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Abstract: This study presents the first integration of UAV LiDAR structure (canopy height (CH), multi-layer gap fraction 15 

(GF)) and intensity features with multispectral (MS) and thermal infrared (TIR) data for aboveground biomass (AGB) 

estimation in winter wheat. A shallow artificial neural network (ANN), trained on a limited but high-quality destructive dataset, 

enabled direct integration of multi-sensor features without complex parameterization, supporting systematic evaluation of 

individual and combined sensor performance. Among single-sensor inputs, LiDAR features were most effective. LiDAR alone, 

combining all of its features such as CH, multi-layer GF, and INT, achieved a testing RMSE of 1.73 t/ha (18.27% error) and 20 

R² = 0.87, surpassing the common reliance on CH or MS features in UAV-based AGB studies. Multi-layer GF also improved 

accuracy compared to conventional ground-return GF and was successfully used as a direct ANN input. Fusion with other 

sensors further enhanced performance, with the best model (LiDAR INT + MS + TIR) reaching a testing RMSE of 1.47 t/ha 

(16.3% error) and R² = 0.91. Notably, this outperformed fusion models that included LiDAR CH or GF, indicating that INT is 

a particularly information-rich predictor likely encoding both structural and physiological canopy properties. Furthermore, 25 

sensor contributions varied seasonally, with CH and GF most informative during early growth and canopy closure, while MS 

and TIR became dominant during senescence and stress, with rankings providing practical guidance for sensor selection based 

on monitoring periods or economic constraints. Results from nitrogen treatments indicated that UAV data captured 

management effects more effectively than destructive sampling, highlighting the value of spatially comprehensive 

observations, an advantage that can be further enhanced through the fusion of emerging UAV sensor products. Overall, the 30 

findings position LiDAR’s dual structural and spectral information, particularly INT, as a promising breakthrough for 

improving UAV-based AGB monitoring, with strong potential to advance multi-sensor fusion approaches as algorithms and 

crop applications broaden. 
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1 Introduction 

Above-ground biomass (AGB) is a key indicator of crop growth and photosynthetic productivity, essential for yield prediction 

and data-driven management in precision agriculture (Bazrafkan et al., 2023; Lu et al., 2019). Conventional methods like 

manual sampling are labor-intensive and lack field-scale coverage (Pan et al., 2022). While satellite remote sensing offers 

broader spatial data, it is limited by cloud cover, revisit times, and insufficient resolution for within-field variability (Wang et 40 

al., 2021). Manned aircraft are costly for frequent monitoring, and ground-based systems, though accurate, are constrained by 

limited mobility, operational risks, and potential soil compaction (Wang et al., 2021; Johansen et al., 2020). In contrast, 

unmanned aircraft vehicles (UAV) provide flexible, high-resolution, and on-demand data acquisition, operating below cloud 

cover with minimal atmospheric interference, making them ideally suited for AGB assessment in precision agriculture. 

 45 

UAV platforms support an expanding array of sensor technologies, with the most common including RGB, multispectral (MS), 

thermal infrared (TIR), and light detection and ranging (LiDAR) systems (Bazrafkan et al., 2023). Among these, MS sensors 

are most widely used for biomass estimation, capturing reflectance in visible (VIS) and near-infrared (NIR) spectral bands to 

compute vegetation indices (VIs) that are strongly correlated with photosynthetic activity and crop vigor (Biswal et al., 2024). 

MS data have been applied to estimate chlorophyll content, nitrogen concentration, leaf area index (LAI), fractional vegetation 50 

cover, and yield potential (Caturegli et al., 2016; Yang et al., 2018). TIR sensors, by contrast, measure land surface temperature 

(LST), which is closely linked to plant water stress and stomatal conductance (Ludovisi et al., 2017; Smigaj et al., 2024).  

When combined with meteorological data, TIR observations support the estimation of key physiological indicators such as the 

crop water stress index (CWSI) and evapotranspiration (ET) (Berni et al., 2009). Although TIR data have also been used for 

biomass estimation, studies generally report lower accuracy compared to MS sensors (Li et al., 2024; Maimaitijiang et al., 55 

2017).  

 

As opposed to the passive optical sensors, LiDAR provides three-dimensional data on crop structure and is valuable due to its 

ability to penetrate vegetation and collect data unaffected by shadowing (Neuville et al., 2021; Wang et al., 2017).  Structural 

properties such as crop height (CH) have shown significant promise in many cases as a strong indicator of AGB (Pan et al., 60 

2022; Li et al., 2024; Bendig et al., 2014; Madec et al., 2017) particularly as compared to MS data, which often experiences 

saturation issues (Vahidi et al., 2023). With LiDAR systems being recently miniaturized enough for UAV use, they have 

become a more preferred method of estimating CH, offering greater precision compared to passive sensing techniques like 

RGB sensors and structure-from-motion (SfM) photogrammetry (Liao et al., 2021; Wallace et al., 2016) . While SfM remains 

the more affordable alternative, LiDAR provides additional valuable outputs, including gap fraction (GF) and signal return 65 

intensities. LiDAR's ability to penetrate canopy gaps allows for the assessment of canopy density linked to LAI (Bates et al., 

2021) and AGB (Montzka et al., 2023). Furthermore, the intensity of LiDAR signals, many of which operate in the NIR range 

(Kim et al., 2009), are sensitive to the plant biochemistry and in particular uses have found to be correlated with green area 
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index (GAI) (Liu et al., 2017), LAI (Luo et al., 2018), and nitrogen content (Hütt et al., 2022) as well as used for vegetation 

classification (Mesas-Carrascosa et al., 2012; Scaioni et al., 2018; Wu et al., 2021). It is therefore not surprising that UAV-70 

based LiDAR intensity has also demonstrated predictive power in estimating AGB (Montzka et al., 2023; Hütt et al., 2022; 

Bates et al., 2022).  

