Streamflow Index) (Vicente-Serrano et al., 2012), and SDI (Streamflow Drought Index, (Nalbantis and Tsakiris, 2009)). In 

this study, we are using the SDI, Eq. (7) and (8), as it is a common index in the literature (Gonçalves et al., 2023; Kim et al., 

2024; Zhong et al., 2020), and its formulation originates from the SPI. This is also the case for the groundwater index used in 

the study, the SGDI (Standardized Groundwater Drought Index) (Bhuiyan et al., 2006; Bloomfield and Marchant, 2013), Eq. 

(9) and (10). Examples of SGDI in the literature include Han et al. (2019), Ling et al. (2024), and Zhu et al. (2023). 270 

Common for the standardized indices we used (Table 1) is that they indicate the deviation of the current status of, for 

example, groundwater levels, from the typical seasonal cycle, as defined by the mean monthly or weekly climatology over 

the reference period. Furthermore, the resulting index values are typically translated to fixed categories of drought: For all 

indices, values below 0 correspond to below-average or dry conditions. For SPI, SPEI, SDI, and SGDI, the categories are 

mild drought for index values between 0 and -1, moderate drought (-1 to -1.5), severe drought (-1.5 to -2), and extreme 275 

drought (below -2). Due to the memory effect resulting in a larger range of SMDI values, the categories are shifted to mild 

drought (0 to -1), moderate drought (-1 to -2), severe drought (-2 to -3), and extreme drought (below -3). 
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Table 1: Overview of drought indices used in this study. 

Index Variables Equation Variable in DK-model 

General variables: j: week, k: month, i: year, std: standard deviation 

SPI 

Standardized Precipitation 

Index 

P: precipitation [mm]  𝑆𝑃𝐼𝑖,𝑘 =
𝑃𝑖,𝑘−𝑃𝑘̅̅ ̅̅

𝑠𝑡𝑑𝑃,𝑘
                       (1) 

precipitation, corrected 

(model input) 

SPEI 

Standardized Precipitation 

Evapotranspiration Index 

NP: net precipitation [mm] 

PotET: potential 

evapotranspiration [mm] 

 𝑁𝑃𝑖 = 𝑃𝑖 − 𝑃𝑜𝑡𝐸𝑇𝑖                (2) 

 𝑆𝑃𝐸𝐼𝑖,𝑘 =
𝑁𝑃𝑖,𝑘−𝑁𝑃𝑘̅̅ ̅̅ ̅̅

𝑠𝑡𝑑𝑁𝑃,𝑘
                (3) 

precipitation, corrected – 

potential 

evapotranspiration 

(Makkink) (model input) 

SMDI 

Soil Moisture Deficit Index 

SD: soil moisture deficit [%] 

SW: available soil water [-] 

Min: minimum 

Max: maximum 

Med: median 

 𝑖𝑓 𝑆𝑊𝑖,𝑗 ≤ 𝑚𝑒𝑑𝑆𝑊𝑗:  

     𝑆𝐷𝑖,𝑗 =
𝑆𝑊𝑖,𝑗−𝑚𝑒𝑑𝑆𝑊𝑗

𝑚𝑒𝑑𝑆𝑊𝑗−𝑚𝑖𝑛𝑆𝑊𝑗
      (4) 

 𝑖𝑓 𝑆𝑊𝑖,𝑗 > 𝑚𝑒𝑑𝑆𝑊𝑗: 

     𝑆𝐷𝑖,𝑗 =
𝑆𝑊𝑖,𝑗−𝑚𝑒𝑑𝑆𝑊𝑗

𝑚𝑎𝑥𝑆𝑊𝑗−𝑚𝑒𝑑𝑆𝑊𝑗
     (5) 

 𝑆𝑀𝐷𝐼𝑖,𝑗 =
1

2
𝑆𝑀𝐷𝐼𝑗−1 +

1

2
𝑆𝐷𝑗(6) 

 

average water content in 

the root zone 

SDI 

Streamflow Drought Index 

Q: streamflow [m3] 

 

 𝑌𝑖,𝑗 = ln(𝑄𝑖,𝑗)                         (7) 

 𝑆𝐷𝐼 =
𝑌𝑖,𝑗−𝑌𝑗̅

𝑠𝑡𝑑𝑌,𝑗
                           (8) 

streamflow in all q-points 

SGDIshallow 

Standardized Groundwater 

Drought Index for 

uppermost groundwater 

D: depth to uppermost 

groundwater table [m] 
 𝑆𝐺𝐷𝐼𝑖,𝑘 =

𝐷𝑖,𝑘−𝐷𝑘̅̅ ̅̅

𝑠𝑡𝑑𝐷,𝑘
                   (9) 

depth to top phreatic 

surface 

SGIdeep 

Standardized Groundwater 

Drought index for deep 

groundwater 

H: groundwater head [m] 
 𝑆𝐺𝐷𝐼𝑖,𝑘 =

𝐻𝑖,𝑘−𝐻𝑘̅̅ ̅̅

𝑠𝑡𝑑𝐻,𝑘
                   (10) 

 

head elevation in saturated 

zone, mean of two aquifer 

layers with largest 

groundwater abstractions 

 

2.4.1 Drought indices based on observational time series and DK-model simulations 280 

As noted in Table 1, SPI and SPEI are calculated based on monthly values and climatologies, as most commonly practiced 

and recommended (World Meteorological Organization (WMO), 2012). Similarly, the SGDI is calculated based on monthly 

values. In principle, SGDI could also be calculated at a higher frequency, but the scarce observation frequency limits us to 

using monthly values. The SMDI is commonly calculated weekly (Narasimhan and Srinivasan, 2005), and we follow this 

convention. Similarly, due to good data availability, we calculate the SDI weekly. Both SMDI and SDI are resampled from 285 

weekly to monthly values in the result sections. 

Calculation of the SPI and SPEI typically starts with fitting a suitable distribution function to the observed climatologies 

(Lloyd-Hughes and Saunders, 2002; McKee et al., 1993b). Often, especially in climates with more intermittent precipitation, 

this is a gamma distribution. However, for our case of Denmark, a Kolmogorov-Smirnov normality test revealed that the 

distribution of monthly precipitation values can be fitted by a normal distribution. Similarly, the SGDI in its original form is 290 

based on normal scores transformed values, as groundwater level time series can exhibit a variety of different distributions 

(Bloomfield and Marchant, 2013). We also tested for normal distribution in both shallow and deep groundwater and found, 
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using a Kolmogorov-Smirnov normality test, that for the vast majority of grid cells, the normal distribution is a valid 

approximation. The same applied to simulated soil moisture values used for SMDI. Other distributions, such as gamma 

distributions, could also be fitted; however, not more successfully than the normal distribution, and fitting sometimes was 295 

unstable, yielding implausible extreme values. This might also be related to the relatively short reference period of 30 years. 

Hence, we preferred the simple assumption of normal distribution. 

For the calculation of drought indices, a 30-year reference period from 1991 to 2020 was chosen. Drought indices were 

calculated based on the observational datasets introduced in Sect. 2.3, referred to as obs in the following, as well as the 

simulation results from the DK-model introduced in Sect. 2.1, referred to as sim in the following. Sim indices are calculated 300 

for every grid or streamflow calculation point of the DK-model based on the model outputs indicated in Table 1. The 

continuous simulations allow abstraction of drought indices for the entire period between 1990 to 2023, relative to the 

reference period 1991 to 2020. Obs indices are calculated for every streamflow station, groundwater well, and CRN soil 

moisture station in the quality-assured dataset. Where data coverage allowed, the full reference period 1991 to 2020 was 

used. However, many observational time series had limited coverage; here, the reference period was shortened accordingly, 305 

down to 10 years for soil moisture data. To allow a direct evaluation of the DK-model’s ability to reproduce drought signals 

in the hydrological cycle, drought indices from the DK-model results were calculated separately for each of the observation 

locations, i.e. each specific matching grid or streamflow point in the DK-model output. Those indices are referred to as 

sim@obs and were calculated based on simulated time series reduced to the same data availability as the respective 

observation data. This allows a direct, unbiased comparison of obs and sim@obs indices based on matching locations and 310 

reference periods. 

