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Abstract. The Early Miocene was a key period of significant global warming. While 23 

previous studies often attributed this warming to the India-Asia collision and associated 24 

volcanism, an alternative mechanism may involve large-scale methane release from 25 

organic-rich lake sediments. To test the hypothesis that methane emissions from Tibetan 26 

Plateau lakes contributed to Early Miocene warming, we analyzed organic carbon, 27 

stable isotopes, and elemental concentrations in samples from the organic-rich 28 

Dingqinghu Formation in the Lunpola Basin, central Tibetan Plateau. Our results 29 

identify an exceptionally strong positive carbonate carbon isotope excursion (δ¹³Ccarb 30 

up to +13.79‰) within the lacustrine deposits. The large carbon isotope difference 31 

between carbonate and organic matter (Δ¹³C > 32‰) indicates that methanogenesis, 32 

specifically via acetate fermentation, was the dominant microbial process. Extremely 33 

low sulfur contents likely suppressed sulfate-driven anaerobic oxidation of methane, 34 

facilitating direct methane release to the atmosphere. Furthermore, volcanic activity 35 

during this interval was limited, suggesting a negligible role in carbon cycle 36 

perturbations. The close temporal correspondence between Early Miocene warming, 37 

rising atmospheric CO₂, and methane emissions documented on the Tibetan Plateau 38 

indicates that methane release from these plateau lakes may have played an important 39 

role in driving global warming and increasing contemporary CO₂ levels. 40 

  41 
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1 Introduction 42 

The Cenozoic era witnessed several global warming episodes, such the Paleocene-43 

Eocene Thermal Maximum and the Middle Miocene Climatic Optimum, with 44 

temperatures and atmospheric CO₂ concentrations significantly exceeding pre-45 

industrial levels (Methner et al., 2020; Cenozoic CO2 Proxy Integration Project 46 

(CenCO2PIP) Consortium, 2023; Ivany et al., 2025). This period was also defined by 47 

continental collision between India and Eurasia and the subsequent uplift of the Tibetan 48 

Plateau, a tectonic event that profoundly reshaped Asian climate and potentially 49 

influenced global patterns (Wang et al.,2008; Yang et al.,2022; Zhang et al.,2024; Zhang 50 

et al.,2025). The temporal coincidence of these events has led to the hypothesis that the 51 

India-Asia collision and its associated volcanism may have been a primary driver of 52 

Cenozoic warming (Gutjahr et al., 2017; Kender et al., 2021; Tremblin et al., 2022). 53 

 54 

Figure 1:(a) Map of the Tibetan plateau showing major terranes. (b) Simplified geological map of the 55 

Lunpola Basin, showing location of sampling section. AKMS, Anyimaqen–Kunlun–Muztagh Suture; 56 

BNS, Bangong Lake–Nujiang River Suture; HJS, Hoh Xil–Jinsha River Suture; HMLY, Himalayas; 57 

HXP, Hoh Xili piedmont zone; LPL, Lunpola Basin; LS, Lhasa terrane; QD, Qaidam; QT, Qiagtang 58 

Basin; SP, Songpan–Ganzi flysch complex; TR, Tarim Basin; YTS, Yarlung Tsangpo Suture（modified 59 

from Fu et al,2015）. 60 

However, Cenozoic volcanism on the Tibetan Plateau, while episodic, was relatively 61 

limited in scale (Xie et al., 2024). For instance, during the third volcanic phase (ca. 28–62 

18 Ma), activity was largely confined to restricted areas like the Lunpola Basin, with 63 
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significantly reduced spatial distribution and magma volume compared to earlier stages 64 

(Wang et al., 2024). Consequently, although regional magmatic events reflect the 65 

tectonic-magmatic evolution of the Plateau, their associated volatile fluxes were likely 66 

negligible on a global scale compared to large igneous provinces (Zhang et al., 2021). 67 

This suggests that the direct contribution of Tibetan volcanism to the rise in atmospheric 68 

CO₂ and global warming was probably limited. 69 

An alternative mechanism for driving warming may involve large-scale methane 70 

release from organic-rich lake sediments. During diagenesis and burial, microbial 71 

methanogenesis in such sediments can generate substantial methane (CH₄) (Martens 72 

and Berner, 1974; Whiticar, 1999; Bastviken et al., 2004; Dean et al., 2018). Under 73 

stratified or anoxic lacustrine conditions, this methane can accumulate and be released 74 

to atmosphere via ebullition and diffusion (Bastviken et al., 2004; Encinas Fernández 75 

et al., 2014; DelSontro et al., 2016). Lakes are a significant natural source of methane 76 

emissions, and during specific geological intervals, widespread organic-rich lacustrine 77 

systems could have release methane at a scale capable of influencing the global climate 78 

system by enhancing the greenhouse effect and perturbing the carbon cycle (Dean et al., 79 

2018; Sun et al., 2022; Zhuang et al., 2023). Consequently, organic-enriched lake 80 

sediments act not only a crucial long-term carbon sink but also, under certain conditions, 81 

as a potent methane source, with substantial implications for both paleoclimate and 82 

contemporary climate systems. 83 

During the Miocene, the Tibetan Plateau hosted extensive lacustrine systems. The 84 

Lunpola and Nima basins, for example, preserve thick successions of organic-rich 85 

deposits and oil shales. In the Dingqinghu Formation, these successions reach 86 

thicknesses exceeding 148 m and exhibit total organic carbon (TOC) contents of up to 87 

17.60% (Fu et al.,2012; Fang et al.,2020; Fu et al.,2020; Lu，2023；Zeng et al., 2024). 88 