 

Integrating multiple sensor types can overcome limitations associated with individual data sources. For example, LiDAR can 

mitigate signal saturation issues commonly encountered in MS data, thereby improving the robustness of biomass estimation 75 

models (Tilly et al., 2015). Similarly, although TIR sensors alone often perform poorly for AGB estimation, they have been 

shown to enhance MS-based models when used in combination (Li et al., 2024). These benefits underscore the value of sensor 

fusion, particularly when paired with machine learning (ML) techniques capable of handling diverse input data. 

 

Data fusion methods increasingly rely on ML to integrate multi-sensor information for vegetation monitoring (Li et al., 2024; 80 

Wang et al., 2024; Melitha et al., 2025). Artificial neural networks (ANNs) are particularly suited for this task, as they can 

capture nonlinear interactions among diverse sensor features and have often outperformed traditional approaches (Vahidi et 

al., 2023). Additionally, ANNs have become one of the predominate methods within crop yield prediction (Van Klompenburg 

et al., 2020).  While multiple linear regression (MLR) remains common for UAV-based AGB estimation (Wang et al., 2021), 

ANNs provide greater flexibility by iteratively optimizing weights through backpropagation, which improves robustness 85 

against collinearity and noise (Dawidowicz et al., 2024; Huang et al., 2022).Compared with support vector machines (SVMs), 

which require kernel selection and can be prone to overfitting with small datasets, ANNs offer a straightforward framework 

for continuous regression on tabular sensor features. Prior studies have demonstrated that ANNs match or exceed the 

performance of MLR and SVM for crop trait and yield estimation (Kidson et al., 2025; Abu Jabed et al., 2024; Lionel et al., 

2025), supporting their use here for fusing and evaluating UAV-based multi-sensor features.  90 

 

This study aims to improve UAV-based AGB estimation by fully leveraging the structural and spectral capabilities of LiDAR 

in combination with MS and TIR sensors. While prior studies have explored individual LiDAR-derived metrics such as CH, 

GF, or signal intensity (INT), no research to date has evaluated the combined predictive power of all three LiDAR features, 

nor their integration with MS and TIR data, for season-long biomass monitoring. Moreover, the potential of multi-layer GF 95 

for capturing vertical canopy heterogeneity remains underexplored, despite growing evidence that LiDAR parameter choices 

affect estimation accuracy (Wang et al., 2021). To address these gaps, this study first optimizes and extends existing GF 

methods by incorporating multi-layer vertical segmentation to enhance structural resolution. It then systematically evaluates 

the performance of LiDAR-derived features, MS, and TIR, individually and in fusion, across key wheat growth stages. In 

doing so, this work develops a comprehensive understanding of how sensor performance varies temporally and identifies 100 

optimal combinations. The results aim to provide practical guidance for UAV sensor selection and integration, ultimately 

supporting scalable, season-long monitoring of crop development and nitrogen-related dynamics in precision agriculture. 
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2 Experiment Site and Setup 

The study was conducted at the PhenoRob Central Experiment site at Campus Klein Altendorf (CKA), Germany, characterized 

by a temperate oceanic climate (altitude: 176 m, average annual precipitation: 603 mm, and temperature: 9.4°C). The winter 105 

wheat field was selected for its homogeneous soil and nitrogen conditions, verified by prior (unpublished) soil conductivity 

mapping. For further information about the soil properties of the experiment area see the study of Seidel et al. (2024). 

 

The experiment consisted of 12 main plots, each subdivided into six 1.5 × 3 m subplots (6 rows). These were organized into 

three nitrogen (N) treatment zones: 0%, 50%, and 100% (50 kg N/ha using a 30% N ammonium nitrate-urea solution), applied 110 

on March 24, April 20, and June 7. Two wheat genotypes, Trebelier (shallow rooting) and Milaneco (deep rooting), and a 

mixture of both were alternated across the subplots. 

 

https://doi.org/10.5194/egusphere-2025-5336
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

Figure 1: Study area and winter wheat experimental setup across all UAV data acquisition dates and destructive biomass sampling, 

covering the growth period from the beginning of jointing to the end of the ripening phase. The experimental field was divided into 115 
three zones based on different nitrogen fertilization levels. Within each zone, subplots were assigned to one of three genotype 

categories: Trebelier, Milaneco, or a mixture of both. Locations of destructive biomass measurements (DM) are marked and color-

coded according to their use in either model training or testing.   

AGB destructive samples were collected in sync with UAV flights from April 19 to August 5, 2021. Samples (75 cm of two 

rows) were taken from internal rows to reduce edge effects, dried at 60°C for ≥48 hours, and weighed in t/ha. Trebelier was 120 

sampled biweekly, while Milaneco was sampled monthly. Regional flooding in July reduced samples for late-season flights. 

Figure 1 shows the experimental layout and sampling overview. 

3 UAV Data and Pre-processing 

Two DJI Matrice 600 hexacopters were used to enable a multi-sensor workflow. One was equipped with a YellowScan 

Surveyor LiDAR system (Velodyne VLP-16 scanner and Applanix APX15 GNSS-Inertial unit), and the other carried a 125 

MicaSense RedEdge-M MS sensor and a FLIR Vue Pro R TIR sensor mounted on a DJI Ronin gimbal. 