2.4.2 Drought propagation and lag 

To evaluate the propagation of meteorological drought through the hydrological cycle, SPI and SPEI were calculated not 

only for monthly values (1-month SPI and SPEI), but also for different accumulation periods ranging from 2 to 60 months 

(2-month to 60-month SPI and SPEI). For example for the 3-month SPI, the index value for March of a specific year is 315 

calculated based on the total precipitation of the 3 months January to March of the same year, relative to the normal total 

precipitation for January to March across all years of the reference period. Different compartments of the hydrological cycle 

are expected to be sensitive to different accumulation periods of precipitation, generally moving from faster-reacting soil 

moisture and streamflow to slower-reacting shallow and deep groundwater. The performance of the DK-model is also tested 

by comparing this accumulation period signal in the model (sim@obs) in relation to the signal found using the observations 320 

(obs). This is to test if the modelling system correctly represents the connections and propagation in the different natural 

systems. 
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2.4.3 Evaluation of observational and simulated indices 

The performance of the indices is evaluated using the Pearson correlation coefficient (r) and the root mean square error 

(RMSE). The evaluation is performed three-fold:  325 

1. On individual time series: For all the selected observational time series of soil moisture, streamflow, and 

groundwater, every index time series (obs) is evaluated against the corresponding simulated time series (sim@obs). 

2. On individual time series: For all the selected observational time series of soil moisture, streamflow, and 

groundwater, the accumulation period correlation to SPI (SPEI) for the index time series (obs) is evaluated against 

the corresponding signal in the simulated time series (sim@obs). 330 

3. Across Denmark: For every index, an aggregated drought index time series is calculated for all observations (obs) 

across Denmark and compared with the corresponding aggregated drought index series based on the simulations 

(sim@obs). Furthermore, the corresponding aggregated simulated drought indices (sim@obs) are also compared to 

the overall Denmark-wide drought index series (sim), to evaluate the spatial representativeness of the observation 

points of the entirety of Denmark. 335 

3 Results 

Figure 1 sums up the overall DK-model performance, showing cumulative distributions across the multiple conventional (i.e. 

not drought-related) calibration targets. Across 305 streamflow stations, a median KGE of 0.67 is reached, and the overall 

water balance error Fbal is 0.01, with a mean absolute error of 0.15. Fbal is calculated following Eq. (11): 

𝐹𝑏𝑎𝑙 =
𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅−𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅

𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅
            (11) 340 

In terms of groundwater performance, the mean absolute error across 39,514 wells with groundwater level observations is 

3.67 m, with a mean error of 0.47 m. All mean errors are provided as obs – sim. Hence, the model succeeds in simulating the 

most important parts of the hydrological cycle with little bias. Similarly, it also manages to reproduce seasonal groundwater 

level amplitudes reasonably well, with a mean absolute error of 0.65 m across 400 groundwater level time series with 

sufficient data to calculate average seasonal amplitudes. Observed amplitudes are 1.06 m on average. Lastly, the drain 345 

fraction (average simulated drain flow per grid cell relative to precipitation) was included in the calibration: Artificial 

drainage represents an important hydrological process in Denmark, with significant spatial variation, which is often 

overlooked. Hence, a Machine Learning generated map of drain fraction was used as a target (Schneider et al., 2025); panel 

(e) in Figure 1 shows the residuals of the model against that map, indicating that the DK-model slightly underestimates the 

amount of artificial drainage. 350 
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Figure 1: DK-model calibration performance. (a): KGE [-] and (b): water balance error [-] for 305 stream flow stations. (c): 

Residuals against groundwater level measurements in 39,514 wells. (d): Residuals against seasonal groundwater level amplitudes 

in 400 wells. (d): Residuals against seasonal groundwater level amplitudes in 400 wells with sufficient time series data. (e): 

Residual against ML predictions of drain fraction. Optimal values marked with red. 355 

3.2 Quality-assured observational dataset 

3.2.1 Selected groundwater level data 

Groundwater level measurements are available from 131,000 wells for the period 1990-2023 (Figure 2). The initial screening 

of the data showed that 389 monitoring wells fulfilled the criteria of at least 20 years of continuous data in the period 1990-

2023 and a measuring frequency of at least two months, while missing no more than 20% of the data period. These 389 wells 360 

were therefore considered potential validation sites and subsequently underwent the two-step quality assurance process.  

The 389 time series were analysed for correlation to climate time series of precipitation and potential evapotranspiration 

using the Pastas tool. For the wells with high R2, a large group of wells in the Copenhagen metropolitan area showed a 

significant increasing trend in water levels from 1990 to 2020, which is generally not seen elsewhere in the country and was 

not supported by the climate data. For this area, the changes in annual abstraction for all wellfields for the three decades 365 

were taken from Jupiter (as implemented in the DK-model) and used to analyse the trends and indicate that the increasing 

trend was most likely mainly caused by decreased abstractions.  

The final selection resulted in 53 time series of at least 20 years of continuous monthly data (a few based on bi-monthly 

interpolated), with less than 20% gaps and with distances of at least 500 m to abstraction wells larger than 50,000 m3/y and 

at least 1 km distances to abstractions above 1,000,000 m3/y. A list of the final dataset can be seen in the appendix in Table 370 
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A 1. The distinction between wells representing SGDI of the uppermost groundwater table and those representing the deeper 

groundwater levels was made based on their filter depth, using a threshold of 10 m (Henriksen et al., 2020). 

 

 

Figure 2: (a) Selected soil moisture and streamflow stations and (c): selected groundwater wells for drought analysis. (b): 375 
Topography of Denmark, with regions outlined in black. (d): Surface geology map of Denmark. 

3.2.2 Selected streamflow data 

The entire dataset of streamflow stations in Denmark in the period 1990-2023 consists of 579 stations measuring daily 

streamflow, where 305 were quality assured for the national model calibration, and of these, 153 have at least 98% data 
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coverage (Figure 2). These 153 stations are selected for the final validation analysis. A list of the final dataset is presented in 380 

the appendix in Table A 2. 

3.2.3 Selected soil moisture data 

For the five soil moisture stations, two have just one to two years of data, while the other three have measurements for 

around 10 years (Jensen and Refsgaard, 2018). Only the three longest datasets could be included in the evaluation (Figure 2). 

A list of the final dataset can be seen in the appendix in Table A 3. 385 

3.3 Evaluation of drought index time series: observations vs. DK-model simulations 

Each of the individual observation time series of indices (obs) is compared to the simulated values at the respective locations 

(sim@obs). This is done based on monthly statistics for all drought indices, also those that originally were calculated on a 

weekly basis (SDI, SMDI). Examples of time series at observation points for the four drought indices can be seen in Figure 

3, including the Pearson correlation coefficient r and the RMSE between the obs and sim@obs indices time series. 390 
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Figure 3. Examples of observed drought indices (red), compared to simulated values (black) at example CRN stations (a), 

streamflow stations (b, c) or wells (d, e). Winter periods (October to March) with grey background. Thresholds for moderate, 

severe, and extreme droughts (and wet conditions) are marked with vertical lines. 
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 395 

Figure 4 shows the cumulative distribution of correlation coefficients between obs and sim@obs across all observation 

points for each of the four indices. The distribution of the correlation coefficients is shown both for the entire time series, 

and separately for drought periods only (defined by a negative obs index value). Generally, performance is highest for the 

SDI, followed by SGDI and lastly SMDI. It can also be seen that the correlation coefficient r tends to be lower during 

drought periods. However, this does not necessarily reflect lower performance; rather it is related to the sensitivity of 400 

Pearson’s r to the range of occurring values, which is restricted to roughly half if only looking at drought periods. This is 

also confirmed in Table 2, which shows the median values of correlation coefficients across all time series. Values are 

provided across the entire period, and separately for dry and wet periods, which are defined by negative and positive obs 

index values, respectively. Here, the decrease of r occurs in both wet and dry periods, and thus is not indicative of a poorer 

performance of the model during drought. 405 

 

Figure 4. Performance distribution of the simulated hydrological drought indices for the observed points. Performance shown 

separately for the entire period and dry periods (observed drought index < 0). 

