

1 **Technical note: Towards a stronger observational support for haze pollution control by**
2 **interpreting carbonaceous aerosol results derived from different measurement approaches**

3 Yuan Cheng, Ying-jie Zhong, Zhi-qing Zhang, Xu-bing Cao, Jiu-meng Liu*

4 State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin
5 Institute of Technology, Harbin, 150090, China

6 * Corresponding author. Jiu-meng Liu (jiumengliu@hit.edu.cn).

7 **Abstract**

8 As China's fine particulate matter (PM_{2.5}) has decreased nationwide during the last decade, further
9 improvement of air quality became more challenging, imposing higher requirements on the
10 observational support for the understanding of aerosol sources. This was particularly the case for
11 the severe cold climate region in Northeast China, which suffered from relatively slow decreasing
12 rate and high exposure risk of PM_{2.5}. Here we evaluated carbonaceous aerosol data measured by
13 different sampling and analytical approaches, based on field campaigns conducted during a frigid
14 winter and an agricultural-fire impacted spring in Harbin. For both the high- and low-volume
15 sampling, a total of four sets of organic and elemental carbon results were derived by applying two
16 commonly-used temperature protocols (IMPROVE-A, i.e., IMPV, and NIOSH) to both untreated
17 filters and those extracted by methanol. Only the IMPV-based results measured before the extraction
18 were found to be indicative of aerosol sources, e.g., in reasonable accordance with secondary aerosol
19 formation in winter and open burning impacts in spring. Thus the analytical method of IMPROVE-
20 A on untreated samples was recommended for future field observations and source apportionments
21 of PM_{2.5} in the studied region. In addition, although the low- and high-volume samplers typically
22 led to comparable measurement results for various species, exceptions were identified for water-
23 soluble potassium (K⁺) and some fire-emitted chromophores. We suggested that **K+** and light

24 absorption coefficients of brown carbon should be compared or integrated with caution across
25 studies using different PM_{2.5} samplers. ~~K⁺ detected by different PM_{2.5} samplers may not be directly~~
26 ~~comparable, and K⁺ should be used with caution as a biomass burning tracer for studies relying on~~
27 ~~high volume measurements.~~

28 **1. Introduction**

29 Carbonaceous aerosols are a complex mixture of compounds exhibiting a gradual change in
30 chemical and physical properties (Pöschl, 2005; Andreae and Gelencsér, 2006), e.g., from colorless
31 organics with low molecular weights, to “dark” brown carbon with relatively high thermal stabilities
32 (Chakrabarty et al., 2023), and finally to refractory black carbon which is strongly light-absorbing.

33 As important contributors to both fine particulate matter (PM_{2.5}) pollution and radiative forcing,
34 they have long been targeted to achieve a synergistic improvement of air quality and mitigation of
35 climate change (Fuzzi et al., 2015; von Schneidemesser et al., 2015; Liu et al., 2022). However, it
36 remains a challenge to properly represent carbonaceous aerosols in chemical transport models, as
37 each step along the way between the estimations of sources and tempo-spatial variations is difficult.

38 For example, considerable uncertainties exist in the open burning emission, secondary organic
39 aerosol (SOA) budget and black carbon lifetime (Andela et al., 2022; Chang et al., 2022; Zhong et
40 al., 2023). This in turn introduces substantial uncertainties to the climate and health effects of
41 carbonaceous aerosols (Li et al., 2022).

42 Field observational data on carbonaceous aerosols, including those derived from ground and
43 aircraft measurements, are essential to constrain the simulation results and subsequently to improve
44 the model performance (Philip et al., 2014; Wang et al., 2014b, 2018; Gao et al., 2022; Eckhardt et
45 al., 2023). Relying on on-line instruments such as the Single Particle Soot Photometer (SP2), aircraft
46 studies typically covered relatively short periods (e.g., up to about one month) but provided
47 measurement results with high time and spatial resolutions (Samset et al., 2014). Offline and semi-
48 continuous techniques (e.g., lab and field carbon analyzers for elemental carbon) were more
49 commonly used in ground observations, ~~giving rise to~~ [producing](#) datasets with relatively low time

50 resolutions but spanning several months to decades (Dao et al., 2019; Hand et al., 2024). After
51 accounting for the difference in time resolution, the integration of carbonaceous aerosol data across
52 studies and regions was still not straightforward. A major obstacle was caused by the multitude of
53 measurement principles (Petzold et al., 2013), which was intensively reflected by the considerable
54 and, more importantly, variable discrepancies in black carbon results among different methods
55 (Buffaloe et al., 2014; Li et al., 2019; Pileci et al., 2021; Tinorua et al., 2024). This problem was far
56 from being properly addressed, although great efforts have been devoted to refine the respective
57 measurement approach such as the thermal-optical (Cavalli et al., 2010), optical (Collaud Coen et
58 al., 2010) and SP2 (Laborde et al., 2012) techniques. In addition, this problem was to some extent
59 overlooked in China, which might be partially responsible for the inconsistent source apportionment
60 results obtained by different studies. For example, both Zheng et al. (2015) and Liu et al. (2020)
61 applied the [EC elemental carbon \(EC\)](#) tracer method to estimate secondary OC (SOC) during winter
62 in Beijing, but the two studies derived conflicted conclusions on the contribution of heterogeneous
63 chemistry to SOC formation (i.e., minimal vs. significant) since different analytical methods (i.e.,
64 [NIOSH vs. IMPROVE-A temperature protocols](#)) for EC were deployed. Such inconsistencies
65 substantially weakened the observational support for the understanding of aerosol sources and thus
66 the control of haze pollution.

67 With a considerable decrease in the national PM_{2.5} since 2013, it became more challenging to
68 further improve the air quality in China (Cheng et al., 2021). This imposed higher requirements on
69 the observational insights into aerosol sources, including the evaluation of carbonaceous aerosol
70 results among various measurement approaches. Here we focused on the widely-used thermal-
71 optical method, which separates carbonaceous components into two fractions with different thermal

72 stabilities and light absorption capacities, i.e., organic carbon (OC) and elemental carbon (EC). The
73 basis of the separation includes two points: EC ~~survives to~~ evolves from the filter at higher
74 temperatures than OC, and the removal of EC leads to a rapid increase in the filter transmittance
75 and reflectance signals. A major problem in this method is that a considerable fraction of OC could
76 be transformed into char-OC, which is difficult to be robustly distinguished from EC with respect
77 to either thermal or optical behavior. In addition, the amount and optical properties of char-OC were
78 found to depend on the temperature protocol deployed (Yu et al., 2002; Yang and Yu, 2002;
79 Subramanian et al., 2006). This to a large extent explained the EC discrepancies among various
80 protocols. However, it remained unclear how the charring process and thus the EC measurement
81 were influenced by OC sources and composition (Chiappini et al., 2014). In addition, to reduce or
82 minimize the interference from char-OC, several investigators have tried to remove a fraction of OC
83 from the samples before thermal-optical analysis, by extracting the filters using water, methanol or
84 other solvents (Piazzalunga et al., 2011; Giannoni et al., 2016; Lappi and Ristimäki, 2017; Aakko-
85 Saksa et al., 2018; Hu et al., 2023). However, inconsistent patterns were identified for the effects of
86 OC removal on EC determination, with evidences available for both an increase (e.g., Piazzalunga
87 et al., 2011) and a decrease in EC (e.g., Hu et al., 2023) after the extraction. The discussions above
88 indicated that the thermal-optical methods, including the practicability of sample pretreatment by
89 extraction, merit further investigations.

90 In this study, we compared carbonaceous aerosol results determined by different analytical as
91 well as sampling approaches, based on filter samples collected in Harbin, the northernmost megacity
92 in China. Compared to other megacities such as Beijing, Harbin is characterized by the frigid winter
93 (with an average temperature of about -20°C in January) and the massive agricultural sector in

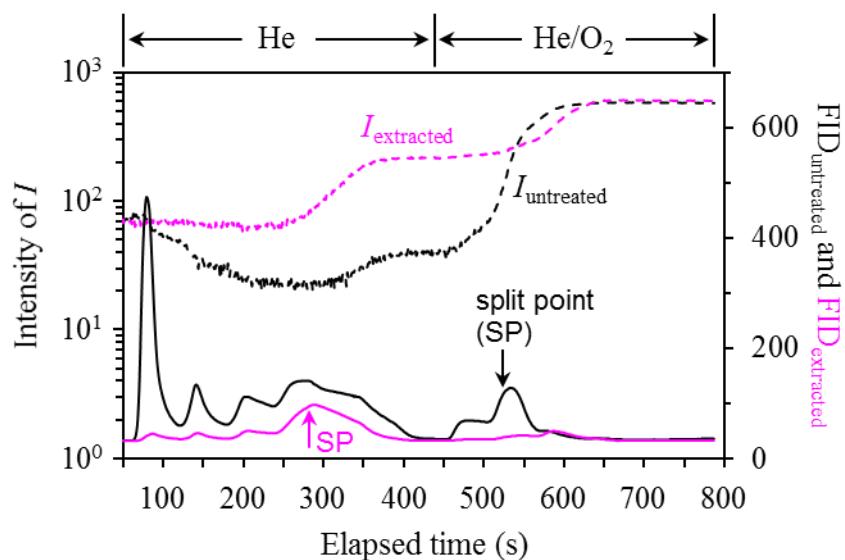
94 surrounding areas (i.e., the Songnen Plain in Northeast China). In addition, Harbin and other cities
95 in Northeast China have largely been overlooked in clean air actions and thus studies on haze, as
96 indicated by the limited observational data available (Liu et al., 2022). This lack of investigation
97 was partially responsible for the relatively slow decreasing rate (Xiao et al., 2022) and high exposure
98 risk (Wei et al., 2023) of PM_{2.5} in this distinct region. Thus our study on measurement methods of
99 carbonaceous aerosols is expected to be a support for future efforts on **the** exploration of **the** PM_{2.5}
100 sources in Northeast China, which are essential for further improving the regional air quality.

