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interpreting carbonaceous aerosol results derived from different measurement approaches
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Abstract

As China’s fine particulate matter (PM2 ) has decreased nationwide during the last decade, further
improvement of air quality became more challenging, imposing higher requirements on the
observational support for the understanding of aerosol sources. This was particularly the case for
the severe cold climate region in Northeast China, which suffered from relatively slow decreasing
rate and high exposure risk of PM.s. Here we evaluated carbonaceous aerosol data measured by
different sampling and analytical approaches, based on field campaigns conducted during a frigid
winter and an agricultural-fire impacted spring in Harbin. For both the high- and low-volume
sampling, a total of four sets of organic and elemental carbon results were derived by applying two
commonly-used temperature protocols (IMPROVE-A, i.e., IMPV, and NIOSH) to both untreated
filters and those extracted by methanol. Only the IMPV-based results measured before the extraction
were found to be indicative of aerosol sources, e.g., in reasonable accordance with secondary aerosol
formation in winter and open burning impacts in spring. Thus the analytical method of IMPROVE-
A on untreated samples was recommended for future field observations and source apportionments
of PM_s in the studied region. In addition, although the low- and high-volume samplers typically
led to comparable measurement results for various species, exceptions were identified for water-

soluble potassium (K*) and some fire-emitted chromophores. We suggested that K+ and light
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absorption coefficients of brown carbon should be compared or integrated with caution across

studies using different PM2 s samplers. K*-detected-by-different PM. s-samplers-may-notbe-directly




28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1. Introduction

Carbonaceous aerosols are a complex mixture of compounds exhibiting a gradual change in

chemical and physical properties (P&schl, 2005; Andreae and Gelencsé&, 2006), e.g., from colorless

organics with low molecular weights, to “dark” brown carbon with relatively high thermal stabilities

(Chakrabarty et al., 2023), and finally to refractory black carbon which is strongly light-absorbing.

As important contributors to both fine particulate matter (PM..s) pollution and radiative forcing,

they have long been targeted to achieve a synergistic improvement of air quality and mitigation of

climate change (Fuzzi et al., 2015; von Schneidemesser et al., 2015; Liu et al., 2022). However, it

remains a challenge to properly represent carbonaceous aerosols in chemical transport models, as

each step along the way between the estimations of sources and tempo-spatial variations is difficult.

For example, considerable uncertainties exist in the open burning emission, secondary organic

aerosol (SOA) budget and black carbon lifetime (Andela et al., 2022; Chang et al., 2022; Zhong et

al., 2023). This in turn introduces substantial uncertainties to the climate and health effects of

carbonaceous aerosols (Li et al., 2022).

Field observational data on carbonaceous aerosols, including those derived from ground and

aircraft measurements, are essential to constrain the simulation results and subsequently to improve

the model performance (Philip et al., 2014; Wang et al., 2014b, 2018; Gao et al., 2022; Eckhardt et

al., 2023). Relying on on-line instruments such as the Single Particle Soot Photometer (SP2), aircraft

studies typically covered relatively short periods (e.g., up to about one month) but provided

measurement results with high time and spatial resolutions (Samset et al., 2014). Offline and semi-

continuous techniques (e.g., lab and field carbon analyzers for elemental carbon) were more

commonly used in ground observations, giving-rise-te producing datasets with relatively low time
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resolutions but spanning several months to decades (Dao et al., 2019; Hand et al., 2024). After

accounting for the difference in time resolution, the integration of carbonaceous aerosol data across

studies and regions was still not straightforward. A major obstacle was caused by the multitude of

measurement principles (Petzold et al., 2013), which was intensively reflected by the considerable

and, more importantly, variable discrepancies in black carbon results among different methods

(Buffaloe et al., 2014; Li et al., 2019; Pileci et al., 2021; Tinorua et al., 2024). This problem was far

from being properly addressed, although great efforts have been devoted to refine the respective

measurement approach such as the thermal-optical (Cavalli et al., 2010), optical (Collaud Coen et

al., 2010) and SP2 (Laborde et al., 2012) techniques. In addition, this problem was to some extent

overlooked in China, which might be partially responsible for the inconsistent source apportionment

results obtained by different studies. For example, both Zheng et al. (2015) and Liu et al. (2020)

applied the EC elemental carbon (EC) tracer method to estimate secondary OC (SOC) during winter

in Beijing, but the two studies derived conflicted conclusions on the contribution of heterogeneous

chemistry to SOC formation (i.e., minimal vs. significant) since different analytical methods (i.e.,

NIOSH vs. IMPROVE-A temperature protocols) for EC were deployed. Such inconsistencies

substantially weakened the observational support for the understanding of aerosol sources and thus

the control of haze pollution.