Table 2 summarizes the correlation coefficients to median values across all time series for each of the four indices. Values 

are provided across the entire period, and separate for dry and wet periods, defined by negative and positive obs index 410 

values, respectively. In the ‘DK statistics’ columns of Table 2, we also include correlation coefficients between aggregated 

drought index time series aggregated all observation locations (obs, sim@obs) or across all of the DK-model domain (sim). 

The overall performance at the individual time series level is good, with median Pearson’s r values above 0.75 across all 

conditions, and values around 0.6 during drought periods only. The only exception to this is the SMDI with r values mostly 

between 0.4 and 0.5. When looking at aggregated values across all of Denmark (DK statistics), the performance is even 415 
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better with r values close to or above 0.9 for SDI, SGDIshallow and SGDIdeep. Again, the only exception is SMDI which has 

lower correlations. 

Table 2. Overview of performance of drought indices for Denmark. Time series median: median of performance of the individual 

observed time series. *statistics for all three stations are reported here, in order Harrild, Voulund, Gludsted. DK statistics: obs vs 

sim@obs: Aggregated observed vs. aggregated simulated time series at points of observations. obs vs sim: Aggregated observed vs. 420 
aggregated simulated time series across all of Denmark. sim@obs vs sim: Aggregated simulated time series at points of 

observations vs across all of Denmark. 

 

Index 

 

No. 

locations 

Time series median DK statistics 

r 

(dry; wet) 

MAE 

(dry; wet) 

RMSE 

(dry; wet) 

obs vs 

sim@obs 

obs vs 

sim 

sim@obs 

vs sim 

SMDI 3 

0.49, 0.45, 0.53* 

(0.37, 0.40, 0.41; 

0.30, 0.34, 0.31) 

1.54, 1.52, 1.46* 

(1.69, 1.59, 1.59; 

1.40, 1.44, 1.33) 

2.04, 1.91, 1.96* 

(2.26, 1.96, 2.03; 

1.80, 1.86, 1.90) 

0.52 

(0.31; 

0.34) 

0.62 

(0.49; 

0.45) 

0.85 

(0.81; 

0.82) 

SDI 147 
0.79 

(0.62; 0.64) 

0.43 

(0.42; 0.43) 

0.57 

(0.55; 0.58) 

0.90 

(0.81; 

0.78) 

0.89 

(0.80; 

0.77) 

0.99 

(0.99; 

0.99) 

SGDIshallow 26 
0.75 

(0.63; 0.59) 

0.53 

(0.52; 0.50) 

0.69 

(0.68; 0.66) 

0.91 

(0.83; 

0.81) 

0.88 

(0.78; 

0.73) 

0.94 

(0.90; 

0.85) 

SGDIdeep 27 
0.76 

(0.56; 0.57) 

0.53 

(0.53; 0.55) 

0.68 

(0.60; 0.70) 

0.89 

(0.85; 

0.75) 

0.87 

(0.82; 

0.67) 

0.93 

(0.88; 

0.88) 

 

3.4 Accumulation period performance 

The SPI was calculated for different accumulation periods from 1 to 60 months, resulting in 60 time series from SPIacc1 to 425 

SPIacc60. For each of these time series, a correlation to the hydrological drought index was calculated. The accumulation 

period of the SPI that exhibits the highest correlation to the hydrological drought index indicates the dynamics of drought 

propagation from a precipitation deficit to a hydrological impact. This is done separately for the obs and sim@obs index time 

series for SMDI, SDI, and SGDI, and the resulting optimal SPI accumulation periods can be compared. If the model captures 

the development time and interconnectivity of the system satisfactorily, the optimal SPI accumulation time for obs and 430 

sim@obs should be similar. 
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Figure 5. Left column: Correlation coefficients of SPI accumulation periods against observed and simulated time series of SMDI 

(a,b), SDI (d,e), and SGDI (g,h), respectively. Wells representing SGDIdeep are marked with blue. Significant correlations (p<0.01) 

in red, remaining in grey. Right column: scatter plots of optimal accumulation period of SPI for correlation to SMDI at the 3 CRN 435 
stations (c), SDI at the 153 streamflow stations (f), and SGDI at the 53 groundwater wells (i), where wells representing SGDIdeep 

are marked with a blue outlines. Optimal SPI accumulation period for simulated time series along the y-axis, and for observed 

time series along the x-axis. 
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Figure 5 shows the results of this analysis. For each of the individual observation points, all 60 accumulation periods from 1 

to 60 months for SPIacc were tested. The resulting correlation coefficients are shown in the plots in the left column, 440 

separately for each of the obs and sim@obs time series. The SPI accumulation period yielding the highest correlation for obs 

and sim@obs, respectively (i.e. the peak of each curve in the left column plots), is then shown in scatter plots against each 

other in the right column, to evaluate whether obs and sim@obs indices reflect similar variability.  

For streamflow (SDI), the DK-model tends to delay drought propagation more than seen in observations: The majority of 

obs indices (86 of 153 stations) show the highest correlation of SDI to SPIacc1 or SPIacc2, whereas sim@obs indices are 445 

correlated to accumulation periods of up to 10 months. However, it has to be noted that the optimal accumulation periods do 

not seem to be well defined; see especially the obs indices, which correlations only slowly decay up to roughly SPIacc10. For 

groundwater (SGDI), the time series seem to be more grouped, with some having short accumulation time correlations (up to 

6 months), others longer (7 to 12 months), and some very long (above 12 months). For the obs indices, roughly one third of 

the 53 wells fall in each of these categories: 19 with up to 6 months, 15 with 7 to 12 months, and 19 with above 12 months. 450 

The distribution for sim@obs indices is very similar, with 18, 15, and 20 wells in the respective groups. Also, the typically 

longer observed accumulation periods for SGDIdeep are reproduced in sim@obs indices. Again, SMDI is the exception with 

the sim@obs indices having the highest correlation to SPIacc2, whereas the obs indices exhibit high correlations for SPIacc6 to 

SPIacc8, but also around 30 months. 

From the scatter plots, it can be confirmed that for SDI and SGDI, the optimal SPI accumulation periods broadly agree, with 455 

correlation coefficients between the optimal accumulation periods of obs and sim@obs of 0.49 and 0.66, respectively. This 

indicates that the DK-model can capture the major dynamics of drought propagation through the hydrological cycle, 

especially in the groundwater. The soil moisture performance is poorer, but the evaluation is also restricted by the limited 

amount of data. 

The different accumulation periods across the observations suggest there are regional differences in the response time to 460 

precipitation. Figure 6 shows the accumulation period of SPI which yields the highest correlation to each of the sim indices, 

mapped for all of Denmark in the top row. The bottom row shows what the highest correlation is (between sim index and 

SPIacc with the optimal accumulation period). Those correlations are generally high, with Pearson’s r values mostly above 

0.5, for SDI and SGDI often even above 0.75. 

Note that the drought propagation from SPI to hydrological drought is very similar to the drought propagation from SPEI to 465 

hydrological drought. To maintain clarity, we focused on propagation from SPI here; corresponding versions of Figure 5 and 

Figure 6 for SPEI can be found in the appendix. 
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Figure 6. Top row: Accumulation period of SPIacc yielding maximum correlation with the hydrological drought index per DK-

model q-point or grid. Bottom row: Maximum correlation between the hydrologic drought index and SPIacc of the respective 470 
accumulation period. Non-significant correlations (p>0.01) are masked grey (e.g. isolated areas for SDI and SGDIdeep in eastern 

Jutland) 

3.5 Drought performance across Denmark 

In the ‘DK statistics’ columns of Table 2, we include correlation coefficients between the combined drought index time 

series aggregated across all observation locations (obs), the same type of combined index for simulation time series 475 

(sim@obs), and one combined from the entire DK-model domain (sim). This sheds light on different aspects: First, the 

performance of the DK-model in simulating observed drought indices (obs vs sim@obs), on an aggregated level. Here, the 

performance is even better than for individual time series, with r values close to or above 0.9 for SDI, SGDIshallow, and 

SGDIdeep. Again, the only exception is SMDI, which is not as well correlated. 