101 **2. Methods**

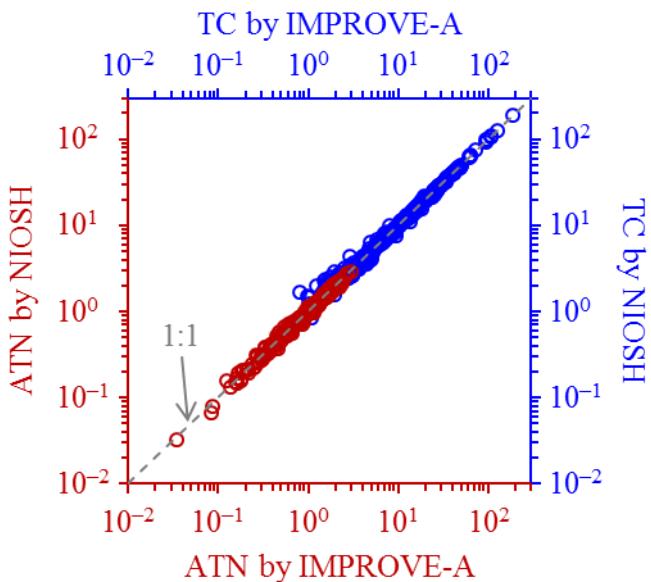
102 **2.1 Field sampling**

103 PM_{2.5} samples were collected at an urban site in Harbin, i.e., on the campus of Harbin Institute
104 of Technology (HIT), during the winter and spring of 2021. The sampling was done by a mass flow
105 controlled high-volume sampler (TE-6070BLX-2.5-HVS; Tisch Environmental, Inc., OH, USA)
106 and a low-volume sampler (MiniVol; Airmetrics, OR, USA), operated using quartz-fiber filters (Pall
107 Corporation, NY, USA) at flow rates of 1.13 m³/min and 5 L/min, respectively. The flow rates,
108 together with the particle-laden filter areas, could be translated into the face velocities of 46.34 and
109 7.35 cm/s for the high- and low-volume (HV and LV) samplers, respectively. This indicated that
110 when the two samplers were run in parallel, the HV-to-LV ratio of particle loading would be 6.3.

111 The 2021 winter campaign covered the entirety of January, the coldest month during that year
112 with an average temperature of -19°C . **whereas the** In addition, the spring campaign was conducted
113 during 10–30 April of 2021, a period with frequent occurrences of agricultural fires (as indicated by
114 the satellite-based active fire detection results; Figure S1). For both seasons, the HV sampler was
115 used to collect daytime (09:00–16:00) and nighttime (21:00–05:00 of the next day) samples, while


116 the LV one was operated on a daily basis ([~09:00–09:00 of the next day](#)), leading to 24-h integrated
117 samples. Each LV sample generally corresponded to two HV samples, although the two samplers
118 were not exactly parallel. One reason for the relatively short sampling durations of HV was to avoid
119 ~~extremely~~ high particle loadings ~~that could prohibit proper filter transmittance measurement which~~
120 ~~could make the filters unsuitable for thermal-optical analysis~~ (Lappi and Ristimäki, 2017).

121 **2.2 Laboratory analysis**


122 For both the HV and LV samples, two punches were prepared to determine OC and EC using
123 a thermal-optical carbon analyzer (DRI-2001; Atmoslytic Inc., CA, USA). One punch was directly
124 measured, while the other one was immersed in methanol (HPLC grade; Fisher Scientific Company
125 L.L.C., NJ, USA) for an hour without stirring or sonication, dried in air for another hour, and then
126 analyzed. All the pairs of untreated and extracted punches were measured using the IMPROVE-A
127 and NIOSH temperature protocols, both of which were operated with transmittance charring
128 correction (Figure 1). This correction approach was applied since the intensity of the filter
129 transmittance signal (I) has a clear association with EC, e.g., as assumed by the Aethalometer,
130 another widely used instrument for measuring black carbon. Inter-protocol comparisons showed
131 good repeatability for both the total carbon (TC) and optical attenuation (ATN) results (Figure 2),
132 demonstrating the robustness of the analyzer for detecting carbon and filter transmittance signals
133 ~~ATN~~. Here ATN was calculated as $\ln(I_{\text{final}}/I_{\text{initial}})$, where I_{initial} and I_{final} indicate I measured at beginning
134 (i.e., when the particle-laden filter has not been heated) and end (i.e., when all the deposited carbon
135 has been combusted off the filter) of thermal-optical analysis, respectively. ATN was of interest
136 because it was closely related to EC loading (EC_s , in $\mu\text{g}/\text{cm}^2$), e.g., [typically](#) with a linear
137 dependence for relatively low EC_s levels (Chen et al., 2020; Liu et al., 2020). [It should be noted that](#)

138 for the parallel TC and ATN measurements by different protocols, the relative standard deviation
139 (RSD) levels indeed increased after the extraction, e.g., from ~2 to 5% and from ~2 to 4% for the
140 HV samples, respectively. However, the RSD levels, i.e., the uncertainties, were considered low
141 enough for both the untreated and extracted filters.

142 In addition, following the method developed by Hecobian et al. (2010), wavelength-resolved
143 light absorption coefficients (b_{abs}) of the methanol extracts, i.e., the dissolved brown carbon (BrC),
144 were measured using a spectrophotometer (Ocean Optics Inc., FL, USA) coupled with a 2.5-m long
145 liquid waveguide capillary cell (LWCC; World Precision Instruments, FL, USA). Inorganic ions and
146 levoglucosan were also determined for the HV and HV samples, by analyzing their water extracts
147 using a Dionex ion chromatography system (ICS-5000⁺; Thermo Fisher Scientific Inc., MA, USA).

148
149 **Figure 1.** Thermograms measured using a pair of untreated and extracted HV filters. The sample
150 was collected during the daytime of 25 January, 2021. Temperature protocol used was NIOSH, in
151 which the filter was heated in a He (first to 870 °C stepwise and then cooled down to 550 °C) and a
152 He/O₂ (from 550 to 890 °C stepwise) atmosphere sequentially. NIOSH had fixed durations for the
153 various heating stages and thus was preferred for the comparison of thermograms. I indicates the
154 filter transmittance signal; FID indicates the carbon signal, which was measured by a flame
155 ionization detector. The subscripts “untreated” and “extracted” distinguished the thermograms
156 measured before and after the extraction, while the split points of OC and EC were marked by the
157 arrows.

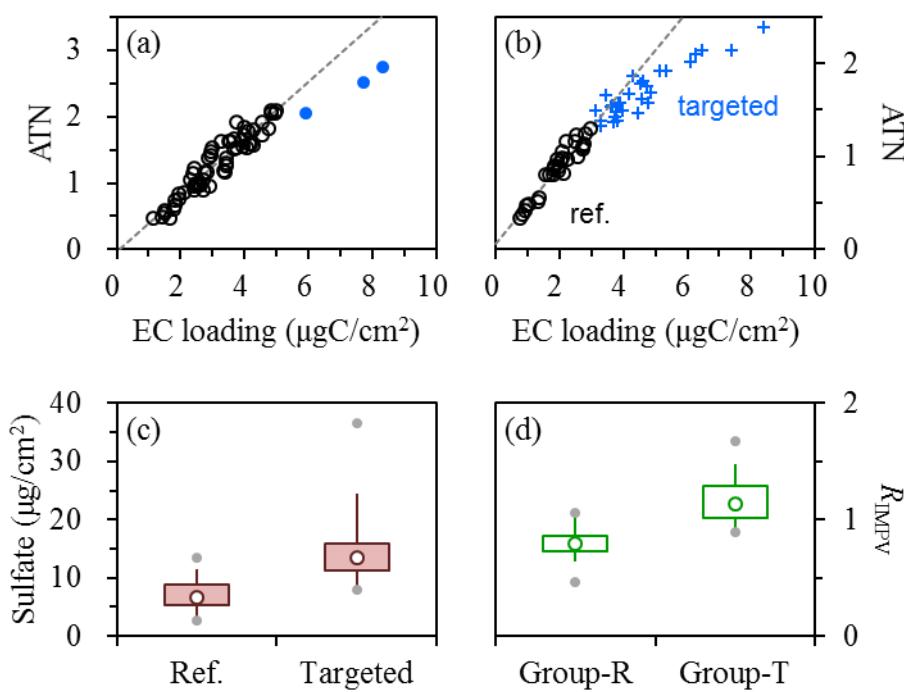
158

159 **Figure 2.** Comparisons of TC (in $\mu\text{gC}/\text{cm}^2$) and ATN (dimensionless) measured using different
160 temperature protocols. Results from the HV and LV samples, both untreated and extracted, were
161 combined for the comparisons. Linear regression of the NIOSH-based TC on that determined by
162 IMPROVE-A led to a slope of 0.99 ± 0.00 ($r = 1.00$; intercept was set as zero). Similar regression
163 results (i.e., slope = 0.99 ± 0.00 ; $r = 1.00$) were obtained for ATN. The good repeatabilities on one
164 hand demonstrated the performance of carbon analyzer for measuring the carbon and laser
165 transmittance signals, and on other hand indicated a homogeneous distribution of carbonaceous
166 components for not only the untreated but also the extracted filters, i.e., a negligible disturbance of
167 EC as well as other insoluble carbon by the extraction.

168 **2.3 Open-access data**

169 Meteorological data (e.g., temperature and relative humidity) and air quality data (e.g., $\text{PM}_{2.5}$,
170 PM_{10} and CO) for the measurement periods were obtained with a time resolution of 1 h from
171 Weather Underground (<https://www.wunderground.com/>) and the China National Environmental
172 Monitoring Center (CNEMC; <https://air.cnemc.cn:18007/>), respectively.

173 **3. Results and discussion**


174 **3.1 Evaluation of EC results from the winter campaign**

175 A precondition for proper separation of OC and EC is that the filter transmittance signal (I)
176 could properly reflect the formation of light-absorbing char-OC during the inert mode (which would
177 result in a decrease in I), and the combustion, i.e., removal, of char-OC and EC during the oxidation

178 mode (which would result in an increase in I). An empirical approach to evaluate this precondition
179 is to examine the dependence of ATN on EC_s (Subramanian et al., 2006). A linear relationship was
180 typically observed for relatively low EC_s levels and in this case, the precondition was commonly
181 believed to be valid. However, the linearity did not necessarily extend when EC_s further increased,
182 since previous studies frequently found that the measured ATN could be considerably lower than
183 expected for heavily-loaded samples (Shen et al., 2013; Costa et al., 2016; Chen et al., 2020). The
184 deviation of ATN vs. EC_s dependence from linear relationship was usually termed the loading effect,
185 and a traditional explanation was that ATN became less sensitive to the variation of EC_s as filter
186 loading increased. An extreme case was observed during winter in Beijing, that the ATN values
187 were largely unchanged for heavily-loaded filters with TC varying between 150 and 300 $\mu\text{gC}/\text{cm}^2$
188 (Liu et al., 2019). For the samples showing non-linear ATN vs. EC_s dependence, their EC results
189 should be interpreted with caution.

