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Abstract. Droughts are gaining attention in temperate regions, as underscored by the severe European droughts of 2018 and
2022. In Denmark, these events caused widespread agricultural losses, degradation of surface waters and ecosystems, and
infrastructure damage from soil subsidence. Although historical drought trends in northern Europe are uncertain, climate
projections indicate more frequent and intense droughts. Hydrological drought propagation from precipitation deficit to soil
moisture, streamflow and groundwater is shaped by topography, soil, vegetation, hydrogeology, and human activity. While
streamflow and soil moisture droughts have been widely studied, groundwater droughts remain underexplored despite their
importance for baseflow and water supply. In Denmark, where groundwater and surface water are closely linked, and
groundwater resources are heavily relied upon, an integrated approach to drought assessment is essential. In this study, we
compile a high-quality observational dataset, including soil moisture, streamflow, and groundwater levels, to systematically
evaluate model-simulated drought and its propagation throughout all hydrological compartments by the National
Hydrological Model of Denmark (DK-model), an integrated, distributed hydrological model. The DK-model’s nationwide
coverage, combined with Denmark’s dense hydrological monitoring network, enables a detailed assessment of the model’s
ability to simulate drought events. This includes model skill in reproducing observed anomalies, drought response times, and
propagation dynamics. The DK-model was found to reproduce drought indices very well for groundwater levels and
streamflow compared to respective observational time series. For soil moisture, model performance was lower. Drought
propagation, evaluated by accumulation periods for precipitation with optimal correlation to hydrological drought, is
likewise reproduced well for streamflow and groundwater. In contrast, the model struggles with the soil moisture signal. By
evaluating the DK-model’s performance in simulating drought propagation, this study contributes to improving large-scale
hydrological drought modelling and enhances the understanding of the strengths and weaknesses of this approach, while
increasing its potential for drought analysis, monitoring, and forecasting. The findings provide critical insights into drought

dynamics in temperate regions and support sustainable water resource management in a changing climate.
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1 Introduction

In recent years, droughts have received increasing attention due to numerous major drought events worldwide. Freshwater
changes in the hydrological cycle over land have been identified as one of the nine planetary boundaries that have been
transgressed (Richardson et al., 2023). This issue is closely linked to climate change and the risk of severe impacts from
prolonged droughts (Gleeson et al., 2020), as well as tipping points, such as the dieback of the Amazon rainforest (Flores et
al., 2024). In Europe, several major droughts have been registered in recent decades (Hanel et al., 2018; Rossi et al., 2023;
Spinoni et al., 2018), with the 2018 and 2022 events among the most severe (Bakke et al., 2020; Wanders et al., 2024;
Zscheischler and Fischer, 2020).

Historically, drought research has focused on warmer and drier regions (Hoerling et al., 2012). However, recent European
drought events have demonstrated that temperate northern climates are also vulnerable (Teutschbein et al., 2022). In
Denmark, the 2018 and 2022 summer droughts resulted in extensive agricultural losses, estimated to 4.1 billion DKK for
2018 (Schou, 2019). Besides that, the droughts caused surface water degradation, and infrastructural damage due to soil
subsidence (Danmarks Statistik, 2018; Henriksen et al., 2022; Jensbye et al., 2025). While trends in historical drought
occurrence remain ambiguous in northern Europe (Bordi et al., 2009; Gudmundsson and Seneviratne, 2015; Hisdal et al.,
2001; Karlsson et al., 2014), climate change studies suggest that drought frequency and severity may increase in the future
(Chan et al., 2021; Haberli et al., 2025; Rossi et al., 2023; Spinoni et al., 2018). Such developments pose growing challenges
for water resilience, both in Denmark (Jgrgensen et al., 2024) and in European cities in general (Hinshy et al., 2024;
Quevauviller et al., 2024) as well as for agricultural productivity and ecosystems (Olesen and Bindi, 2002; Rasmussen et al.,
2012; Soller et al., 2024).

When meteorological drought caused by precipitation deficits persists, its effects propagate through the hydrological cycle
(Van Loon, 2015). Impacts typically first appear in the root zone (soil moisture or agricultural drought), followed by changes
in surface waters and shallow groundwater, and finally in deeper aquifers (hydrological drought). Deeper groundwater
systems respond slowly and are mostly sensitive to precipitation deficits during recharge season. Consequently, groundwater
can act as a drought buffer (Hellwig et al., 2022; Taylor et al., 2013), and strongly influence streamflow droughts (Van
Lanen et al., 2013). In Denmark, where surface water and groundwater are closely coupled (Sechu et al., 2022), and
groundwater supplies nearly all drinking water (Jgrgensen and Stockmarr, 2009), winter precipitation deficits are of concern
as they can lead to groundwater droughts.

Drought propagation depends on numerous factors including topography (Brakkee et al., 2022), soil type (Barker et al.,
2016), vegetation, hydrogeology (Lorenzo-Lacruz et al., 2013), system interconnections (Sutanto and Van Lanen, 2022), and
human influences (Haas and Birk, 2017; Yuan et al., 2017). Thus, drought propagation is highly variable in space (Barker et
al., 2016; Sutanto et al., 2024), requiring diverse data and, ideally, integrated hydrological modelling frameworks.

Several approaches exist to quantify and evaluate drought propagation, such as correlation analysis between meteorological

drought indices calculated for different accumulation periods (often the Standardized Precipitation Index, SPI), and different
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hydrological drought indices (Barker et al., 2016; Odongo et al., 2023), lag time analyses between compartments (timing of
onset, e.g. Van Loon, 2015), and these are often identified using autocorrelation between indices (Bloomfield and Marchant,
2013). More complex methods, for example based on run theory (Ho et al., 2021) or duration ratios in the different
compartments of the hydrometeorological cycle (Odongo et al., 2023), have been suggested.

Data sources include in-situ observations of precipitation, streamflow (Kumar et al., 2016) or groundwater levels
(Bloomfield and Marchant, 2013), remote sensing products of climate variables or soil moisture (Ho et al., 2021), or blended
data products such as reanalysis (Odongo et al., 2023), and model outputs from hydrological models of various nature, such
as semi-distributed rainfall-runoff models or fully-distributed integrated models (e.g. von Gunten et al., 2016; Sutanto et al.,
2024).

While many studies have explored drought propagation from precipitation to streamflow (e.g., Barker et al., 2016; Meresa et
al., 2023; Wang et al., 2021), and from precipitation to soil moisture (e.g., Ho et al., 2021; Odongo et al., 2023), far fewer
have explicitly addressed propagation into groundwater or through the entire hydrological cycle (e.g., Bloomfield et al.,
2015; Kumar et al., 2016; Soleimani Motlagh et al., 2017; Sutanto et al., 2024). This is despite recognition of the crucial role
of groundwater in drought propagation and mitigation (e.g., Hellwig et al., 2022; Odongo et al., 2023), combined with the
complexity of drought propagation to groundwater preventing simple projections from meteorological to groundwater
drought (Christelis et al., 2024). This scarcity largely reflects limited data availability across all hydrological compartments,
in particular groundwater (e.g., EI Bouazzaoui et al., 2024; Sutanto et al., 2024), especially at large scale.

To cover these limitations, hydrological models are valuable tools for providing complete datasets across compartments, as
demonstrated in studies like Kumar et al. (2022) and Sutanto et al. (2024), and more rarely with fully integrated models (von
Gunten et al., 2016). However, explicit validation of a model’s ability to reproduce drought anomalies and propagation
across the entire hydrological cycle remains rare. Even comprehensive projects such as WATCH (Van Loon et al., 2011) or
WaterMIP (Van Loon et al., 2012) mostly perform qualitative assessments of drought propagation, and are often limited to
streamflow. Other examples of qualitative drought evaluations include those by Tallaksen et al. (2009). Other studies have
validated drought performance for individual compartments — for example streamflow across Europe or European
catchments (Forzieri et al., 2014; Gudmundsson et al., 2012; Prudhomme et al., 2011; Tallaksen and Stahl, 2014), or across
catchments worldwide (Kumar et al., 2022). For soil moisture drought, a mHM model for Germany used as part of the
German Drought Monitor, was evaluated for its simulation of soil moisture dynamics and anomalies against observations
from various sources (Boeing et al., 2022). Few studies have explicitly validated simulated groundwater droughts. Li and
Rodell (2015) assessed the performance of the Catchment Land Surface Model for simulating a groundwater drought index,
finding moderate correlations with observed groundwater levels across U.S. states. Even fewer studies perform multi-
compartment evaluation, such as Hanel et al. (2018), who validated the mHM model across Europe using streamflow,
evapotranspiration, and total water storage anomalies derived from GRACE satellite data. Another notable study is the
validation of groundwater and baseflow drought using a large-scale MODFLOW model covering all of Germany, against an

extensive dataset of long-term groundwater head and streamflow observations (Hellwig et al., 2020).
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This study addresses the gap in the literature regarding the validation of integrated hydrological models’ ability to simulate
drought indices across multiple compartments of the hydrological cycle.
The National Hydrological Model of Denmark (DK-model) is an integrated, distributed model that represents all major
compartments of the hydrological cycle. Given Denmark’s diverse geological and soil type setting, comprised of glacial
unconsolidated deposits from Weichsel and Saale and fractured chalk and limestone, substantial regional variations in
drought response are expected (Seidenfaden et al., 2022a). Combined with the comparably large availability of hydrological
data in Denmark, this provides a unique opportunity to evaluate multiple drought types and their interconnections across the
hydrological cycle. Validating a hydrological model’s ability to capture drought propagation and occurrences demands a
rigorous evaluation of its capability to simulate drought events accurately. This is especially true as conventional
hydrological model calibration and validation focus on statistics favouring high flows, for example Kling-Gupta efficiency
(KGE) and Nash-Sutcliffe efficiency (NSE) (Teegavarapu et al., 2022), without direct evaluation of drought performance,
even if low flow performance measures are included in calibration routines (e.g., Garcia et al., 2017; Pfannerstill et al.,
2014). To address this, we compile and apply a comprehensive, quality-assured observational dataset suited for drought
analysis covering soil moisture, streamflow, and groundwater.
The present study aims to assess whether the integrated, physically based DK-model can accurately reproduce drought
dynamics and propagation from meteorological drought to soil moisture, streamflow, and groundwater by:

e Compiling a comprehensive, quality-assured observational dataset for drought evaluation across soil moisture,

streamflow, and groundwater
e Assessing the DK-model’s ability to simulate drought indices and propagation dynamics across the hydrological
cycle.

e Evaluating the model’s potential for drought analysis, monitoring, and forecasting

2 Data and methods
2.1 Study area: Denmark

Denmark is located in northern Europe, covering approximately 43,000 km2. The country has a temperate oceanic climate
(Cfb, Kdppen—Geiger classification) characterized by mild winters and warm summers, with a mean annual temperature of
about 8-9 °C and a mean annual precipitation ranging between roughly 600 mm and 1000 mm, with a general east-west
gradient and highest values in the west. Precipitation is relatively evenly distributed throughout the year (DMI, 2025).