These deposits not only record high organic carbon accumulation but also represent a 89 

potential source of large methane emissions during deposition and early diagenesis, 90 

which could have contributed to regional or even global warming (Zhou et al., 2024; 91 
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Nie et al., 2023). 92 

To test the hypothesis that methane release from Tibetan Plateau lakes contributed to 93 

Early Miocene warming, we conducted organic carbon, stable isotope, and element 94 

analyses on samples from the Dingqinghu Formation in the Lunpola Basin (Fig. 1a). 95 

Integrated with a robust chronological framework (Mao et al., 2019), this multi-proxy 96 

dataset allows us to correlate regional geological events with global climate records and 97 

evaluate the potential mechanisms driving Early Miocene climate warming. 98 

2 Geological setting 99 

The Lunpola Basin is a Cenozoic fault-depression basin located on the central Tibetan 100 

Plateau, within the central segment of the Bangong-Nujiang Suture Zone (BNSZ), a 101 

major tectonic boundary separating the Lhasa and Qiangtang terranes. The basin 102 

extends approximately 200 km from east to west and 10-30 km from north to south, 103 

and is recognized as the highest-altitude petroleum-bearing basin in the world (Deng et 104 

al., 2012; Rowley & Currie, 2006; Fu et al., 2012; Wang et al., 2025). 105 

The Tibetan Plateau comprises a series of east-striking tectonic units bounded by 106 

major suture zones. From north to south, they are the Kunlun-Qaidam Terrane, the 107 

Songpan-Ganzi flysch complex, the Qiangtang Terrane, and the Lhasa Terrane, 108 

separated by the Anyimaqen-Kunlun-Muztagh, Hoh Xil-Jinsha River, and Bangong 109 

Lake-Nujiang River (BNS) suture zones, respectively (Fig. 1a). The BNS originated 110 

from the diachronous, west-to-east closure of the Meso-Tethyan ocean basin, 111 

culminating in the Late Jurassic–Early Cretaceous Lhasa-Qiangtang collision (Kapp 112 

and DeCelles, 2019). It was later reactivated during contractional events in the latest 113 

Cretaceous and Oligocene–early Miocene, which led to the development of 114 

intermontane basins in central Tibet, including the Lunpola, Nima, and Gerze basins 115 

(e.g., Wei et al., 2017; Han et al., 2019). 116 

Structurally, the basin is influenced by strike-slip and thrust faulting, forming a pod-117 

like framework characterized by “north–south structural zoning and east–west fault 118 

blocking.” In the north–south direction, the basin exhibits high flanks and a central 119 
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depression. The southern margin is controlled by thrust belts and uplifts, while the 120 

northern part shows localized highs despite significant subsidence and thick 121 

sedimentary infill. The cumulative thickness of the Niubao and Dingqinghu formations 122 

exceeds 3,000 m. East–west segmentation by faults results in a pattern of peripheral 123 

uplift and central subsidence (Lei et al., 1997). 124 

The tectonic evolution of the Lunpola Basin involved two main stages. The Eocene 125 

rifting, during which the Niubao Formation (E₁₋₂n) was deposited, consisting mainly of 126 

alluvial fan to fan-delta coarse clastics. The Oligocene depression, marked by 127 

accumulation of the Dingqinghu Formation (E₃d), dominated by deep lacustrine fine-128 

grained mudstones and oil shales (Deng et al., 2012; Lu, 2023). The Dingqinghu 129 

Formation is distributed primarily in the central and western parts of the basin, with 130 

thickness varying from 300 to 1,100 m due to differential basement subsidence. It 131 

comprises greenish-gray shales, mudstones, and oil shales interbedded with thin 132 

sandstones, interpreted as having been deposited in a low-energy, semi-deep to deep 133 

lacustrine environment under stable and strongly reducing conditions (Fu et al., 2015). 134 

This study focuses on the middle member of the Dingqinghu Formation, which is 135 

Early Miocene in age (ca. 20.6 ± 0.1 Ma; Mao et al., 2019) and consists of organic-rich 136 

mudstones, shales, and oil shales. These oil shale samples are dark brown to black in 137 

color and contain high organic matter content. 138 

3 Method 139 

The study area and section location are presented in Fig. 1b. The vertical distribution 140 

of samples within the section is presented in Figs. S1. A total of 63 samples were 141 

collected from the Lunpola oil shale section. The average vertical sampling interval is 142 

60 cm. 143 

3.1 TOC analysis 144 

First, grind the 10 mg rock sample into a powder with a particle size smaller than 200 145 

mesh. Then, depending on the lithology and colour of the sample, 0.095–0.105 g of the 146 
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powdered rock is weighed into a crucible and placed into the container. Slowly add 10% 147 

HCl along the inner wall of the container (ensuring it does not overflow the crucible 148 

opening), then allow it to decarburise for over 24 hours until the reaction is complete. 149 

Remove the crucible, rinse the sample with high-purity water to wash away residual 150 

acid, and continue washing until the rinse water is neutral. After washing, the samples 151 

were dried in an electric thermostatic drying oven at 60–80°C and then analysed for 152 

TOC content using an LDH CS analyser (Model: TK851-6K) at the Qiangtang Institute 153 

of Sedimentary Basin, Southwest Petroleum University. For every 10 samples, a 154 

parallel sample was included for quality control. Results were recorded in wt%, with 155 

an analytical accuracy better than ±0.1‰. 156 

3.2 Inorganic carbon and oxygen isotope analysis 157 

Carbon isotope samples were analysed in the laboratory of the Qiangtang Institute of 158 