190 We first investigated the relationship between ATN and EC_s for the wintertime HV samples,
191 focusing on the results from IMPROVE-A. For the untreated filters, ATN correlated linearly with
192 EC_s (leading to a regression slope of $42.8 \pm 1.9 \text{ m}^2/\text{gC}$ and a close-to-zero intercept; $r = 0.95$) when
193 the filters were lightly to moderately loaded, i.e., when the EC_s levels were below $5 \mu\text{gC}/\text{cm}^2$ (Figure
194 3a). The physical meaning of the slope was the mass absorption efficiency (MAE) of black carbon,
195 but with artifacts such as that caused by the multiple scattering effect (Lack et al., 2014). The overall
196 impact of various artifacts results in an overestimation of MAE, typically by factors of ~ 3 (Knox et
197 al., 2009; Qin et al., 2018). The linearity determined for the EC_s range of below $5 \mu\text{gC}/\text{cm}^2$ did not
198 hold for the more heavily loaded samples ($N = 3$, as highlighted by the solid circles in Figure 3a),
199 showing evidence for the loading effect. For the extracted samples, a linear correlation between

200 ATN and EC_s was also identified for relatively low EC loadings (Figure 3b), with a similar
 201 relationship (i.e., a regression slope of 41.5 m²/gC and a close-to-zero intercept; $r = 0.95$) to that
 202 derived from the untreated filters. However, it was noteworthy that EC_{max}, the upper limit of EC
 203 loading for a linear ATN vs. EC_s dependence, was only 3 $\mu\text{gC}/\text{cm}^2$ for the extracted filters, much
 204 lower than that determined for the untreated ones. Due to the shift of EC_{max}, 51% of the extracted
 205 samples showed evidence for the loading effect, whereas this fraction was only 5% before extraction.

206
 207 **Figure 3.** Relationships between ATN and EC loading, i.e., EC_s, for the (a) untreated and (b)
 208 extracted HV filters collected in winter, using the IMPROVE-A protocol. Linear dependences were
 209 observed for the untreated samples with EC_s below 5 $\mu\text{gC}/\text{cm}^2$ and for the extracted samples with
 210 EC_s below 3 gC/cm^2 , as indicated by the dashed lines in (a) and (b), respectively. Three untreated
 211 samples had EC_s above 5 $\mu\text{gC}/\text{cm}^2$, as highlighted by the solid circles in (a). In (b), the extracted
 212 filters showing non-linear ATN vs. EC_s dependence were termed as the targeted samples;
 213 correspondingly, the others were referred to as the reference ones (labelled as ref.). (c) Comparison
 214 of sulfate loadings between the reference and targeted samples. (d) Comparison of the EC_{extracted} to
 215 EC_{untreated} ratios, i.e., R_{IMPROVE}, between the reference and targeted groups of wintertime HV samples
 216 (labelled as Group-R and Group-T, respectively). The targeted group indicated the targeted filters
 217 and the corresponding untreated ones, while the reference group indicated the remaining pairs.
 218 Lower and upper box bounds indicate the 25th and 75th percentiles, the whiskers below and above
 219 the box indicate the 5th and 95th percentiles, the solid circles below and above the box indicate the
 220 minimum and maximum, and the open circle within the box marks the median. All the EC results

221 involved were measured by IMPROVE-A.

222 The discussions above raised a question that why the extraction significantly reduced EC_{max}
223 for the HV samples. In principle, two factors could be responsible for the non-linear dependence of
224 ATN on EC_s , including gradual saturation of ATN with increasing filter loading (the traditional
225 explanation; Subramanian et al., 2006) and overestimation of EC mass. The EC_{max} of untreated
226 samples corresponded to an ATN of 2.1, indicating that the saturation was presumably not a concern
227 for the ATN results below this value. Regarding the extracted samples showing evidence for the
228 loading effect (i.e., the targeted samples), ATN stayed below 2.1 for nearly all of them (28 out of
229 31), thus their non-linear ATN vs. EC_s dependences should be primarily attributed to the
230 overestimation of EC mass rather than the saturation of ATN. Compared to the other extracted
231 samples, the targeted ones were characterized by substantially higher sulfate loadings (Figure 3c).
232 It was inferred that in addition to EC, the abundant sulfate was also a non-negligible contributor to
233 ATN (e.g., through backward scattering; Petzold et al., 2005; Collaud Coen et al., 2010). Thus when
234 ~~these~~ the targeted samples were heated in the carbon analyzer, volatilization of sulfate would lead
235 to a decrease in ATN, i.e., an increase in filter transmittance signal. This was expected to result in a
236 premature split of OC and EC, and eventually an overestimation of EC. Other scattering components
237 such as nitrate and secondary organic aerosol (SOA) were not ~~considered~~ discussed here, since they
238 were typically considered soluble in methanol and should be absent in the extracted filters.
239 Comparison of EC between the targeted samples and the corresponding untreated ones (i.e.,
240 the targeted group) showed an overall increasing trend after the extraction (Figure 3d). For these
241 pairs of wintertime HV filters, the ratio of $EC_{extracted}$ (i.e., EC measured in the extracted samples) to
242 $EC_{untreated}$ (i.e., EC measured in the untreated samples) averaged 1.16 ± 0.20 . The extraction-induced

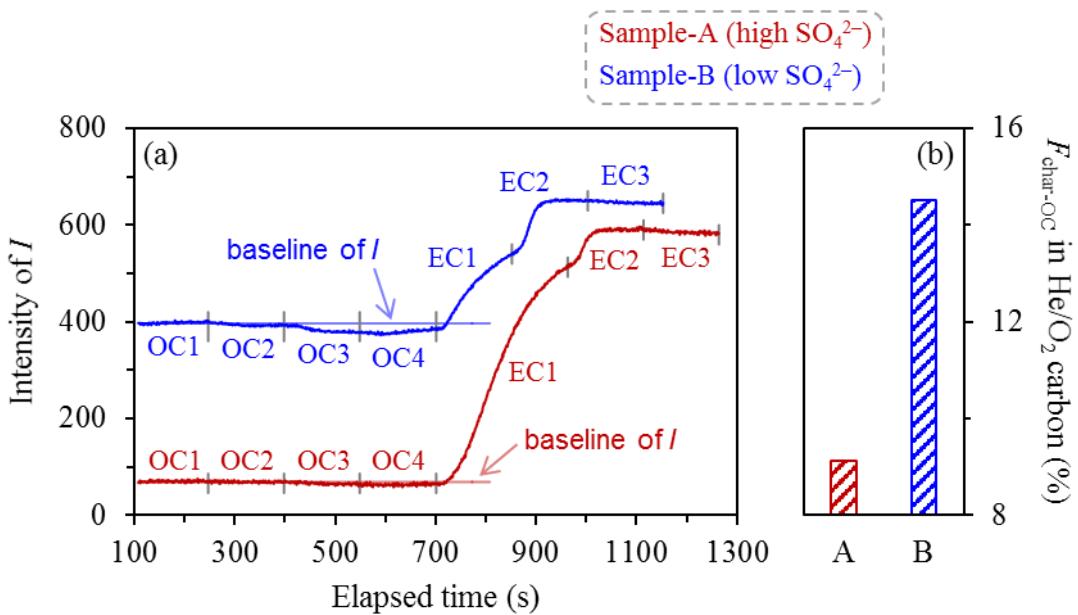
243 increase in EC coincided with the overestimation of elemental carbon mass by EC_{extracted}, which was
244 inferred to be associated with the presence of abundant sulfate in the extracted filters.

245 For the other pairs of wintertime HV samples (i.e., the reference group), the EC_{extracted} to
246 EC_{untreated} ratios averaged 0.80 ± 0.12 , pointing to a decrease in EC after the extraction (Figure 3d).

247 This was also the case for all the LV samples collected during the winter campaign, with comparable
248 EC_{extracted} to EC_{untreated} ratios (averaging 0.78 ± 0.12). Here the LV samples were not divided into
249 subgroups because non-linear dependence of ATN on EC_s was identified neither before nor after the

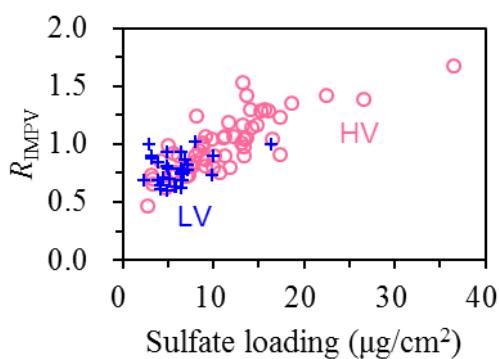
250 extraction (Figure S2). Given that the loss of insoluble carbon (e.g., EC) was negligible for our
251 extraction procedures (Figure 2 and Cheng et al., 2024), the extraction-induced decrease of EC
252 likely pointed to the underestimation of elemental carbon mass by EC_{extracted}. A common feature for

253 the HV samples in the reference group and the entirety of the LV samples was the relatively low
254 sulfate loadings. Cheng et al. (2024) inferred that small amounts of sulfate likely favored the
255 transmission of light through the extracted filters (e.g., by forward scattering; Petzold et al., 2005;


256 Collaud Coen et al., 2010). In this case, when the extracted samples were heated during thermal-
257 optical analysis, volatilization of sulfate would induce a drop of filter transmittance signal, which
258 could not be distinguished from that caused by the formation of char-OC. This was expected to
259 result in an overcorrection for char-OC, i.e., an underestimation of EC.

260 The contrasting EC_{extracted} to EC_{untreated} ratios observed for the two groups of wintertime HV
261 samples suggested that the influence of sulfate on the transmittance signal of the extracted filter was

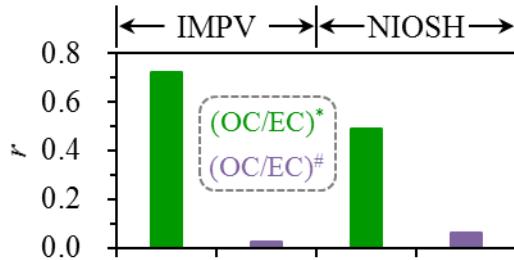
262 likely loading-dependent. ~~The influence was inferred to be dominated by forward scattering when~~
263 ~~sulfate was less abundant (e.g., for the reference group), whereas by backward scattering with~~
264 ~~relatively high sulfate loadings (e.g., for the targeted group)~~. The influence was inferred to be


265 dominated by backward scattering with relatively high sulfate loadings (e.g., for the targeted group),
266 whereas by forward scattering when sulfate was less abundant (e.g., for the reference group). This
267 inference was supported by the comparison of evolution patterns of filter transmittance signal under
268 different sulfate loadings (Figure 4). For the extracted filter with abundant sulfate (i.e., Sample-A
269 in Figure 4), the transmittance signal was largely unchanged during the He mode despite the
270 sufficient organic carbon loading. Correspondingly, the operationally-defined char-OC only
271 accounted for a relatively small fraction of the carbon evolving during the He/O₂ mode (i.e., He/O₂
272 carbon). A possible explanation was that as the sample was heated, the drop of I induced by char-
273 OC was compensated by the increase of I due to the reduction in sulfate-driven backward scattering.
274 For the extracted filter with relatively small amount of sulfate (i.e., Sample-B in Figure 4), however,
275 the transmittance signal decreased significantly during the He mode, and the char-OC contribution
276 to He/O₂ carbon became more considerable correspondingly. Given the much lower organic carbon
277 loading for this sample (e.g., ~70% lower than Sample-A), the decrease of I was likely contributed
278 by not only the formation of char-OC but also the reduction in sulfate-driven forward scattering.
279 The EC_{extracted} results appeared to be biased by different artifacts in ~~these two~~ the high- and low-
280 sulfate cases, resulting in ~~underestimations or~~ overestimations ~~or underestimations~~ of elemental
281 carbon mass, respectively. The sulfate-induced artifacts for EC_{extracted} could be more directly
282 reflected by the positive dependence of the EC_{extracted} to EC_{untreated} ratio on sulfate loading. As shown
283 in Figure 5, the turning point for the artifact shifting from an underestimation to overestimation of
284 elemental carbon mass by EC_{extracted} occurred in the sulfate loading range of 10–15 $\mu\text{g}/\text{cm}^2$. Figure
285 5 also suggested that the artifacts for EC_{extracted} were difficult to be accounted for, e.g., by a constant
286 correction factor. This prohibited the use of EC_{extracted} for further analysis of aerosol composition

287 and sources.