Secondly, we can evaluate the performance of the observations concerning the entire domain (obs vs sim), which proves very 480 

similar to the performance when comparing to simulations from the actual locations of the observed time series (sim@obs). 

Similarly, the index calculated for simulation data at observation points is very strongly correlated to the behaviour of the 

entire domain (sim@obs vs sim). 

Aggregated drought indices across all of Denmark, as monthly means for the years 1990 to 2023, are shown in Figure 7. 

Generally, drought patterns between obs and sim@obs indices agree well, as already indicated by good correlation 485 
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performance values reported in Table 2 above. Notably, there is also good agreement between the indices based on the 

relatively few observation points (obs and sim@obs) and the simulated Denmark-wide drought index dynamics (sim) across 

all grids or streamflow points in the DK-model. Thus, the observation points are thought to be representative of the 

behaviour of the entire domain and can therefore be used to evaluate the general DK-model drought performance. 

 490 

Figure 7. Mean monthly drought indices for SMDI (a), SDI (b), SGDIshallow (c) and SGDIdeep (d). Each panel shows from left to 

right: Mean obs drought indices, mean sim@obs drought indices, mean sim drought indices across all of Denmark. 

Figure 8, top row, shows mean monthly drought indices for all of Denmark. Monthly SPI and SPEI values are largely 

uncorrelated in time, and soil moisture anomalies (SMDI) closely follow the anomalies in (net) precipitation. Effects of 

meteorological drought keep accumulating, though, when moving further through the hydrological cycle: SDI starts showing 495 

more continuous, more extended drought periods (or wet anomalies), and SGDIshallow and SGDIdeep react with even more 

delay, exhibiting longer continuous drought periods in line with results shown in Figure 5 and Figure 6. The middle and 
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bottom row then show the differences between two regions in Denmark, western Jutland and eastern Jutland (WJ and EJ in 

Figure 2, panel b), which are dominated by more sandy and clayey soils, respectively. In the more sandy western Jutland, 

drought signals propagate faster from meteorological to hydrological drought, especially visible in the deep groundwater 500 

(SGDIdeep). The more clayey eastern Jutland experiences slower drought propagation, particularly to the deep groundwater, 

as evidenced for example by a delay of few months in both the onset of and recovery from the SGDIdeep drought in 1996/97 

compared to West Jutland. 
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Figure 8. SPI, SPEI and sim drought indices across all of Denmark (top), western Jutland (middle) dominated by sandy soils, and 505 
eastern Jutland (bottom) dominated by clayey soils. 
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Figure 9 shows maps of drought indices for all of Denmark for May 2020. The first column shows SPIacc2 and SPIacc12, 

whereas the remaining maps show the four sim indices. The month of May 2020 is characterized by a soil moisture drought, 

with SMDI values mostly below -2 (very dry) and partly below -3 (extremely dry). Soil moisture is low as May and April 

2020 had been experiencing unusually low precipitation amounts, reflected in SPIacc2 values being mostly below normal 510 

values. The remainder of the hydrological cycle, however, remains in normal to wet conditions, as expressed by SDI, 

SGDIshallow, and SGDIdeep. This is due to their slower response to precipitation anomalies (compare Figure 5 and Figure 6), 

and the wet preceding conditions in the entire 12-month period prior to May 2020, as expressed by high (i.e. wet) SPIacc12 

values. 

 515 

Figure 9. sim drought indices from the DK-model for the example of May 2020, together with SPIacc2 and SPIacc12. 
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4 Discussion 

Generally, drought is defined as a below normal water availability, i.e. it is an anomaly of any of the variables such as 

precipitation, soil moisture, streamflow or groundwater levels (Tallaksen and Van Lanen, 2024). Drought is a phenomenon 

in space and time; it is often sustained over some period of time and will have some spatial extent. The complex nature of 520 

drought, particularly its propagation from meteorological anomalies to hydrological cycle anomalies, along with the 

interplay between different compartments of the hydrological cycle, is challenging to map, model, and predict. 

4.1 Can the DK-model be used to evaluate hydrological drought? 

The observational dataset for drought propagation compiled as part of this study was found to be robust for streamflow and 

groundwater. The quality assurance and selection criteria, such as excluding groundwater level observations significantly 525 

affected by abstractions, yielded a dataset suited for evaluating drought as a natural phenomenon, driven by climate 

variability instead of changing human interventions. Despite the inevitably incomplete spatial coverage, we could show that 

the 53 groundwater level and 153 streamflow time series are representative for Denmark-wide drought behaviour (compare 

Figure 7). The only exception is soil moisture, where currently we are limited to observation time series from only three 

stations. In the future, more long-term time series of relevant soil moisture observations will become available. 530 

The subsequent evaluation of the DK-model’s ability to simulate drought and its propagation through the hydrological cycle 

showed very good results – indicating that often, the DK-model actually is better at simulating relative deviations from 

normal conditions (expressed as drought indices) than absolute actual values (such as absolute groundwater levels). Not only 

are the overall dynamics of drought indices captured well by the DK-model (Figure 4 and Table 2), but importantly the lag 

times for propagation from meteorological drought to streamflow and groundwater drought are also captured (Figure 5). 535 

4.2 Groundwater sensitivity to summer and winter droughts 

Droughts are often perceived as more of a summer (or dry season) phenomenon. However, in particular groundwater 

droughts are controlled by groundwater recharge patterns instead of the meteorological variables directly. In humid 

temperate climates such as Denmark, groundwater recharge is concentrated during winter months (Hisdal and Tallaksen, 

2003; Liu et al., 2025a; Nygren et al., 2022). Hence, groundwater droughts show a lagged and seasonally dependent response 540 

to meteorological droughts. Specifically, for Danish conditions with winter being the main recharge season, meteorological 

droughts during the winter season have a comparably larger effect on groundwater drought development. This is illustrated 

in Figure 10, where the 34 years 1990 to 2023 are separated into two seasons, the winter half-year October to March and the 

summer half-year April to September. Then, they are further split into their meteorological drought condition across each 

winter or summer, defined by the SPIacc6 at the end of the respective 6-month period being below -0.5 (drought) or above 0.5 545 

(non-drought), resulting in 11 drought winters and 10 non-drought winters, as well as 12 drought summers and 10 non-

drought summers. Figure 10 then shows the developments of the SGDIdeep values throughout each of the drought or non-
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drought winters or summers, relative to the SGDIdeep value at the start of each season. The simulated sensitivity of SGDIdeep 

to a precipitation drought is higher during winter, with an average drop of -0.60 of SGDIdeep index value during a drought 

winter, panel (a), than during summer with an average drop of -0.28 during a drought summer, panel (b). This seasonal 550 

difference is similarly pronounced during non-drought, i.e. wet periods: The deep groundwater drought recovery during wet 

winters with an average increase of 0.63, panel (c), is larger than the drought recovery during wet summers with an average 

increase of only 0.29, panel (d). This often overlooked phenomenon of groundwater sensitivity to winter drought (or, more 

general, to drought during a recharge season) is modelled well by the DK-model, as the agreement between developments of 

sim SGDIdeep and obs SGDIdeep indicate. 555 

 

Figure 10. Seasonal dependency of deep groundwater (SGDIdeep) drought response to SPI droughts. (a): Years with drought 

winters (defined by SPIacc6 in March < -0.5) and their respective SGDIdeep development, normalized to the start of the season 