With a considerable decrease in the national PM. s since 2013, it became more challenging to

further improve the air quality in China (Cheng et al., 2021). This imposed higher requirements on

the observational insights into aerosol sources, including the evaluation of carbonaceous aerosol

results among various measurement approaches. Here we focused on the widely-used thermal-

optical method, which separates carbonaceous components into two fractions with different thermal
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stabilities and light absorption capacities, i.e., organic carbon (OC) and elemental-carber{EC). The

basis of the separation includes two points: EC survives—to evolves form the filter at higher

temperatures than OC, and the removal of EC leads to a rapid increase in the filter transmittance

and reflectance signals. A major problem in this method is that a considerable fraction of OC could

be transformed into char-OC, which is difficult to be robustly distinguished from EC with respect

to either thermal or optical behavior. In addition, the amount and optical properties of char-OC were

found to depend on the temperature protocol deployed (Yu et al., 2002; Yang and Yu, 2002;

Subramanian et al., 2006). This to a large extent explained the EC discrepancies among various

protocols. However, it remained unclear how the charring process and thus the EC measurement

were influenced by OC sources and composition (Chiappini et al., 2014). In addition, to reduce or

minimize the interference from char-OC, several investigators have tried to remove a fraction of OC

from the samples before thermal-optical analysis, by extracting the filters using water, methanol or

other solvents (Piazzalunga et al., 2011; Giannoni et al., 2016; Lappi and Ristim&ki, 2017; Aakko-

Saksa et al., 2018; Hu et al., 2023). However, inconsistent patterns were identified for the effects of

OC removal on EC determination, with evidences available for both an increase (e.g., Piazzalunga

et al., 2011) and a decrease in EC (e.g., Hu et al., 2023) after the extraction. The discussions above

indicated that the thermal-optical methods, including the practicability of sample pretreatment by

extraction, merit further investigations.

In this study, we compared carbonaceous aerosol results determined by different analytical as

well as sampling approaches, based on filter samples collected in Harbin, the northernmost megacity

in China. Compared to other megacities such as Beijing, Harbin is characterized by the frigid winter

(with an average temperature of about —20 °C in January) and the massive agricultural sector in
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surrounding areas (i.e., the Songnen Plain in Northeast China). In addition, Harbin and other cities
in Northeast China have largely been overlooked in clean air actions and thus studies on haze, as
indicated by the limited observational data available (Liu et al., 2022). This lack of investigation
was partially responsible for the relatively slow decreasing rate (Xiao et al., 2022) and high exposure
risk (Wei et al., 2023) of PM_; in this distinct region. Thus our study on measurement methods of
carbonaceous aerosols is expected to be a support for future efforts on the exploration of the PMas
sources in Northeast China, which are essential for further improving the regional air quality.
2. Methods
2.1 Field sampling

PM25 samples were collected at an urban site in Harbin, i.e., on the campus of Harbin Institute
of Technology (HH¥), during the winter and spring of 2021. The sampling was done by a mass flow
controlled high-volume sampler (TE-6070BLX-2.5-HVS; Tisch Environmental, Inc., OH, USA)
and a low-volume sampler (MiniVol; Airmetrics, OR, USA), operated using quartz-fiber filters (Pall
Corporation, NY, USA) at flow rates of 1.13 m¥/min and 5 L/min, respectively. The flow rates,
together with the particle-laden filter areas, could be translated into the face velocities of 46.34 and
7.35 cm/s for the high- and low-volume (HV and LV) samplers, respectively. This indicated that
when the two samplers were run in parallel, the HV-to-LV ratio of particle loading would be 6.3.

The 2021 winter campaign covered the entirety of January, the coldest month during that year
with an average temperature of —19 °C.; whereas-the In addition, the spring campaign was conducted
during 10-30 April of 2021, a period with frequent occurrences of agricultural fires (as indicated by
the satellite-based active fire detection results; Figure S1). For both seasons, the HV sampler was

used to collect daytime (09:00-16:00) and nighttime (21:00-05:00 of the next day) samples, while
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the LV one was operated on a daily basis (~09:00-09:00 of the next day), leading to 24-h integrated
samples. Each LV sample generally corresponded to two HV samples, although the two samplers
were not exactly parallel. One reason for the relatively short sampling durations of HV was to avoid
extremely high particle loadings that could prohibit proper filter transmittance measurement which
could-make-the filters-unsuitable-for- thermal-optical-analysis (Lappi and Ristim&ki, 2017).
2.2 Laboratory analysis

For both the HV and LV samples, two punches were prepared to determine OC and EC using
a thermal-optical carbon analyzer (DRI-2001; Atmoslytic Inc., CA, USA). One punch was directly
measured, while the other one was immersed in methanol (HPLC grade; Fisher Scientific Company
L.L.C., NJ, USA) for an hour without stirring or sonication, dried in air for another hour, and then
analyzed. All the pairs of untreated and extracted punches were measured using the IMPROVE-A
and NIOSH temperature protocols, both of which were operated with transmittance charring
correction (Figure 1). This correction approach was applied since the intensity of the filter
transmittance signal (1) has a clear association with EC, e.g., as assumed by the Aethalometer,
another widely used instrument for measuring black carbon. Inter-protocol comparisons showed
good repeatability for both the total carbon (TC) and optical attenuation (ATN) results (Figure 2),
demonstrating the robustness of the analyzer for detecting carbon and filter transmittance signals
{H. Here ATN was calculated as In(lfinai/ linitiar), Where linitiar 2nd Ifina indicate | measured at beginning
(i.e., when the particle-laden filter has not been heated) and end (i.e., when all the deposited carbon
has been combusted off the filter) of thermal-optical analysis, respectively. ATN was of interest
because it was closely related to EC loading (ECs, in pg/cm?), e.g., typically with a linear

dependence for relatively low ECs levels (Chen et al., 2020; Liu et al., 2020). It should be noted that
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for the parallel TC and ATN measurements by different protocols, the relative standard deviation

(RSD) levels indeed increased after the extraction, e.g., from ~2 to 5% and from ~2 to 4% for the

HV samples, respectively. However, the RSD levels, i.e., the uncertainties, were considered low

enough for both the untreated and extracted filters.