288

289 **Figure 4.** Comparisons of (a) the evolution patterns of filter transmittance signal (I) and (b) the
290 fractions of char-OC (i.e., $F_{\text{char-OC}}$) in He/O₂ carbon for two extracted HV samples with relatively
291 high and low sulfate loadings (namely Sample-A and Sample-B, respectively). The two samples
292 were collected during the daytime of 25 January and the nighttime of 6 January, 2021, respectively.
293 They had sulfate loadings of 13.21 and 3.29 $\mu\text{g}/\text{cm}^2$, and organic carbon loadings of 3.10 and 0.86
294 $\mu\text{gC}/\text{cm}^2$, respectively. The temperature protocol used was IMPROVE-A, in which the filter was
295 first heated to 580 °C in a He atmosphere and then to 840 °C in a He/O₂ atmosphere. The two modes
296 had 4 (i.e., OC1 to OC4) and 3 (i.e., EC1 to EC3) heating stages, respectively. He/O₂ carbon
297 indicated the amount of carbon evolving during the oxidizing mode, and was typically comprised
298 of char-OC and EC for IMPROVE-A.


299

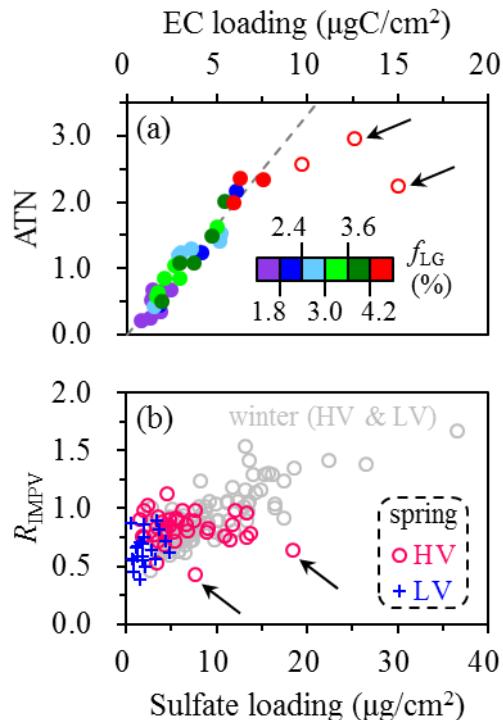
300 **Figure 5.** Dependence of R_{IMPV} , i.e., the EC_{extracted} to EC_{untreated} ratio determined by IMPROVE-A,
301 on sulfate loading in winter. Consistent trends were observed by the HV and LV samples. The
302 relatively wide range of R_{IMPV} (approximately 0.5–1.5) provided solid evidence for the invalidation
303 of the EC_{extracted} to EC_{untreated} ratio as an indicator for the extraction-induced loss of EC.

304 For the untreated filters, ATN exhibited a strong linear correlation with EC_s for both HV and

305 LV, with three heavily-loaded HV samples as the only exception. Actually, for the three samples,
306 their ATN vs. EC_s relationships did not deviate markedly from the regression line determined for
307 the lower EC_s loadings. Therefore, we suggested that when applying IMPROVE-A to the winter
308 samples, the measurement uncertainties should be less significant for EC_{untreated} compared to
309 EC_{extracted}.

310 The same conclusion could be reached by interpreting the OC to EC ratios (OC/EC). It has
311 been widely accepted that OC/EC depended strongly on SOA formation, after excluding the ~~distinct~~
312 events impacted by irregular emissions such as fireworks and open burning. Such events were not
313 evident throughout the winter campaign, and thus OC/EC was expected to increase with the
314 enhancement of secondary aerosol production. Here we used the relative abundance of secondary
315 inorganic ions (sulfate, nitrate and ammonium, i.e., SNA) compared to carbon monoxide (a typical
316 primary species), i.e., the SNA/CO ratio, as an indicator for the significance of secondary aerosols.
317 A benefit of using SNA/CO was that it was independent of EC measurement. The OC/EC ratio
318 corresponding to EC_{untreated} [i.e., (OC/EC)^{*}] was determined directly by the thermal-optical results
319 from the untreated samples. For EC_{extracted}, the corresponding OC/EC [i.e., (OC/EC)[#]] was calculated
320 as $(TC_{untreated} - EC_{extracted})/ EC_{extracted}$, where TC_{untreated} indicates the total carbon concentration
321 measured before the extraction. As shown in Figure 6 for the wintertime HV samples, (OC/EC)^{*}
322 exhibited reasonable accordance with SNA/CO ($r = 0.72$) but (OC/EC)[#] did not ($r = 0.02$). The clear
323 association between (OC/EC)^{*} and SNA/CO, which was also supported by the results from LV ($r =$
324 0.66; Figure S3), provided additional evidence for the robustness of EC_{untreated} determined by
325 IMPROVE-A.

326


327 **Figure 6.** Comparison of r values derived from the linear regressions of various OC/EC estimations
 328 on SNA/CO, based on the wintertime HV samples. IMPV indicates the IMPROVE-A temperature
 329 protocol. A total of four sets of OC/EC ratios were determined using different protocols and pre-
 330 treatment approaches. The OC/EC ratio measured by the untreated samples using IMPROVE-A,
 331 i.e., the IMPV-based (OC/EC)^{*}, exhibited the strongest association with SNA/CO.

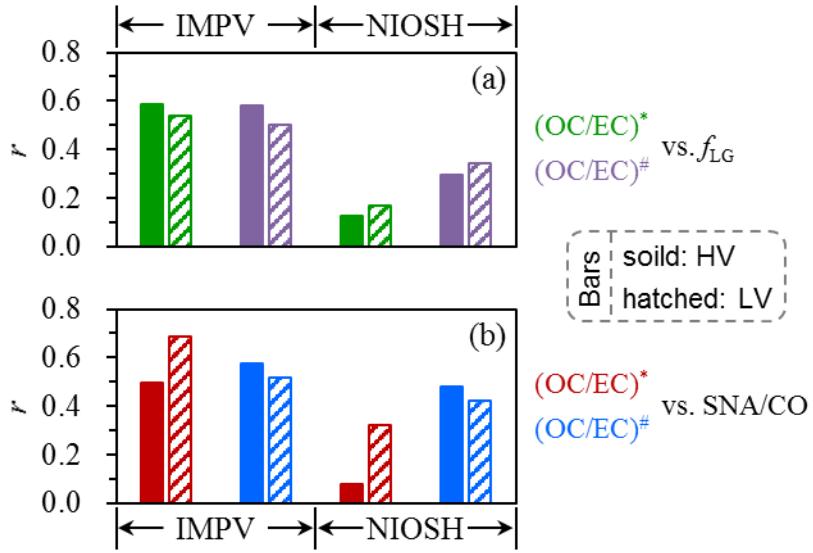
332 Compared to IMPROVE-A, NIOSH led to weaker correlations between (OC/EC)^{*} and
 333 SNA/CO, as indicated by the smaller r values determined (0.49 vs. 0.72 for HV and 0.18 vs. 0.66
 334 for LV; Figures 4 and S3). In addition, the NIOSH-based (OC/EC)[#] did not exhibit apparent
 335 dependence on SNA/CO either ($r = 0.06$ and 0.34 for HV and LV, respectively). Thus Figures 6 and
 336 S3 clearly reflected the limitations of NIOSH-based OC/EC and thus NIOSH-based EC, further
 337 highlighting the benefit of using EC_{untreated} determined by IMPROVE-A.

338 **3.2 Evaluation of EC results from the spring campaign**

339 In this section we evaluated the EC results from April, also starting with the HV samples
 340 analyzed by IMPROVE-A. To highlight the role of agricultural fires, we first separated the April
 341 samples into two groups (namely the fire-impacted and typical samples), which were characterized
 342 by considerable and insignificant impacts of open burning, respectively. As described in Supporting
 343 Information, the criteria for fire-impacted samples could be simplified as a levoglucosan to
 344 TC_{untreated} ratio (f_{LG} ; on a basis of carbon mass) of above 1.8%, based on a synthesis of f_{LG} , the
 345 levoglucosan to water-soluble potassium ratio (LG/K⁺) and satellite-based fire hotspots (Figure S4).
 346 Before filter extraction, the dependence of ATN on EC_s could be approximated by a liner function
 347 (with a slope of $33.4 \pm 1.5 \text{ m}^2/\text{gC}$ and a close-to-zero intercept; $r = 0.97$) for all the typical samples

348 and the majority of the fire-impacted ones (Figure 7a), leading to an EC_{max} of $8 \mu\text{gC}/\text{cm}^2$. For three
 349 of the fire-impacted samples, EC_s exceeded this threshold value and the ATN vs. EC_s relationships
 350 were found to deviate significantly from the regression line, especially for the two samples with EC_s
 351 above $10 \mu\text{gC}/\text{cm}^2$ (as highlighted in Figure 7a).

352
 353 **Figure 7. (a)** Dependence of ATN on EC loading (EC_s) for the untreated HV samples collected in
 354 spring, color-coded by f_{LG} levels. Samples with linear and non-linear ATN vs. EC_s dependence are
 355 shown by the solid and open circles, respectively. f_{LG} values higher than 1.8% indicated significant
 356 impacts of agricultural fires. **(b)** Dependence of R_{IMPv} , i.e., the $EC_{extracted}$ to $EC_{untreated}$ ratio, on
 357 sulfate loading in spring. Results from winter were also shown for comparison. In general, a
 358 consistent relationship was observed between R_{IMPv} and sulfate loading for the samples, including
 359 both HV and LV, from different seasons. **The only exceptions were two** Two HV samples collected
 360 in spring **were identified as outliers**, as highlighted by the arrows. **The two distinct samples** The
 361 **outlier samplers** were also highlighted in (a), corresponding to the two points showing significant
 362 non-linear dependences of ATN on EC loading. All the EC results involved were measured by
 363 IMPROVE-A.