(10%/90% intervals shaded, mean as bold line). (b): Years with drought summers (SPIacc6 September < -0.5). (c) Years with non-

drought winters (SPIacc6 March > 0.5). (d) Years with non-drought summers (SPIacc6 September > 0.5). 560 

4.3 Patterns of drought propagation and controlling variables 

The resulting patterns of (simulated) drought propagation lag from meteorological drought to soil moisture, streamflow, 

shallow and deep groundwater, respectively, show significant spatial variability (Figure 6). A multitude of factors control 

those spatial patterns. The groundwater lag (SPIacc to SGDIshallow and SGDIdeep) is a particularly complex variable, as not only 

does geology vary from well to well, but also the depths to the aquifer or groundwater table, local groundwater gradients, 565 

etc. Some of these potentially controlling variables (see e.g., Bloomfield and Marchant, 2013; Li and Rodell, 2015; Schuler 

et al., 2022) can be directly derived from the geological setting, in our case from the national well database Jupiter. Others 
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require a hydrological model or some knowledge of groundwater dynamics. When looking at variables that can be readily 

derived from the well database, controlling variables for the drought response of groundwater in a well can be  

• filter depth,  570 

• observed groundwater depth,  

• overburden (the total thickness of material above the well’s aquifer),  

• accumulated clay thickness (as overburden, but only accumulating clayey material),  

• the number of shifts between clay and sand layers (as an expression of geological complexity) 

The latter variables are included because the Danish Quaternary deposits, in which most of our wells are placed, generally 575 

can be simplified to a series of alternating clay and sand layers. These five variables were extracted for the 53 groundwater 

wells. Table 3 summarizes correlations between the geology-derived controlling variables and the SGDI lag, separate for 

shallow and deep wells as well as combined across all 53 wells. 

Table 3.Correlation between well geologic variables and their experienced drought lag expressed as the SPI accumulation periods 

with the highest correlation to observed SGDI (compare Figure 5). Values are provided as Pearson’s r and Kendall’s tau, 580 
separately for shallow wells, deep wells, and all wells. Last row: Correlation between the drought lags based on observed and 

simulated SGDI. Best performance across each column marked bold. Non-significant (p>0.01) correlations in (brackets). 

   shallow wells deep wells all wells 

    r tau r tau r tau 

geologic 

variables 

filter depth 0.74 0.41 (0.34) (0.19) 0.54 0.48 

depth to observed gw 0.84 0.51 (0.29) (0.18) 0.49 0.47 

overburden (0.27) (0.20) (0.20) (0.06) 0.36 0.26 

accumulated clay thickness (0.17) (0.17) (0.00) (0.04) (0.24) (0.24) 

number of shifts (0.44) (0.06) (-0.10) (-0.01) (0.23) 0.37 

multi-variable linear regression 

with all geologic variables 0.90 0.47 0.49 0.25 0.62 0.53 

DK-Model SGDI sim 0.65 (0.35) 0.56 0.60 0.66 0.57 

 

Results show that the correlation between the individual geological variables and SGDI lag is larger for shallow wells than 

for deep wells. Significant correlations, however, can only be found for filter depth and depth to observed groundwater table 585 

for the shallow wells and across all wells, and for overburden across all wells. No significant correlations exist for the deep 

wells. The DK-model simulated SGDI lag, conversely, shows significant correlation for all well groups, and demonstrates 

the highest predictive ability across deep wells and across all wells. The DK-model also outperforms a multi-variable linear 

regression model based on the five geological variables. Only for the shallow wells, single geological variables such as the 

depth to the observed groundwater table or the multi-variable linear regression model show better correlations to the SGDI 590 

lag than the DK-model. This indicates that drought propagation to deeper groundwater becomes increasingly complex and is 

controlled by a multitude of variables, going beyond simple information about aquifer depth or lithological information. The 

DK-model is not only informed by geological information but also adequately captures resulting regional patterns of 

recharge and groundwater flow, thus representing local differences in drought propagation lag. This spatial diversity is also 
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apparent in the comparison of drought indices across the more sandy western Jutland and the more clay-dominated eastern 595 

Jutland in Figure 8, where western Jutland generally shows quicker dynamics than eastern Jutland (see Figure 2 for an 

outline of the regions and their surface geology). 

4.4 Approach and model limitations and uncertainties 

4.4.1 Calibration without drought focus 

In this study setup, we apply the DK-model to investigate drought, even though the model has been calibrated 600 

conventionally, without focusing on dry conditions, low flows, or other extreme values during the model’s calibration. Thus, 

drought-sensitive model parameters may have been omitted in the calibration (Melsen and Guse, 2019). The recognised 

inherent uncertainties in hydrological modelling are furthermore propagated to the calculation of the indices, and thus 

drought index evaluation is also subject to parameter uncertainties (Kim et al., 2024). However, the presented validation of 

drought indices showed that the model to a large degree successfully reproduces observed drought dynamics. This vows for 605 

the robustness of distributed, physically based models such as the DK-model in modelling extreme conditions, under the 

precondition that it is forced by adequate climate data. 

4.4.2 Modelling of soil moisture 

The accurate simulation of soil moisture, however, remains a challenge. Multiple factors play together: The validation data 

for soil moisture time series is extremely limited (3 stations across all of Denmark), and the DK-model in its current setup 610 

uses a simplified description of the unsaturated zone: The entire root zone is simulated as one lumped layer per grid, making 

it impossible to represent typical gradients of soil moisture throughout the root zone. Hence, we must expect a mismatch 

between simulated soil moisture dynamics and the observed ones, which only represent conditions in the uppermost 10-

75 cm of the soil. 

This limitation eventually will be overcome, by (i) extending the soil moisture observation dataset by additional CRN 615 

sensors throughout Denmark and (ii) the change to a more complex, layered description of the unsaturated zone in the DK-

model: In the currently ongoing update of the DK-model, a switch to the so-called gravity flow description of the unsaturated 

zone, is envisioned. 

4.4.3 Vegetation response to drought 

In its presented setup, the DK-model’s vegetation is parameterised based on a climatology of NDVI (Normalized Difference 620 

Vegetation Index) development throughout an average year. The NDVI data are derived from a merge of MODIS and 

Landsat satellite data (Soltani et al., 2021), and are subsequently used to derive the spatio-temporal distributions of leaf area 

index, root depth and crop coefficient used as inputs to the DK-model. This means that the parameterisation of the DK-

model reflects both spatial differences between, e.g. forests and croplands of different types, as well as seasonal dynamics in 
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vegetation development. However, due to limitations with high-quality cloud-free data across all years, only average 625 

monthly conditions are represented, meaning that individual years’ late or early onset of the vegetation period are not 

represented, nor is drought impact on vegetation. Future developments of the DK-model should aim to a dynamic 

representation of vegetation response. Either by incorporating actual year-to-year vegetation dynamics instead of a fixed 

climatology, or even by integrating a dynamic vegetation module in the hydrological model, which simulates vegetation 

parameters itself from dynamic climatic conditions, such as integrated in SWIM (Krysanova et al., 1998). 630 

4.5 Monitoring and forecasting potential 

The DK-model is an operational model (Liu et al., 2025b), running in real-time and forecast mode, and thereby offers 

potential for early warning and drought forecasting. Previous studies have noted that hydrological drought forecasts are 

generally more reliable than purely meteorological drought forecasts (Sutanto et al., 2020), particularly in systems with a 

strong groundwater component and long memory effects (Du et al., 2023; Pechlivanidis et al., 2020; Sutanto and Van Lanen, 635 

2022). In Denmark, observed and simulated drought propagation lags (see Figure 5 and Figure 6) indicate that it often takes 

several months for meteorological droughts to translate into hydrological droughts, especially for groundwater. This implies 

that seasonal hydrological drought forecasts may achieve skill, as drought conditions several months in the future are partly 

affected by the current hydrological state. Such predictive capability is particularly relevant in a Danish context, where 

groundwater is the primary source for agricultural irrigation. Improved forecasts of groundwater drought could therefore 640 

provide an essential basis for early warning systems and proactive water management, supporting farmers and water 

authorities in preparing for increased irrigation demands during dry periods. The variability of groundwater extraction for 

drinking water and irrigation, both inter- and intra-annual, however, remains challenging to predict and incorporate in 

models. 