Sedimentary Basin. First, an appropriate amount of carbonate sample was ground with 159 

an agate mortar to less than 200 mesh, then dried in an oven at 60℃ for approximately 160 

4 hours to remove adsorbed water. Then, approximately 1 mg of the sample was placed 161 

into the sample tube of the GasBench Plus sample preparation system. The sample was 162 

dried at 70℃, the tube was sealed, and the air in the sample tube was purged with high-163 

purity helium (He). Using an acid pump with an acid needle, excess 100% phosphoric 164 

acid (H₃PO₄) was added to the sample tube. The phosphoric acid was allowed to react 165 

with the carbonate sample to produce CO₂ gas. The generated CO₂ was then carried by 166 

high-purity helium into the Delta Q (Thermo Fisher) system, where the carbon and 167 

oxygen isotopic compositions were measured. A standard reference material was 168 

analysed after every 12 samples for quality control. Results were reported in δ¹³C V-169 

PDB and δ¹⁸O V-PDB values relative to the PDB standard. The GB04416 carbonate 170 

standard yielded δ¹³C =1.67 ± 0.05‰, and measurement accuracy was ±0.05‰. 171 

For carbonate samples, analytical reproducibility of replicate standards was better than 172 

±0.07‰. 173 
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3.3 Organic carbon isotope analysis 174 

The whole rock powder sample was decarbonised with 10% HCl for 48 hours to 175 

eliminate all carbonate components, then washed with ultra-pure water until neutral, 176 

and the residual sample was dried, ground to less than 200 mesh, weighed 0.2 to 5 mg 177 

of residual powder sample into a tin cup, and tightly wrapped into cubes. Under the He 178 

atmosphere, the gas is sent into the high-temperature oxidation tube through the EA 179 

auto-sampler and instantly oxidised at 980℃ in an oxygen atmosphere to generate a 180 

mixture of various gas components such as NO, N2O, N2O2, N2, CO, CO2, H2O, SO2 181 

and halogen. In the reaction tube, CO is oxidised to CO2 by chromium oxide and silver-182 

coated cobalt oxide, and SO2 and halogen gases are removed. Subsequently, in a 183 

reduction tube at 650°C, copper wire reduces nitrogen oxides to N2 and absorbs excess 184 

O2. The resulting helium and carbon dioxide gases pass through a magnesium 185 

perchlorate chemical trap to remove moisture, and then are separated by a 186 

chromatographic column into N2 and CO2, which enter a thermal conductivity detector 187 

(TCD) to determine the carbon content. A small amount of CO2 is then introduced into 188 

a connected Delta Q mass spectrometer via a continuous flow ConFIV system to 189 

measure the isotope ratio. All carbon isotope values are reported in the conventional δ190 

-notation in per mil relative to V-PDB (Vienna-PDB). The accuracy and reproducibility 191 

of the analysis were checked through repeated tests of the international standard sample 192 

USGS40, and the accuracy (1σ) was less than 0.09‰. The repeatability test accuracy 193 

of the  sample is less than 0.13‰. 194 

3.4 Total nitrogen (TN) and nitrogen isotope (δ15N)  195 

The total nitrogen (TN) and nitrogen isotope (δ15N) contents of samples were measured 196 

at Qiangtang Institute of Sedimentary Basin, Southwest Petroleum University, China, 197 

using a Vario Macro Cube elemental analyser (Elementar, Hanau, Germany). 198 

Approximately 200 mg of the powder samples were weighed, and then add 50 mg of 199 

WO3 oxidant. The mixture was tightly enclosed with a 35 × 35 mm tin capsule and 200 

prepared for analysis. Standard deviations for carbon, nitrogen and sulfur contents are 201 

https://doi.org/10.5194/egusphere-2025-5342
Preprint. Discussion started: 27 November 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

<0.05 wt% (1σ) based on replicate analyses of multiple samples. Thus, the analytical 202 

precision of TN measurements was always better than 0.05 wt.%. 203 

 204 

Figure 2: TOC, δ13Ccarb (the Carbonate carbon isotope), δ13Corg (the Organic Carbon Isotope), δ15N 205 

(the Organic Nitrogen isotope) and C/N ratio data in Dingqinghu Formation of lunpola basin. 206 

3.5 The major elements and trace elements 207 

Elemental analyses were conducted at the Qiangtang Basin Research Institute, 208 

Southwest Petroleum University. Powdered samples (<200 mesh) were packed into 209 

Chemplex cups, compacted, and sealed with polypropylene film. Major and selected 210 

trace element concentrations (including Ca, Mg, Ba, Cu, Ni, V and Sr) were measured 211 

using a Bruker S1 TITAN 800 X-ray fluorescence (XRF) spectrometer manufactured 212 
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by Bruker, Germany. The standard deviation for major elements was better than ± 213 

0.05%, and that for trace elements was better than ±20 μg/g. 214 

4 Result 215 

4.1 TOC content 216 

The total organic carbon content of mudstone and oil shale samples from the Second 217 

Member of the Dingqinghu formation is illustrated in Fig. 2. The TOC values exhibit a 218 

wide variation range (0.12%-11.54%), with an average of 2.35%, categorizing these 219 

strata as high-quality source rocks. Notably, the oil shale intervals demonstrate 220 

exceptional organic enrichment, characterized by TOC values spanning 0.56%-11.54%, 221 

with an average of 5.37%, which exceeds the threshold for effective hydrocarbon 222 

generation in lacustrine systems. In contrast, the interbedded mudstones and shales 223 

display comparatively lower TOC concentrations, ranging from 0.12% to 7.36%, with 224 

an average of 0.91%.  225 

4.2 Stable Isotope geochemistry 226 

As shown in Fig. 2, the variations of δ13Ccarb values of the second member of the 227 