The topography is low-lying, with elevations generally below 100 m a.s.l., and the landscape was shaped during the last
glaciations, resulting in heterogeneous glacial deposits that in some parts cover shallow chalk and limestone aquifers locally
affected by glaciotectonics (Schack Pedersen et al., 2018) and karstification (Nilsson et al., 2023). Quaternary glacial tills,
meltwater sands, and clays dominate the near-surface geology in the eastern parts of Denmark, while western parts of
Denmark and deeper layers comprise Neogene, Paleogene, and Cretaceous marine sediments. This results in a complex

4
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hydrogeological setting with interbedded aquifers and aquitards of varying permeability which are locally intersected by
buried valleys primarily developed under ice sheets (Sandersen and Jgrgensen, 2017). This gives rise to complex
groundwater flow systems, varying groundwater age and travel time distributions both in shallow and deep aquifers (Hinsby
et al., 2001; Troldborg et al., 2008), consequently affecting vulnerability of aquifers to droughts.

Denmark’s hydrology is also strongly influenced by its land use. Almost two-thirds of the land area is agricultural, and
artificial drainage systems are widespread, also in forests, to improve soil trafficability and vegetation growth (Olesen,
2009). Groundwater plays a central role in the Danish water cycle: Nearly all water supply (drinking water, industrial water
use, irrigation in agriculture) is abstracted from groundwater resources (Henriksen et al., 2024). Moreover, there exist
65,000 km of water courses in Denmark, most of them only a few metres wide (Danish Agricultural Agency, 2025), with
close interaction between surface and groundwater (Duque et al., 2023). Similarly, there exist 120,000 lakes with an area
above 100 m2. The uppermost groundwater table is found close to the surface, within a few metres below ground, for most of
the country (Koch et al., 2021). Consequently, drought impacts in Denmark are not only reflected in meteorological deficits
but also propagate through soil moisture and groundwater storage, potentially affecting streamflow and groundwater

availability on seasonal to multi-annual timescales.

2.2 The National Hydrological Model (DK-model)

The DK-model is a distributed, integrated hydrological model covering all of Denmark, except for some smaller islands, at
500 m or 100 m horizontal resolution (Henriksen et al., 2003; Hgjberg et al., 2013; Stisen et al., 2019b). It has been under
constant development over the last three decades (Henriksen, 2001), driven by projects for public authorities and research
initiatives. It is being used as the basis for water resource assessments (Henriksen et al., 2024), climate change impact
assessments (Schneider et al., 2022c; Seidenfaden et al., 2022b), hydrological monitoring and early warning (Henriksen et
al., 2018), nutrient transport studies (Andersen et al., 2025), or estimation of groundwater age and travel time (Musy et al.,
2023).

2.2.1 MIKE SHE model code

The DK-model is set up in the MIKE SHE model code (Abbott et al., 1986; DHI, 2024). It couples a 3D finite difference
representation of groundwater flow with a 2D description of overland flow, a 1D representation of root zone processes, and a
simple routing of streamflow. It allows the inclusion of anthropogenic influence on the water cycle. In the DK-model, the
unsaturated zone is described using the so-called 2-layer-method of MIKE SHE, which lumps the root zone into a single

layer.

2.2.2 Model input and forcing

In this study, the DK-model with a 500 m horizontal resolution is used. It is a transient model driven with gridded daily

climate forcing products provided by the Danish Meteorological Institute: precipitation at 10 km (Scharling, 1999b) and
5
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temperature and potential evapotranspiration at 20 km resolution (Scharling, 1999a). Measured precipitation was bias-
corrected for wind undercatch (Stisen et al., 2011). The saturated zone is described by a layered model, with unit-based
parameterisation. Its basis is a hydrogeological model of Denmark (Arvidsen et al., 2020), simplified to 9 to 11
computational layers of varying thickness. Vegetation-related parameters such as root depth are parameterised based on a
MODIS and Landsat-derived climatology of vegetation development in combination with soil type (Soltani et al., 2021).
Further soil parameters are distributed according to a Danish map of soil types (Bgrgesen et al., 2009). Anthropogenic
impacts are included: Groundwater abstractions from all waterworks are implemented based on data from the national
borehole database Jupiter (National well database JUPITER). Irrigation in agriculture is included based on data on irrigation
well location and water use permits, and applied dynamically according to simulated crop water demand. Irrigation is
concentrated on the more sandy soils in the western parts of the country (Liu et al., 2025a). Artificial drainage is represented
using a conceptual formula in MIKE SHE parameterised by a drain depth and time constant. These variables are distributed

according to land use (Schneider et al., 2022b).

2.2.3 Model calibration

The nature of the DK-model, as an integrated hydrological model, together with a requirement for adequate representation of
various aspects of the hydrological cycle based on its diverse applications, and its large-scale distributed nature with high
computational demand, necessitates an efficient multi-objective optimization procedure. We chose the Pareto Archived
Dynamically Dimensioned Search (PADDS) algorithm (Asadzadeh and Tolson, 2013), as implemented in the OSTRICH
package (Matott, 2017). In the optimization, various objective functions are included: Groundwater heads from roughly
39,000 wells across Denmark, using a CRPS-based objective function (Schneider et al., 2022a), seasonal groundwater level
amplitudes from 400 monitoring wells, and streamflow performance at 305 streamflow stations based on the KGE (Gupta et
al., 2009). Moreover, acknowledging its significant impact on hydrology in Denmark, the artificial drain fraction was
included as a calibration target (Schneider et al., 2025). The calibration period was the years 2000 to 2010, while the model
was later run for drought index validation for the period 1990 to 2023.

2.2.4 A fixed-abstraction version of the DK-model

To simulate drought and its propagation through the hydrological cycle, where drought is defined as a natural phenomenon,
and not an anomaly or water scarcity caused by human activities (see definition in Van Loon and Van Lanen, 2013), it was
necessary to run the DK-model in a forward-run with fixed abstraction rates. Usually, groundwater abstractions are
incorporated in the DK-model with annually changing pumping amounts as reported to the Jupiter database. If these variable
abstraction amounts were applied, the drought signal would be locally dominated by changes in abstraction patterns and a
general reduction in water consumption since the 1990s (Thorling et al., 2024), which would disturb the drought analysis.
Therefore, in this version of the DK-model, the yearly varying amounts were changed to constant average abstractions across

the reference period. Similarly, wastewater outflows from sewage plants into streams are used as yearly varying amounts in
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calibration and the original DK-model; but for the drought analysis version, an average across the reference period was used.

This choice also impacted the selection of observational time series for model validation, as will be described below.

2.3 Quality assuring the observational dataset

The observational data for validating the simulated drought indices consists of three independent datasets: groundwater
levels, streamflow, and soil moisture. Ideally, these data should cover the entire reference period, be continuous with at least
monthly data, and have a wide spatial coverage. In addition, they should be minimally affected by direct anthropogenic
factors such as groundwater abstraction, and therefore fluctuations in the observed time series should mainly be attributed to
climatic variations. However, for some of the variables, the data temporal coverage requirements must be loosened due to
data scarcity. Below, the selection process to identify data suitable for evaluating the drought indices simulated by the DK-

model is described for each data source.

2.3.1 Groundwater levels

The Jupiter database contains all reported geological profiles and groundwater level monitoring data in Denmark, including
well lithologies. However, most boreholes with water level data contain only a single or a few water level measurements
over time, and thus are not suited for the evaluation of drought indices. The database was screened for potential groundwater
level data by selecting wells with at least 20 years of data in the period 1990 to 2023, and at least bi-monthly observation
frequency, and fewer than 20% of months with missing data during the observation period. All time series passing the initial
screening are then assessed following a thorough two-step quality assurance process.

First, the time series are analysed for correlation to climate time series (precipitation and potential evapotranspiration) using
nonlinear transfer function noise models (TFN) in the Pastas python tool (Collenteur et al., 2021). TFN models have
previously been used in connection with drought evaluation, for example in the Netherlands (Brakkee et al., 2022), where it
was used to track the spread of drought conditions in the groundwater system in 2018. Here, we evaluate whether an
observed time series of groundwater levels can be explained based on the climate forcing alone. If not, this is an indication
that groundwater levels are affected by other phenomena, such as groundwater abstractions. Those time series are excluded
from further analysis as we are interested in drought as a meteorological phenomenon, and not man-made water scarcity.

The TFN models are versatile and can adapt to trends, accumulated effects, and different lag times. A high correlation
between the observation and the respective TFN-derived time series indicates that the variability of the observation is
dominated by climatic variability. Initially, a threshold was set at a coefficient of determination (R?) of 0.70, above which a
time series was considered suitable for the final selected validation dataset. Time series with an R? above 0.70 were manually
inspected through expert judgment in the second step. Two hydrogeologists evaluated them first independently and then
jointly to ensure that the datasets met the criteria for the evaluation tests. A low R? value is a good indicator for time series
whose variability cannot be explained by variability in climate, even if accumulation or lag times are considered. However,

to ensure that all applicable time series are exploited, time series with R? below 0.70 were also evaluated, and a few time
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series were added to the analysis, e.g. where there was evidence of poor TFN performance due to outliers or measurement
errors that could be corrected.

2.3.2 Streamflow data

Streamflow data in Denmark has been monitored relatively consistently over the last decades (Overfladevandsdatabasen -
https://odaforalle.au.dk/main.aspx) and data are generally of high quality, with few gaps. The selection of stations for
validating the drought indices is based on a previous quality assurance effort when selecting streamflow stations for the
calibration of the DK-model (Stisen et al., 2019a). This quality assurance focused on stations with a catchment area above
15 km?, and where streamflow was unaffected by factors such as pumping stations or sluices, and had a data coverage of at
least 98% of all days in the period. The selection criteria for streamflow stations are higher than for groundwater levels and

soil moisture simply because data are abundant and multiple long time series with good national coverage exist.

2.3.3 Soil moisture data

Due to the DK-model’s resolution of 500 m grid scale, it is unsuitable to evaluate its performance using conventional soil
moisture measurements, which typically represent small soil areas or volumes at the centimetre scale. We only use large-
scale soil moisture measurements in the model validation. Unfortunately, large-scale soil moisture measurements are
generally rare. There are only five sites across Denmark with such measurements, all applying the cosmic ray method
(CRN). The CRN method is based on the inverse relationship between neutron intensity from cosmic radiation and the water
content (hydrogen) in the soil (Andreasen et al., 2017). The CRN sensors provide soil moisture within the root zone as
measurement depth is integrated non-linearly from the soil surface to around 10-75 cm depth in the soil column, depending
on water content (Zreda et al., 2012). The stations have a horizontal footprint of 200-300 m, comparable to the grid size of
the hydrological model (Andreasen et al., 2017).