364 To elucidate factors responsible for the observed non-linear dependence of ATN on EC_s , we
 365 compared EC results from the untreated and extracted filters. Given the relatively low sulfate
 366 loadings observed throughout April (Figure 7b), it was with expectation that EC generally decreased

367 after the extraction. After excluding the results from two outliers (Figure 7b) ~~distinct samples~~, the
368 EC_{extracted} to EC_{untreated} ratios averaged 0.84 ± 0.11 , comparable to results from the reference group
369 in winter. The two outlier ~~distinct~~ samples, which were collected on the nights of April 10 and 20,
370 2021, showed EC_{extracted} to EC_{untreated} ratios of as low as 0.64 and 0.43, respectively. Such significant
371 extraction-induced decreases in EC could hardly be explained by the interference from sulfate in
372 thermal-optical analysis of the extracted filters (Figure 7b). Instead, the two outlier ~~distinct~~ samples
373 were found to show several noteworthy features: (i) they corresponded to the two samples showing
374 significant non-linear ATN vs. EC_s dependences before the extraction (Figure 7a); (ii) their f_{LG} levels
375 were at the higher end of the fire-impacted samples (with levoglucosan concentrations exceeding 7
376 $\mu\text{g}/\text{m}^3$), indicating extremely strong impacts of open burning (Figure 7a); (iii) their LG/K⁺ ratios ($>$
377 1.7) were also at the higher end of the fire-impacted samples, which were characteristic of the
378 emissions from smoldering combustion (Gao et al., 2003; Sullivan et al., 2019); (iv) their ATN
379 decreased apparently after the extraction, by ~ 1.0 which were about one order of magnitude higher
380 than results from the typical samples (~ 0.1). Thus it was inferred that EC_{untreated} of the outlier ~~distinct~~
381 samples likely involved some light-absorbing organic compounds (i.e., BrC) emitted by agricultural
382 fires with relatively low combustion efficiencies, and the absorption capacities of these organics
383 were strong enough to make them a considerable contributor to ATN measured at 632 nm. Indeed,
384 the BrC-related overestimation of elemental carbon mass was expected to be reduced considerably
385 after the extraction. However, such overestimation seemed ~~apparent~~ significant only for the two
386 outlier ~~distinct~~ samples (Figure 7a). In addition, recalling the lower-than-one EC_{extracted} to EC_{untreated}
387 ratios observed for the other April samples (i.e., the sulfate-related artifact raised for the extracted
388 filters), the methanol extraction actually brought little benefit for the determination of EC by

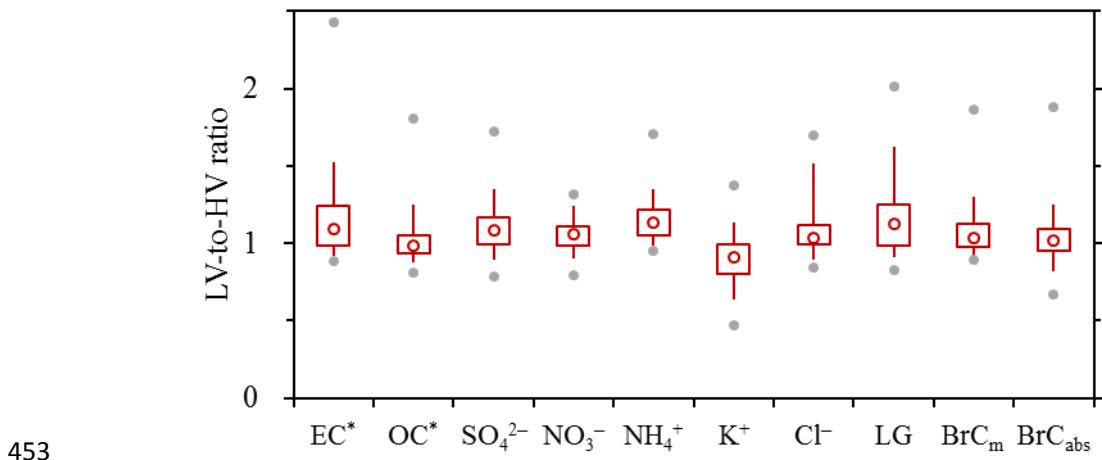
389 IMPROVE-A.

390 Unlike HV, all the LV samples showed a consistent relationship between ATN and EC_s before
391 the extraction (Figure S5). It appeared that the strongly absorbing organics that could interfere EC
392 measurement were mainly concentrated in some agriculture-fire smoke emitted at night (as
393 indicated by the two **outlier** **distinct** HV samples), whereas their influence on EC determination was
394 considerably weakened for the 24-h integrated LV samples. Thus the linear ATN vs. EC_s dependence,
395 which was valid for all the untreated LV samples analyzed by IMPROVE-A, provided little evidence
396 for the necessity of methanol extraction.

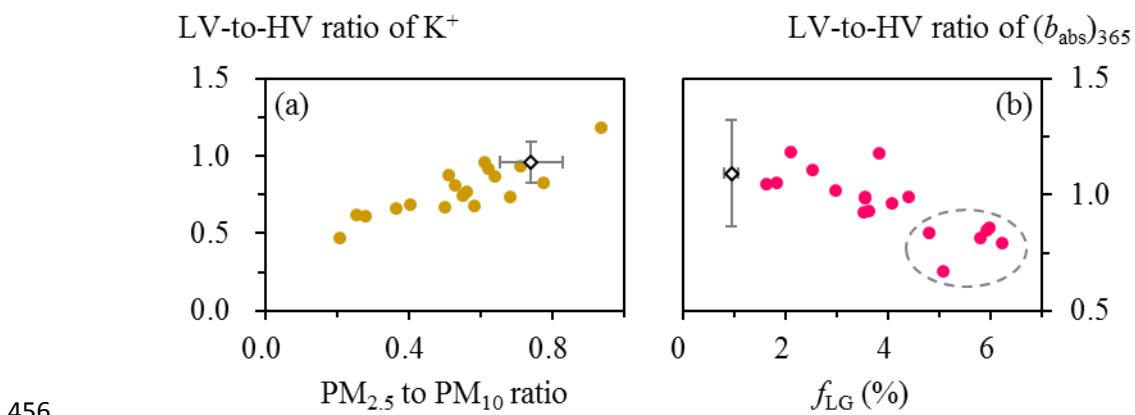
397 We also investigated the OC/EC vs. f_{LG} relationship for the HV samples collected in April.
398 Open burning was considered to be favorable for the increase of ambient OC/EC, since the aerosols
399 emitted were frequently found to be almost entirely organic (Liu et al., 2016; Garofalo et al., 2019;
400 Gkatzelis et al., 2024). Then it was not surprising to observe a moderate correlation between
401 (OC/EC)^{*} and f_{LG} ($r = 0.59$; Figure 8), i.e., an increasing trend of (OC/EC)^{*} with stronger impacts
402 of agricultural fires. In addition, (OC/EC)^{*} also depended moderately on SNA/CO ($r = 0.49$; Figure
403 8). This was with expectation as well, given the observational evidence on the concurrent
404 enhancements of secondary inorganic and organic aerosols (e.g., Liu et al., 2020; Cheng et al., 2022).
405 Replacing (OC/EC)^{*} with (OC/EC)[#] did not effectively strengthen the association of OC/EC with
406 f_{LG} or SNA/CO (Figure 8). This conclusion also held for the LV samples (Figure 8). In summary,
407 we did not observe additional evidence supporting the incorporation of methanol extraction with
408 IMPROVE-A.

409

410 **Figure 8.** Comparisons of r values derived from the linear regressions of various OC/EC estimations
 411 on (a) f_{LG} and (b) SNA/CO, based on the spring samples. IMPV indicates the IMPROVE-A
 412 temperature protocol. Results from the HV and LV filters are shown by solid and hatched bars,
 413 respectively. For both HV and LV, a total of four sets of OC/EC ratios were determined using
 414 different protocols and pre-treatment approaches. In general, OC/EC ratios measured by the
 415 untreated samples using IMPROVE-A, i.e., the IMPV-based $(OC/EC)^*$, exhibited reasonable
 416 associations with aerosol sources. Using other OC/EC estimations failed to or did not effectively
 417 enhance the associations.


418 Compared to $(OC/EC)^*$ determined by IMPROVE-A, the NIOSH-based $(OC/EC)^*$ and
 419 $(OC/EC)^\#$ were less indicative of aerosol sources which could be reflected by f_{LG} and SNA/CO. This
 420 was the case for both the HV and LV samples (Figure 8). Based on the discussions above, $EC_{untreated}$
 421 determined by IMPROVE-A (EC^*) was also recommended for the conditions with prevalence of
 422 agricultural fires (i.e., April), in line with the conclusion derived for winter. In addition, it should be
 423 kept in mind that EC^* could overestimate elemental carbon mass due to the interference from
 424 strongly absorbing BrC. However, such overestimation was generally uncommon, i.e., was
 425 **considerable** **significant** only for some nighttime samples under extremely strong influences of low-
 426 efficiency agricultural fires (as indicated by the two **distinct** HV samples **identified as outliers**;
 427 Figure 7).

428 **3.3 Comparison of measurement results from the HV and LV samplers**


429 As mentioned in the Methods section, each LV sample corresponded to a pair of daytime and
430 nighttime HV samples, indicating that measurement results from the HV samples could be averaged
431 and then compared to those determined by LV. Here the inter-sampler comparison was performed
432 for several components that are of broad interest in field observations, including elemental and
433 organic carbon, secondary inorganic ions (sulfate, nitrate and ammonium), other water-soluble ions
434 (potassium and chloride), organic tracer for biomass burning (levoglucosan), BrC mass
435 concentration and light absorption coefficient. Based on the evaluation results in previous sections,
436 EC* and the corresponding OC, i.e., OC* (measured before the extraction using IMPROVE-A), were
437 selected for the comparison. In addition, following Cheng et al. (2024), BrC mass was calculated as
438 the difference in TC between the untreated and extracted filters, while BrC absorption was
439 investigated at a wavelength of 365 nm, i.e., $(b_{\text{abs}})_{365}$.