 

Figure 2: (a.) The DJI Matrice 600 equipped with the Yellowscan LiDAR Surveyor and the DJI Zenmuse X1 RGB camera, (b.) the 

FLIR Vue pro R TIR sensor on top and Micasense RedEdge-M MS sensor on bottom mounted to the DJI Ronin gimbal, and (c.) a 

closer look at the LiDAR and RGB setup. Note: RGB camera was only used for study area images seen in Figure 1. 130 

The LiDAR system operates in the NIR spectrum (897–907 nm), emitting 300,000 pulses per second with ~4 cm precision. 

Flights were conducted at 8 m/s and 50 m altitude using a double-grid pattern, ±25° scan angles, and 50% side overlap. GNSS 

corrections from a Septentrio Altus NR3 base station supported post-processing in Applanix POSPac and YellowScan 

CloudStation to generate accurate point clouds. The MS sensor collected data in the red (663–673 nm), red-edge (712–722 

nm), and NIR (820–860 nm) bands. The TIR sensor (7.5–13.5 μm) was calibrated using internal radiometric parameters (e.g., 135 

emissivity, air temperature, humidity) and a metallic blackbody ground target. An external heated shutter (TEAX 

ThermalCapture) was added to improve microbolometer drift correction, potentially enhancing accuracy by up to 70% (Virtue 

et al., 2021). The MS and TIR flights were conducted at 100 m altitude and 6 m/s with 90% overlap in a single-grid pattern. 

MS calibration was performed using a reflectance panel. All imagery was processed in Pix4D to generate georeferenced 

orthomosaics, with further raster and LiDAR point cloud analysis conducted in RStudio using the lidR and raster packages. 140 
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4 Methods 

The workflow as seen in Figure 3 was used to estimate AGB using ANN models. Each sensor type produced unique data 

requiring specific processing to ensure compatibility and relevance for model input.  

 

Figure 3: Workflow of the study from preparation of the data types to the model training with iterations in architecture based on 145 
input features, and data reformatting, model testing, and results per a tier step process in evaluation. 

LiDAR data provided high-density 3D point clouds used to derive structural metrics (CH, GF) and signal intensity (INT). MS 

and TIR sensors delivered spectral data in red (R), red-edge (RE), near-infrared (NIR), and thermal bands. The distinctions 

between these sensor products are visually summarized, including spectral properties of MS reflectance and TIR radiance, in 

Figure 4. These outputs were georeferenced, resampled, and aligned to ensure consistent spatial resolution. Raster datasets 150 

were sampled using subplot shapefiles corresponding to destructive AGB sampling areas, enabling zonal statistics extraction 

for ANN training and validation. Ground points were identified using the Cloth Simulation Filter (CSF) (Zhang et al., 2016), 

which efficiently separates terrain and vegetation in LiDAR data. A grid resolution of 4 cm was used, consistent with sensor 

precision. These ground points served as the spatial reference for GF calculations and for normalizing signal intensity explained 

in more detail in Sections 4.2 – 4.3. To enable ANN-based modeling, all input metrics were standardized. Raster inputs were 155 

converted to data frames with geographic metadata stripped and values normalized to the 0–1 range. Once predictions were 

computed, spatial information was reattached to generate AGB estimation rasters at the pixel level. Input features and 

parameters (e.g., number of hidden nodes/layers, activation functions) were optimized through iterative evaluation, with 

training and testing performance assessed using RMSE and R² metrics. Each model was trained using zonal mean sensor values 
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per subplot and validated against dry matter (DM) AGB ground truth data. The best-performing ANN models for each sensor 160 

or fusion configuration were retained for generating full-field AGB maps. 

 

Figure 4: Comparison of the sensory type metrics and differences with structural products including LiDAR gap fraction (GF) and  

LiDAR crop height model (CHM), and spectral products including the LiDAR signal intensity, multispectral reflectance, and 

thermal infrared radiance. Note: GF = gap fraction; nDL = point count for particular point density layer; n = point count of all layers 165 
within grid cell; CHM = crop height model; DSMd = digital surface model for respective day in the growing season; DTM0 = digital 

terrain model before vegetation growth.  

A tiered approach was used to systematically evaluate the impact of different input features. First, optimal configurations for 

LiDAR GF were identified by testing multi-layer segmentation schemes (Section 5.1). Second, we incorporated LiDAR CH 

and INT individually and in combinations (Section 5.2). Third, MS spectral reflectance bands were added (Section 5.3), 170 

followed by the inclusion of TIR features (Section 5.4). All analyses used a consistent resolution and were aligned to the best-

performing GF configuration. Further details on the sensor products used are provided in Sections 4.1-4.5. 

4.1. LiDAR Crop Height 

CH was derived by subtracting the digital terrain model (DTM) from the digital surface model (DSM), with the DTM generated 

from UAV LiDAR data collected under bare-soil conditions prior to planting. This approach minimizes interpolation errors 175 

and improves accuracy (Cao et al., 2019). Several CH-derived metrics (e.g., mean, maximum, standard deviation) were tested, 

but the maximum CH per pixel was selected because it consistently showed stronger correlations with AGB in vertically 

structured, dense crops such as wheat (Bazrafkan et al., 2023). By focusing on a single robust height metric, we reduced feature 

redundancy and model complexity, helping to limit overfitting in small-sample conditions (Ruwanpathirana et al., 2024). 