2.4 Drought indices

At present, hundreds of different drought indices exist and are described in the literature (see e.g., Zargar et al., 2011). They
often cover different parts of the hydrological cycle, and thus, represent different variables, e.g., precipitation or streamflow.
Often, they are either threshold-based or standardized (de Matos Branddo Raposo et al., 2023), meaning that they are either
based on drought definitions characterized by crossing a certain threshold (e.g., a percentile of streamflow), or deviations of
a time series from its normal (e.g., more than two standard deviations from the mean). Newer emerging indices are, for
example, based on combining existing indices into composite ones (Raible et al., 2017) or indices modified for specific
conditions, e.g., ephemeral streams (Aon and Biswas, 2024). Indices can be calculated from various observations of the
hydrological cycle (Haas and Birk, 2017), remote sensing products or land surface models (Gaona et al., 2022), as well as

hydrological models (Sutanto et al., 2024) or a combination of the above.
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Generally, it is recommended to use standardised indices when comparing drought signals across different regions and
compartments of the hydrological cycle (de Matos Branddo Raposo et al., 2023; Teutschbein et al., 2022; World
Meteorological Organization (WMO), 2012). Due to the differences in precipitation regime from east to west in Denmark
(Stisen et al., 2012), standardised indices were also chosen in this study. An overview of the indices used in this study is
given in Table 1.

For the meteorological drought signal, we applied the commonly used SPI (Standardized Precipitation Index) (McKee et al.,
1993a) for precipitation, and the SPEI (Standardized Precipitation Evapotranspiration Index) for net precipitation (Vicente-
Serrano et al., 2010), Eq. (1) to (3). For soil moisture, several indices exist, for example, the SSMI (Standardised Soil
Moisture Index) (Hao and AghaKouchak, 2013), SSWI (Standardized Soil Wetness Index) (Torell6-Sentelles and Franzke,
2022), and SMDI (Soil Moisture Deficit Index) (Narasimhan and Srinivasan, 2005). We applied the SMDI, Eq. (4) to (6), as
it includes a memory effect of soil moisture deficit in its calculation potentially relevant for drought impacts on vegetation;
examples of application of the SMDI in literature include (Chan et al., 2021; Gaona et al., 2022; Karlsson et al., 2015). For
streamflow, standardised indices include the SRI (Standardised Runoff Index) (Shukla and Wood, 2008), SSI (Standardized
Streamflow Index) (Vicente-Serrano et al., 2012), and SDI (Streamflow Drought Index, (Nalbantis and Tsakiris, 2009)). In
this study, we are using the SDI, Eq. (7) and (8), as it is a common index in the literature (Goncalves et al., 2023; Kim et al.,
2024; Zhong et al., 2020), and its formulation originates from the SPI. This is also the case for the groundwater index used in
the study, the SGDI (Standardized Groundwater Drought Index) (Bhuiyan et al., 2006; Bloomfield and Marchant, 2013), Eq.
(9) and (10). Examples of SGDI in the literature include Han et al. (2019), Ling et al. (2024), and Zhu et al. (2023).

Common for the standardized indices we used (Table 1) is that they indicate the deviation of the current status of, for
example, groundwater levels, from the typical seasonal cycle, as defined by the mean monthly or weekly climatology over
the reference period. Furthermore, the resulting index values are typically translated to fixed categories of drought: For all
indices, values below 0 correspond to below-average or dry conditions. For SPI, SPEI, SDI, and SGDI, the categories are
mild drought for index values between 0 and -1, moderate drought (-1 to -1.5), severe drought (-1.5 to -2), and extreme
drought (below -2). Due to the memory effect resulting in a larger range of SMDI values, the categories are shifted to mild
drought (0 to -1), moderate drought (-1 to -2), severe drought (-2 to -3), and extreme drought (below -3).
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Table 1: Overview of drought indices used in this study.

Index Variables Equation Variable in DK-model
General variables: j: week, k: month, i: year, std: standard deviation
SPI _ A
. s . S _ PikPi precipitation, corrected

ISrfgr;gardlzed Precipitation P: precipitation [mm] SPI; Stdny 1) (model input)
SPEI NP: net precipitation [mm] NP; = P, — PotET; 2) pgig'rg::;“on’ corrected —
Standardized Precipitation PotET: potential __ NP;—NP P -
Evapotranspiration Index evapotranspiration [mm] SPEL k= =amme ©) evapotranspiration

potransp potransp NPk (Makkink) (model input)

if SW;; < medSW;:
SW; j—medSW
SD: soil moisture deficit [%] SDy; = —medsévl__mms‘jvl_ (4)
SMDI iﬂvivr;_ar\:]?:lliargherﬁml water [] if SW;; > medSWj: average water content in
Soil Moisture Deficit Index - " - SD; ; = —WiTmedSW; (g, the root zone
ax: maximum L maxsw j—medsw
Med: median _1 1
SMDI;j = > SMDI;_; + > SD;(6)
SDI Q: streamflow [m3] s = h;(?;?]) % streamflow in all g-points
Streamflow Drought Index SDI =0 ®) ap
Y,

SGDlshaliow
Standardized Groundwater ~ D: depth to uppermost SGDI . = Di—Dy ©) depth to top phreatic
Drought Index for groundwater table [m] b stdpy surface
uppermost groundwater
SGldeep — head elevation in saturated
Standardized Groundwater H: groundwater head [m] SGDI; ) = % (10) zone, mean of two aquifer
Drought index for deep -9 Hk layers with largest
groundwater groundwater abstractions

2.4.1 Drought indices based on observational time series and DK-model simulations

As noted in Table 1, SPI and SPEI are calculated based on monthly values and climatologies, as most commonly practiced
and recommended (World Meteorological Organization (WMO), 2012). Similarly, the SGDI is calculated based on monthly
values. In principle, SGDI could also be calculated at a higher frequency, but the scarce observation frequency limits us to
using monthly values. The SMDI is commonly calculated weekly (Narasimhan and Srinivasan, 2005), and we follow this
convention. Similarly, due to good data availability, we calculate the SDI weekly. Both SMDI and SDI are resampled from
weekly to monthly values in the result sections.

Calculation of the SPI and SPEI typically starts with fitting a suitable distribution function to the observed climatologies
(Lloyd-Hughes and Saunders, 2002; McKee et al., 1993b). Often, especially in climates with more intermittent precipitation,
this is a gamma distribution. However, for our case of Denmark, a Kolmogorov-Smirnov normality test revealed that the
distribution of monthly precipitation values can be fitted by a normal distribution. Similarly, the SGDI in its original form is
based on normal scores transformed values, as groundwater level time series can exhibit a variety of different distributions

(Bloomfield and Marchant, 2013). We also tested for normal distribution in both shallow and deep groundwater and found,
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using a Kolmogorov-Smirnov normality test, that for the vast majority of grid cells, the normal distribution is a valid
approximation. The same applied to simulated soil moisture values used for SMDI. Other distributions, such as gamma
distributions, could also be fitted; however, not more successfully than the normal distribution, and fitting sometimes was
unstable, yielding implausible extreme values. This might also be related to the relatively short reference period of 30 years.
Hence, we preferred the simple assumption of normal distribution.

For the calculation of drought indices, a 30-year reference period from 1991 to 2020 was chosen. Drought indices were
calculated based on the observational datasets introduced in Sect. 2.3, referred to as obs in the following, as well as the
simulation results from the DK-model introduced in Sect. 2.1, referred to as sim in the following. Sim indices are calculated
for every grid or streamflow calculation point of the DK-model based on the model outputs indicated in Table 1. The
continuous simulations allow abstraction of drought indices for the entire period between 1990 to 2023, relative to the
reference period 1991 to 2020. Obs indices are calculated for every streamflow station, groundwater well, and CRN soil
moisture station in the quality-assured dataset. Where data coverage allowed, the full reference period 1991 to 2020 was
used. However, many observational time series had limited coverage; here, the reference period was shortened accordingly,
down to 10 years for soil moisture data. To allow a direct evaluation of the DK-model’s ability to reproduce drought signals
in the hydrological cycle, drought indices from the DK-model results were calculated separately for each of the observation
locations, i.e. each specific matching grid or streamflow point in the DK-model output. Those indices are referred to as
sim@obs and were calculated based on simulated time series reduced to the same data availability as the respective
observation data. This allows a direct, unbiased comparison of obs and sim@obs indices based on matching locations and
reference periods.

2.4.2 Drought propagation and lag

To evaluate the propagation of meteorological drought through the hydrological cycle, SPI and SPEI were calculated not
only for monthly values (1-month SPI and SPEI), but also for different accumulation periods ranging from 2 to 60 months
(2-month to 60-month SPI and SPEI). For example for the 3-month SPI, the index value for March of a specific year is
calculated based on the total precipitation of the 3 months January to March of the same year, relative to the normal total
precipitation for January to March across all years of the reference period. Different compartments of the hydrological cycle
are expected to be sensitive to different accumulation periods of precipitation, generally moving from faster-reacting soil
moisture and streamflow to slower-reacting shallow and deep groundwater. The performance of the DK-model is also tested
by comparing this accumulation period signal in the model (sim@aobs) in relation to the signal found using the observations
(obs). This is to test if the modelling system correctly represents the connections and propagation in the different natural

systems.
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2.4.3 Evaluation of observational and simulated indices

The performance of the indices is evaluated using the Pearson correlation coefficient (r) and the root mean square error
(RMSE). The evaluation is performed three-fold:

1. Onindividual time series: For all the selected observational time series of soil moisture, streamflow, and
groundwater, every index time series (obs) is evaluated against the corresponding simulated time series (sim@abs).

2. Onindividual time series: For all the selected observational time series of soil moisture, streamflow, and
groundwater, the accumulation period correlation to SPI (SPEI) for the index time series (obs) is evaluated against
the corresponding signal in the simulated time series (sim@obs).

3. Across Denmark: For every index, an aggregated drought index time series is calculated for all observations (obs)
across Denmark and compared with the corresponding aggregated drought index series based on the simulations
(sim@obs). Furthermore, the corresponding aggregated simulated drought indices (sim@obs) are also compared to
the overall Denmark-wide drought index series (sim), to evaluate the spatial representativeness of the observation

points of the entirety of Denmark.