In addition, following the method developed by Hecobian et al. (2010), wavelength-resolved

light absorption coefficients (bass) of the methanol extracts, i.e., the dissolved brown carbon (BrC),

were measured using a spectrophotometer (Ocean Optics Inc., FL, USA) coupled with a 2.5-m long

liquid waveguide capillary cell (LWCC; World Precision Instruments, FL, USA). Inorganic ions and

levoglucosan were also determined for the HV and HV samples, by analyzing their water extracts

using a Dionex ion chromatography system (ICS-5000*; Thermo Fisher Scientific Inc., MA, USA).
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Figure 1. Thermograms measured using a pair of untreated and extracted HV filters. The sample
was collected during the daytime of 25 January, 2021. Temperature protocol used was NIOSH, in
which the filter was heated in a He (first to 870 <C stepwise and then cooled down to 550 <C) and a
He/O, (from 550 to 890 T stepwise) atmosphere sequentially. NIOSH had fixed durations for the
various heating stages and thus was preferred for the comparison of thermograms. | indicates the
filter transmittance signal; FID indicates the carbon signal, which was measured by a flame
ionization detector. The subscripts “untreated” and “extracted” distinguished the thermograms
measured before and after the extraction, while the split points of OC and EC were marked by the
arrows.
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Figure 2. Comparisons of TC (in ugC/cm?) and ATN (dimensionless) measured using different
temperature protocols. Results from the HV and LV samples, both untreated and extracted, were
combined for the comparisons. Linear regression of the NIOSH-based TC on that determined by
IMPROVE-A led to a slope of 0.99 +0.00 (r = 1.00; intercept was set as zero). Similar regression
results (i.e., slope = 0.99 £0.00; r = 1.00) were obtained for ATN. The good repeatabilities on one
hand demonstrated the performance of carbon analyzer for measuring the carbon and laser
transmittance signals, and on other hand indicated a homogeneous distribution of carbonaceous
components for not only the untreated but also the extracted filters, i.e., a negligible disturbance of
EC as well as other insoluble carbon by the extraction.
2.3 Open-access data

Meteorological data (e.g., temperature and relative humidity) and air quality data (e.g., PM2s,
PMjo and CO) for the measurement periods were obtained with a time resolution of 1 h from
Weather Underground (https://www.wunderground.com/) and the China National Environmental
Monitoring Center (CNEMC,; https://air.cnemc.cn:18007/), respectively.
3. Results and discussion
3.1 Evaluation of EC results from the winter campaign

A precondition for proper separation of OC and EC is that the filter transmittance signal (1)

could properly reflect the formation of light-absorbing char-OC during the inert mode (which would

result in a decrease in ), and the combustion, i.e., removal, of char-OC and EC during the oxidation



178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

mode (which would result in an increase in I). An empirical approach to evaluate this precondition
is to examine the dependence of ATN on ECs (Subramanian et al., 2006). A linear relationship was
typically observed for relatively low ECs levels and in this case, the precondition was commonly
believed to be valid. However, the linearity did not necessarily extend when EC; further increased,
since previous studies frequently found that the measured ATN could be considerably lower than
expected for heavily-loaded samples (Shen et al., 2013; Costa et al., 2016; Chen et al., 2020). The
deviation of ATN vs. ECs dependence from linear relationship was usually termed the loading effect,
and a traditional explanation was that ATN became less sensitive to the variation of EC; as filter
loading increased. An extreme case was observed during winter in Beijing, that the ATN values
were largely unchanged for heavily-loaded filters with TC varying between 150 and 300 pgC/cm?
(Liu et al., 2019). For the samples showing non-linear ATN vs. ECs dependence, their EC results
should be interpreted with caution.

We first investigated the relationship between ATN and EC; for the wintertime HV samples,
focusing on the results from IMPROVE-A. For the untreated filters, ATN correlated linearly with
EC; (leading to a regression slope of 42.8 +£1.9 m?/gC and a close-to-zero intercept; r = 0.95) when
the filters were lightly to moderately loaded, i.e., when the EC; levels were below 5 pgC/cm? (Figure
3a). The physical meaning of the slope was the mass absorption efficiency (MAE) of black carbon,
but with artifacts such as that caused by the multiple scattering effect (Lack et al., 2014). The overall
impact of various artifacts results in an overestimation of MAE, typically by factors of ~3 (Knox et
al., 2009; Qin et al., 2018). The linearity determined for the ECs range of below 5 ugC/cm? did not
hold for the more heavily loaded samples (N = 3, as highlighted by the solid circles in Figure 3a),

showing evidence for the loading effect. For the extracted samples, a linear correlation between
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ATN and EC; was also identified for relatively low EC loadings (Figure 3b), with a similar
relationship (i.e., a regression slope of 41.5 m?/gC and a close-to-zero intercept; r = 0.95) to that
derived from the untreated filters. However, it was noteworthy that ECmax, the upper limit of EC
loading for a linear ATN vs. EC, dependence, was only 3 ugC/cm? for the extracted filters, much
lower than that determined for the untreated ones. Due to the shift of ECmax, 51% of the extracted