Correlations of alternative CH metrics with AGB are provided in Appendix Figure A1. 180 

4.2. LiDAR Gap Fraction 

Traditional GF metrics estimate canopy density by comparing ground returns to total LiDAR points, often within Beer–

Lambert formulations for LAI estimation (Heiskanen et al., 2015; Richardson et al., 2009). However, this approach loses 

reliability in dense wheat canopies where laser penetration to the ground is limited (Sabol et al., 2014). To capture vertical 
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canopy structure more effectively, we derived normalized density layers (nDL) that describe the distribution of LiDAR returns 185 

across the canopy profile. A related approach, the 3D Point Index (3DPI), normalizes point density by total returns and links 

the layers to LAI or AGB through linear relationships requiring calibration with an extinction coefficient (Jimenez-Berni et 

al., 2018). In contrast, our method normalized density layers into GF layers and used them directly as ANN inputs, removing 

the need for additional parameterization. This allowed the ANN to learn the relative contributions of each canopy layer 

dynamically across biomass variability and phenological stages, rather than relying on fixed extinction assumptions. 190 

 

To evaluate the sensitivity of GF metrics to vertical and horizontal discretization, we tested four vertical segmentation schemes, 

ground-only (GND), three 30 cm layers, five 20 cm layers, and ten 10 cm layers (e.g., Figure 5a) at horizontal resolutions of 

10, 20, and 30 cm. This systematic testing provided insights into the scale at which canopy density information is most 

informative for AGB estimation in relation to the sensor characteristics, parameterization choices, and LiDAR point density 195 

in this study (Section 5.1).  

                                                                                                                                                                                              

Figure 5: (a.) Cross section of subplot showing the LiDAR point allocation along the vertical extent of the canopy colored by 10cm 

layers. (b.) Histogram of point frequency throughout the vertical extent of the canopy. (c.) Cross section showing LiDAR signal 

intensity values throughout the canopy. (d.) Histogram of average intensity values throughout the vertical extent of the canopy.  200 

4.3. LiDAR Intensity 

LiDAR intensity reflects the strength of the return signal and is measured at 903 nm (NIR) making it sensitive to biochemical 

properties (Eitel et al., 2014). We used a maximum scan angle of 25° to minimize light dispersion, footprint variation, and 

further incident angle effects, leading to improved signal consistencies (Li et al., 2016).  
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 205 

The temporal use of LiDAR intensity data presents challenges, particularly due to environmental factors such as soil surface 

moisture, which can influence signal consistency. Without reflectance targets, ground intensity values provide a means for 

temporal calibration of vegetation intensity values. Luo et al. (2018) and Hütt et al. (2022) both discuss the noise introduced 

from ground intensity values when observing vegetation intensity leading to the need for correction. Airborne LiDAR studies 

have employed techniques such as the Light Penetration Index (LPI), which relates ground intensity to overall intensity 210 

distributions to improve LAI estimation (Solberg et al., 2006; Saskai et al., 2016; You et al., 2007). In this study, we adopt a 

comparable method where intensity values were normalized using ground returns across the field to reduce temporal variability 

caused by environmental effects such as moisture. This normalization enhances the comparability of intensity values across 

dates, improving their utility for AGB estimation. 

4.4. MS Reflectance 215 

MS data were collected in the red (R), red-edge (RE), and near-infrared (NIR) bands, which are highly sensitive to canopy 

vigor, chlorophyll status, and AGB and form the basis of many common vegetation indices (VIs) (Han et al., 2019). The RE 

band is particularly valuable as it is less prone to saturation at high AGB compared to the R band, making it a strong 

complement to NIR (Gitelson et al., 2003). In this study, the raw reflectance bands were used directly as ANN inputs rather 

than being combined into predefined VIs. This approach avoided redundancy among highly correlated indices and allowed the 220 

ANN to learn optimal nonlinear or weighted combinations of spectral features. Using raw bands also ensured that potentially 

unique information in each band was retained, which might otherwise be lost or averaged in conventional VIs. 

4.5. TIR Radiance 

TIR data were used to derive LST, which provides a direct measure of crop thermal status. However, LST is strongly influenced 

by background weather conditions, particularly air temperature, making it difficult to compare across dates or growth stages. 225 

To address this, LST was also converted to CWSI, which normalizes canopy temperature against reference “wet” and “dry” 

limits identified from seasonal temperature extremes and air temperature (Katimbo et al., 2022). In this way, CWSI provides 

a relative indicator of plant water stress that is less sensitive to temporal variability in atmospheric conditions. Both raw LST 

and normalized CWSI were included as predictors in the ANN models to assess whether absolute canopy temperature or a 

normalized stress index offered stronger explanatory power for AGB estimation. This dual use allowed evaluation of the trade-230 

off between absolute thermal signals and temporally stable stress indicators within sensor fusion frameworks. 

4.6. ANN Model 

A multilayer perceptron ANN with backpropagation was implemented using the neuralnet package in RStudio. Model 

complexity (number of hidden layers and neurons) was optimized through iterative sensitivity testing, where one to two hidden 

layers with 2–14 neurons were evaluated. A linear (identity) activation function was applied, appropriate for continuous 235 

https://doi.org/10.5194/egusphere-2025-5336
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

regression tasks. Training employed resilient backpropagation, the default optimizer in neuralnet, which performs full-batch 

weight updates each iteration. Accordingly, batch size is not applicable in this framework. Training was capped using stepmax 

= 1 × 10⁶ (maximum number of weight updates) and threshold = 0.01 (convergence criterion). These settings are functionally 

equivalent to defining a high maximum number of epochs with an early-stopping condition. All sensor features were 

normalized to a 0–1 range. 240 

 