440 As shown in Figure 9, the two samplers generally led to comparable measurement results for
441 all the species investigated. For example, the LV-to-HV ratios typically fell within the range of 0.8–
442 1.2, i.e., results from the two samples generally agreed within $\pm 20\%$. However, it was noticed that
443 K^+ was the only component with the majority of the LV results lower than HV. In addition, the LV-
444 to-HV ratio of K^+ was found to depend positively on the ratio of $\text{PM}_{2.5}$ to PM_{10} (Figure 10a). The
445 $\text{PM}_{2.5}$ to PM_{10} ratio was strongly associated with the influence of dust, typically exhibiting a
446 decreasing trend as the impact of dust became stronger (Putaud et al., 2010). Thus the events with
447 decreased LV-to-HV ratios of K^+ (all of which occurred in spring) presumably coincided with dust
448 episodes, when relatively large particles were expected to be a non-negligible contributor to K^+
449 (Wang et al., 2014a). Then a likely cause for the dependence shown in Figure 8a was that the
450 impactor performances (e.g., the size-cut curves) were different not exactly the same for the two

451 samplers, such that some relatively large particles, if present, could be **more effectively** collected
 452 onto the HV filters ~~but would be removed by the impactor of~~ compared to LV.

454 **Figure 9.** The LV-to-HV ratios determined for various species. BrC_m and BrC_{abs} indicate the mass
 455 concentration and $(b_{\text{abs}})_{365}$ of brown carbon, respectively.

457 **Figure 10.** (a) Dependence of the LV-to-HV ratio of K⁺ on the PM_{2.5} to PM₁₀ ratio. (b) Dependence
 458 of the LV-to-HV ratio of $(b_{\text{abs}})_{365}$ on f_{LG} . Results from spring are shown on a sample-by-sample basis,
 459 as indicated by the solid circles. For winter, only the average results are shown as indicated by the
 460 diamonds. In (b), the events with substantially lower LV-to-HV ratios of $(b_{\text{abs}})_{365}$ are highlighted by
 461 the dashed oval.

462 In addition, it was noticed that although the two samplers led to generally comparable $(b_{\text{abs}})_{365}$
 463 results, the corresponding LV-to-HV ratios decreased substantially (e.g., down to 0.67) for the
 464 episodes with extremely strong impacts of agricultural fires (Figure 10b). A possible explanation
 465 was that some fire-emitted chromophores were ~~more or less distributed on~~ associated with relatively

466 large particles that would be more effectively collected onto the HV filters ~~removed by the inlet of~~
467 ~~LV but could pass through that of HV~~. Although these chromophores represented an important
468 contributor to BrC absorption, their influence on BrC mass was likely insignificant, as indicated by
469 the little influence of agricultural fires on the LV-to-HV ratio of BrC mass (Figure S6).

470 Finally, it should be noted that for the species except K⁺ and $(b_{\text{abs}})_{365}$, their LV-to-HV ratios
471 still showed different patterns of distribution (Figure 9). Analytical uncertainties should be partially
472 responsible, e.g., as indicated by the more significant variations in the LV-to-HV ratios of EC*
473 compared to those of OC*. Another likely cause was that the sampling duration of a given LV sample
474 (24 hours) actually did not equal that of the corresponding HV (15 hours), which would result in
475 different LV-to-HV ratios for the species with different diurnal cycles. In summary, many factors
476 could be responsible for the inter-sampler discrepancies shown in Figure 9. Typically, the overall
477 effects of these factors were higher LV-based concentrations than HV, with median LV-to-HV ratios
478 concentrating in a relatively narrow range of 1–1.15. However, this comparability may not always
479 hold. A possible explanation was that the impactor performances were more or less different
480 between the two samplers, thus for specific components such as K⁺ and some fire-emitted
481 chromophores, this difference could exert a significant influence on their sampling.

482 **4. Conclusions and implications**

483 For the first time, EC results were compared among different sampling and analytical
484 approaches based on field observations in Northeast China. Two samplers with flow rates of 1.13
485 m³/min and 5 L/min were operated together during two distinct seasons, whereas thermal-optical
486 analysis was performed by applying different protocols to both the untreated and extracted filters.
487 Results from different seasons jointly suggested that EC_{extracted} measured by IMPROVE-A (i.e.,

488 IMPV) was biased by complex artifacts associated with sulfate. The IMPV-based $EC_{extracted}$ tended
489 to underestimate elemental carbon mass when sulfate was less abundant, whereas overestimations
490 were evident at sufficiently high loadings of sulfate. The turning point for the artifact shifting from
491 an underestimation to overestimation occurred in the sulfate loading range of 10–15 $\mu\text{g}/\text{cm}^2$. Such
492 high sulfate loadings were rarely encountered by the LV samples and thus the corresponding IMPV-
493 based EC typically decreased after the extraction (by ~20%). For the HV samples, their sulfate
494 covered a wide range of ~2–35 $\mu\text{g}/\text{cm}^2$ during winter and in this case, the extraction-induced
495 changes in EC usually varied between –50% and +50% for the IMPV-based results. ~~In addition to~~
496 ~~the complex sulfate related artifacts, another problem identified for the IMPV-based $EC_{extracted}$ was~~
497 ~~that in winter, the corresponding OC/EC ratio exhibited relatively weak or even no association with~~
498 ~~the SNA/CO ratio, which was used as an indicator for the significance of secondary aerosol~~
499 ~~production. The NIOSH-based OC/EC occasionally showed acceptable correlation with SNA/CO,~~
500 ~~but it was never effectively enhanced by agricultural fire emissions.~~ In addition to the complex
501 sulfate-related artifacts, another problem identified for the IMPV-based $EC_{extracted}$ was that the
502 corresponding OC/EC ratio sometimes exhibited no association with the SNA/CO ratio, which was
503 used as an indicator for the significance of secondary aerosol production. The NIOSH-based OC/EC
504 ratios, determined by either $EC_{extracted}$ or $EC_{untreated}$, had the same problem. Then the IMPV-based
505 $EC_{untreated}$ (EC^*) was recommended, as the corresponding OC/EC could always be reasonably linked
506 to aerosol sources, e.g., secondary aerosol formation in winter and agricultural fire impacts (as
507 reflected by f_{LG}) in spring.

508 Inter-sampler comparisons were performed for various species that are of broad interest in field
509 observations, including EC^* . Although the flow rates differed by more than two orders of magnitude

510 between the two samplers, the LV and HV generally led to comparable measurement results for the
511 majority of the species, with the median LV-to-HV ratios falling within a relatively narrow range of
512 1–1.15.

513 This study also raised two points that merit attentions. The first is that the IMPV-based
514 EC_{untreated}, which was suggested for investigations on aerosol sources, might overestimate elemental
515 carbon mass under extremely strong impacts of open burning. This problem was attributed to
516 strongly absorbing BrC emitted by agricultural fires with relatively low combustion efficiencies.

517 Although uncommon for the ambient samples in Harbin (a megacity located in a main agricultural
518 region in China), this problem could introduce substantial uncertainties to the emission factors and
519 thus inventories of biomass burning. We suggested that a key step to refine the EC measurement
520 results was to concurrently minimize the inferences from strongly absorbing BrC and scattering
521 components. Methanol extraction followed by water extraction of filter samples was expected to be
522 a practical approach, which was worthy of further evaluations.

523 The second point was that some specific components should be interpreted with caution, even
524 when comparing their measurement results from samplers with the same nominal cut-point. Our
525 observational results indicated that some relatively large particles, if present, could be **more**
526 **effectively** collected **onto the filters of by** the high-volume PM_{2.5} sampler **but would be removed by**
527 **the inlet of** compared to the low-volume one. This problem was attributed to the fact that the inlet
528 performances (e.g., the size-cut curve) could not be exactly the same between the HV and LV PM_{2.5}
529 samplers. Among the various species involved in this study, this problem affected the measurements
530 of K⁺ as well as some fire-emitted chromophores in the fine mode. Thus we suggested that the K⁺
531 results derived from different PM_{2.5} samplers may not be directly comparable. In addition, although

532 we could not quantitatively determine the dust contribution to K^+ measured by the high-volume
533 $PM_{2.5}$ sampler, K^+ should be used with caution as a biomass burning tracer for source apportionment
534 studies relying on the HV-based observations.

535 By evaluating the observational results from different measurement approaches for species
536 commonly used in source apportionment, this study contributed to the understanding of aerosol
537 sources in Northeast China and thus the development of efficient haze pollution control strategies.
538 Using the recommended OC and EC results together with levoglucosan (rather than K^+) as the
539 biomass burning tracer, positive matrix factorization (PMF) analysis was performed for the 2020–
540 2021 heating season based on a total of ~200 LV samples (including those involved in this study;
541 Cheng et al., 2024). The concentrations of primary OC resolved were found to be in reasonable
542 agreement with those predicted by an air quality model, when agricultural fires were absent. The
543 consistency laid the foundation for the control policy focusing on primary aerosols. Cheng et al.
544 (2024) also found that the model failed to reproduce the observed SOA levels, with large
545 underestimations (by ~80%). Thus the observation-based source apportionment results were
546 currently irreplaceable for evaluating the benefits of reducing SOA precursors. In summary, this
547 study highlighted the importance of inter-method comparison for aerosol components (e.g., EC and
548 K^+) that are of broad interest in field observations. Such efforts are expected to be more urgently
549 needed for Northeast China, since this distinct region was recently targeted by the latest national-
550 level pollution control policy in China (State Council, 2021) and thus is facing stronger demand for
551 reducing $PM_{2.5}$.

552 **Data availability.** Data are available from the corresponding author upon request
553 (jiumengliu@hit.edu.cn).

554 **Author contributions.** YC and JL designed the study and prepared the paper, with inputs from all
555 the co-authors. YZ, ZZ and XC carried out the experiments.

556 **Competing interests.** The authors declare that they have no conflict of interest.

557 **Disclaimer.** Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional
558 claims made in the text, published maps, institutional affiliations, or any other geographical
559 representation in this paper. While Copernicus Publications makes every effort to include
560 appropriate place names, the final responsibility lies with the authors.

561 **Acknowledgements.** The authors thank Zhen-yu Du at the National Research Center for
562 Environmental Analysis and Measurement and Lin-lin Liang at the Chinese Academy of
563 Meteorological Sciences for their help in sample analysis.

564 **Financial support.** This research has been supported by the National Natural Science Foundation
565 of China (42222706), the Natural Science Foundation of Heilongjiang Province (YQ2024D011),
566 the State Key Laboratory of Urban Water Resource and Environment (2023DX10) and the
567 Fundamental Research Funds for the Central Universities.

568 **References**

569 Aakko-Saksa, P., Koponen, P., Aurela, M., Vesala, H., Piimäkorpi, P., Murtonen, T., Sippula, O.,
570 Koponen, H., Karjalainen, P., Kuittinen, N., Panteliadis, P., Rönkkö, T., and Timonen, H.:
571 Considerations in analysing elemental carbon from marine engine exhaust using residual,
572 distillate and biofuels, *J. Aerosol Sci.*, 126, 191–204, 2018.

573 Andela, N., Morton, D. C., Schroeder, W., Chen, Y., Brando, P. M., and Randerson, J. T.: Tracking
574 and classifying Amazon fire events in near real time, *Sci. Adv.*, 8, eabd2713, 2022.