Recent work has also shown that Machine Learning and deep learning models can predict hydrological drought indices (for 645 

example (Liu et al., 2024b; Wang et al., 2023; Zellou et al., 2023). Also in the context of the DK-model it could be shown 

that LSTM (Long short-term memory) models, applied as hybrid models alongside DK-model output to predict streamflow, 

outperform the conventional hydrological model (Liu et al., 2024a). Besides that, drought indices based on a combination of 

remote sensing products and variable-driven indices have also shown great potential for drought monitoring (Choi et al., 

2013). Such products can, for example, more accurately monitor vegetation response to drought stress. 650 

5 Conclusion 

This study evaluated the ability of the DK-model, a distributed integrated hydrological model, to simulate drought 

propagation across the hydrological cycle by comparing model-derived drought indices with observation-based ones. The 

evaluation included quality-assured groundwater levels, streamflow, and soil moisture observations. 
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The results demonstrate that the DK-model successfully reproduces observed drought anomalies, with high correlation 655 

between simulated and observed drought indices, particularly for streamflow (SDI) and groundwater levels (SGDI). The 

model effectively captures the expected lag times in drought propagation from meteorological drought (SPI/SPEI) to soil 

moisture, streamflow, and groundwater droughts, aligning well with known hydrogeological controls. It also captures 

important hydrologic phenomena such as the variable sensitivity of groundwater drought to meteorological drought during 

different seasons, where, in the case of Denmark, groundwater drought is most affected by precipitation during winter. 660 

However, discrepancies were observed for soil moisture droughts (SMDI), which likely stem from both limited 

observational data and the simplified representation of the unsaturated zone in the hydrological model. 

Spatial variations in drought propagation were well captured by the DK-model, with differences in drought response 

observed for example between sandy and clayey regions of Denmark. These variations underscore the importance of 

considering hydrogeological factors in drought assessments. The model also highlighted and reproduced the increased 665 

sensitivity of groundwater state to precipitation deficits during the winter months being the recharge season in Denmark. 

Moreover, it proved skilful in identifying drought accumulation periods, highlighting its potential for future drought risk 

assessment and forecasting. 

Despite the positive validation results, some limitations remain. Vegetation response to drought is not explicitly simulated, 

limiting the model’s applicability for ecosystem impact assessments. Furthermore, the soil moisture observational dataset 670 

must be extended, along with improvements to the unsaturated zone representation in the hydrological model. 

Overall, this study confirms that the DK-model is a valuable tool for assessing drought occurrence and propagation in 

Denmark. Given its operational setup, the model holds significant potential for real-time drought monitoring and early 

warning applications to support society’s planning of efficient remediation measures for example for urban water supply, 

agriculture and nature. Future improvements, including enhanced soil moisture modelling and integration of additional 675 

observational datasets, will further strengthen its applicability for drought risk management and climate adaptation strategies. 

Future research will also be geared towards establishing links between hydrological drought (indices) and drought impacts, 

such as crop yield reduction in agriculture, ecological consequences for streams, wetlands and other natural areas, or land 

subsidence due to clay shrinkage: Parts of Denmark have plastic clays in the subsoil which are prone to subsidence under dry 

conditions (similar to parts of France or Great Britain; see Barthelemy et al., 2024; Harrison et al., 2012). Drought 680 

monitoring and forecasting are important for Denmark to ensure food and water security, mitigate economic damage to 

agriculture, protect ecosystems and inform water management policies. Early warning systems can help to implement 

proactive measures such as farmers’ cropping decisions, can support water resources evaluations during the process of 

giving water abstraction permits, or can support mapping areas at risk of drought-induced subsidence and saltwater intrusion 

in coastal areas due to increased groundwater abstraction. 685 
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Appendices 

Appendix A: Selected observational data 

Table A 1: Selected groundwater level time series. Missing data based on availability of monthly values between start and end of 

the time series, across all data 1990 – 2023 (not limited to reference period 1991 – 2020 used for the selection). 

well ID X UTM32N Y UTM32N 
filter depth 

[m] 
start end 

% missing 

data 

182.317_1 711391 6219004 60.0 03-1990 11-2023 16.8% 

192.46_1 694215 6191908 22.0 02-1990 12-2023 51.1% 

197.166_1 648686 6177666 45.5 02-1990 09-2023 23.5% 

205.336_1 662281 6171321 44.0 06-1995 06-2023 13.4% 

207.307_1 701488 6162490 23.4 02-1990 12-2023 49.9% 

207.589_1 700954 6160447 33.7 02-1990 12-2023 49.9% 

212.322_1 693956 6144459 23.9 02-1990 12-2023 50.4% 

213.153_1 700323 6156288 11.7 01-1990 06-2020 37.4% 

217.474_1 691247 6136532 20.7 01-1990 12-2023 17.4% 

218.343_1 715326 6131020 17.7 02-1990 12-2023 52.3% 

230.241_1 648235 6083251 5.0 01-1991 12-2023 1% 

230.242_1 647613 6084828 4.7 01-1991 12-2023 0.8% 

230.243_1 646228 6083084 5.1 01-1991 12-2023 2.8% 

230.285_1 649123 6084094 5.3 04-1995 03-2021 0.6% 

230.286_1 648541 6085508 3.1 04-1995 12-2023 10.4% 

231.139_1 681703 6086852 53.8 08-2001 07-2023 18.6% 

237.72_1 665421 6074758 21.5 02-1990 07-2021 21.2% 

238.141_1 686148 6080235 35.2 09-2000 07-2021 10.4% 

135.1095_1 565212 6154292 53.0 06-1997 12-2023 17.9% 

165.335_1 610887 6110064 5.4 02-1990 12-2023 7.9% 

165.336_1 611004 6109654 4.1 02-1990 12-2023 8.4% 

165.337_1 611587 6110478 5.2 04-1990 12-2023 7.2% 

165.339_1 612206 6109794 5.3 02-1990 12-2023 7.4% 

165.34_1 610837 6108352 28.1 01-1990 12-2023 18.6% 

114.1647_1 496190 6176344 14.0 01-1996 12-2023 8.9% 

121.1095_2 468557 6160924 62.5 02-1995 08-2023 7.6% 

121.1095_8 468557 6160924 14.0 02-1995 12-2023 15.9% 

123.874_1 506103 6164952 100.5 01-1991 12-2023 16.9% 

132.1657_1 505026 6154153 7.5 12-1995 12-2023 17.5% 

149.398_1 485777 6108822 11.0 01-1990 08-2013 16.2% 

158.564_1 492782 6100963 8.4 01-1990 03-2014 6.9% 

159.327_1 500766 6106041 32.5 01-1990 12-2023 12.5% 

159.514_1 496559 6099933 12.0 01-1990 04-2010 18.4% 

159.925_1 505829 6101988 3.5 02-1990 12-2023 3.2% 

159.930_1 506882 6103127 3.5 02-1990 12-2023 6.4% 

159.935_1 507240 6102212 3.5 02-1990 02-2023 3.2% 

159.940_1 507313 6102488 3.5 02-1990 12-2023 5.7% 

159.950_1 509141 6102280 3.5 02-1990 12-2023 4.7% 

159.955_1 510979 6103840 3.5 02-1990 12-2023 7.1% 

159.960_1 509959 6103830 3.5 02-1990 12-2023 3.9% 

160.1009_1 515928 6095447 3.0 01-1990 03-2014 7.2% 

167.972_1 503256 6086046 3.0 01-1990 03-2014 17.2% 

168.844_1 513339 6092827 4.5 01-1990 03-2011 7.1% 

105.374_1 525476 6199846 20.0 01-1990 06-2023 23.4% 

75.1284_1 509576 6244568 8.9 01-1990 12-2023 27.2% 

75.714_1 506895 6238666 9.3 01-1990 12-2020 13.7% 
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76.853_1 517445 6231700 15.5 01-1990 12-2023 23.5% 

98.946_1 551739 6206365 5.1 01-1991 12-2022 13.3% 

98.948_1 552117 6204846 5.5 01-1991 12-2022 11.2% 

22.368_1 478860 6321500 41.0 02-1990 12-2023 23.8% 

30.494_1 483967 6312511 22.5 01-1990 05-2019 11.9% 

36.305_1 468827 6300647 33.0 02-1990 12-2023 37.6% 

48.999_1 532866 6289564 8.0 09-1991 12-2023 12.1% 

 690 

Table A 2: Selected streamflow stations. Missing data based on availability of daily values between start and end of the time series, 

across all data 1990 – 2023 (not limited to reference period 1991 – 2020 used for the selection). 