A total of 86 destructive AGB samples were available, with 70% used for training and 30% for testing. This sample size 

reflects the constraints of destructive biomass collection, which is highly labor-intensive and logistically limited when covering 

an entire growing season in parallel with other field experiments (Han et al., 2019; Wallace et al., 2017). The number and 

quality of destructive samples collected match or exceed what is typically reported in comparable UAV studies (Bendig et al., 245 

2014; Morgan et al., 2025; Smith et al., 2024). The samples spanned seven campaigns with distinct growth stages, providing 

a wide range of canopy conditions and spectral–structural variability to provide generalizability between sensor features and 

biomass. Given the modest sample size, overfitting was a primary concern. To mitigate this risk, the ANN architecture was 

intentionally kept shallow, inputs were normalized, and model performance was always assessed by comparing RMSE and R² 

between training and testing subsets. A good fit is indicated by low errors in both sets with only a small generalization gap, 250 

while large discrepancies signal overfitting.  

 

After validation, the trained ANN was applied to rasterized UAV data. All predictor rasters were co-registered, resampled, and 

stacked. The normalized raster stack was then passed through the trained network using the compute() function to generate 

spatially continuous AGB predictions. The resulting biomass maps were exported as GeoTIFFs with a UTM Zone 32N 255 

projection for visualization and further analysis. 

5 Results 

5.1. Gap Fraction Layer and Resolution Sensitivities 

The GF approach was evaluated by adjusting two primary parameters: the depth of the density layers converted to gap fraction 

layers and the horizontal grid dimensions along the X and Y axes. 260 
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Figure 6: Top panel: Performance of ANN models trained using different LiDAR gap fraction (GF) configurations. Columns 

represent increasing vertical segmentation (from ground-only to 10 × 10 cm layers), and rows represent decreasing ground sampling 

distance (GSD). Models were evaluated using RMSE and R² on training and testing data. Bottom panel: Comparison of training and 265 

testing RMSE and R² values across GF configurations, including perceived model complexity. Complexity was calculated as the 

product of vertical layers and GSD resolution: Complexity = (Number of Layers) × (30 / GSD in cm). 

 

Overall, the configuration with five 20 cm vertical layers and a 30 cm GSD achieved the best performance (RMSE = 2.04 t/ha, 

R² = 0.81 training; RMSE = 2.04 t/ha, R² = 0.83 testing), demonstrating a clear advantage in capturing canopy structure. 270 

Simpler configurations using only GND returns or coarser vertical layers (3 x 30 cm) produced moderate results but failed to 

differentiate dense canopy structures during peak growth stages. Conversely, overly fine segmentations (10 x 10 cm) 
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significantly degraded performance, likely due to data sparsity and overfitting (e.g., RMSE = 7.34 t/ha, R² = 0.12 testing). 

These findings highlight the importance of balancing spatial granularity with model robustness when parameterizing LiDAR-

derived GF. 275 

5.2. Incorporation of LiDAR Height and Intensity with Gap Fraction 

We next evaluated whether structural (crop height, CH) and spectral (LiDAR intensity, INT) features could compare or 

improve upon GF models. 

 

Figure 7: Biomass estimation performance using various combinations of LiDAR-derived metrics, including canopy height (CH), 280 
five-layer × 20 cm multi-layer gap fraction (GF), and signal intensity (INT). All models were trained using a GSD of 30 cm, 

corresponding to the best-performing GF configuration identified in earlier analysis.  

CH alone provided strong predictive power (RMSE = 1.99 t/ha, R² = 0.83 testing), outperforming INT alone (RMSE = 2.56 

t/ha, R² = 0.73). When combined, CH + INT did not improve upon CH alone, suggesting limited complementarity. However, 

integrating CH or INT with GF enhanced model performance. The combination of GF + CH achieved RMSE = 1.99 t/ha (R² 285 

= 0.84 testing), while adding INT further reduced RMSE to 1.73 t/ha (R² = 0.87 testing). This confirms that multi-dimensional 

structural information combined with LiDAR-derived signal intensity in the NIR contributes significantly to biomass 

estimation. The AGB maps produced with CH + GF + INT can be seen in the appendix with Figure A1.  
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5.3. Incorporation of LiDAR Metrics with MS Reflectance 

The MS sensor data was subsequently evaluated both independently and in combination with the LiDAR-derived products, as 290 

illustrated in Figure 8. 

 

Figure 8: ANN model performance for biomass estimation using multispectral (MS) reflectance data alone and in fusion with 

LiDAR-derived features. Inputs include combinations of red (R), red-edge (RE), and near-infrared (NIR) bands with canopy height  

(CH), five-layer × 20 cm multi-layer gap fraction (GF), and signal intensity (INT). All models were trained using a GSD of 30 cm, 295 
corresponding to the best-performing GF configuration identified in earlier analysis. 

We tested how MS data could enhance LiDAR-based models. Using MS bands alone (R, RE, NIR) yielded good results 

(RMSE = 2.06 t/ha, R² = 0.82 testing), but performance improved when MS was combined with LiDAR-derived features. The 

most effective combinations involved MS + CH (RMSE = 1.80 t/ha, R² = 0.86) and MS + INT (RMSE = 1.49 t/ha, R² = 0.91). 

MS + INT surpassed all single sensor uses. Combining all four LiDAR metrics (GF, CH, INT) with MS did not significantly 300 
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enhance performance further (RMSE = 1.83 t/ha, R² = 0.86), likely due to increased dimensionality and feature redundancy. 

Notably, MS + INT alone performed nearly as well as more complex combinations, indicating the complementary nature of 

these spectral features. 