Dingqinghu formation exhibit an extreme positive excursion, ranging from -0.84‰ to 228 

13.79‰, with an average of 6.59‰. The variation curve of δ13Ccarb values reveals that 229 

mudstone intervals display the most pronounced positive excursion (1.23‰–13.67‰, 230 

averaging 7.39‰), while oil shale intervals show relatively lower values (-0.84‰–231 

13.79‰ , averaging 4.91‰ ).The δ13Corg values of the Second Member of the 232 

Dingqinghu Formation range from -31.64‰ to -23.31‰, with an average value of -233 

27.97‰. The δ¹³Corg curve demonstrates a negative excursion in the oil shale layers, 234 

where values vary between -31.03‰ and -26.76‰ (average: -29.34‰). In contrast, 235 

the mudstone intervals exhibit a positive excursion, with a broader δ¹³Corg range of -236 

31.64‰ to -23.31‰ and an average of -27.33‰. The curves of δ13Ccarb and δ13Corg 237 

exhibit high coupling, which reflect the synergistic response mechanism of lake carbon 238 

cycle and climate environment. The organic nitrogen isotope values (δ15N(‰,air)) of 239 
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the Second Member of the Dingqinghu Formation range from 1.06‰ to 9.74‰, with 240 

an average value of 7.11‰.  241 

5 Discussion 242 

5.1 Influence of modifying factors 243 

Since both carbonates and organic matter can preserve diagenetic information rather 244 

than primary depositional signals after sedimentation, the influence of diagenesis must 245 

be evaluated prior to interpreting the isotopic compositions. Following precipitation in 246 

lake water bodies, carbonate minerals undergo a series of diagenetic alteration 247 

processes during burial, influenced by temperature and pore fluids. These processes, 248 

including dissolution and recrystallization, can lead to isotopic re-equilibration between 249 

the minerals and fluids (Boever et al., 2017; Hillaire et al., 2021; Huntington and 250 

Petersen, 2023). The extent of diagenetic alteration in lacustrine sediments can be 251 

assessed using carbon and oxygen isotopes of carbonate minerals. During diagenesis, 252 

carbon in pore fluids is typically scarce relative to the reservoir within carbonates, 253 

resulting in a rock-buffered system for carbon. Conversely, oxygen is predominantly 254 

soured from pore fluids, creating a fluid-buffered system for oxygen. Consequently, 255 

oxygen isotopic compositions are highly susceptible to alteration during diagenesis, 256 

while carbon isotopic compositions generally remain more resistant to change (Wang, 257 

2008; De Boever et al., 2017; Horacek et al., 2007; Ritter et al., 2017; Huntington and 258 

Petersen, 2023). The correlation between carbonate δ13Ccarb and δ18O values can 259 

therefore be utilized to assess the degree of diagenetic influence on carbon isotopes. In 260 

the present study, the δ13Ccarb vs. δ18O plot (Figs. S2a) exhibits a weak correlation 261 

(R²=0.0132), indicating that the δ13Ccarb values retain primary depositional signals. 262 

Furthermore, the Mn/Sr ratio, a sensitive indicator of post-depositional alteration (Hu 263 

et al., 2023), show no significant correlation with either δ13Ccarb (R
2=0.0012, Figs. S2b) 264 

or δ13Corg (R2=0.017, Figs. S2c). These results collectively suggest a negligible 265 

influence of diagenesis on the measured carbon isotopic signatures. 266 

Diagenetic and metamorphic processes can significantly alter the δ15N values of lake 267 
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sediments. During diagenesis, microbial decomposition releases 14N-enriched NH4+ 268 

into the pore water, resulting in 15N enrichment of residual organic matter and more 269 

positive 15N values (Macko et al., 1987; Altabet, 1988; Lourey etal., 2003; Papineau et 270 

al., 2009). Metamorphic processes similarly affect 15N through thermal degradation of 271 

nitrogen-rich compounds, which preferentially releases 14N-enriched NH3 or N2, 272 

leaving residual organic matter with elevated 15N values (Freudenthal et al., 2001; 273 

Lehmann et al., 2002; Altabet, 2006; Robinson et al., 2012; Stüeken et al., 2016; Xia et 274 

al., 2022). Correlative relationships among TOC, TN, δ13Corg and δ15N serve as key 275 

indicators for assessing post-depositional alteration. In the present study, we observe 276 

no significant correlations between δ15N and TOC (Figs. S2d), TN (Figs. S2e), C/N 277 

(Figs. S2f), or δ13Corg (Figs. S2g). This demonstrates the δ15N values retain primary 278 

depositional signals without diagenetic or metamorphic overprinting (Kipp et al., 2018; 279 

Mettam et al., 2019). 280 

Regarding terrigenous influences, lacustrine systems with substantial terrigenous 281 

inputs typically exhibit δ¹⁵N values significantly lower than autochthonous algal 282 

organic matter (+5‰ to +10‰), as terrigenous organic materials (e.g., plant debris, soil 283 

humus) generally show lower δ¹⁵N values (-2‰ to +5‰) (Talbot, 2002; Shen et al., 284 