3 Results

Figure 1 sums up the overall DK-model performance, showing cumulative distributions across the multiple conventional (i.e.
not drought-related) calibration targets. Across 305 streamflow stations, a median KGE of 0.67 is reached, and the overall

water balance error Fbal is 0.01, with a mean absolute error of 0.15. Fbal is calculated following Eq. (11):

Fbal = Qobs=%um (11)
Qobs

In terms of groundwater performance, the mean absolute error across 39,514 wells with groundwater level observations is
3.67 m, with a mean error of 0.47 m. All mean errors are provided as obs — sim. Hence, the model succeeds in simulating the
most important parts of the hydrological cycle with little bias. Similarly, it also manages to reproduce seasonal groundwater
level amplitudes reasonably well, with a mean absolute error of 0.65 m across 400 groundwater level time series with
sufficient data to calculate average seasonal amplitudes. Observed amplitudes are 1.06 m on average. Lastly, the drain
fraction (average simulated drain flow per grid cell relative to precipitation) was included in the calibration: Artificial
drainage represents an important hydrological process in Denmark, with significant spatial variation, which is often
overlooked. Hence, a Machine Learning generated map of drain fraction was used as a target (Schneider et al., 2025); panel
(e) in Figure 1 shows the residuals of the model against that map, indicating that the DK-model slightly underestimates the

amount of artificial drainage.
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Figure 1: DK-model calibration performance. (a): KGE [-] and (b): water balance error [-] for 305 stream flow stations. (c):
Residuals against groundwater level measurements in 39,514 wells. (d): Residuals against seasonal groundwater level amplitudes
in 400 wells. (d): Residuals against seasonal groundwater level amplitudes in 400 wells with sufficient time series data. (e):
Residual against ML predictions of drain fraction. Optimal values marked with red.

3.2 Quality-assured observational dataset
3.2.1 Selected groundwater level data

Groundwater level measurements are available from 131,000 wells for the period 1990-2023 (Figure 2). The initial screening
of the data showed that 389 monitoring wells fulfilled the criteria of at least 20 years of continuous data in the period 1990-
2023 and a measuring frequency of at least two months, while missing no more than 20% of the data period. These 389 wells
were therefore considered potential validation sites and subsequently underwent the two-step quality assurance process.

The 389 time series were analysed for correlation to climate time series of precipitation and potential evapotranspiration
using the Pastas tool. For the wells with high R?, a large group of wells in the Copenhagen metropolitan area showed a
significant increasing trend in water levels from 1990 to 2020, which is generally not seen elsewhere in the country and was
not supported by the climate data. For this area, the changes in annual abstraction for all wellfields for the three decades
were taken from Jupiter (as implemented in the DK-model) and used to analyse the trends and indicate that the increasing
trend was most likely mainly caused by decreased abstractions.

The final selection resulted in 53 time series of at least 20 years of continuous monthly data (a few based on bi-monthly
interpolated), with less than 20% gaps and with distances of at least 500 m to abstraction wells larger than 50,000 m®/y and

at least 1 km distances to abstractions above 1,000,000 m3/y. A list of the final dataset can be seen in the appendix in Table
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A 1. The distinction between wells representing SGDI of the uppermost groundwater table and those representing the deeper

groundwater levels was made based on their filter depth, using a threshold of 10 m (Henriksen et al., 2020).

(a) Soil moisture and discharge (b) Topography
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[ Glaciomarine clay, silt and sand
Pre-Quaternary
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©  shallow

@ deep

375 Figure 2: (a) Selected soil moisture and streamflow stations and (c): selected groundwater wells for drought analysis. (b):
Topography of Denmark, with regions outlined in black. (d): Surface geology map of Denmark.

3.2.2 Selected streamflow data
The entire dataset of streamflow stations in Denmark in the period 1990-2023 consists of 579 stations measuring daily

streamflow, where 305 were quality assured for the national model calibration, and of these, 153 have at least 98% data
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380 coverage (Figure 2). These 153 stations are selected for the final validation analysis. A list of the final dataset is presented in
the appendix in Table A 2.

3.2.3 Selected soil moisture data

For the five soil moisture stations, two have just one to two years of data, while the other three have measurements for
around 10 years (Jensen and Refsgaard, 2018). Only the three longest datasets could be included in the evaluation (Figure 2).
385 Alist of the final dataset can be seen in the appendix in Table A 3.

3.3 Evaluation of drought index time series: observations vs. DK-model simulations

Each of the individual observation time series of indices (obs) is compared to the simulated values at the respective locations

(sim@obs). This is done based on monthly statistics for all drought indices, also those that originally were calculated on a

weekly basis (SDI, SMDI). Examples of time series at observation points for the four drought indices can be seen in Figure
390 3, including the Pearson correlation coefficient r and the RMSE between the obs and sim@obs indices time series.
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Figure 3. Examples of observed drought indices (red), compared to simulated values (black) at example CRN stations (a),

streamflow stations (b, ¢) or wells (d, €). Winter periods (October to March) with grey background. Thresholds for moderate,

severe, and extreme droughts (and wet conditions) are marked with vertical lines.
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Figure 4 shows the cumulative distribution of correlation coefficients between obs and sim@obs across all observation
points for each of the four indices. The distribution of the correlation coefficients is shown both for the entire time series,
and separately for drought periods only (defined by a negative obs index value). Generally, performance is highest for the
SDI, followed by SGDI and lastly SMDI. It can also be seen that the correlation coefficient r tends to be lower during
drought periods. However, this does not necessarily reflect lower performance; rather it is related to the sensitivity of
Pearson’s r to the range of occurring values, which is restricted to roughly half if only looking at drought periods. This is
also confirmed in Table 2, which shows the median values of correlation coefficients across all time series. Values are
provided across the entire period, and separately for dry and wet periods, which are defined by negative and positive obs
index values, respectively. Here, the decrease of r occurs in both wet and dry periods, and thus is not indicative of a poorer

performance of the model during drought.

1.0
SMDI dry
® SMDI
ogdl © SDI dry
® SDI
SGDIshaJ’Iawdry
SGDlsnatiow
0.6
SGDlgeepdry
a ®  5GDlgeep
0.4 4
0.2 4
0.0 p_QO
0.0 0.2 1.0

Pearson's r

Figure 4. Performance distribution of the simulated hydrological drought indices for the observed points. Performance shown
separately for the entire period and dry periods (observed drought index < 0).

Table 2 summarizes the correlation coefficients to median values across all time series for each of the four indices. Values
are provided across the entire period, and separate for dry and wet periods, defined by negative and positive obs index
values, respectively. In the ‘DK statistics’ columns of Table 2, we also include correlation coefficients between aggregated
drought index time series aggregated all observation locations (obs, sim@abs) or across all of the DK-model domain (sim).
The overall performance at the individual time series level is good, with median Pearson’s r values above 0.75 across all
conditions, and values around 0.6 during drought periods only. The only exception to this is the SMDI with r values mostly

between 0.4 and 0.5. When looking at aggregated values across all of Denmark (DK statistics), the performance is even
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better with r values close to or above 0.9 for SDI, SGDlshaiiow and SGDlgeep. Again, the only exception is SMDI which has
lower correlations.

Table 2. Overview of performance of drought indices for Denmark. Time series median: median of performance of the individual
observed time series. *statistics for all three stations are reported here, in order Harrild, Voulund, Gludsted. DK statistics: obs vs
sim@obs: Aggregated observed vs. aggregated simulated time series at points of observations. obs vs sim: Aggregated observed vs.
aggregated simulated time series across all of Denmark. sim@obs vs sim: Aggregated simulated time series at points of
observations vs across all of Denmark.

Time series median DK statistics
Index No. r MAE RMSE obs vs obsvs  sim@obs
locations (dry; wet) (dry; wet) (dry; wet) sim@obs sim Vs sim
0.49, 0.45, 0.53* 1.54,1.52, 1.46* 2.04,1.91, 1.96* 0.52 0.62 0.85
SMDI 3 (0.37,0.40, 0.41; (1.69, 1.59, 1.59; (2.26, 1.96, 2.03; (0.31; (0.49; (0.81;
0.30, 0.34, 0.31) 1.40, 1.44,1.33) 1.80, 1.86, 1.90) 0.34) 0.45) 0.82)
0.90 0.89 0.99
0.79 0.43 0.57
SDI 147 . . . (0.81; (0.80; (0.99;
(0.62; 0.64) (0.42; 0.43) (0.55; 0.58) 0.78) 0.77) 0.99)
0.91 0.88 0.94
0.75 0.53 0.69
SGDlshaliow 26 _ _ _ (0.83; (0.78; (0.90;
(0.63; 0.59) (0.52; 0.50) (0.68; 0.66) 0.81) 0.73) 0.85)
0.89 0.87 0.93
0.76 0.53 0.68
SGD | deep 27 . . . (0.85; (0.82; (0.88;
(0.56; 0.57) (0.53; 0.55) (0.60; 0.70) 0.75) 0.67) 0.88)

3.4 Accumulation period performance

The SPI was calculated for different accumulation periods from 1 to 60 months, resulting in 60 time series from SPlgl to
SPl.60. For each of these time series, a correlation to the hydrological drought index was calculated. The accumulation
period of the SPI that exhibits the highest correlation to the hydrological drought index indicates the dynamics of drought
propagation from a precipitation deficit to a hydrological impact. This is done separately for the obs and sim@obs index time
series for SMDI, SDI, and SGDI, and the resulting optimal SPI accumulation periods can be compared. If the model captures
the development time and interconnectivity of the system satisfactorily, the optimal SPI accumulation time for obs and

sim@obs should be similar.

18



435

https://doi.org/10.5194/egusphere-2025-5373
Preprint. Discussion started: 10 November 2025
(© Author(s) 2025. CC BY 4.0 License.

(a)
1.0

SMDI obs vs. SPlacc

~ 059

0.0

(b)
1.0

10 20 30 40 50 60
5Pl [months]

SMDI sim@obs vs. SPlacc

~ 0.5

0.0

(d)
1.0

10 20 30 40 50 60
SPlaee [months]

SD! obs vs. SPlac

- 0.5 :

0.0

5 10 15 20 25 30
S5Pf,cc [months]

SDI sim@obs vs. SPl

0.0

(g)

5 10 15 20 25 30
SPl5e [months]

S5GD! obs vs. SPlacc

0.0

10 20 30 40 50 60
SPl,e [months]

SGDI sim@obs vs. SPl

Q.0

10 20 30 40 50 60
SPlycc [months]

(C)6OSMDl VS, 5Pl [months] with max corr

B+__‘§'
=]
50 - »7 3
34
40 4 1 4
w
o
o
® 30
£
w
20 A
10 4
o) S : ‘ .

] 10 20 30 40 50 60
abs

(f}  SDI vs. SPlac. Imonths] with max corr
30 -

8+ 2
25 37 8
“3-4 £
2 8
20 4 1 %
w
Q
[=]
© 15 A
£
w
101
= Ed t
4 .
.3
fue =
51%8n
1.3
5
0 r sim@obs vs obs = 0.49
0 5 10 15 20 25 30

obs

(i) 60.’SGD! VvS. SPlacc [months] with max corr

8+ ¢
50 A 5738
34 £
2 8
40 1 %
w
o 3]
g :
© 30 A o
£ ®
£

- r sim@obs vs obs = 0.66
0 10 20 30 40 50 60
obs

EGUsphere\

Figure 5. Left column: Correlation coefficients of SPI accumulation periods against observed and simulated time series of SMDI
(a,b), SDI (d,e), and SGDI (g,h), respectively. Wells representing SGDlaeep are marked with blue. Significant correlations (p<0.01)
in red, remaining in grey. Right column: scatter plots of optimal accumulation period of SPI for correlation to SMDI at the 3 CRN
stations (c), SDI at the 153 streamflow stations (f), and SGDI at the 53 groundwater wells (i), where wells representing SGDI geep
are marked with a blue outlines. Optimal SPI accumulation period for simulated time series along the y-axis, and for observed
time series along the x-axis.
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Figure 5 shows the results of this analysis. For each of the individual observation points, all 60 accumulation periods from 1
to 60 months for SPl,. were tested. The resulting correlation coefficients are shown in the plots in the left column,
separately for each of the obs and sim@obs time series. The SPI accumulation period yielding the highest correlation for obs
and sim@obs, respectively (i.e. the peak of each curve in the left column plots), is then shown in scatter plots against each
other in the right column, to evaluate whether obs and sim@obs indices reflect similar variability.