5.4. Incorporation of LiDAR Metrics and MS Reflectance with TIR Radiance 

The TIR data were then added in evaluation alone and together with the LiDAR and MS products as can be seen in Figure 9.  305 

 

Figure 9:  ANN model performance for estimating biomass using thermal infrared (TIR) data including land surface temperature 

(LST) and crop water stress index (CWSI) alone and in combination with multispectral (MS: red, red-edge, and near infrared) and 

LiDAR-derived features including canopy height (CH), five-layer × 20 cm multi-layer gap fraction (GF), and signal intensity (INT). 

All models were trained using a 30 cm ground sampling distance (GSD), corresponding to the optimal GF configuration. 310 

TIR radiance (LST) alone yielded poor biomass predictions (RMSE = 4.27 t/ha, R² = 0.25 testing). Incorporating the crop 

water stress index (CWSI) slightly improved performance (RMSE = 4.26 t/ha, R² = 0.26), but both remained far below LiDAR 

or MS metrics in accuracy. However, when TIR (LST) was combined with MS and LiDAR data, model performance improved 

significantly. The best-performing configuration overall was MS + INT + TIR (LST) (RMSE = 1.47 t/ha, R² = 0.91 testing). 

This fusion leveraged complementary structural and physiological signals, providing superior estimates across all growth 315 

stages. The addition of all LiDAR metrics to MS and TIR (i.e., MS + GF + CH + INT + TIR) did not outperform MS + INT + 
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TIR (LST), again suggesting diminishing returns from overly complex fusion. TIR thus plays a valuable supporting role when 

paired with spectral and structural information. 

5.5. Overall Model Comparison and Ranking of Sensor Combinations 

To clearly identify the best-performing individual and fused sensor configurations, we ranked the models based on their testing 320 

RMSE and R² across Sections 5.1 to 5.4 (Figure 10). These plots visually emphasize the superior performance of LiDAR-

based models and the advantage gained through fusing complementary spectral and thermal features with LiDAR intensity. 

For single sensors, LiDAR-derived metrics combining CH, multi-layer GF, and INT consistently outperformed MS and TIR 

data. This underscores LiDAR’s dual ability to capture structural and spectral canopy properties. MS performed better than 

TIR but fell short of LiDAR, especially during early and peak vegetative stages. 325 

 

Figure 10. Radar plot comparing normalized RMSE and R² values for top-performing single sensors and sensor fusion combinations 

taken form section 5.1-5.4. Higher values indicate better model performance. LiDAR-derived features outperformed other single 

sensors, and the best-performing fusion combined LiDAR intensity (INT), MS, and TIR. Values are normalized within each group 

(single sensor vs. fusion).   330 

 

Among fusion models, the combination of LiDAR INT, MS, and TIR achieved the best performance (RMSE = 1.47 t/ha, R² = 

0.91). Notably, this configuration excluded CH and GF, suggesting that LiDAR INT effectively encapsulates both structural 

and physiological signals. This finding implies that intensity alone can serve as a compact yet information-rich LiDAR feature, 

reducing the need for complex multi-metric integration in some applications. 335 

5.6. AGB Estimation Evaluation by Growth Phase 

To further evaluate sensor performance over time, we analyzed the best-performing input combinations for each campaign 

date in addition to common configurations, considering both RMSE and R². Figure 10 summarizes the testing and training 

performance metrics across dates for single sensors and fusion models. 
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 340 

Figure 10: Performance (RMSE and R²) of the ANN AGB estimation for each collection date within the different growing phases. 

The top graph (a) illustrates results for individual UAV sensor products, while the bottom graph (b) is fusion data from multiple 

sensors and their derived products. Sensor products include MS – Multispectral; CH – Crop height; GF – Gap Fraction; Int – 

LiDAR - intensity; TIR – Thermal infrared. The performances are based on the averages of the training and testing results.  

 345 

Figure 11 provides a visual summary of the best-performing sensor configurations across campaign dates, illustrating how 

optimal inputs shifted throughout the growing season. In the early stages (e.g., April 19 and May 19), LiDAR-derived CH and 

multi-layer GF yielded the best performance, reflecting their sensitivity to initial structural development. As the canopy 

matured and closed (June through August), fusion models, particularly those combining MS and INT or MS + INT + TIR, 

consistently outperformed single-sensor approaches. These combinations proved especially effective under conditions of 350 

advanced growth and senescence. MS alone performed least effectively during the mid-season period, when spectral contrast 

was limited by uniformly high chlorophyll content, but improved again during ripening and senescence stages, where pigment 

degradation became a more pronounced indicator of crop status. This temporal shift in optimal sensor inputs emphasizes the 

importance of flexible, growth stage–specific integration strategies.  
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 355 

Figure 11: Best-performing single sensor and sensor fusion inputs for above-ground biomass (AGB) estimation across campaign 

dates, based on average RMSE and R² from training and testing data. Each tile shows the optimal input type for that date and metric 

(RMSE or R²), with performance values overlaid.  

5.7. Insights for Nitrogen Fertilization Monitoring 

To assess the potential of UAV-derived AGB estimation for monitoring N treatment effects, average AGB values were 360 

compared across the three fertilization zones described in Section 2. These zones included 0%, 50%, and 100% of standard 

nitrogen application rates. Figure 12 presents a temporal comparison between UAV AGB estimates and ground-based 

destructive sampling (DM) across these zones. While the DM samples were limited to individual subplots, the UAV data 

reflect spatially continuous measurements across entire treatment sections. 

 365 

Figure 12: Comparison between UAV (entire plots inside treatment zone) and DM (specified measurement area of subplots) based 

AGB estimation for each nitrogen fertilization zone across key dates in the growing season.  