2006). While a δ15Norg-C/N correlation typically indicates terrestrial influence, its 285 

absence in our dataset (Figs. S2f) confirms the δ15Norg values are unaffected by 286 

terrigenous input. 287 

5.2 Early Miocene positive carbon isotope excursion and methane release  288 

The pronounced positive carbonate carbon isotope excursion recorded in the 289 

Dingqinghu Formation is fundamentally controlled by the fractionation mechanisms of 290 

lacustrine carbonate carbon isotopes. Consequently, investigating these fractionation 291 

processes not only elucidates the drivers of extreme δ13Ccarb excursions but also provide 292 

critical insights into the paleolake’s carbon cycle dynamics and ecosystem function 293 

during this interval. Positive δ13Ccarb excursions in lacustrine systems primarily arise 294 

from isotope fractionation during three key processes: 1) Enhanced organic matter 295 
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production and burial, 2) Methane generation and release, and 3) Evaporative CO2, 296 

degassing in saline lakes (Michener and Lajtha, 2008; Thottathil et al., 2022). This 297 

study will systematically evaluate these mechanisms to determine their relative 298 

contributions to the observed δ13Ccarb excursions. 299 

 300 

Figure 3: δ13Ccarb (Carbonate carbon isotope), δ13Corg (Organic Carbon Isotope), OCBR (Organic 301 

carbon burial rate) and Δ13C value curses of Dingqinghu Formation. 302 

5.2.1  Enhanced organic carbon burial 303 

In high-productivity lacustrine systems, variations in carbonate δ¹³C values are 304 

predominantly controlled by lacustrine productivity (Teranes and McKenzie, 305 
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1999;Teranes and Bernasconi, 2005；Zhu， 2013). This relationship arises from 306 

photosynthetic fractionation because aquatic plants preferentially assimilate 12C when 307 

utilizing CO2 and bicarbonate from dissolved inorganic carbon (DIC) pools. This 308 

process enriches residual DIC 13C, leading to subsequent 13C enrichment in precipitated 309 

carbonates (Schelske and Hodell, 1991; Neumann et al., 2002). Under high productivity 310 

where aquatic plants preferentially consume dissolved CO2, the substantial δ13C 311 

difference between bicarbonate (relatively 13C-enriched) and aqueous CO2 (relatively 312 

13C-depleted) further elevates δ13C values in both DIC and organic matter (Meyers, 313 

1997; Hodell and Schelske, 1998; Leng and Marshall, 2004; Xu et al, 2006; Zhu et al., 314 

2011). During lake eutrophication, algal blooms generate substantial organic matter 315 

while preferentially incorporating 12C. Resultant water column anoxia preserves algal 316 

biomass from decomposition, while high sedimentation rates enhance organic carbon 317 

burial. Carbonate minerals forming in these 12C-depleted waters consequently exhibit 318 

elevated δ13C values because sequestered 12C remains buried rather than returning to 319 

the water column (Müller and Suess, 1979; Calvert, 1987; Ingall et al., 1990; Tyson, 320 

2001; Xu et al.，2004; Wang et al.,2015; Cartapanis et al., 2016; Megan et al.,2021; 321 

Wang et al., 2022; Tegler et al., 2024). For the Dingqinghu Formation, the 322 

W(V)/W(V+Ni) ratio (Fig. 4) indicates deposition under anoxic/reducing conditions. 323 

Corresponding sedimentary facies represent semi-deep and deep lacustrine 324 

environments with weak hydrodynamic conditions conducive to sediment preservation. 325 

This depositional setting therefore favored efficient organic accumulation and 326 

preservation. 327 

Enhanced lacustrine productivity consistently drives both increased carbonate 328 

content and elevated δ13C values in organic matter (Meyers, 1997; Teranes and 329 

McKenzie, 1999; Neumann et al., 2002; Leng and Marshall, 2004; Teranes and 330 

Bernasconi, 2005; Xu et al., 2006; Lu et al., 2010). C/N values below 10 across most 331 

stratigraphic intervals (Fig. 2) indicate autochthonous productivity dominated by 332 

aquatic phytoplankton and algae, with negligible terrestrial input. This confirms TOC 333 
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serves as a reliable proxy for lacustrine productivity under limited external influences 334 

(Meyers, 1997; Zhu et al., 2013). Critically, intervals displaying positive δ13Ccarb 335 

excursions exhibit extremely low TOC content (average < 1%), indicating depressed 336 

productivity. This inverse relationship demonstrates lacustrine productivity cannot 337 

explain the observed δ13Ccarb excursions. Further supporting this interpretation, high-338 

productivity systems typically yield elevated δ¹⁵N values through two mechanisms. 339 

Phytoplankton preferentially assimilate ¹⁴N, enriching dissolved inorganic nitrogen 340 

pools in ¹⁵N. Enhanced denitrification under anoxic conditions further amplifies δ¹⁵N 341 

increase in residual nitrogen (Sigman D, 2009). Our data reveal an inverse pattern 342 

where positive δ13Ccarb excursions systematically coincide with negative δ¹⁵N shift (Fig. 343 

2), demonstrating that the positive δ13Ccarb excursion was not caused by enhanced 344 

productivity.  345 

 346 

Figure 4: δ13Ccarb (Carbonate carbon isotope), V/(V+Ni), Sr/Cu, Sr/Ba and Ca/Mg data in Dingqinghu 347 

Formation of lunpola basin. 348 

U-Pb dating and stratigraphic thickness measurements from the Lunpori section 349 

indicate a sedimentation rate (SR) of ~107 m/Ma for the study interval of the 350 