575 Andreae, M. O., and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing
576 carbonaceous aerosols, *Atmos. Chem. Phys.*, 6, 3131–3148, 2006.

577 Buffaloe, G. M., Lack, D. A., Williams, E. J., Coffman, D., Hayden, K. L., Lerner, B. M., Li, S. M.,

578 Nuaaman, I., Massoli, P., Onasch, T. B., Quinn, P. K., and Cappa, C. D.: Black carbon
579 emissions from in-use ships: a California regional assessment, *Atmos. Chem. Phys.*, 14, 1881–
580 1896, 2014.

581 Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J. P.: Toward a standardized thermal-
582 optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR
583 protocol, *Atmos. Meas. Tech.*, 3, 79–89, 2010.

584 Chakrabarty, R. K., Shetty, N. J., Thind, A. S., Beeler, P., Sumlin, B. J., Zhang, C. C., Liu, P., Idrobo,
585 J. C., Adachi, K., Wagner, N. L., Schwarz, J. P., Ahern, A., Sedlacek, A. J., Lambe, A., Daube,
586 C., Lyu, M., Liu, C., Herndon, S., Onasch, T. B., and Mishra, R.: Shortwave absorption by
587 wildfire smoke dominated by dark brown carbon, *Nat. Geosci.*, 16, 683–688, 2023.

588 Chang, X., Zhao, B., Zheng, H. T., Wang, S. X., Cai, S. Y., Guo, F. Q., Gui, P., Huang, G. H., Wu,
589 D., Han, L. C., Xing, J., Man, H. Y., Hu, R. L., Liang, C. R., Xu, Q. C., Qiu, X. H., Ding, D.,
590 Liu, K. Y., Han, R., Robinson, A. L., and Donahue, N. M.: Full-volatility emission framework
591 corrects missing and underestimated secondary organic aerosol sources, *One Earth*, 5, 403–
592 412, 2022.

593 Chen, P. F., Kang, S. C., Tripathee, L., Ram, K., Rupakheti, M., Panday, A. K., Zhang, Q., Guo, J.
594 M., Wang, X. X., Pu, T., and Li, C. L.: Light absorption properties of elemental carbon (EC)
595 and water-soluble brown carbon (WS-BrC) in the Kathmandu Valley, Nepal: a 5-year study,
596 *Environ. Pollut.*, 261, 114239, 2020.

597 Cheng, J., Tong, D., Zhang, Q., Liu, Y., Lei, Y., Yan, G., Yan, L., Yu, S., Cui, R. Y., Clarke, L., Geng,
598 G. N., Zheng, B., Zhang, X. Y., Davis, S. J., and He, K. B.: Pathways of China's PM_{2.5} air
599 quality 2015–2060 in the context of carbon neutrality, *Natl. Sci. Rev.*, 8, nwab078, 2021.

600 Cheng, Y., Cao, X. B., Yu, Q. Q., Liu, J. M., Ma, W. L., Qi, H., Zhang, Q., and He, K. B.: Synergy
601 of multiple drivers leading to severe winter haze pollution in a megacity in Northeast China,
602 *Atmos. Res.*, 270, 106075, 2022.

603 Cheng, Y., Cao, X. B., Zhu, S. Q., Zhang, Z. Q., Liu, J. M., Zhang, H. L., Zhang, Q., and He, K. B.:
604 Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational

605 and modeling results: insights from Northeast China, *Atmos. Chem. Phys.*, 24, 9869–9883,
606 2024.

607 Chiappini, L., Verlhac, S., Aujay, R., Maenhaut, W., Putaud, J. P., Sciare, J., Jaffrezo, J. L., Liousse,
608 C., Galy-Lacaux, C., Alleman, L. Y., Panteliadis, P., Leoz, E., and Favez, O.: Clues for a
609 standardised thermal-optical protocol for the assessment of organic and elemental carbon
610 within ambient air particulate matter, *Atmos. Meas. Tech.*, 7, 1649–1661, 2014

611 Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H.,
612 Henzing, J. S., Jennings, S. G., Moerman, M., Petzold, A., Schmid, O., and Baltensperger, U.:
613 Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five
614 correction algorithms, *Atmos. Meas. Tech.*, 3, 457–474, 2010.

615 Costa, V., Bacco, D., Castellazzi, S., Ricciardelli, I., Vecchietti, R., Zigola, C., and Pietrogrande, M.
616 C.: Characteristics of carbonaceous aerosols in Emilia-Romagna (Northern Italy) based on two
617 fall/winter field campaigns, *Atmos. Res.*, 167, 100–107, 2016.

618 Dao, X., Lin, Y. C., Cao, F., Di, S. Y., Hong, Y. H., Xing, G. H., Li, J. J., Fu, P. Q., and Zhang, Y. L.:
619 Introduction to the national aerosol chemical composition monitoring network of China:
620 objectives, current status, and outlook, *Bull. Am. Meteorol. Soc.*, 100, ES337–ES351, 2019.

621 Eckhardt, S., Pisso, I., Evangelou, N., Zwaafink, C. G., Plach, A., McConnell, J. R., Sigl, M.,
622 Ruppel, M., Zdanowicz, C., Lim, S., Chellman, N., Opel, T., Meyer, H., Steffensen, J. P.,
623 Schwikowski, M., and Stohl, A.: Revised historical Northern Hemisphere black carbon
624 emissions based on inverse modeling of ice core records, *Nat. Commun.*, 14, 271, 2023.

625 Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., van der Gon, H. D., Facchini, M. C., Fowler,
626 D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y.,
627 Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni,
628 S.: Particulate matter, air quality and climate: lessons learned and future needs, *Atmos. Chem.*
629 *Phys.*, 15, 8217–8299, 2015.

630 Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Kreidenweis, S. M., and Farmer, D. K.:
631 Emission and evolution of submicron organic aerosol in smoke from wildfires in the Western

632 United States, *ACS Earth Space Chem.*, 3, 1237–1247, 2019.

633 Gao, C. Y., Heald, C. L., Katich, J. M., Luo, G., and Yu, F. Q.: Remote aerosol simulated during the
634 Atmospheric Tomography (ATom) campaign and implications for aerosol lifetime, *J. Geophys.*
635 *Res. Atmos.*, 127, e2022JD036524, 2022.

636 Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M.: Water-soluble
637 organic components in aerosols associated with savanna fires in southern Africa: identification,
638 evolution, and distribution, *J. Geophys. Res.*, 108, 8491, 2003.

639 Giannoni, M., Calzolai, G., Chiari, M., Cincinelli, A., Lucarelli, F., Martellini, T., and Nava, S.: A
640 comparison between thermal-optical transmittance elemental carbon measured by different
641 protocols in PM_{2.5} samples, *Sci. Total Environ.*, 571, 195–205, 2016.

642 Gkatzelis, G. I., Coggon, M. M., Stockwell, C. E., Hornbrook, R. S., Allen, H., Apel, E. C., Bela,
643 M. M., Blake, D. R., Bourgeois, I., Brown, S. S., Campuzano-Jost, P., St. Clair, J. M., Crawford,
644 J. H., Crounse, J. D., Day, D. A., DiGangi, J. P., Diskin, G. S., Fried, A., Gilman, J. B., Guo,
645 H., Hair, J. W., Halliday, H. S., Hanisco, T. F., Hannun, R., Hills, A., Huey, L. G., Jimenez, J.
646 L., Katich, J. M., Lamplugh, A., Lee, Y. R., Liao, J., Lindaas, J., McKeen, S. A., Mikoviny, T.,
647 Nault, B. A., Neuman, J. A., Nowak, J. B., Pagonis, D., Peischl, J., Perring, A. E., Piel, F.,
648 Rickly, P. S., Robinson, M. A., Rollins, A. W., Ryerson, T. B., Schueneman, M. K., Schwantes,
649 R. H., Schwarz, J. P., Sekimoto, K., Selimovic, V., Shingler, T., Tanner, D. J., Tomsche, L.,
650 Vasquez, K. T., Veres, P. R., Washenfelder, R., Weibring, P., Wennberg, P. O., Wisthaler, A.,
651 Wolfe, G. M., Womack, C. C., Xu, L., Ball, K., Yokelson, R. J., and Warneke, C.:
652 Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based
653 on FIREX-AQ aircraft measurements, *Atmos. Chem. Phys.*, 24, 929–956, 2024.

654 Hand, J. L., Prenni, A. J., Raffuse, S. M., Hyslop, N. P., Malm, W. C., and Schichtel, B. A.: Spatial
655 and seasonal variability of remote and urban speciated fine particulate matter in the United
656 States, *J. Geophys. Res. Atmos.*, 129, e2024JD042579, 2024

657 Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-soluble
658 organic aerosol material and the light-absorption characteristics of aqueous extracts measured
659 over the Southeastern United States, *Atmos. Chem. Phys.*, 10, 5965–5977, 2010.

660 Hu, Z. F., Kang, S. C., Xu, J. Z., Zhang, C., Li, X. F., Yan, F. P., Zhang, Y. L., Chen, P. F., and Li, C.
661 L.: Significant overestimation of black carbon concentration caused by high organic carbon in
662 aerosols of the Tibetan Plateau, *Atmos. Environ.*, 294, 119486, 2023.

663 Knox, A., Evans, G. J., Brook, J. R., Yao, X., Jeong, C. H., Godri, K. J., Sabaliauskas, K., and
664 Slowik, J. G.: Mass absorption cross-section of ambient black carbon aerosol in relation to
665 chemical age, *Aerosol Sci. Technol.*, 43, 522–532, 2009.

666 Laborde, M., Schnaiter, M., Linke, C., Saathoff, H., Naumann, K. H., Mhler, O., Berlenz, S.,
667 Wagner, U., Taylor, J. W., Liu, D., Flynn, M., Allan, J. D., Coe, H., Heimerl, K., Dahlk ter, F.,
668 Weinzierl, B., Wollny, A. G., Zanatta, M., Cozic, J., Laj, P., Hitzenberger, R., Schwarz, J. P.,
669 and Gysel, M.: Single Particle Soot Photometer intercomparison at the AIDA chamber, *Atmos.*
670 *Meas. Tech.*, 5, 3077–3097, 2012.

671 Lack, D. A., Moosm ller, H., McMeeking, G. R., Chakrabarty, R. K., and Baumgardner, D.:
672 Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a
673 review of techniques, their limitations and uncertainties, *Anal. Bioanal. Chem.*, 406, 99–122,
674 2014.

675 Lappi, M. K., and Ristim ki, J. M.: Evaluation of thermal optical analysis method of elemental
676 carbon for marine fuel exhaust, *J. Air Waste Manage. Assoc.*, 67, 1298–1318, 2017.

677 Li, H. Y., Lamb, K. D., Schwarz, J. P., Selimovic, V., Yokelson, R. J., McMeeking, G. R., and May,
678 A. A.: Inter-comparison of black carbon measurement methods for simulated open biomass
679 burning emissions, *Atmos. Environ.*, 206, 156–169, 2019.