Overall, UAV-derived estimates provided a more consistent and realistic depiction of spatial AGB variability than DM 

measurements, especially in later stages of the growing season (e.g., July 5 and August 5). Slight increases in AGB were 

detected in fertilized zones, particularly between the 0% and 50% N treatments. However, differences between the 50% and 370 

100% N zones were less pronounced, possibly due to sampling limitations or environmental variability. These trends align 

with previous findings that show a positive correlation between N fertilization and biomass accumulation [15]. 
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The UAV approach enabled detection of subtle spatial trends that would likely be missed using sparse destructive sampling 

alone. These results demonstrate the value of UAV platforms for supporting precision fertilization strategies. By delivering 375 

high-resolution, spatially explicit AGB estimates throughout the season, UAVs offer a scalable and timely alternative for 

nutrient monitoring. 

6 Discussion 

6.1. Enhancing AGB Estimation with Increased LiDAR Features and Optimized Parameters 

Results demonstrated that LiDAR-derived structural features, particularly CH and GF, were strong individual predictors of 380 

AGB. Among different GF configurations, the use of five vertical GF layers (5 × 20 cm) and a 30 cm GSD yielded the highest 

accuracy. This multi-layer approach more accurately captured vertical canopy heterogeneity compared to conventional ground-

only GF commonly used for LAI (Bates et al., 2021; Dreier et al., 2024) and AGB (Montzka et al., 2023; Hütt et al., 2022). 

Multi-layer GF proved particularly effective during peak canopy development, enabling spatial differentiation of structural 

density through signal returns concentrated in the upper canopy layers. Our approach directly incorporated these multi-layer 385 

GF inputs into the ANN, allowing the model to learn their relative importance throughout the season without additional 

parameterization as opposed to 3DPI. Notably, LiDAR INT, often overlooked or underutilized in UAV agriculture 

applications, contributed significantly improving the LiDAR’s AGB estimation when used with CH and multi-layer GF. When 

all three of these LiDAR features are used, LiDAR alone outperformed the common combination of CH and MS. This could 

suggest, that INT helps alleviate the need for MS data for leaf pigment information.  390 

6.2 Benefits of Multi-Sensor Fusion Across Phenological Stages 

Fusion of LiDAR, MS, and TIR data yielded the most robust models, outperforming any individual sensor. This was 

particularly evident when combining MS spectral bands with LiDAR INT and TIR LST data. The complementary nature of 

these sensors became clear when evaluated temporally: early-season biomass predictions benefited most from CH and GF due 

to strong structural variation, while spectral (MS) and thermal (TIR) data became increasingly important during later stages 395 

when structural changes plateaued and physiological traits, such as chlorophyll degradation and peak evapotranspiration, 

dominated biomass variability. 

 

Temporal performance shifts also highlighted the limitations of MS and TIR as stand-alone sensors. MS alone performed well 

during senescence but poorly during mid-season when vegetation was near spectral saturation. TIR, though limited in 400 

performance on its own, enhanced MS estimates when fused, primarily by contributing valuable information on canopy water 

status, including indicators of stomatal activity and evapotranspiration under high-temperature conditions. These results 
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underscore the advantages of multi-sensor integration for capturing the full complexity of crop development, particularly 

across distinct physiological growth stages.  

6.3 LiDAR Intensity: A Compact, Informative Proxy 405 

The most surprising finding was the strong performance of LiDAR INT when incorporated into fusion models, whether using 

only LiDAR features or combining features from MS and TIR sensors. When paired with MS and TIR, INT outperformed 

more complex configurations that additionally included CH and GF structural data. This supports the hypothesis that INT, 

particularly in the NIR spectrum, is sensitive to leaf angle distribution (Tian et al., 2021), canopy density (Hütt et al., 2022), 

and pigment degradation during senescence. 410 

 

As illustrated in Figure 5, this is evident where INT amplitudes align with point density profiles: larger, denser leaves create 

more uniform, reflective surfaces, increasing return amplitudes. However, on July 27 and August 5, alignment between INT 

and density profiles decreased during senescence, likely due to reduced NIR reflectance from browning vegetation. Practically, 

these results suggest that LiDAR INT can serve as a compact, information-rich input, potentially reducing model complexity 415 

by minimizing the need for additional LiDAR-derived structural metrics or spectral features from other sensors. 

6.4 Toward Scalable Monitoring in Precision Agriculture 

The ANN models developed in this study produced accurate AGB predictions across the full growing season and under varying 

nitrogen treatment levels. Compared to traditional destructive sampling, UAV estimates offered higher spatial resolution and 

complete coverage, enabling detection of subtle variations in crop development. Notably, UAV-derived AGB maps were more 420 

responsive to nitrogen-induced differences, particularly during early and mid-season growth, highlighting their potential to 

support more precise nutrient management strategies. The UAV estimates also aligned more closely with applied treatment 

amounts, demonstrating that improved AGB estimation directly enhances the monitoring of nitrogen effects and enables 

timely, targeted interventions. 