samples showed evidence for the loading effect, whereas this fraction was only 5% before extraction.
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Figure 3. Relationships between ATN and EC loading, i.e., EC;, for the (a) untreated and (b)
extracted HV filters collected in winter, using the IMPROVE-A protocol. Linear dependences were
observed for the untreated samples with ECs below 5 ugC/cm? and for the extracted samples with
EC; below 3 gC/cm?, as indicated by the dashed lines in (a) and (b), respectively. Three untreated
samples had ECs above 5 pgC/cm?, as highlighted by the solid circles in (a). In (b), the extracted
filters showing non-linear ATN vs. ECs dependence were termed as the targeted samples;
correspondingly, the others were referred to as the reference ones (labelled as ref.). (c) Comparison
of sulfate loadings between the reference and targeted samples. (d) Comparison of the ECextracted tO
ECuntreatea ratios, i.e., Rivpv, between the reference and targeted groups of wintertime HV samples
(labelled as Group-R and Group-T, respectively). The targeted group indicated the targeted filters
and the corresponding untreated ones, while the reference group indicated the remaining pairs.
Lower and upper box bounds indicate the 25th and 75th percentiles, the whiskers below and above
the box indicate the 5th and 95th percentiles, the solid circles below and above the box indicate the
minimum and maximum, and the open circle within the box marks the median. All the EC results
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involved were measured by IMPROVE-A.

The discussions above raised a question that why the extraction significantly reduced ECax

for the HV samples. In principle, two factors could be responsible for the non-linear dependence of

ATN on EC;, including gradual saturation of ATN with increasing filter loading (the traditional

explanation; Subramanian et al., 2006) and overestimation of EC mass. The ECmax Of untreated

samples corresponded to an ATN of 2.1, indicating that the saturation was presumably not a concern

for the ATN results below this value. Regarding the extracted samples showing evidence for the

loading effect (i.e., the targeted samples), ATN stayed below 2.1 for nearly all of them (28 out of

31), thus their non-linear ATN vs. ECs dependences should be primarily attributed to the

overestimation of EC mass rather than the saturation of ATN. Compared to the other extracted

samples, the targeted ones were characterized by substantially higher sulfate loadings (Figure 3c).

It was inferred that in addition to EC, the abundant sulfate was also a non-negligible contributor to

ATN (e.g., through backward scattering; Petzold et al., 2005; Collaud Coen et al., 2010). Thus when

these the targeted samples were heated in the carbon analyzer, volatilization of sulfate would lead

to a decrease in ATN, i.e., an increase in filter transmittance signal. This was expected to result in a

premature split of OC and EC, and eventually an overestimation of EC. Other scattering components

such as nitrate and secondary organic aerosol (SOA) were not eensidered discussed here, since they

were typically considered soluble in methanol and should be absent in the extracted filters.

Comparison of EC between the targeted samples and the corresponding untreated ones (i.e.,

the targeted group) showed an overall increasing trend after the extraction (Figure 3d). For these

pairs of wintertime HV filters, the ratio of ECextracted (i.€., EC measured in the extracted samples) to

ECuntreated (i.€., EC measured in the untreated samples) averaged 1.16 £0.20. The extraction-induced
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increase in EC coincided with the overestimation of elemental carbon mass by ECextracted, Which was

inferred to be associated with the presence of abundant sulfate in the extracted filters.

For the other pairs of wintertime HV samples (i.e., the reference group), the ECextracted tO

ECuntreated ratios averaged 0.80 +0.12, pointing to a decrease in EC after the extraction (Figure 3d).

This was also the case for all the LV samples collected during the winter campaign, with comparable

ECextracted t0 ECuntreated ratios (averaging 0.78 +0.12). Here the LV samples were not divided into

subgroups because non-linear dependence of ATN on EC; was identified neither before nor after the

extraction (Figure S2). Given that the loss of insoluble carbon (e.g., EC) was negligible for our

extraction procedures (Figure 2 and Cheng et al., 2024), the extraction-induced decrease of EC

likely pointed to the underestimation of elemental carbon mass by ECextracted. A COMmon feature for

the HV samples in the reference group and the entirety of the LV samples was the relatively low

sulfate loadings. Cheng et al. (2024) inferred that small amounts of sulfate likely favored the

transmission of light through the extracted filters (e.g., by forward scattering; Petzold et al., 2005;

Collaud Coen et al., 2010). In this case, when the extracted samples were heated during thermal-

optical analysis, volatilization of sulfate would induce a drop of filter transmittance signal, which

could not be distinguished from that caused by the formation of char-OC. This was expected to

result in an overcorrection for char-OC, i.e., an underestimation of EC.

The contrasting ECextracted 10 ECuntreated ratios observed for the two groups of wintertime HV

samples suggested that the influence of sulfate on the transmittance signal of the extracted filter was

likely loading-dependent.

relatively-high-sulfate-loadings—{e-g—for-thetargeted-group). The influence was inferred to be
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dominated by backward scattering with relatively high sulfate loadings (e.g., for the targeted group),
whereas by forward scattering when sulfate was less abundant (e.g., for the reference group). This
inference was supported by the comparison of evolution patterns of filter transmittance signal under
different sulfate loadings (Figure 4). For the extracted filter with abundant sulfate (i.e., Sample-A
in Figure 4), the transmittance signal was largely unchanged during the He mode despite the
sufficient organic carbon loading. Correspondingly, the operationally-defined char-OC only
accounted for a relatively small fraction of the carbon evolving during the He/O, mode (i.e., He/O;
carbon). A possible explanation was that as the sample was heated, the drop of I induced by char-
OC was compensated by the increase of I due to the reduction in sulfate-driven backward scattering.
For the extracted filter with relatively small amount of sulfate (i.e., Sample-B in Figure 4), however,
the transmittance signal decreased significantly during the He mode, and the char-OC contribution
to He/O; carbon became more considerable correspondingly. Given the much lower organic carbon
loading for this sample (e.g., ~70% lower than Sample-A), the decrease of | was likely contributed
by not only the formation of char-OC but also the reduction in sulfate-driven forward scattering.
The ECextracted results appeared to be biased by different artifacts in these-twe the high- and low-
sulfate cases, resulting in underestimations-or overestimations or underestimations of elemental
carbon mass, respectively. The sulfate-induced artifacts for ECextractes COuld be more directly
reflected by the positive dependence of the ECextracted t0 ECuntreated ratio on sulfate loading. As shown
in Figure 5, the turning point for the artifact shifting from an underestimation to overestimation of
elemental carbon mass by ECextracted OCCUrred in the sulfate loading range of 10-15 pg/cm?. Figure
5 also suggested that the artifacts for ECextracted Were difficult to be accounted for, e.g., by a constant