Dingqinghu Formation (Mao et al., 2019；Xie et al., 2025). The organic carbon burial 351 

rate (OCBR) was calculated using the Eq. (1) (Shen et al., 2015): 352 
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OCBR (mg/cm2/kyr) = SR (m/Myr) × TOC (%) × ρ (g/cm3),              (1) 353 

Assuming a bulk rock density (ρ) of 2.5g/cm³, OCBR values for the Dingqinghu 354 

Formation in the Lunpori section were derived through unit conversion (summarized in 355 

S Table 2). Fig. 3 reveals asynchronous trends between OCBR and the positive δ13Ccarb 356 

excursion coupled with extremely low correlation coefficient. This strongly suggests 357 

that variations in organic carbon burial rate were not the primary driver of the δ13Ccarb 358 

enrichment observed in the Dingqinghu Formation during this interval. 359 

5.2.2 Evaporation 360 

Strong evaporation in lakes can drive extreme positive carbonate carbon isotope361 

 values. This process promotes lake degassing, releasing CO2 enriched in 12C i362 

nto the atmosphere. The preferential loss of 12C depletes the DIC pool in light 363 

carbon, thereby increasing δ13Ccarb (Li and Ku, 1997; Lamb et al., 2007; Zhu e364 

t al., 2013; Boscolo-Galazzo et al.,2021). This mechanism is further supported 365 

by studies linking evaporative salinity increase to reduced CO2 solubility and k366 

inetic isotope fractionation during CO2 efflux (Stiller, 1985). Consequently, arid 367 

climates with intense evaporation typically elevate lake salinity and lower lake 368 

levels. Palynological data from the Dingqinghu Formation (Xie et al., 2025) re369 

veal alternating dry (e.g., 21.3 Ma, 19.6 Ma) and humid phases (e.g., 20.4 Ma,370 

 20.1 Ma) between 21.4 Ma and 19.4 Ma. At 20.6 Ma, pollen assemblages (Pi371 

cea, 50.1%; Pinus, 22.2%; Abies, 4.9%; and Fagaceae, 5.2%) indicate warm-hu372 

mid conditions, consistent with magnetostratigraphic cyclostratigraphic evidence 373 

of dry-to-wet cycles (Su et al., 2022). Sr/Cu ratios (Fig. 4) independently confi374 

rm warm-arid to warm-humid cyclicity during deposition of the Dingqinghu Fo375 

rmation. Crucially, humid phases reduce evaporation, limiting the ¹²C-enriched 376 

CO2, and thus diminishing ¹³C enrichment in the DIC pool. In closed basins li377 

ke the Lunpola paleolake, evaporation intensity correlates strongly with salinity 378 

(Mor et al., 2018; Han et al., 2022), making Ca/Mg ratios an effective salinity 379 

proxy (McCormack et al., 2019; Gravina et al., 2022). However, correlation an380 
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alyses of Ca/Mg and Sr/Ba versus δ13Ccarb show no significant relationship bet381 

ween salinity changes and δ13Ccarb excursion during the Dingqinghu Formation 382 

deposition. This lack of correlation demonstrates that salinity variations did not 383 

primarily control δ13Ccarb trend. Integrated assessment of climate proxies, salinit384 

y indicators, and carbon isotopes indicate that while evaporation may contribute385 

 secondarily to δ13Ccarb enrichment, it was not the principal driver of the obser386 

ved positive excursion. 387 

 388 

Figure 5: Schematic diagram of the carbon cycling pathway for methane release in Dingqing Lake. 389 

Biogenic methane is generated by methanogens in the anoxic sediments, and the water column is under 390 

reducing conditions, lacking electron acceptors such as sulfate and iron ions. The methane directly 391 

discharges into the atmosphere.  392 
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5.2.3 Methane release as the driver of Early Miocene positive δ13Ccarb excursion  393 

Methane generation produces significant quantities of CH4 highly enriched in 12C 394 

alongside CO2 enriched in 13C. The subsequent escape of 12C-enriched CH4 and the 395 

incorporation of 13C-enriched CO2 into the DIC pool drive δ13Ccarb enrichment in DIC-396 

derived carbonates. Based on integrated geochemical evidence, the extreme positive 397 

excursion of δ13Ccarb in the Dingqinghu Formation likely resulted from substantial 398 

kinetic isotope fractionation during methanogenesis. This process facilitated the 399 

preferential removal of 12C as CH4, leaving the DIC pool enriched in δ13Ccarb. Similar 400 

mechanisms are documented in organic-rich lacustrine systems. Examples include Tilo 401 

and Lake Bosumtwi, where methanogenesis elevated carbonate δ13C values to 402 

approximately +12‰ (Talbot and Kelts, 1986; Lamb et al., 2007; Rosqvist et al., 2007). 403 

Methanogenesis in Lake Apopka generated pore water δ13C values up to +26.4‰ (Gu 404 

et al., 2004), while Lake Dziani Dzaha recorded average carbonate δ13C values of +16.2 405 

±1.1‰ (Cadeau et al.,2020). In Lake Caohai, it increased lacustrine carbonate δ13C to 406 

+20.94‰ (Zhu et al.,2013).  407 

Unlike marine sediments dominated by CO2-reducing methanogenesis (Eq. (R1)), 408 

the organic-rich, reducing Lunpola paleolake during Dingqinghu Formation deposition 409 

provided an optimal environment for bacterial fermentation. Here acetoclastic 410 

methanogenesis (Eq. (R2)) prevailed as the primary methane production pathway 411 

(whitticar et al.，1986). Critically, methane fate diverges significantly between marine 412 

and lacustrine systems. In marine setting, methane is largely consumed at the Sulfate-413 