For streamflow (SDI), the DK-model tends to delay drought propagation more than seen in observations: The majority of
obs indices (86 of 153 stations) show the highest correlation of SDI to SPlsc1 or SPlsc2, whereas sim@obs indices are
correlated to accumulation periods of up to 10 months. However, it has to be noted that the optimal accumulation periods do
not seem to be well defined; see especially the obs indices, which correlations only slowly decay up to roughly SP1.10. For
groundwater (SGDI), the time series seem to be more grouped, with some having short accumulation time correlations (up to
6 months), others longer (7 to 12 months), and some very long (above 12 months). For the obs indices, roughly one third of
the 53 wells fall in each of these categories: 19 with up to 6 months, 15 with 7 to 12 months, and 19 with above 12 months.
The distribution for sim@obs indices is very similar, with 18, 15, and 20 wells in the respective groups. Also, the typically
longer observed accumulation periods for SGDlgeep are reproduced in sim@obs indices. Again, SMDI is the exception with
the sim@obs indices having the highest correlation to SP1ac2, whereas the obs indices exhibit high correlations for SPla6 to
SP14cc8, but also around 30 months.

From the scatter plots, it can be confirmed that for SDI and SGDI, the optimal SPI accumulation periods broadly agree, with
correlation coefficients between the optimal accumulation periods of obs and sim@obs of 0.49 and 0.66, respectively. This
indicates that the DK-model can capture the major dynamics of drought propagation through the hydrological cycle,
especially in the groundwater. The soil moisture performance is poorer, but the evaluation is also restricted by the limited
amount of data.

The different accumulation periods across the observations suggest there are regional differences in the response time to
precipitation. Figure 6 shows the accumulation period of SPI which yields the highest correlation to each of the sim indices,
mapped for all of Denmark in the top row. The bottom row shows what the highest correlation is (between sim index and
SPlac With the optimal accumulation period). Those correlations are generally high, with Pearson’s r values mostly above
0.5, for SDI and SGDI often even above 0.75.

Note that the drought propagation from SPI to hydrological drought is very similar to the drought propagation from SPEI to
hydrological drought. To maintain clarity, we focused on propagation from SPI here; corresponding versions of Figure 5 and

Figure 6 for SPEI can be found in the appendix.
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Figure 6. Top row: Accumulation period of SPlac yielding maximum correlation with the hydrological drought index per DK-
model g-point or grid. Bottom row: Maximum correlation between the hydrologic drought index and SPlacc of the respective

accumulation period. Non-significant correlations (p>0.01) are masked grey (e.g. isolated areas for SDI and SGDlgeep in eastern
Jutland)

3.5 Drought performance across Denmark

In the ‘DK statistics’ columns of Table 2, we include correlation coefficients between the combined drought index time
series aggregated across all observation locations (obs), the same type of combined index for simulation time series
(sim@obs), and one combined from the entire DK-model domain (sim). This sheds light on different aspects: First, the
performance of the DK-model in simulating observed drought indices (obs vs sim@obs), on an aggregated level. Here, the
performance is even better than for individual time series, with r values close to or above 0.9 for SDI, SGDIshaiow, and
SGDlgeep. Again, the only exception is SMDI, which is not as well correlated.

Secondly, we can evaluate the performance of the observations concerning the entire domain (obs vs sim), which proves very
similar to the performance when comparing to simulations from the actual locations of the observed time series (sim@obs).
Similarly, the index calculated for simulation data at observation points is very strongly correlated to the behaviour of the
entire domain (sim@abs vs sim).

Aggregated drought indices across all of Denmark, as monthly means for the years 1990 to 2023, are shown in Figure 7.
Generally, drought patterns between obs and sim@obs indices agree well, as already indicated by good correlation
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performance values reported in Table 2 above. Notably, there is also good agreement between the indices based on the
relatively few observation points (obs and sim@obs) and the simulated Denmark-wide drought index dynamics (sim) across
all grids or streamflow points in the DK-model. Thus, the observation points are thought to be representative of the
behaviour of the entire domain and can therefore be used to evaluate the general DK-model drought performance.
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Figure 7. Mean monthly drought indices for SMDI (a), SDI (b), SGDlshailow (C) and SGDldeep (d). Each panel shows from left to
right: Mean obs drought indices, mean sim@obs drought indices, mean sim drought indices across all of Denmark.

Figure 8, top row, shows mean monthly drought indices for all of Denmark. Monthly SPI and SPEI values are largely
uncorrelated in time, and soil moisture anomalies (SMDI) closely follow the anomalies in (net) precipitation. Effects of
meteorological drought keep accumulating, though, when moving further through the hydrological cycle: SDI starts showing
more continuous, more extended drought periods (or wet anomalies), and SGDIshaiiow and SGDlgeep react with even more

delay, exhibiting longer continuous drought periods in line with results shown in Figure 5 and Figure 6. The middle and
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bottom row then show the differences between two regions in Denmark, western Jutland and eastern Jutland (WJ and EJ in
Figure 2, panel b), which are dominated by more sandy and clayey soils, respectively. In the more sandy western Jutland,

500 drought signals propagate faster from meteorological to hydrological drought, especially visible in the deep groundwater
(SGDlgeep). The more clayey eastern Jutland experiences slower drought propagation, particularly to the deep groundwater,
as evidenced for example by a delay of few months in both the onset of and recovery from the SGDIgeep drought in 1996/97
compared to West Jutland.
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Figure 9 shows maps of drought indices for all of Denmark for May 2020. The first column shows SPlsc2 and SPlac12,
whereas the remaining maps show the four sim indices. The month of May 2020 is characterized by a soil moisture drought,
with SMDI values mostly below -2 (very dry) and partly below -3 (extremely dry). Soil moisture is low as May and April
2020 had been experiencing unusually low precipitation amounts, reflected in SPlsc2 values being mostly below normal
values. The remainder of the hydrological cycle, however, remains in normal to wet conditions, as expressed by SDI,
SGDlshallow, and SGDlgeep. This is due to their slower response to precipitation anomalies (compare Figure 5 and Figure 6),
and the wet preceding conditions in the entire 12-month period prior to May 2020, as expressed by high (i.e. wet) SPlac12
values.

Drought indices - May 2020

SMDI

extremely dry
very dry

dry

within normal
wet

very wet

extremely wet

Figure 9. sim drought indices from the DK-model for the example of May 2020, together with SPlacc2 and SPlacc12.
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4 Discussion

Generally, drought is defined as a below normal water availability, i.e. it is an anomaly of any of the variables such as
precipitation, soil moisture, streamflow or groundwater levels (Tallaksen and Van Lanen, 2024). Drought is a phenomenon
in space and time; it is often sustained over some period of time and will have some spatial extent. The complex nature of
drought, particularly its propagation from meteorological anomalies to hydrological cycle anomalies, along with the

interplay between different compartments of the hydrological cycle, is challenging to map, model, and predict.

4.1 Can the DK-model be used to evaluate hydrological drought?

The observational dataset for drought propagation compiled as part of this study was found to be robust for streamflow and
groundwater. The quality assurance and selection criteria, such as excluding groundwater level observations significantly
affected by abstractions, yielded a dataset suited for evaluating drought as a natural phenomenon, driven by climate
variability instead of changing human interventions. Despite the inevitably incomplete spatial coverage, we could show that
the 53 groundwater level and 153 streamflow time series are representative for Denmark-wide drought behaviour (compare
Figure 7). The only exception is soil moisture, where currently we are limited to observation time series from only three
stations. In the future, more long-term time series of relevant soil moisture observations will become available.

The subsequent evaluation of the DK-model’s ability to simulate drought and its propagation through the hydrological cycle
showed very good results — indicating that often, the DK-model actually is better at simulating relative deviations from
normal conditions (expressed as drought indices) than absolute actual values (such as absolute groundwater levels). Not only
are the overall dynamics of drought indices captured well by the DK-model (Figure 4 and Table 2), but importantly the lag

times for propagation from meteorological drought to streamflow and groundwater drought are also captured (Figure 5).

4.2 Groundwater sensitivity to summer and winter droughts

Droughts are often perceived as more of a summer (or dry season) phenomenon. However, in particular groundwater
droughts are controlled by groundwater recharge patterns instead of the meteorological variables directly. In humid
temperate climates such as Denmark, groundwater recharge is concentrated during winter months (Hisdal and Tallaksen,
2003; Liu et al., 2025a; Nygren et al., 2022). Hence, groundwater droughts show a lagged and seasonally dependent response
to meteorological droughts. Specifically, for Danish conditions with winter being the main recharge season, meteorological
droughts during the winter season have a comparably larger effect on groundwater drought development. This is illustrated
in Figure 10, where the 34 years 1990 to 2023 are separated into two seasons, the winter half-year October to March and the
summer half-year April to September. Then, they are further split into their meteorological drought condition across each
winter or summer, defined by the SP1..6 at the end of the respective 6-month period being below -0.5 (drought) or above 0.5
(non-drought), resulting in 11 drought winters and 10 non-drought winters, as well as 12 drought summers and 10 non-

drought summers. Figure 10 then shows the developments of the SGDlgeep values throughout each of the drought or non-
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drought winters or summers, relative to the SGDIqeep Value at the start of each season. The simulated sensitivity of SGDlgeep
to a precipitation drought is higher during winter, with an average drop of -0.60 of SGDlIep index value during a drought
winter, panel (a), than during summer with an average drop of -0.28 during a drought summer, panel (b). This seasonal
difference is similarly pronounced during non-drought, i.e. wet periods: The deep groundwater drought recovery during wet
winters with an average increase of 0.63, panel (c), is larger than the drought recovery during wet summers with an average
increase of only 0.29, panel (d). This often overlooked phenomenon of groundwater sensitivity to winter drought (or, more
general, to drought during a recharge season) is modelled well by the DK-model, as the agreement between developments of
sim SGDlgeep and obs SGDlgeep indicate.