correction factor. This prohibited the use of ECextracted for further analysis of aerosol composition
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289  Figure 4. Comparisons of (a) the evolution patterns of filter transmittance signal (I) and (b) the
290  fractions of char-OC (i.e., Fehar-oc) in He/Oz carbon for two extracted HV samples with relatively
291  high and low sulfate loadings (namely Sample-A and Sample-B, respectively). The two samples
292  were collected during the daytime of 25 January and the nighttime of 6 January, 2021, respectively.
293  They had sulfate loadings of 13.21 and 3.29 pg/cm?, and organic carbon loadings of 3.10 and 0.86
294  ugClcm?, respectively. The temperature protocol used was IMPROVE-A, in which the filter was
295  first heated to 580 <C in a He atmosphere and then to 840 <C in a He/O, atmosphere. The two modes
296 had 4 (i.e., OC1 to OC4) and 3 (i.e., EC1 to EC3) heating stages, respectively. He/O, carbon
297  indicated the amount of carbon evolving during the oxidizing mode, and was typically comprised
298  of char-OC and EC for IMPROVE-A.
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300 Figure 5. Dependence of Rimpy, i.e., the ECextracted t0 ECuntreated ratio determined by IMPROVE-A,
301 on sulfate loading in winter. Consistent trends were observed by the HV and LV samples. The
302 relatively wide range of Rimpv (approximately 0.5—1.5) provided solid evidence for the invalidation
303  of the ECextracted 10 ECuntreated ratio as an indicator for the extraction-induced loss of EC.

304 For the untreated filters, ATN exhibited a strong linear correlation with ECs for both HV and
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LV, with three heavily-loaded HV samples as the only exception. Actually, for the three samples,
their ATN vs. EC; relationships did not deviate markedly from the regression line determined for
the lower ECs loadings. Therefore, we suggested that when applying IMPROVE-A to the winter
samples, the measurement uncertainties should be less significant for ECuntreated COmMpared to
E Cextracted-

The same conclusion could be reached by interpreting the OC to EC ratios (OC/EC). It has
been widely accepted that OC/EC depended strongly on SOA formation, after excluding the distinet
events impacted by irregular emissions such as fireworks and open burning. Such events were not
evident throughout the winter campaign, and thus OC/EC was expected to increase with the
enhancement of secondary aerosol production. Here we used the relative abundance of secondary
inorganic ions (sulfate, nitrate and ammonium, i.e., SNA) compared to carbon monoxide (a typical
primary species), i.e., the SNA/CO ratio, as an indicator for the significance of secondary aerosols.
A benefit of using SNA/CO was that it was independent of EC measurement. The OC/EC ratio
corresponding to ECuntreated [i.€., (OC/EC)"] was determined directly by the thermal-optical results
from the untreated samples. For ECextracted, the corresponding OC/EC [i.e., (OC/EC)#] was calculated
as (TCuntreated — ECextracted)/ ECextracted, Where TCunreated indicates the total carbon concentration
measured before the extraction. As shown in Figure 6 for the wintertime HV samples, (OC/EC)”
exhibited reasonable accordance with SNA/CO (r = 0.72) but (OC/EC)* did not (r = 0.02). The clear
association between (OC/EC)* and SNA/CO, which was also supported by the results from LV (r =
0.66; Figure S3), provided additional evidence for the robustness of ECynreaed determined by

IMPROVE-A.
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Figure 6. Comparison of r values derived from the linear regressions of various OC/EC estimations
on SNA/CO, based on the wintertime HV samples. IMPV indicates the IMPROVE-A temperature
protocol. A total of four sets of OC/EC ratios were determined using different protocols and pre-
treatment approaches. The OC/EC ratio measured by the untreated samples using IMPROVE-A,
i.e., the IMPV-based (OC/EC)", exhibited the strongest association with SNA/CO.

Compared to IMPROVE-A, NIOSH led to weaker correlations between (OC/EC)" and
SNA/CO, as indicated by the smaller r values determined (0.49 vs. 0.72 for HV and 0.18 vs. 0.66
for LV; Figures 4 and S3). In addition, the NIOSH-based (OC/EC)* did not exhibit apparent
dependence on SNA/CO either (r = 0.06 and 0.34 for HV and LV, respectively). Thus Figures 6 and
S3 clearly reflected the limitations of NIOSH-based OC/EC and thus NIOSH-based EC, further
highlighting the benefit of using ECuntreated determined by IMPROVE-A.