 425 

Our results further support the use of flexible, stage-specific sensor combinations. Structural LiDAR metrics are particularly 

valuable for early-season monitoring, while fusion with spectral and thermal data becomes critical during reproductive and 

senescence stages. Importantly, multi-layer GF and MS features can be directly integrated into machine learning models 

without intermediate conversions, simplifying workflows for complex multi-sensor feature fusions and operational 

implementation of UAV crop monitoring. 430 

 

6.5 Possible Limitations and Improvements 

While this study focused on comparing sensor inputs for ANN AGB estimation, future research should explore the influence 

of alternative ML models, such as those discussed in Han et al. (2019). As Sharma et al. (2022) and Bazrafkan et al. (2023) 
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highlight, sensor performance can vary by crop type and ML method, particularly in species with differing canopy architectures 435 

(e.g., grasses vs. broadleaf crops). Broader testing across crop types would improve generalizability. A core limitation of ML 

biomass estimation remains the reliance on destructive sampling for model training, which limits scalability. While LiDAR-

derived structural metrics may be more transferable across sites with similar crop geometries, spectral metrics are more 

sensitive to local soil, moisture, and light conditions.  

 440 

Feature refinement offers additional opportunities. Further tuning of GF parameterization (e.g., optimal layer segmentation 

based on canopy structure, point density, or sensor settings) could improve model accuracy. Similarly, LiDAR INT calibration 

could benefit from in-field reflectance targets or correction for angle and range effects, although our setup (low altitude, flat 

terrain) likely minimized these influences. 

6.6 Operational Considerations and Outlook 445 

While multi-sensor UAV campaigns offer clear performance advantages, they also introduce logistical trade-offs. Each 

additional sensor increases payload weight, power consumption, flight time, and post-processing complexity. Additionally, 

the high cost of individual sensors makes their combined use less economically efficient. This study highlights the advantages 

of both individual and combined UAS sensor applications for AGB estimation, allowing farmers to balance potential accuracy 

improvements against logistical and financial constraints. It is also important to note that, while some sensors may not excel 450 

at estimating AGB during certain periods, they could be more strongly correlated with other critical agricultural. These 

additional correlations might justify the combined use of sensors for purposes beyond AGB estimation. The strong 

performance of LiDAR INT, particularly in fusion with MS, suggests that a streamlined configuration using just LiDAR and 

MS could offer a practical and efficient alternative in many operational scenarios. For applications focused on water stress or 

canopy temperature, TIR remains a valuable complement due to its unique physiological insights. 455 

 

Looking ahead, the modeling framework developed in this study can be extended to other crops and environments, particularly 

those where vertical canopy structure and stress responses play a key role in yield formation. The direct use of LiDAR-derived 

CH, multi-layer GF, and INT as inputs in ANN models simplifies the analytical pipeline, supporting broader adoption of UAV 

LiDAR monitoring for season-long crop assessment. 460 

Finally, the unique NIR sensitivity of LiDAR INT warrants deeper exploration. Unlike passive sensors, LiDAR can penetrate 

deeper into canopy layers, capturing spectral information from regions typically obscured due to occlusion and reflectance 

constraints. This capability adds significant value to vegetation analysis by enabling structural-spectral hybrid sensing. The 

development of multi-frequency LiDAR systems, as highlighted by Takhtkeshha et al. (2024), could further enhance this 

potential by providing a broader spectral response similar to MS sensors, while maintaining canopy penetration. These 465 
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advancements may position active LiDAR sensing as a powerful hybrid tool, bridging the gap between traditional MS sensors 

and full 3D canopy characterization, and expanding its role in precision agriculture. 

7 Conclusion  

This study highlights the value of UAV multi-sensor fusion for aboveground biomass estimation in winter wheat by integrating 

LiDAR structure (crop height (CH) and multi-layer gap fraction (GF)), LiDAR intensity (INT), multispectral (MS) reflectance, 470 

and thermal infrared (TIR) data. A first comprehensive comparison and fusion of all three sensor types for AGB estimation, 

including rarely used LiDAR GF and INT metrics, in contrast to the common reliance on MS indices and crop height. Among 

single-sensor inputs, LiDAR features were most effective, with intensity emerging as a compact, information-rich predictor 

that may encode both structural and physiological traits. Sensor fusion further improved performance, with the best model 

(INT + MS + TIR) achieving a testing RMSE of 1.47 t/ha (16.3%) and R² of 0.91 across the growing season. Feature relevance 475 

shifted with crop stage, with structural metrics more useful early to middle in the season, and spectral/thermal features 

contributing more during senescence and stress. UAV estimates also provided spatially complete insights into nitrogen 

fertilization effects that were more consistent than those from limited destructive sampling. 

 

We applied an ANN to evaluate sensor combinations, leveraging its ability to capture feature interactions while being 480 

parametrized for a small dataset. While ANN was suitable in this context, future work should test additional machine learning 

models, as algorithm choice may influence feature rankings and conclusions. Overall, the findings underscore the importance 

of fully exploiting LiDAR’s dual structural and spectral information, particularly INT, within sensor fusion frameworks to 

support robust and scalable UAV biomass monitoring. 

 485 
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Appendix 

 500 

Figure A1. Correlation analysis of various sensor-derived metrics with above-ground biomass (AGB). 

(a) LiDAR crop height (CH) metrics: maximum, minimum, mean, standard deviation, and range. 

(b) LiDAR intensity (INT) metrics: raw unfiltered signal, canopy-only and ground-only returns, maximum and minimum intensity, 

range, standard deviation, and the Light Penetration Index (LPI), calculated by normalizing canopy intensity by the average ground 

intensity. (c) Combined correlation of maximum CH and LPI with spectral reflectance bands (Red, Red-edge, NIR), thermal 505 

products (LST, CWSI), and the 5 × 20 cm multi-layer LiDAR gap fraction (GF) density layers (DLs).  
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Figure A2. AGB estimation results per pixel for the field experiment site for each flight campaign date over the growing season using 

the combined use of LiDAR crop height (CH), multi-layer gap fraction (GF), and signal intensity (INT).  510 
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