SPI drought winters SPI drought summers
Lo (@) SGDlgeep Sim -0.60, 0bs -0.53 (b)  SGDigeep 5im -0.28, obs -0.38
' 5im SGD!geep
0bs 5GD!geep
u 0.5
o
c
a
K
o
= 0.0 -
g \
[G]
wn _0.5 -
-1.0
SPI non-drought winters SPI non-drought summers
Lo (c) SGM geep Sim 0.63, obs 0.62 (d) 5GDlgeep sim 0.27, obs 0.19
v 0.5 /
2
©
S
¢ 0.0 ————e
a
5]
W —0.5 A
-1.0 T T T T T T T T T T T T
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Figure 10. Seasonal dependency of deep groundwater (SGDlgeep) drought response to SPI droughts. (a): Years with drought
winters (defined by SPlacc6 in March < -0.5) and their respective SGDlaeep development, normalized to the start of the season
(10%/90% intervals shaded, mean as bold line). (b): Years with drought summers (SPla:c6 September < -0.5). (c) Years with non-
drought winters (SPlac6 March > 0.5). (d) Years with non-drought summers (SPlacc6 September > 0.5).

4.3 Patterns of drought propagation and controlling variables

The resulting patterns of (simulated) drought propagation lag from meteorological drought to soil moisture, streamflow,
shallow and deep groundwater, respectively, show significant spatial variability (Figure 6). A multitude of factors control
those spatial patterns. The groundwater lag (SPlacc to SGDlshaiow and SGDleep) is @ particularly complex variable, as not only
does geology vary from well to well, but also the depths to the aquifer or groundwater table, local groundwater gradients,
etc. Some of these potentially controlling variables (see e.g., Bloomfield and Marchant, 2013; Li and Rodell, 2015; Schuler

et al., 2022) can be directly derived from the geological setting, in our case from the national well database Jupiter. Others
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require a hydrological model or some knowledge of groundwater dynamics. When looking at variables that can be readily
derived from the well database, controlling variables for the drought response of groundwater in a well can be

o filter depth,

e observed groundwater depth,

e overburden (the total thickness of material above the well’s aquifer),

e accumulated clay thickness (as overburden, but only accumulating clayey material),

e the number of shifts between clay and sand layers (as an expression of geological complexity)

The latter variables are included because the Danish Quaternary deposits, in which most of our wells are placed, generally
can be simplified to a series of alternating clay and sand layers. These five variables were extracted for the 53 groundwater
wells. Table 3 summarizes correlations between the geology-derived controlling variables and the SGDI lag, separate for
shallow and deep wells as well as combined across all 53 wells.

Table 3.Correlation between well geologic variables and their experienced drought lag expressed as the SP1 accumulation periods
with the highest correlation to observed SGDI (compare Figure 5). Values are provided as Pearson’s r and Kendall’s tau,
separately for shallow wells, deep wells, and all wells. Last row: Correlation between the drought lags based on observed and
simulated SGDI. Best performance across each column marked bold. Non-significant (p>0.01) correlations in (brackets).

shallow wells deep wells all wells
r tau r tau r tau
filter depth 0.74 0.41 (0.34) (0.19) 0.54 0.48
depth to observed gw 0.84 0.51 (0.29) (0.18) 0.49 0.47
geologic overburden (0.27) (0.20) (0.20) (0.06) 0.36 0.26
variables accumulated clay thickness (0.17) (0.17) (0.00) (0.04) (0.24) (0.24)
number of shifts (0.44) (0.06) (-0.10) (-0.01) (0.23) 0.37
multi-variable linear regression
with all geologic variables 0.90 0.47 0.49 0.25 0.62 0.53
DK-Model SGDI sim 0.65 (0.35) 0.56 0.60 0.66 0.57

Results show that the correlation between the individual geological variables and SGDI lag is larger for shallow wells than
for deep wells. Significant correlations, however, can only be found for filter depth and depth to observed groundwater table
for the shallow wells and across all wells, and for overburden across all wells. No significant correlations exist for the deep
wells. The DK-model simulated SGDI lag, conversely, shows significant correlation for all well groups, and demonstrates
the highest predictive ability across deep wells and across all wells. The DK-model also outperforms a multi-variable linear
regression model based on the five geological variables. Only for the shallow wells, single geological variables such as the
depth to the observed groundwater table or the multi-variable linear regression model show better correlations to the SGDI
lag than the DK-model. This indicates that drought propagation to deeper groundwater becomes increasingly complex and is
controlled by a multitude of variables, going beyond simple information about aquifer depth or lithological information. The
DK-model is not only informed by geological information but also adequately captures resulting regional patterns of

recharge and groundwater flow, thus representing local differences in drought propagation lag. This spatial diversity is also
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apparent in the comparison of drought indices across the more sandy western Jutland and the more clay-dominated eastern
Jutland in Figure 8, where western Jutland generally shows quicker dynamics than eastern Jutland (see Figure 2 for an

outline of the regions and their surface geology).

4.4 Approach and model limitations and uncertainties
4.4.1 Calibration without drought focus

In this study setup, we apply the DK-model to investigate drought, even though the model has been calibrated
conventionally, without focusing on dry conditions, low flows, or other extreme values during the model’s calibration. Thus,
drought-sensitive model parameters may have been omitted in the calibration (Melsen and Guse, 2019). The recognised
inherent uncertainties in hydrological modelling are furthermore propagated to the calculation of the indices, and thus
drought index evaluation is also subject to parameter uncertainties (Kim et al., 2024). However, the presented validation of
drought indices showed that the model to a large degree successfully reproduces observed drought dynamics. This vows for
the robustness of distributed, physically based models such as the DK-model in modelling extreme conditions, under the

precondition that it is forced by adequate climate data.

4.4.2 Modelling of soil moisture

The accurate simulation of soil moisture, however, remains a challenge. Multiple factors play together: The validation data
for soil moisture time series is extremely limited (3 stations across all of Denmark), and the DK-model in its current setup
uses a simplified description of the unsaturated zone: The entire root zone is simulated as one lumped layer per grid, making
it impossible to represent typical gradients of soil moisture throughout the root zone. Hence, we must expect a mismatch
between simulated soil moisture dynamics and the observed ones, which only represent conditions in the uppermost 10-
75 cm of the soil.

This limitation eventually will be overcome, by (i) extending the soil moisture observation dataset by additional CRN
sensors throughout Denmark and (ii) the change to a more complex, layered description of the unsaturated zone in the DK-
model: In the currently ongoing update of the DK-model, a switch to the so-called gravity flow description of the unsaturated

zone, is envisioned.

4.4.3 Vegetation response to drought

In its presented setup, the DK-model’s vegetation is parameterised based on a climatology of NDVI (Normalized Difference
Vegetation Index) development throughout an average year. The NDVI data are derived from a merge of MODIS and
Landsat satellite data (Soltani et al., 2021), and are subsequently used to derive the spatio-temporal distributions of leaf area
index, root depth and crop coefficient used as inputs to the DK-model. This means that the parameterisation of the DK-

model reflects both spatial differences between, e.g. forests and croplands of different types, as well as seasonal dynamics in
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vegetation development. However, due to limitations with high-quality cloud-free data across all years, only average
monthly conditions are represented, meaning that individual years’ late or early onset of the vegetation period are not
represented, nor is drought impact on vegetation. Future developments of the DK-model should aim to a dynamic
representation of vegetation response. Either by incorporating actual year-to-year vegetation dynamics instead of a fixed
climatology, or even by integrating a dynamic vegetation module in the hydrological model, which simulates vegetation

parameters itself from dynamic climatic conditions, such as integrated in SWIM (Krysanova et al., 1998).

4.5 Monitoring and forecasting potential

The DK-model is an operational model (Liu et al., 2025b), running in real-time and forecast mode, and thereby offers
potential for early warning and drought forecasting. Previous studies have noted that hydrological drought forecasts are
generally more reliable than purely meteorological drought forecasts (Sutanto et al., 2020), particularly in systems with a
strong groundwater component and long memory effects (Du et al., 2023; Pechlivanidis et al., 2020; Sutanto and Van Lanen,
2022). In Denmark, observed and simulated drought propagation lags (see Figure 5 and Figure 6) indicate that it often takes
several months for meteorological droughts to translate into hydrological droughts, especially for groundwater. This implies
that seasonal hydrological drought forecasts may achieve skill, as drought conditions several months in the future are partly
affected by the current hydrological state. Such predictive capability is particularly relevant in a Danish context, where
groundwater is the primary source for agricultural irrigation. Improved forecasts of groundwater drought could therefore
provide an essential basis for early warning systems and proactive water management, supporting farmers and water
authorities in preparing for increased irrigation demands during dry periods. The variability of groundwater extraction for
drinking water and irrigation, both inter- and intra-annual, however, remains challenging to predict and incorporate in
models.

Recent work has also shown that Machine Learning and deep learning models can predict hydrological drought indices (for
example (Liu et al., 2024b; Wang et al., 2023; Zellou et al., 2023). Also in the context of the DK-model it could be shown
that LSTM (Long short-term memory) models, applied as hybrid models alongside DK-model output to predict streamflow,
outperform the conventional hydrological model (Liu et al., 2024a). Besides that, drought indices based on a combination of
remote sensing products and variable-driven indices have also shown great potential for drought monitoring (Choi et al.,

2013). Such products can, for example, more accurately monitor vegetation response to drought stress.

5 Conclusion

This study evaluated the ability of the DK-model, a distributed integrated hydrological model, to simulate drought
propagation across the hydrological cycle by comparing model-derived drought indices with observation-based ones. The

evaluation included quality-assured groundwater levels, streamflow, and soil moisture observations.
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The results demonstrate that the DK-model successfully reproduces observed drought anomalies, with high correlation
between simulated and observed drought indices, particularly for streamflow (SDI) and groundwater levels (SGDI). The
model effectively captures the expected lag times in drought propagation from meteorological drought (SPI/SPEI) to soil
moisture, streamflow, and groundwater droughts, aligning well with known hydrogeological controls. It also captures
important hydrologic phenomena such as the variable sensitivity of groundwater drought to meteorological drought during
different seasons, where, in the case of Denmark, groundwater drought is most affected by precipitation during winter.
However, discrepancies were observed for soil moisture droughts (SMDI), which likely stem from both limited
observational data and the simplified representation of the unsaturated zone in the hydrological model.

Spatial variations in drought propagation were well captured by the DK-model, with differences in drought response
observed for example between sandy and clayey regions of Denmark. These variations underscore the importance of
considering hydrogeological factors in drought assessments. The model also highlighted and reproduced the increased
sensitivity of groundwater state to precipitation deficits during the winter months being the recharge season in Denmark.
Moreover, it proved skilful in identifying drought accumulation periods, highlighting its potential for future drought risk
assessment and forecasting.

Despite the positive validation results, some limitations remain. Vegetation response to drought is not explicitly simulated,
limiting the model’s applicability for ecosystem impact assessments. Furthermore, the soil moisture observational dataset
must be extended, along with improvements to the unsaturated zone representation in the hydrological model.