3.2 Evaluation of EC results from the spring campaign

In this section we evaluated the EC results from April, also starting with the HV samples
analyzed by IMPROVE-A. To highlight the role of agricultural fires, we first separated the April
samples into two groups (namely the fire-impacted and typical samples), which were characterized
by considerable and insignificant impacts of open burning, respectively. As described in Supporting
Information, the criteria for fire-impacted samples could be simplified as a levoglucosan to
TCuntreated ratio (fLg; on a basis of carbon mass) of above 1.8%, based on a synthesis of f.g, the
levoglucosan to water-soluble potassium ratio (LG/K*) and satellite-based fire hotspots (Figure S4).
Before filter extraction, the dependence of ATN on EC; could be approximated by a liner function

(with a slope of 33.4 +1.5 m?/gC and a close-to-zero intercept; r = 0.97) for all the typical samples
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and the majority of the fire-impacted ones (Figure 7a), leading to an ECrax of 8 ugC/cm?. For three
of the fire-impacted samples, ECs exceeded this threshold value and the ATN vs. EC; relationships
were found to deviate significantly from the regression line, especially for the two samples with ECs

above 10 ugC/cm? (as highlighted in Figure 7a).
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Figure 7. (a) Dependence of ATN on EC loading (ECs) for the untreated HV samples collected in
spring, color-coded by fig levels. Samples with linear and non-linear ATN vs. ECs dependence are
shown by the solid and open circles, respectively. f ¢ values higher than 1.8% indicated significant
impacts of agricultural fires. (b) Dependence of Rivpv, i.e., the ECextracted t0 ECuntreated ratio, on
sulfate loading in spring. Results from winter were also shown for comparison. In general, a
consistent relationship was observed between Rivpv and sulfate loading for the samples, including
both HV and LV, from different seasons. Fhe-onty-exceptions-were-twe Two HV samples collected
in spring were identified as outliers, as highlighted by the arrows. Fhe-two-distinet-samples The
outlier samplers were also highlighted in (a), corresponding to the two points showing significant
non-linear dependences of ATN on EC loading. All the EC results involved were measured by
IMPROVE-A.

To elucidate factors responsible for the observed non-linear dependence of ATN on ECs, we
compared EC results from the untreated and extracted filters. Given the relatively low sulfate

loadings observed throughout April (Figure 7b), it was with expectation that EC generally decreased
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after the extraction. After excluding the results from two outliers (Figure 7b) distinct-samples, the
E Cextracted 10 ECuntreated ratios averaged 0.84 £0.11, comparable to results from the reference group
in winter. The two outlier distinet samples, which were collected on the nights of April 10 and 20,
2021, showed ECextracted 10 ECuntreated ratios of as low as 0.64 and 0.43, respectively. Such significant
extraction-induced decreases in EC could hardly be explained by the interference from sulfate in
thermal-optical analysis of the extracted filters (Figure 7b). Instead, the two outlier distinet samples
were found to show several noteworthy features: (i) they corresponded to the two samples showing
significant non-linear ATN vs. EC; dependences before the extraction (Figure 7a); (ii) their f g levels
were at the higher end of the fire-impacted samples (with levoglucosan concentrations exceeding 7
ug/m?3), indicating extremely strong impacts of open burning (Figure 7a); (iii) their LG/K* ratios (>
1.7) were also at the higher end of the fire-impacted samples, which were characteristic of the
emissions from smoldering combustion (Gao et al., 2003; Sullivan et al., 2019); (iv) their ATN
decreased apparently after the extraction, by ~1.0 which were about one order of magnitude higher
than results from the typical samples (~0.1). Thus it was inferred that ECyntreated OF the outlier eistinet
samples likely involved some light-absorbing organic compounds (i.e., BrC) emitted by agricultural
fires with relatively low combustion efficiencies, and the absorption capacities of these organics
were strong enough to make them a considerable contributor to ATN measured at 632 nm. Indeed,
the BrC-related overestimation of elemental carbon mass was expected to be reduced considerably
after the extraction. However, such overestimation seemed apparent significant only for the two
outlier distinet samples (Figure 7a). In addition, recalling the lower-than-one ECexracted t0 ECuntreated
ratios observed for the other April samples (i.e., the sulfate-related artifact raised for the extracted

filters), the methanol extraction actually brought little benefit for the determination of EC by
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IMPROVE-A.

Unlike HV, all the LV samples showed a consistent relationship between ATN and EC; before
the extraction (Figure S5). It appeared that the strongly absorbing organics that could interfere EC
measurement were mainly concentrated in some agriculture-fire smoke emitted at night (as
indicated by the two outlier distinet HV samples), whereas their influence on EC determination was
considerably weakened for the 24-h integrated LV samples. Thus the linear ATN vs. ECs dependence,
which was valid for all the untreated LV samples analyzed by IMPROVE-A, provided little evidence
for the necessity of methanol extraction.