Station 

number 
X UTM32N Y UTM32N Start End % missing data 

Q2000005 589161.8 6370985 01-01-1990 31-12-2023 - 

Q3000002 566336.7 6381281 01-01-1990 31-12-2023 - 

Q3000003 567957.8 6368100 01-01-1990 31-12-2023 - 

Q5000003 586856 6341491 01-01-1990 31-12-2023 - 

Q6000001 550825.1 6347700 01-01-1990 31-12-2023 - 

Q7000003 555317.2 6335583 01-01-1990 31-12-2023 - 

Q8000001 581871.9 6329750 01-01-1990 31-12-2023 - 

Q9000001 487212.7 6319228 01-01-1990 31-12-2020 - 

Q9000015 483951.5 6320977 01-01-1990 31-12-2023 - 

Q10000009 534988.4 6305405 01-01-1990 31-12-2023 - 

Q11000011 461981.3 6299723 01-01-1990 31-12-2023 - 

Q11000016 468406.6 6305705 01-01-1990 31-12-2023 - 

Q13000011 531765.6 6289173 01-01-1990 31-12-2023 - 

Q13000019 517582.8 6297345 01-01-1990 31-12-2023 - 

Q14000016 566946.7 6311600 01-01-1990 31-12-2023 - 

Q14000022 562873.8 6307790 01-01-1990 31-12-2023 - 

Q15000002 567610.7 6281876 01-01-1990 31-12-2023 - 

Q15000032 575072.2 6295316 01-01-1990 31-12-2023 - 

Q15000073 561179.5 6283294 01-01-1990 31-12-2023 - 

Q16000023 470119.8 6259816 01-01-1990 31-12-2023 - 

Q16000024 468394.3 6266273 01-01-1990 31-12-2023 - 

Q16000030 502651.9 6277458 01-01-1990 31-12-2023 - 

Q17000004 530002 6280947 01-01-1990 31-12-2023 2.9% 

Q18000077 530280.6 6269978 01-01-1990 31-12-2023 - 

Q19000012 512640.2 6265359 01-01-1990 31-12-2023 - 

Q19000015 508615.6 6257402 01-01-1990 31-12-2023 2.9% 

Q20000024 498918.9 6263300 01-01-1990 31-12-2023 - 

Q20000026 500473 6251379 01-01-1990 31-12-2023 - 

Q21000030 554634.3 6218958 01-01-1990 31-12-2023 2.9% 

Q21000062 536146 6213202 01-01-1990 31-12-2023 - 

Q21000084 541573 6233043 01-01-1990 31-12-2023 - 

Q21000085 538229 6195279 01-01-1990 31-12-2023 - 

Q21000089 543393.6 6207508 01-01-1990 31-12-2023 - 

Q21000090 526744.1 6193717 01-01-1990 31-12-2023 - 

Q21000413 578523.6 6252880 01-01-1990 31-12-2023 - 

Q21000461 549010.3 6250170 01-01-1990 31-12-2023 - 

Q21000467 561144.1 6257258 01-01-1990 31-12-2023 - 

Q21000487 529023 6233796 01-01-1990 31-12-2023 - 

Q21000528 529131 6221429 01-01-1990 31-12-2023 - 

Q21000548 555491.3 6247591 01-01-1990 31-12-2023 1.7% 

Q21000665 551249.9 6217917 01-01-1990 31-12-2023 - 

Q21000712 532740.5 6235674 01-01-1990 31-12-2023 - 
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Station 

number 
X UTM32N Y UTM32N Start End % missing data 

Q21000759 551257.9 6218280 01-01-1990 31-12-2023 - 

Q21000794 533986.6 6254740 01-01-1990 31-12-2023 - 

Q21000803 531221.2 6235168 01-01-1990 31-12-2023 - 

Q22000043 472880.5 6248224 01-01-1990 31-12-2023 5.9% 

Q22000048 468256.5 6243438 01-01-1990 31-12-2023 - 

Q22000050 463240.5 6242354 01-01-1990 31-12-2023 - 

Q22000053 502901.5 6229144 01-01-1990 31-12-2023 - 

Q22000062 459529.4 6243554 01-01-1990 31-12-2023 - 

Q25000020 514240.1 6206177 01-01-1990 31-12-2023 - 

Q25000021 511723.8 6195417 01-01-1990 31-12-2023 - 

Q25000075 456667.9 6221596 01-01-1990 31-12-2023 - 

Q25000078 474400.2 6197740 01-01-1990 31-12-2023 - 

Q25000082 481729.5 6201324 01-01-1990 31-12-2023 - 

Q25000086 454396.9 6228785 01-01-1990 31-12-2023 - 

Q26000080 574364.8 6224099 01-01-1990 31-12-2023 - 

Q26000082 564656.6 6221583 01-01-1990 31-12-2023 - 

Q26000096 564304.9 6223492 01-01-1990 31-12-2023 - 

Q27000004 552527.5 6194783 01-01-1990 31-12-2023 - 

Q27000045 552791.2 6192996 01-01-1990 31-12-2023 - 

Q28000001 547191.5 6192162 01-01-1990 31-12-2023 - 

Q29000009 545677.1 6174075 01-01-1990 31-12-2023 - 

Q31000027 471082.3 6166434 01-01-1990 31-12-2023 - 

Q31000032 470682.8 6167754 01-01-1990 31-12-2023 - 

Q32000001 527667.3 6173011 01-01-1990 31-12-2023 - 

Q32000004 532822.2 6179194 01-01-1990 31-12-2023 - 

Q32000013 519219.7 6174555 01-01-1990 31-12-2023 - 

Q32000022 531147.9 6172434 01-01-1990 31-12-2023 - 

Q33000004 540896.2 6160615 01-01-1990 31-12-2023 - 

Q34000002 525384 6156676 01-01-1990 31-12-2023 - 

Q34000003 523876.9 6150631 01-01-1990 31-12-2023 - 

Q34000019 527579 6150125 01-01-1990 31-12-2023 - 

Q35000006 479056 6149077 01-01-1990 31-12-2023 - 

Q35000010 480791.1 6150064 01-01-1990 31-12-2023 - 

Q36000008 489537.9 6140711 01-01-1990 31-12-2023 - 

Q36000009 481154.5 6138719 01-01-1990 31-12-2023 - 

Q37000011 538465.6 6146063 01-01-1990 31-12-2023 - 

Q37000038 531510.6 6134183 01-01-1990 31-12-2023 - 

Q38000020 516099.6 6137311 01-01-1990 31-12-2023 - 

Q38000023 490003.6 6135526 01-01-1990 31-12-2023 - 

Q38000024 492188.5 6130695 01-01-1990 31-12-2023 - 

Q39000001 484366 6116426 01-01-1990 31-12-2023 - 

Q39000002 483013.2 6121271 01-01-1990 31-12-2023 - 

Q41000012 528629.5 6107143 01-01-1990 31-12-2023 - 

Q41000014 539602.5 6087906 01-01-1990 31-12-2023 - 

Q41000016 559627.7 6089407 01-01-1990 31-12-2023 - 

Q42000014 529526.9 6089058 01-01-1990 31-12-2023 - 

Q42000016 495547.5 6086554 01-01-1990 31-12-2023 - 

Q42000020 529001 6088239 01-01-1990 31-12-2023 - 

Q42000021 495520.1 6089644 01-01-1990 31-12-2023 - 

Q42000022 528105.5 6087912 01-01-1990 31-12-2023 - 

Q42000074 505946.2 6100068 01-01-1990 31-12-2023 - 

Q43000001 562619.1 6150437 01-01-1990 31-12-2023 - 

Q44000021 605875.1 6134734 01-01-1990 31-12-2023 - 

Q45000001 589886.3 6140137 01-01-1990 31-12-2023 - 
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Station 