Methane Transition Zone (SMTZ) via syntrophy between sulfate-reducing bacteria and 414 

anaerobic methanotrophic archaea, with additional aerobic oxidation minimozing 415 

atmospheric release (Boetius et al., 2000; Deutzmann and Schink,2011; Mostovaya et 416 

al., 2022). Conversely, thinner oxic layers in lakes permit substantial methane bypass 417 

of oxidation, leading to significant atmospheric emissions (Sun,2024). 418 

CO2+4H2→CH4+2H2O,                                                     (R1) 419 

CH3COOH→CH4+CO2,                                                      (R2) 420 
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The carbon isotope fractionation between carbonate and organic matter 421 

(Δ13C=δ13Ccarb - δ13Corg) serves as a valuable proxy for assessing microbial 422 

contributions to sedimentary organic carbon. As established in prior studies (Hayes et 423 

al., 1999; Teranes and Bernasconi, 2005; Zhu et al., 2013), Δ13C approximates εTOC, 424 

the isotopic fractionation factor during organic matter synthesis. Significantly, εTOC 425 

value >32‰ indicates a dominant bacterial contribution to sedimentary organic matter, 426 

while values between 28‰ and 32‰ suggest a mixed phytoplankton-bacterial source 427 

(Hayes et al., 1999; Teranes and Bernasconi, 2005; Zhu et al.，2013). Analysis of the 428 

Dingqinghu Formation reveals that intervals characterized by enriched δCcarb values 429 

predominantly exhibit Δ13C values exceeding 32‰ (Fig. 3). This pronounced 430 

fractionation strongly implicates bacterial fermentation and decomposition as the 431 

primary processes driving carbon isotope dynamics during these stages. Concurrently 432 

depleted TOC values align with the expected signature of intense bacterial organic 433 

matter remineralization, further supporting the inference of methane release associated 434 

with these microbial processes.  435 

5.3 Lacustrine methane emissions response to Early Miocene warming 436 

The Early Miocene was a pivotal period for climatic change in Asia, primarily driven 437 

by the extensive uplift of the Tibetan Plateau and the retreat of the Paratethys Ocean. 438 

These processes intensified the Asian monsoon system (Ramstein et al., 1997; Liu and 439 

Yin, 2002; Zhang et al., 2007; Boos & Kuang, 2010; Clift & Webb, 2019; Spicer et al., 440 

2021), altering atmospheric circulation and thermal gradients, which in turn led to 441 

significant climatic differentiation across the Tibetan Plateau and adjacent areas. The 442 

plateau itself is influenced by both the Indian monsoon and continental monsoon 443 

systems, resulting in a range of climate regimes from warm and humid to dry and cold 444 

(Kutzbach et al., 1993; Guo et al., 2008; Shukla et al., 2014). 445 

Studies by Deng et al. (2019) indicate that during the Miocene, the Indian monsoon 446 

dominated the Lunpola Basin, supplying ample moisture and warmth to the region. This 447 

interpretation is supported by the presence of subtropical fish fossils in the stratigraphic 448 
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record, along with previously documented mammalian fossils, pollen, and spores (Deng 449 

et al., 2012; Sun et al., 2014; Jia et al., 2015; Jiang et al., 2018). The monsoon-driven 450 

warm and humid conditions fostered high productivity of organic matter within the lake 451 

ecosystem, while also promoting the decomposition of organic material by 452 

methanogens, leading to substantial methane production (Deng et al., 2019; Su et al., 453 

2019). 454 

 455 

Figure 6:(a)The difference between the global average temperature and today's temperature 456 

simulation(Kürschner et al.,2008)； (b) Atmospheric CO2 estimates (symbols) and 500-kyr mean 457 

statistical reconstructions (95% credible intervals in dark-blue shading, respectively) (Cenozoic CO2 458 

Proxy Integration Project (CenCO2PIP) Consortium,2023)；(c) Main geological events of the Miocene, 459 

From right to left in order: 1) Methane release from Dingqinghu formation (this study) 2) The uplift of 460 

Lunpola basin (Li et al.,2024) 3) CRBG: Columbia River Basalt Group, the largest terrestrial volcanic 461 

event in North America(Kasbohm et al.,2018). 462 

Geochemical records from the Dingqinghu Formation in the Lunpola Basin reveal 463 
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severely deficient sulfur content (as indicated by whole-rock S data; see Table S2) along 464 

with exceptionally low pyrite abundance, suggesting that sulfate concentrations in the 465 

paleo-lake were minimal during deposition. This sulfate-limited environment likely 466 

suppressed sulfate-driven anaerobic oxidation of methane (SD-AOM). In addition, a 467 

reduced oxidation zone further decreased CH₄ consumption, resulting in significant 468 

methane efflux into the atmosphere (Fig. 5; Taylor and Macquaker, 2011; Rickard, 2021; 469 

Lin et al., 2023).  470 

As a potent greenhouse gas, with a global warming potential 28–34 times that of CO₂ 471 

over a 100-year period, methane release from lakes could have contributed substantially 472 

to global warming (Forster et al., 2008; Sun et al., 2020). The only known Large 473 

Igneous Province (LIP) eruption during the Miocene was the Columbia River Basalt 474 

Group, which occurred between approximately 16.7 and 15.9 Ma. This event 475 

significantly increased global temperatures and atmospheric CO₂ levels (Fig. 6c; 476 

Kasbohm et al., 2018). However, according to Li et al. (2024), major uplift of the 477 