We also investigated the OC/EC vs. fig relationship for the HV samples collected in April.
Open burning was considered to be favorable for the increase of ambient OC/EC, since the aerosols
emitted were frequently found to be almost entirely organic (Liu et al., 2016; Garofalo et al., 2019;
Gkatzelis et al., 2024). Then it was not surprising to observe a moderate correlation between
(OC/EC)" and fis (r = 0.59; Figure 8), i.e., an increasing trend of (OC/EC)" with stronger impacts
of agricultural fires. In addition, (OC/EC)" also depended moderately on SNA/CO (r = 0.49; Figure
8). This was with expectation as well, given the observational evidence on the concurrent
enhancements of secondary inorganic and organic aerosols (e.g., Liu et al., 2020; Cheng et al., 2022).
Replacing (OC/EC)" with (OC/EC)* did not effectively strengthen the association of OC/EC with
fue or SNA/CO (Figure 8). This conclusion also held for the LV samples (Figure 8). In summary,
we did not observe additional evidence supporting the incorporation of methanol extraction with

IMPROVE-A.
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Figure 8. Comparisons of r values derived from the linear regressions of various OC/EC estimations
on (a) f.e and (b) SNA/CO, based on the spring samples. IMPV indicates the IMPROVE-A
temperature protocol. Results from the HV and LV filters are shown by solid and hatched bars,
respectively. For both HV and LV, a total of four sets of OC/EC ratios were determined using
different protocols and pre-treatment approaches. In general, OC/EC ratios measured by the
untreated samples using IMPROVE-A, i.e., the IMPV-based (OC/EC)", exhibited reasonable
associations with aerosol sources. Using other OC/EC estimations failed to or did not effectively
enhance the associations.

Compared to (OC/EC)" determined by IMPROVE-A, the NIOSH-based (OC/EC)" and
(OC/EC)* were less indicative of aerosol sources which could be reflected by f g and SNA/CO. This
was the case for both the HV and LV samples (Figure 8). Based on the discussions above, ECyntreated
determined by IMPROVE-A (EC") was also recommended for the conditions with prevalence of
agricultural fires (i.e., April), in line with the conclusion derived for winter. In addition, it should be
kept in mind that EC” could overestimate elemental carbon mass due to the interference from
strongly absorbing BrC. However, such overestimation was generally uncommon, i.e., was
considerable significant only for some nighttime samples under extremely strong influences of low-
efficiency agricultural fires (as indicated by the two distinet HV samples identified as outliers;

Figure 7).

3.3 Comparison of measurement results from the HV and LV samplers
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As mentioned in the Methods section, each LV sample corresponded to a pair of daytime and
nighttime HV samples, indicating that measurement results from the HV samples could be averaged
and then compared to those determined by LV. Here the inter-sampler comparison was performed
for several components that are of broad interest in field observations, including elemental and
organic carbon, secondary inorganic ions (sulfate, nitrate and ammonium), other water-soluble ions
(potassium and chloride), organic tracer for biomass burning (levoglucosan), BrC mass
concentration and light absorption coefficient. Based on the evaluation results in previous sections,
EC” and the corresponding OC, i.e., OC™ (measured before the extraction using IMPROVE-A), were
selected for the comparison. In addition, following Cheng et al. (2024), BrC mass was calculated as
the difference in TC between the untreated and extracted filters, while BrC absorption was
investigated at a wavelength of 365 nm, i.e., (Dabs)36s.

As shown in Figure 9, the two samplers generally led to comparable measurement results for
all the species investigated. For example, the LV-to-HV ratios typically fell within the range of 0.8—
1.2, i.e., results from the two samples generally agreed within 20%. However, it was noticed that
K* was the only component with the majority of the LV results lower than HV. In addition, the LV-
to-HV ratio of K* was found to depend positively on the ratio of PM.s to PMyg (Figure 10a). The
PM2s to PMyo ratio was strongly associated with the influence of dust, typically exhibiting a
decreasing trend as the impact of dust became stronger (Putaud et al., 2010). Thus the events with
decreased LV-to-HV ratios of K* (all of which occurred in spring) presumably coincided with dust
episodes, when relatively large particles were expected to be a non-negligible contributor to K*
(Wang et al., 2014a). Then a likely cause for the dependence shown in Figure 8a was that the

impactor performances (e.g., the size-cut curves) were different not exactly the same for the two
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samplers, such that some relatively large particles, if present, could be more effectively collected

onto the HV filters but-weuld-be-remeoved-by-the-impacter-of compared to LV.
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Figure 9. The LV-to-HV ratios determined for various species. BrCm and BrCaps indicate the mass
concentration and (bans)zss Of brown carbon, respectively.
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Figure 10. (a) Dependence of the LV-to-HV ratio of K* on the PM35 to PMyg ratio. (b) Dependence
of the LV-to-HV ratio of (baps)3ss on fLc. Results from spring are shown on a sample-by-sample basis,
as indicated by the solid circles. For winter, only the average results are shown as indicated by the
diamonds. In (b), the events with substantially lower LV-to-HV ratios of (bass)sss are highlighted by
the dashed oval.

In addition, it was noticed that although the two samplers led to generally comparable (baps)zss
results, the corresponding LV-to-HV ratios decreased substantially (e.g., down to 0.67) for the

episodes with extremely strong impacts of agricultural fires (Figure 10b). A possible explanation

was that some fire-emitted chromophores were mere-er-less-distributed-on associated with relatively
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large particles that would be more effectively collected onto the HV filters remeved-by-the-inlet-of
BV-but-could-pass-threugh-that-of H\.. Although these chromophores represented an important
contributor to BrC absorption, their influence on BrC mass was likely insignificant, as indicated by
the little influence of agricultural fires on the LV-to-HV ratio of BrC mass (Figure S6).