number 
X UTM32N Y UTM32N Start End % missing data 

Q45000002 589845.5 6140009 01-01-1990 31-12-2023 - 

Q45000003 584160.1 6132328 01-01-1990 31-12-2023 - 

Q45000004 578166.8 6123842 01-01-1990 31-12-2023 - 

Q45000005 581835.5 6143647 01-01-1990 31-12-2023 0.7% 

Q45000043 592368.1 6139210 01-01-1990 31-12-2023 - 

Q45000045 584459.8 6113884 01-01-1990 31-12-2023 - 

Q45000058 596607.9 6143998 01-01-1990 31-12-2023 - 

Q46000001 558744.4 6136648 01-01-1990 31-12-2023 - 

Q46000017 570824.9 6118829 01-01-1990 31-12-2023 - 

Q47000001 590462.7 6106460 01-01-1990 31-12-2023 - 

Q47000036 610424.5 6106412 01-01-1990 31-12-2023 - 

Q47000037 613764.5 6116052 01-01-1990 31-12-2023 - 

Q48000004 709875.6 6221615 01-01-1990 31-12-2022 - 

Q48000007 696263.4 6219962 01-01-1990 31-12-2023 - 

Q48000010 705370.8 6223930 01-01-1990 31-12-2022 - 

Q49000054 689223.5 6207584 01-01-1990 31-12-2022 - 

Q49000057 692630.4 6203133 01-01-1990 31-12-2021 3.1% 

Q49000061 699064.7 6204790 01-01-1990 31-12-2023 - 

Q49000066 703650.4 6208138 01-01-1990 31-12-2023 - 

Q50000051 722477.1 6190319 01-01-1990 31-12-2023 - 

Q50000056 717655.5 6203890 01-01-1990 31-12-2023 - 

Q50000057 718236 6203581 01-01-1990 31-12-2022 0% 

Q51000020 664932.6 6183736 01-01-1990 31-12-2022 - 

Q51000024 662560.1 6175730 01-01-1990 31-12-2023 - 

Q52000020 704951.3 6178003 01-01-1990 31-12-2023 - 

Q52000025 695440.3 6193605 01-01-1990 31-12-2023 - 

Q52000029 696997.3 6199419 01-01-1990 31-12-2022 - 

Q52000039 702527.7 6181968 01-01-1990 31-12-2023 - 

Q52000063 696916.4 6180156 01-01-1990 31-12-2023 - 

Q52000068 687663.6 6168515 01-01-1990 31-12-2023 - 

Q52000198 703851.4 6197722 01-01-1990 31-12-2023 - 

Q53000010 708821.2 6167693 01-01-1990 31-12-2023 - 

Q53000011 712400.8 6168919 01-01-1990 31-12-2022 - 

Q53000028 718736.8 6173782 01-01-1991 31-12-2022 - 

Q55000015 642677 6160255 01-01-1990 31-12-2021 - 

Q55000017 666588.7 6161009 01-01-1990 31-12-2023 - 

Q55000018 650267 6165577 01-01-1990 31-12-2023 - 

Q56000002 646905.7 6132704 01-01-1990 31-12-2023 - 

Q56000006 649558 6136091 01-01-1990 31-12-2022 3% 

Q56000007 650723.2 6150182 01-01-1990 31-12-2023 - 

Q57000044 665249.1 6134020 01-01-1990 31-12-2023 5.9% 

Q57000050 667710.6 6141007 01-01-1990 31-12-2023 2.9% 

Q57000052 683955 6119393 01-01-1990 31-12-2023 2.9% 

Q58000047 696142.9 6151420 01-01-1990 31-12-2023 - 

Q59000006 703224.5 6136667 01-01-1990 31-12-2023 - 

Q60000031 698243.8 6102754 01-01-1990 31-12-2023 - 

Q60000035 699055.7 6123001 01-01-1990 31-12-2023 0.1% 

Q60000036 693478.1 6111254 01-01-1990 31-12-2023 - 

Q62000012 645325.1 6081855 01-01-1990 31-12-2023 - 

Q62000015 637918.7 6085652 01-01-1990 31-12-2023 18.5% 

Q62000017 638281.2 6075720 01-01-1990 31-12-2021 - 

Q62000022 646300.9 6080955 01-01-1990 31-12-2021 - 

Q64000025 658695.6 6078297 01-01-1990 31-12-2022 0.6% 

Q66000014 863801.4 6126707 01-01-1990 31-12-2023 - 
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Station 

number 
X UTM32N Y UTM32N Start End % missing data 

Q67000017 883256.1 6111748 01-01-1990 31-12-2023 - 

Q67000018 880927.9 6132549 01-01-1990 31-12-2023 - 

 

Table A 3: Soil moisture measurement based on the CRN stations. Missing data based on availability of daily values between start 

and end of the time series (not limited to reference period 1991 – 2020 used for the selection). 695 

Station name X UTM32N Y UTM32N Start End % missing data 

Harrild (Heath) 509851 6208935 28-03-2014 09-05-2023 18% 

Voulund (Field) 510004 6210234 07-02-2013 09-05-2023 9% 

Gludsted (Forest) 520872 6210582 08-02-2013 15-11-2021 31% 
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Appendix B: Accumulation periods using SPEI instead SPI 

 

Figure B 1: (equivalent to Fig. 5, but using SPEI instead of SPI) Left column: Correlation coefficients of SPEI accumulation 

periods against observed and simulated time series of SMDI (a,b), SDI (d,e) and SGDI (g,h), respectively. Wells representing 700 
SGDIdeep are marked with blue. Significant correlations (p<0.01) in red, remaining in grey. Right column: scatter plots of optimal 

accumulation period of SPEI for correlation to SMDI at the 3 CRN stations (c), SDI at the 153 streamflow stations (f), and SGDI 

at the 53 groundwater wells (i), where wells representing SGDIdeep are marked with a blue outlines. Optimal SPEI accumulation 

period for simulated time series along y-axis, and for observed time series along x-axis. 
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 705 

Figure B 2: (equivalent to Figure 6, but using SPEI instead of SPI) Top row: Accumulation period of SPEIacc yielding maximum 

correlation with hydrological drought index per DK-model q-point or grid. Bottom row: Maximum correlation between 

hydrologic drought index and SPEIacc of respective accumulation period. Non-significant correlations (p>0.01) are masked grey 

(e.g. isolated areas for SDI and SGDIdeep in eastern Jutland) 
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 710 

Figure B 3: (equivalent to Figure 6, but using only data during droughts defined by SPI < 0) Top row: Accumulation period of 

SPIacc yielding maximum correlation with hydrological drought index per DK-model q-point or grid. Bottom row: Maximum 

correlation between hydrologic drought index and SPIacc of respective accumulation period. Non-significant correlations (p>0.01) 

are masked grey (e.g. isolated areas for SDI and SGDIdeep in eastern Jutland) 
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 715 

Figure B 4: (equivalent to Figure 6, but using SPEI instead of SPI and only during droughts defined by SPEI < 0) Top row: 

Accumulation period of SPEIacc yielding maximum correlation with hydrological drought index per DK-model q-point or grid. 

Bottom row: Maximum correlation between hydrologic drought index and SPEIacc of respective accumulation period. Non-

significant correlations (p>0.01) are masked grey (e.g. isolated areas for SDI and SGDIdeep in eastern Jutland) 
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