Overall, this study confirms that the DK-model is a valuable tool for assessing drought occurrence and propagation in
Denmark. Given its operational setup, the model holds significant potential for real-time drought monitoring and early
warning applications to support society’s planning of efficient remediation measures for example for urban water supply,
agriculture and nature. Future improvements, including enhanced soil moisture modelling and integration of additional
observational datasets, will further strengthen its applicability for drought risk management and climate adaptation strategies.
Future research will also be geared towards establishing links between hydrological drought (indices) and drought impacts,
such as crop yield reduction in agriculture, ecological consequences for streams, wetlands and other natural areas, or land
subsidence due to clay shrinkage: Parts of Denmark have plastic clays in the subsoil which are prone to subsidence under dry
conditions (similar to parts of France or Great Britain; see Barthelemy et al., 2024; Harrison et al., 2012). Drought
monitoring and forecasting are important for Denmark to ensure food and water security, mitigate economic damage to
agriculture, protect ecosystems and inform water management policies. Early warning systems can help to implement
proactive measures such as farmers’ cropping decisions, can support water resources evaluations during the process of
giving water abstraction permits, or can support mapping areas at risk of drought-induced subsidence and saltwater intrusion

in coastal areas due to increased groundwater abstraction.
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Appendices
Appendix A: Selected observational data

Table A 1: Selected groundwater level time series. Missing data based on availability of monthly values between start and end of
the time series, across all data 1990 — 2023 (not limited to reference period 1991 — 2020 used for the selection).

well ID X UTM32N Y UTM32N f"te[rrg]epth start end E pei
182317 1 711391 6219004 60.0 03-1990 11-2023 16.8%
102.46 1 694215 6191908 22.0 02-1990 12-2023 51.1%
197.166_1 648686 6177666 455 02-1990 09-2023 23.5%
205.336_1 662281 6171321 44.0 06-1995 06-2023 13.4%
207.307 1 701488 6162490 23.4 02-1990 12-2023 49.9%
207.589_1 700954 6160447 337 02-1990 12-2023 49.9%
212322 1 693956 6144459 23.9 02-1990 12-2023 50.4%
213.153 1 700323 6156288 117 01-1990 06-2020 37.4%
217.474 1 691247 6136532 20.7 01-1990 12-2023 17.4%
218.343 1 715326 6131020 177 02-1990 12-2023 52.3%
230.241 1 648235 6083251 5.0 01-1991 12-2023 1%
230.242 1 647613 6084828 47 01-1991 12-2023 0.8%
230.243 1 646228 6083084 5.1 01-1991 12-2023 2.8%
230.285_1 649123 6084094 5.3 04-1995 03-2021 0.6%
230.286_1 648541 6085508 31 04-1995 12-2023 10.4%
231.139 1 681703 6086852 53.8 08-2001 07-2023 18.6%
237.72 1 665421 6074758 215 02-1990 07-2021 21.2%
238.141 1 686148 6080235 35.2 09-2000 07-2021 10.4%
135.1095_1 565212 6154292 53.0 06-1997 12-2023 17.9%
165.335 1 610887 6110064 5.4 02-1990 12-2023 7.9%
165.336_1 611004 6109654 41 02-1990 12-2023 8.4%
165.337 1 611587 6110478 5.2 04-1990 12-2023 7.2%
165.339 1 612206 6109794 5.3 02-1990 12-2023 7.4%
165.34 1 610837 6108352 28.1 01-1990 12-2023 18.6%
114.1647 1 496190 6176344 14.0 01-1996 12-2023 8.9%
121.1095 2 468557 6160924 62.5 02-1995 08-2023 7.6%
121.1095_8 468557 6160924 14.0 02-1995 12-2023 15.9%
123.874 1 506103 6164952 100.5 01-1991 12-2023 16.9%
132.1657 1 505026 6154153 75 12-1995 12-2023 17.5%
149.398 1 485777 6108822 11.0 01-1990 08-2013 16.2%
158.564_1 492782 6100963 8.4 01-1990 03-2014 6.9%
159.327 1 500766 6106041 325 01-1990 12-2023 12.5%
159.514 1 496559 6099933 12.0 01-1990 04-2010 18.4%
159.925 1 505829 6101988 35 02-1990 12-2023 3.2%
159.930_1 506882 6103127 35 02-1990 12-2023 6.4%
159.935_1 507240 6102212 35 02-1990 02-2023 3.2%
159.940_1 507313 6102488 35 02-1990 12-2023 5.7%
159.950_1 500141 6102280 35 02-1990 12-2023 4.7%
159.955_1 510979 6103840 35 02-1990 12-2023 7.1%
159.960_1 509959 6103830 35 02-1990 12-2023 3.9%
160.1009_1 515928 6095447 3.0 01-1990 03-2014 7.2%
167.972 1 503256 6086046 3.0 01-1990 03-2014 17.2%
168.844_1 513339 6092827 45 01-1990 03-2011 7.1%
105.374 1 525476 6109846 20.0 01-1990 06-2023 23.4%
751284 1 500576 6244568 8.9 01-1990 12-2023 27.2%
75.714 1 506895 6238666 9.3 01-1990 12-2020 13.7%
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76.853 1
98.946_1
98.948 1
22.368_1
30.494_1
36.305_1
48.999 1

517445
551739
552117
478860
483967
468827
532866

6231700
6206365
6204846
6321500
6312511
6300647
6289564

15.5
5.1
5.5

41.0

225

33.0
8.0

01-1990
01-1991
01-1991
02-1990
01-1990
02-1990
09-1991

12-2023
12-2022
12-2022
12-2023
05-2019
12-2023
12-2023

EGUsphere\

23.5%
13.3%
11.2%
23.8%
11.9%
37.6%
12.1%

Table A 2: Selected streamflow stations. Missing data based on availability of daily values between start and end of the time series,
across all data 1990 — 2023 (not limited to reference period 1991 — 2020 used for the selection).