Finally, it should be noted that for the species except K* and (babs)sss, their LV-to-HV ratios
still showed different patterns of distribution (Figure 9). Analytical uncertainties should be partially
responsible, e.g., as indicated by the more significant variations in the LV-to-HV ratios of EC”
compared to those of OC™. Another likely cause was that the sampling duration of a given LV sample
(24 hours) actually did not equal that of the corresponding HV (15 hours), which would result in
different LV-to-HV ratios for the species with different diurnal cycles. In summary, many factors
could be responsible for the inter-sampler discrepancies shown in Figure 9. Typically, the overall
effects of these factors were higher LV-based concentrations than HV, with median LV-to-HV ratios
concentrating in a relatively narrow range of 1-1.15. However, this comparability may not always
hold. A possible explanation was that the impactor performances were more or less different
between the two samplers, thus for specific components such as K* and some fire-emitted
chromophores, this difference could exert a significant influence on their sampling.

4. Conclusions and implications

For the first time, EC results were compared among different sampling and analytical
approaches based on field observations in Northeast China. Two samplers with flow rates of 1.13
m3/min and 5 L/min were operated together during two distinct seasons, whereas thermal-optical
analysis was performed by applying different protocols to both the untreated and extracted filters.

Results from different seasons jointly suggested that ECextractea Measured by IMPROVE-A (i.e.,
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IMPV) was biased by complex artifacts associated with sulfate. The IMPV-based ECextracted tended
to underestimate elemental carbon mass when sulfate was less abundant, whereas overestimations
were evident at sufficiently high loadings of sulfate. The turning point for the artifact shifting from
an underestimation to overestimation occurred in the sulfate loading range of 10~15 ug/cm?. Such
high sulfate loadings were rarely encountered by the LV samples and thus the corresponding IMPV-
based EC typically decreased after the extraction (by ~20%). For the HV samples, their sulfate
covered a wide range of ~2-35 pg/cm? during winter and in this case, the extraction-induced

changes in EC usually varied between —50% and +50% for the IMPV-based results. In-addition-te

but-it-was-never-effectively-enhanced-by-agrieultural-fire-emissions— In addition to the complex

sulfate-related artifacts, another problem identified for the IMPV-based ECextractea Was that the
corresponding OC/EC ratio sometimes exhibited no association with the SNA/CO ratio, which was
used as an indicator for the significance of secondary aerosol production. The NIOSH-based OC/EC
ratios, determined by either ECextracted OF ECuntreated, Nad the same problem. Then the IMPV-based
ECuntreated (EC™) was recommended, as the corresponding OC/EC could always be reasonably linked
to aerosol sources, e.g., secondary aerosol formation in winter and agricultural fire impacts (as
reflected by f ) in spring.

Inter-sampler comparisons were performed for various species that are of broad interest in field

observations, including EC™. Although the flow rates differed by more than two orders of magnitude
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between the two samplers, the LV and HV generally led to comparable measurement results for the

majority of the species, with the median LV-to-HV ratios falling within a relatively narrow range of

1-1.15.

This study also raised two points that merit attentions. The first is that the IMPV-based

ECuntreated, Which was suggested for investigations on aerosol sources, might overestimate elemental

carbon mass under extremely strong impacts of open burning. This problem was attributed to

strongly absorbing BrC emitted by agricultural fires with relatively low combustion efficiencies.

Although uncommon for the ambient samples in Harbin (a megacity located in a main agricultural

region in China), this problem could introduce substantial uncertainties to the emission factors and

thus inventories of biomass burning. We suggested that a key step to refine the EC measurement

results was to concurrently minimize the inferences from strongly absorbing BrC and scattering

components. Methanol extraction followed by water extraction of filter samples was expected to be

a practical approach, which was worthy of further evaluations.

The second point was that some specific components should be interpreted with caution, even

when comparing their measurement results from samplers with the same nominal cut-point. Our

observational results indicated that some relatively large particles, if present, could be more

effectively collected ento-the-filters-of by the high-volume PM2 s sampler but-would-be-removed-by

the-inlet-of compared to the low-volume one. This problem was attributed to the fact that the inlet

performances (e.g., the size-cut curve) could not be exactly the same between the HV and LV PM35

samplers. Among the various species involved in this study, this problem affected the measurements

of K* as well as some fire-emitted chromophores in the fine mode. Thus we suggested that the K*

results derived from different PM.s samplers may not be directly comparable. In addition, although
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we could not quantitatively determine the dust contribution to K* measured by the high-volume

PM_s sampler, K* should be used with caution as a biomass burning tracer for source apportionment

studies relying on the HV-based observations.

By evaluating the observational results from different measurement approaches for species

commonly used in source apportionment, this study contributed to the understanding of aerosol

sources in Northeast China and thus the development of efficient haze pollution control strategies.

Using the recommended OC and EC results together with levoglucosan (rather than K*) as the

biomass burning tracer, positive matrix factorization (PMF) analysis was performed for the 2020—

2021 heating season based on a total of ~200 LV samples (including those involved in this study;

Cheng et al., 2024). The concentrations of primary OC resolved were found to be in reasonable

agreement with those predicted by an air quality model, when agricultural fires were absent. The

consistency laid the foundation for the control policy focusing on primary aerosols. Cheng et al.

(2024) also found that the model failed to reproduce the observed SOA levels, with large

underestimations (by ~80%). Thus the observation-based source apportionment results were

currently irreplaceable for evaluating the benefits of reducing SOA precursors. In summary, this

study highlighted the importance of inter-method comparison for aerosol components (e.g., EC and

K*) that are of broad interest in field observations. Such efforts are expected to be more urgently

needed for Northeast China, since this distinct region was recently targeted by the latest national-

level pollution control policy in China (State Council, 2021) and thus is facing stronger demand for

reducing PMs.

Data availability. Data are available from the corresponding author upon request

(jiumengliu@hit.edu.cn).
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