680 Li, J., Carlson, B. E., Yung, Y. L., Lv, D. R., Hansen, J., Penner, J. E., Liao, H., Ramaswamy, V.,
681 Kahn, R. A., Zhang, P., Dubovik, O., Ding, A. J., Lacis, A. A., Zhang, L., and Dong, Y. M.:
682 Scattering and absorbing aerosols in the climate system, *Nat. Rev. Earth Environ.*, 3, 363–379,
683 2022.

684 Liu J. M., Du Z. Y., Liang L. L., Yu Q. Q., Shen G. F., Ma Y. L., Zheng M., Cheng Y., and He K. B.:
685 Uncertainties in thermal-optical measurements of black carbon: insights from source and
686 ambient samples, *Sci. Total Environ.*, 656, 239–249, 2019.

687 Liu, J. M., Wang, P. F., Zhang, H. L., Du, Z. Y., Zheng, B., Yu, Q. Q., Zheng, G. J., Ma, Y. L., Zheng,
688 M., Cheng, Y., Zhang, Q., and He, K. B.: Integration of field observation and air quality
689 modeling to characterize Beijing aerosol in different seasons, *Chemosphere*, 242, 125195,
690 2020.

691 Liu, S. G., Geng, G. N., Xiao, Q. Y., Zheng, Y. X., Liu, X. D., Cheng, J., and Zhang, Q.: Tracking
692 daily concentrations of PM_{2.5} chemical composition in China since 2000, *Environ. Sci.
693 Technol.*, 56, 16517–16527, 2022.

694 Liu, X. X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez, J. L., Campuzano-Jost, P.,
695 Beyersdorf, A. J., Blake, D. R., Choi, Y., St Clair, J. M., Crounse, J. D., Day, D. A., Diskin, G.
696 S., Fried, A., Hall, S. R., Hanisco, T. F., King, L. E., Meinardi, S., Mikoviny, T., Palm, B. B.,
697 Peischl, J., Perring, A. E., Pollack, I. B., Ryerson, T. B., Sachse, G., Schwarz, J. P., Simpson, I.
698 J., Tanner, D. J., Thornhill, K. L., Ullmann, K., Weber, R. J., Wennberg, P. O., Wisthaler, A.,
699 Wolfe, G. M., and Ziembba, L. D.: Agricultural fires in the southeastern U.S. during SEAC⁴RS:
700 Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic
701 aerosol, *J. Geophys. Res. Atmos.*, 121, 7383–7414, 2016.

702 Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. M., Baltensperger, U., Holzer-Popp, T., Kinne,
703 S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X. Y.:
704 Recommendations for reporting “black carbon” measurements, *Atmos. Chem. Phys.*, 13,
705 8365–8379, 2013.

706 Petzold, A., Schloesser, H., Sheridan, P. J., Arnott, W. P., Ogren, J. A., and Virkkula, A.: Evaluation
707 of multiangle absorption photometry for measuring aerosol light absorption, *Aerosol Sci.
708 Technol.*, 39, 40–51, 2005.

709 Philip, S., Martin, R., van Donkelaar, A., Lo, J. W. H., Wang, Y. X., Chen, D., Zhang, L., Kasibhatla,
710 P. S., Wang, S. W., Zhang, Q., Lu, Z., Streets, D. G., Bittman, S., and MacDonald, D. J.: Global
711 chemical composition of ambient fine particulate matter for exposure assessment, *Environ.
712 Sci. Technol.*, 48, 13060–13068, 2014.

713 Piazzalunga, A., Bernardoni, V., Fermo, P., Valli, G., and Vecchi, R.: Technical note: On the effect
714 of water-soluble compounds removal on EC quantification by TOT analysis in urban aerosol

715 samples, *Atmos. Chem. Phys.*, 11, 10193–10203, 2011.

716 Pileci, R. E., Modini, R. L., Bertò, M., Yuan, J., Corbin, J. C., Marinoni, A., Henzing, B., Moerman,
717 M. M., Putaud, J. P., Spindler, G., Wehner, B., Müller, T., Tuch, T., Trentini, A., Zanatta, M.,
718 Baltensperger, U., and Gysel-Beer, M.: Comparison of co-located refractory black carbon (rBC)
719 and elemental carbon (EC) mass concentration measurements during field campaigns at several
720 European sites, *Atmos. Meas. Tech.*, 14, 1379–1403, 2021.

721 Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, *Angew.
722 Chem. Int. Ed.*, 44, 7520–7540, 2005.

723 Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi,
724 S., Gehrig, R., Hansson, H. C., Harrison, R. M., Herrmann, H., Hitzenberger, R., Hüglin, C.,
725 Jones, A. M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Löschau, G.,
726 Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H.,
727 Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten
728 Brink, H., Tursic, J., Viana, M., Wiedensohler, A., and Raes, F.: A European aerosol
729 phenomenology-3: Physical and chemical characteristics of particulate matter from 60 rural,
730 urban, and kerbside sites across Europe, *Atmos. Environ.*, 44, 1308–1320, 2020.

731 Qin, Y. M., Tan, H. B., Li, Y. J., Li, Z. J., Schurman, M. I., Liu, L., Wu, C., and Chan, C. K.:
732 Chemical characteristics of brown carbon in atmospheric particles at a suburban site near
733 Guangzhou, China, *Atmos. Chem. Phys.*, 18, 16409–16418, 2018.

734 Samset, B. H., Myhre, G., Herber, A., Kondo, Y., Li, S. M., Moteki, N., Koike, M., Oshima, N.,
735 Schwarz, J. P., Balkanski, Y., Bauer, S. E., Bellouin, N., Berntsen, T. K., Bian, H., Chin, M.,
736 Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kirkevåg, A., Lamarque, J. F., Lin, G., Liu, X.,
737 Penner, J. E., Schulz, M., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., and
738 Zhang, K.: Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom
739 Phase II constrained by aircraft observations, *Atmos. Chem. Phys.*, 14, 12465–12477, 2014.

740 Shen, G. F., Chen, Y. C., Wei, S. Y., Fu, X. F., Zhu, Y., and Tao, S.: Mass absorption efficiency of
741 elemental carbon for source samples from residential biomass and coal combustions, *Atmos.
742 Environ.*, 79, 79–84, 2013.

743 State Council: Circular on Further Promoting the Pollution Prevention and Control Battle, available
744 at: https://www.gov.cn/zhengce/2021-11/07/content_5649656.htm, 2021.

745 Subramanian, R., Khlystov, A. Y., and Robinson, A. L.: Effect of peak inert-mode temperature on
746 elemental carbon measured using thermal-optical analysis, *Aerosol Sci. Technol.*, 40, 763–780,
747 2006.

748 Sullivan, A. P., Guo, H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Campos, T., Shah, V.,
749 Jaeglé L., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Brown, S. S., and Weber, R. J.:
750 Biomass burning markers and residential burning in the WINTER aircraft campaign, *J.
751 Geophys. Res. Atmos.*, 124, 1846–1861, 2019.

752 Tinorua, S., Denjean, C., Nabat, P., Pont, V., Arnaud, M., Bourrianne, T., Dias Alves, M., and
753 Gardrat, E.: A 2-year intercomparison of three methods for measuring black carbon
754 concentration at a high-altitude research station in Europe, *Atmos. Meas. Tech.*, 17, 3897–3915,
755 2024.

756 von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A.,
757 Morgan, W. T., Paasonen, P., Righi, M., Sindelarova, K., and Sutton, M. A.: Chemistry and the
758 linkages between air quality and climate change, *Chem. Rev.*, 115, 3856–3897, 2015.

759 Wang, G. H., Cheng, C. L., Huang, Y., Tao, J., Ren, Y. Q., Wu, F., Meng, J. J., Li, J. J., Cheng, Y. T.,
760 Cao, J. J., Liu, S. X., Zhang, T., Zhang, R., and Chen, Y. B.: Evolution of aerosol chemistry in
761 Xi'an, inland China, during the dust storm period of 2013 – Part 1: Sources, chemical forms
762 and formation mechanisms of nitrate and sulfate, *Atmos. Chem. Phys.*, 14, 11571–11585,
763 2014a.

764 Wang, R., Tao, S., Balkanski, Y., Caias, P., Boucher, O., Liu, J. F., Piao, S. L., Shen, H. Z., Vuolo,
765 M. R., Valari, M., Chen, H., Chen, Y. C., Cozic, A., Huang, Y., Li, B. G., Li, W., Shen, G. F.,
766 Wang, B., and Zhang, Y. Y.: Exposure to ambient black carbon derived from a unique inventory
767 and high-resolution model, *Proc. Natl. Acad. Sci. U. S. A.*, 111, 2459–2463, 2014b.

768 Wang, X., Heald, C. L., Liu, J. M., Weber, R. J., Campuzano-Jost, P., Jimenez, J. L., Schwarz, J. P.,
769 and Perring, A. E.: Exploring the observational constraints on the simulation of brown carbon,

770 *Atmos. Chem. Phys.*, 18, 635–653, 2018.

771 Wei, J., Li, Z. Q., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and
772 Zhu, T.: First close insight into global daily gapless 1 km PM_{2.5} pollution, variability, and health
773 impact, *Nat. Commun.*, 14, 8349, 2023.

774 Xiao, Q. Y., Geng, G. N., Xue, T., Liu, S. G., Cai, C. L., He, K. B., and Zhang, Q.: Tracking PM_{2.5}
775 and O₃ Pollution and the related health burden in China 2013-2020, *Environ. Sci. Technol.*,
776 56, 6922–6932, 2022.

777 Yang, H., and Yu, J. Z.: Uncertainties in charring correction in the analysis of elemental and organic
778 carbon in atmospheric particles by thermal/optical methods, *Environ. Sci. Technol.*, 36, 5199–
779 5204, 2002.

780 Yu, J. Z., Xu, J. H., and Yang, H.: Charring characteristics of atmospheric organic particulate matter
781 in thermal analysis, *Environ. Sci. Technol.*, 36, 754–761, 2002.

782 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto,
783 T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in
784 Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, *Atmos.*
785 *Chem. Phys.*, 15, 2969–2983, 2015.

786 Zhong, Q. R., Schutgens, N., van der Werf, G. R., Takemura, T., van Noije, T., Mielonen, T., Checa-
787 Garcia, R., Lohmann, U., Kirkevåg, A., Olivie D. J. L., Kokkola, H., Matsui, H., Kipling, Z.,
788 Ginoux, P., Le Sager, P., Rény, S., Bian, H. S., Chin, M., Zhang, K., Bauer, S. E., and Tsagaridis,
789 K.: Threefold reduction of modeled uncertainty in direct radiative effects over biomass burning
790 regions by constraining absorbing aerosols, *Sci. Adv.*, 9, eadi3568, 2023.