Station

number X UTM32N Y UTM32N Start End % missing data
Q2000005 589161.8 6370985 01-01-1990  31-12-2023 -
Q3000002 566336.7 6381281 01-01-1990  31-12-2023 -
Q3000003 567957.8 6368100 01-01-1990  31-12-2023 -
Q5000003 586856 6341491 01-01-1990  31-12-2023 -
Q6000001 550825.1 6347700 01-01-1990  31-12-2023 -
Q7000003 555317.2 6335583 01-01-1990  31-12-2023 -
Q8000001 581871.9 6329750 01-01-1990  31-12-2023 -
Q9000001 487212.7 6319228 01-01-1990  31-12-2020 -
Q9000015 483951.5 6320977 01-01-1990  31-12-2023 -
Q10000009 534988.4 6305405 01-01-1990  31-12-2023 -
Q11000011 461981.3 6299723 01-01-1990  31-12-2023 -
Q11000016 468406.6 6305705 01-01-1990  31-12-2023 -
Q13000011 531765.6 6289173 01-01-1990  31-12-2023 -
Q13000019 517582.8 6297345 01-01-1990  31-12-2023 -
Q14000016 566946.7 6311600 01-01-1990  31-12-2023 -
Q14000022 562873.8 6307790 01-01-1990  31-12-2023 -
Q15000002 567610.7 6281876 01-01-1990  31-12-2023 -
Q15000032 575072.2 6295316 01-01-1990  31-12-2023 -
Q15000073 561179.5 6283294 01-01-1990  31-12-2023 -
Q16000023 470119.8 6259816 01-01-1990  31-12-2023 -
Q16000024 468394.3 6266273 01-01-1990  31-12-2023 -
Q16000030 502651.9 6277458 01-01-1990  31-12-2023 -
Q17000004 530002 6280947 01-01-1990  31-12-2023 2.9%
Q18000077 530280.6 6269978 01-01-1990  31-12-2023 -
Q19000012 512640.2 6265359 01-01-1990  31-12-2023 -
Q19000015 508615.6 6257402 01-01-1990  31-12-2023 2.9%
Q20000024 498918.9 6263300 01-01-1990  31-12-2023 -
Q20000026 500473 6251379 01-01-1990  31-12-2023 -
Q21000030 554634.3 6218958 01-01-1990  31-12-2023 2.9%
Q21000062 536146 6213202 01-01-1990  31-12-2023 -
Q21000084 541573 6233043 01-01-1990  31-12-2023 -
Q21000085 538229 6195279 01-01-1990  31-12-2023 -
Q21000089 543393.6 6207508 01-01-1990  31-12-2023 -
Q21000090 526744.1 6193717 01-01-1990  31-12-2023 -
Q21000413 578523.6 6252880 01-01-1990  31-12-2023 -
Q21000461 549010.3 6250170 01-01-1990  31-12-2023 -
Q21000467 561144.1 6257258 01-01-1990  31-12-2023 -
Q21000487 529023 6233796 01-01-1990  31-12-2023 -
Q21000528 529131 6221429 01-01-1990  31-12-2023 -
Q21000548 555491.3 6247591 01-01-1990  31-12-2023 1.7%
Q21000665 551249.9 6217917 01-01-1990  31-12-2023 -
Q21000712 532740.5 6235674 01-01-1990  31-12-2023 -
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Q21000759 551257.9 6218280 01-01-1990  31-12-2023 -
Q21000794 533986.6 6254740 01-01-1990  31-12-2023 -
Q21000803 531221.2 6235168 01-01-1990  31-12-2023 -
Q22000043 472880.5 6248224 01-01-1990  31-12-2023 5.9%
Q22000048 468256.5 6243438 01-01-1990  31-12-2023 -
Q22000050 463240.5 6242354 01-01-1990  31-12-2023 -
Q22000053 502901.5 6229144 01-01-1990  31-12-2023 -
Q22000062 459529.4 6243554 01-01-1990  31-12-2023 -
Q25000020 514240.1 6206177 01-01-1990  31-12-2023 -
Q25000021 511723.8 6195417 01-01-1990  31-12-2023 -
Q25000075 456667.9 6221596 01-01-1990  31-12-2023 -
Q25000078 474400.2 6197740 01-01-1990  31-12-2023 -
Q25000082 481729.5 6201324 01-01-1990  31-12-2023 -
Q25000086 454396.9 6228785 01-01-1990  31-12-2023 -
Q26000080 574364.8 6224099 01-01-1990  31-12-2023 -
Q26000082 564656.6 6221583 01-01-1990  31-12-2023 -
Q26000096 564304.9 6223492 01-01-1990  31-12-2023 -
Q27000004 552527.5 6194783 01-01-1990  31-12-2023 -
Q27000045 552791.2 6192996 01-01-1990  31-12-2023 -
Q28000001 547191.5 6192162 01-01-1990  31-12-2023 -
Q29000009 545677.1 6174075 01-01-1990  31-12-2023 -
Q31000027 471082.3 6166434 01-01-1990  31-12-2023 -
Q31000032 470682.8 6167754 01-01-1990  31-12-2023 -
Q32000001 527667.3 6173011 01-01-1990  31-12-2023 -
Q32000004 532822.2 6179194 01-01-1990  31-12-2023 -
Q32000013 519219.7 6174555 01-01-1990  31-12-2023 -
Q32000022 531147.9 6172434 01-01-1990  31-12-2023 -
Q33000004 540896.2 6160615 01-01-1990  31-12-2023 -
Q34000002 525384 6156676 01-01-1990  31-12-2023 -
Q34000003 523876.9 6150631 01-01-1990  31-12-2023 -
Q34000019 527579 6150125 01-01-1990  31-12-2023 -
Q35000006 479056 6149077 01-01-1990  31-12-2023 -
Q35000010 480791.1 6150064 01-01-1990  31-12-2023 -
Q36000008 489537.9 6140711 01-01-1990  31-12-2023 -
Q36000009 481154.5 6138719 01-01-1990  31-12-2023 -
Q37000011 538465.6 6146063 01-01-1990  31-12-2023 -
Q37000038 531510.6 6134183 01-01-1990  31-12-2023 -
Q38000020 516099.6 6137311 01-01-1990  31-12-2023 -
Q38000023 490003.6 6135526 01-01-1990  31-12-2023 -
Q38000024 492188.5 6130695 01-01-1990  31-12-2023 -
Q39000001 484366 6116426 01-01-1990  31-12-2023 -
Q39000002 483013.2 6121271 01-01-1990  31-12-2023 -
Q41000012 528629.5 6107143 01-01-1990  31-12-2023 -
Q41000014 539602.5 6087906 01-01-1990  31-12-2023 -
Q41000016 559627.7 6089407 01-01-1990  31-12-2023 -
Q42000014 529526.9 6089058 01-01-1990  31-12-2023 -
Q42000016 495547.5 6086554 01-01-1990  31-12-2023 -
Q42000020 529001 6088239 01-01-1990  31-12-2023 -
Q42000021 495520.1 6089644 01-01-1990  31-12-2023 -
Q42000022 528105.5 6087912 01-01-1990  31-12-2023 -
Q42000074 505946.2 6100068 01-01-1990  31-12-2023 -
Q43000001 562619.1 6150437 01-01-1990  31-12-2023 -
Q44000021 605875.1 6134734 01-01-1990  31-12-2023 -
Q45000001 589886.3 6140137 01-01-1990  31-12-2023 -
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Q45000002 589845.5 6140009 01-01-1990  31-12-2023 -
Q45000003 584160.1 6132328 01-01-1990  31-12-2023 -
Q45000004 578166.8 6123842 01-01-1990  31-12-2023 -
Q45000005 581835.5 6143647 01-01-1990  31-12-2023 0.7%
Q45000043 592368.1 6139210 01-01-1990  31-12-2023 -
Q45000045 584459.8 6113884 01-01-1990  31-12-2023 -
Q45000058 596607.9 6143998 01-01-1990  31-12-2023 -
Q46000001 558744 .4 6136648 01-01-1990  31-12-2023 -
Q46000017 570824.9 6118829 01-01-1990  31-12-2023 -
Q47000001 590462.7 6106460 01-01-1990  31-12-2023 -
Q47000036 610424.5 6106412 01-01-1990  31-12-2023 -
Q47000037 613764.5 6116052 01-01-1990  31-12-2023 -
Q48000004 709875.6 6221615 01-01-1990  31-12-2022 -
Q48000007 696263.4 6219962 01-01-1990  31-12-2023 -
Q48000010 705370.8 6223930 01-01-1990  31-12-2022 -
Q49000054 689223.5 6207584 01-01-1990  31-12-2022 -
Q49000057 692630.4 6203133 01-01-1990  31-12-2021 3.1%
Q49000061 699064.7 6204790 01-01-1990  31-12-2023 -
Q49000066 703650.4 6208138 01-01-1990  31-12-2023 -
Q50000051 722477.1 6190319 01-01-1990  31-12-2023 -
Q50000056 717655.5 6203890 01-01-1990  31-12-2023 -
Q50000057 718236 6203581 01-01-1990  31-12-2022 0%
Q51000020 664932.6 6183736 01-01-1990  31-12-2022 -
Q51000024 662560.1 6175730 01-01-1990  31-12-2023 -
Q52000020 704951.3 6178003 01-01-1990  31-12-2023 -
Q52000025 695440.3 6193605 01-01-1990  31-12-2023 -
Q52000029 696997.3 6199419 01-01-1990  31-12-2022 -
Q52000039 702527.7 6181968 01-01-1990  31-12-2023 -
Q52000063 696916.4 6180156 01-01-1990  31-12-2023 -
Q52000068 687663.6 6168515 01-01-1990  31-12-2023 -
Q52000198 703851.4 6197722 01-01-1990  31-12-2023 -
Q53000010 708821.2 6167693 01-01-1990  31-12-2023 -
Q53000011 712400.8 6168919 01-01-1990  31-12-2022 -
Q53000028 718736.8 6173782 01-01-1991  31-12-2022 -
Q55000015 642677 6160255 01-01-1990  31-12-2021 -
Q55000017 666588.7 6161009 01-01-1990  31-12-2023 -
Q55000018 650267 6165577 01-01-1990  31-12-2023 -
Q56000002 646905.7 6132704 01-01-1990  31-12-2023 -
Q56000006 649558 6136091 01-01-1990  31-12-2022 3%
Q56000007 650723.2 6150182 01-01-1990  31-12-2023 -
Q57000044 665249.1 6134020 01-01-1990  31-12-2023 5.9%
Q57000050 667710.6 6141007 01-01-1990  31-12-2023 2.9%
Q57000052 683955 6119393 01-01-1990  31-12-2023 2.9%
Q58000047 696142.9 6151420 01-01-1990  31-12-2023 -
Q59000006 703224.5 6136667 01-01-1990  31-12-2023 -
Q60000031 698243.8 6102754 01-01-1990  31-12-2023 -
Q60000035 699055.7 6123001 01-01-1990  31-12-2023 0.1%
Q60000036 693478.1 6111254 01-01-1990  31-12-2023 -
Q62000012 645325.1 6081855 01-01-1990  31-12-2023 -
Q62000015 637918.7 6085652 01-01-1990  31-12-2023 18.5%
Q62000017 638281.2 6075720 01-01-1990  31-12-2021 -
Q62000022 646300.9 6080955 01-01-1990  31-12-2021 -
Q64000025 658695.6 6078297 01-01-1990  31-12-2022 0.6%
Q66000014 863801.4 6126707 01-01-1990  31-12-2023 -
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Q67000017 883256.1 6111748 01-01-1990  31-12-2023 -
Q67000018 880927.9 6132549 01-01-1990  31-12-2023 -

Table A 3: Soil moisture measurement based on the CRN stations. Missing data based on availability of daily values between start
695 and end of the time series (not limited to reference period 1991 — 2020 used for the selection).

Station name X UTM32N Y UTM32N Start End % missing data
Harrild (Heath) 509851 6208935 28-03-2014  09-05-2023 18%
Voulund (Field) 510004 6210234 07-02-2013  09-05-2023 9%

Gludsted (Forest) 520872 6210582 08-02-2013  15-11-2021 31%
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Appendix B: Accumulation periods using SPEI instead SPI

10 (a) SMDI obs vs. SPE!, .. (c)GBGMDl vs. SPEi . [months] with max corr
8+ &
5_.7 [=]
w ] - ) 50 e
059 . 3-4 E
2 =
[=}
0.0 . . T T . 407 1 %
0 10 20 30 40 50 60 1o
SPEl 4. [months] @ 30 4
E
(b) SMDI sim@obs vs. SPEl &
1.0
204
w050 T 10
N\
0.0 — — . 0 . . : ‘ .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
SPEl5e [months] abs
(d} SDI obs vs. SPE!l,.. (ﬂaOSDl VS. SPElacc [months] with max corr
8+ ¢
5-7 8
25 a
" 34 £
2 O
20 , S
0.0 T T T T T 1 **
0 5 10 15 20 25 30 4
SPEi,.. [months] @ 15
=
(@) SD! sim@obs vs. SPElqc @
10 g
£ =N
L. 3.1 g
E 2]
. 5 a.a
»
%%
L1
0.0 . . . . . | 0+ ‘ — L sim@obs ys obs — 0.46
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SPEl;c- [months] obs

(a) SGDI obs vs. SPEl,.. 1] BDSGDI VS. SPElsc [months] with max corr
8+ g
<0 578
3-4 ﬁ
2 a
o
0.0 +—— . . T T ‘ 401 1o
0 10 20 30 40 50 60 @ LS
SEPiacc [months] @ 30 4
£ .
(h) SGDI sim@obs vs. SPEl,ec ® i

r sirrlu@obs Vs obs = 0.72

‘ . . . . . 0+ ‘ .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
SPElzcc [months] obs

0.0

EGUsphere

Figure B 1: (equivalent to Fig. 5, but using SPEI instead of SPI) Left column: Correlation coefficients of SPEI accumulation

periods against observed and simulated time series of SMDI (a,b), SDI (d,e) and SGDI (g,h), respectively. Wells representing

SGDl4eep are marked with blue. Significant correlations (p<0.01) in red, remaining in grey. Right column: scatter plots of optimal
accumulation period of SPEI for correlation to SMDI at the 3 CRN stations (c), SDI at the 153 streamflow stations (f), and SGDI

at the 53 groundwater wells (i), where wells representing SGDldeep are marked with a blue outlines. Optimal SPEI accumulation
period for simulated time series along y-axis, and for observed time series along x-axis.
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Figure B 2: (equivalent to Figure 6, but using SPEI instead of SPI) Top row: Accumulation period of SPElacc yielding maximum
correlation with hydrological drought index per DK-model g-point or grid. Bottom row: Maximum correlation between
hydrologic drought index and SPElacc of respective accumulation period. Non-significant correlations (p>0.01) are masked grey
(e.g. isolated areas for SDI and SGDlgeep in eastern Jutland)
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Figure B 3: (equivalent to Figure 6, but using only data during droughts defined by SPI < 0) Top row: Accumulation period of
SPlacc yielding maximum correlation with hydrological drought index per DK-model g-point or grid. Bottom row: Maximum

correlation between hydrologic drought index and SPlacc of respective accumulation period. Non-significant correlations (p>0.01)
are masked grey (e.g. isolated areas for SDI and SGDIldeep in eastern Jutland)
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Figure B 4: (equivalent to Figure 6, but using SPEI instead of SPI and only during droughts defined by SPEI < 0) Top row:
Accumulation period of SPElac yielding maximum correlation with hydrological drought index per DK-model g-point or grid.
Bottom row: Maximum correlation between hydrologic drought index and SPElacc of respective accumulation period. Non-
significant correlations (p>0.01) are masked grey (e.g. isolated areas for SDI and SGDlgeep in eastern Jutland)

720 Data availability

Drought indices calculated with the DK-model are openly available via the Hydrologic Information and Prognosis System
HIP hosted by Climate Data Agency (KDS) under https://hip.dataforsyningen.dk/, though the indices presented there are
calculated based on a slightly different version of the DK-model than used in this work. All python scripts used to calculate
the drought indices, as well as the resulting data will be provided upon request to the authors without undue reservation.
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