Lunpola Basin occurred between 20 and 19 Ma, after the methane release event 478 

recorded in the Dingqinghu Formation. This temporal discordance indicates that 479 

methane release was not triggered by tectonic uplift (Fig. 6). Furthermore, no 480 

contemporary volcanic activity was associated with this methane emission, suggesting 481 

that climatic and lacustrine thermal conditions were the primary controls. 482 

Global temperature reconstructions for the Early Miocene indicate a warming trend, 483 

accompanied by methane release and rising atmospheric CO₂ levels, which suggests a 484 

methane-driven warming event (Fig. 6; Kürschner et al., 2008). In the absence of large 485 

igneous province volcanism, this increase in CO₂ can likely attributed to two main 486 

processes: (1) the atmospheric oxidation of methane released from the lacustrine 487 

deposits, such as those of the Dingqinghu Formation identified in the present study, and 488 

(2) additional CO₂ emissions from climate feedback mechanisms amplified by the 489 

initial greenhouse warming (Fig. 6; Cenozoic CO2 Proxy Integration Project 490 

(CenCO2PIP) Consortium, 2023). Consequently, methane release from the Tibetan 491 
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Plateau may have played an important role in Early Miocene global warming and the 492 

concurrent rise in atmospheric CO₂ levels.  493 

As discussed in the preceding sections, a positive feedback mechanism exists 494 

between methane release in the Dingqinghu Formation and global climate warming 495 

during the Miocene. As temperature rose, lake stratification and anoxia intensified, 496 

stimulating microbial methanogenesis and methane ebullition. This released methane 497 

was subsequently oxidized to CO₂, further amplifying the greenhouse effect and 498 

reinforcing the warming cycle. The Dingqinghu Formation represents a deep-water, 499 

anoxic, organic-rich, and semi-restricted lacustrine system with limited external DIC 500 

input. To quantify methane ebullition during intervals of pronounced positive carbon 501 

isotope excursions in lacustrine sediments, we applied a closed-system Rayleigh 502 

fractionation model (Eq. (2)). This method enables estimation of methane emission 503 

rates and evaluation of their contribution to atmospheric CO2, offering direct numerical 504 

support for the proposed positive feedback mechanism. 505 

The Rayleigh distillation equation is expressed as (Höhener and Atteia, 2014; Miller 506 

et al.,2018; Li et al, 2024): 507 

𝛿13𝐶𝑐𝑎𝑟𝑏 = 𝛿13𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝜀 ⋅ 𝑙𝑛(𝑓) ,                                     (2) 508 

where δ13Ccarb is the measured carbonate carbon isotope composition (% VPDB), 509 

δ13Cinitial is the initial dissolved inorganic carbon isotope composition (+2%, typical 510 

lacustrine background) (Lengs and Marshall, 2004); 𝜀 is the fractionation factor (-20% 511 

for acetoclastic methanogenesis) (Penning et al., 2006; Valentine et al.,2004; Meister et 512 

al.,2019); and 𝑓 is the fraction of residual DlC. 513 

The fraction of methane lost from the system is then: 514 

1 − 𝑓 = 1 − 𝑒𝑥𝑝 (
𝛿13𝐶𝑐𝑎𝑟𝑏+2

−20
),                                        (3) 515 

Methane ebullition flux (g CH₄ m⁻² kyr⁻¹) is calculated as: 516 

𝐹𝐶𝐻4
= (1 − 𝑓) × 𝑂𝐶𝐵𝑅 ×

16

12
,                                        (4) 517 

where OCBR is the measured organic carbon burial rate (g C cm⁻² kyr⁻¹). Fluxes are 518 

converted to g CH₄ m⁻² yr⁻¹ by division by 1000. The full 62-sample dataset with CH4 519 
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flux is provided in Supplementary Table S4. 520 

Our calculations show that the paleo-Dingqinghu Lake maintained an average 521 

methane flux of 34.5 g CH₄ m⁻² yr⁻¹ (peaking at 151.2 g CH₄ m⁻² yr⁻¹). After accounting 522 

for 30–50% methane loss during atmospheric escape and oxidation, these ebullition 523 

events contributed an estimated 3.9–6.6 ppm of atmospheric CO₂ throughout the 524 

studied depositional interval. These values provide quantitative evidence that Miocene 525 

global warming enhanced lake stratification and anoxia, accelerating organic matter 526 

decomposition and methane release. The subsequent oxidation of this methane supplied 527 

additional CO₂ to the atmosphere, further strengthening greenhouse conditions and 528 

closing a powerful feedback loop. Therefore, paleo-Dingqinghu Lake serves as a clear 529 

example of how continental lacustrine systems on the Tibetan Plateau acted as 530 

significant amplifiers of global warming during past greenhouse climates, even though 531 

their role had been previously underestimated. 532 

6 Conclusions 533 

Our finds establish that the pronounced positive carbonate carbon isotope excursion 534 

(δ¹³Ccarb up to +13.79‰) recorded in the Dingqinghu Formation, Lunpola Basin, 535 

originated primarily from large-scale methanogenesis and subsequent methane release. 536 

Favorable paleoclimate and tectonic conditions promoted organic matter accumulation 537 

and methanogenesis, while low sulfate concentrations limited anaerobic methane 538 

oxidation, facilitating substantial methane escape to the atmosphere. The observed 539 

coupling between this methane release and Early Miocene global atmospheric pCO₂ 540 

and temperature rises implicates that Tibetan Plateau methane emissions as a potentially 541 

important contributor to in Early Miocene global warming and the coeval increase in 542 

atmospheric CO₂.  543 
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