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Abstract 12 

About every 10 years, the Norwegian Centre for Climate Services publishes a national climate assessment report, presenting 13 

the updated historical climate change and climate projections towards the end of this century. This paper documents the model 14 

experiment used to generate high-resolution climate and hydrological projections for the new climate assessment report 15 

published in October 2025. The model experiment follows the standard modelling chain for hydrological impact assessment, 16 

i.e., climate model selection - downscaling and bias adjustment - hydrological modelling. However, compared with the model 17 

experiment for the climate assessment report published in 2015, all modelling components have been improved in terms of 18 

data availability, data quality and methodology. Specifically, a large climate model ensemble was available and new criteria 19 

were developed to select tailored climate projections for Norway. Two bias-adjustment methods (one univariate and one 20 

multivariate) were applied to account for the uncertainty of method choice. The hydrological modelling was improved by 21 

implementing a physically-based Penman-Monteith method for evaporation and a glacier model accounting for glacier retreat 22 

under climate change scenarios. Besides model description, this paper elaborates the effects of different bias-adjustment 23 

methods and the contribution of climate models and bias-adjustment methods to the uncertainty of climate and hydrological 24 

projections under the RCP4.5 scenario as examples. The results show that the two bias-adjustment methods can contribute 25 

larger uncertainty to seasonal projections than climate models. The multivariate bias-adjustment method improves hydrological 26 

simulations, especially in the reference period, but cannot conserve climate change signals of the original climate projections. 27 

The dataset generated by the presented modelling chain provides the most updated, comprehensive and detailed 28 

hydrometeorological projections for mainland Norway, serving as a knowledge base for climate change adaptation to decision 29 

makers at various administrative levels in Norway. 30 

 31 
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1 Introduction 33 

It is unequivocal that human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years 34 

(IPCC, 2021). The human-induced warming has already modified the global hydrological cycle, leading to significant shifts 35 

in the spatial and temporal patterns of hydrological components (Gu and Adler, 2015; Gudmundsson et al., 2021; Li et al., 36 

2023) and more intensive and frequent hydroclimatic extreme events (Alifu et al., 2022; Chinita et al. 2021; Dunn et al., 2020; 37 

Padrón et al., 2020). These impacts pose unprecedented challenges for water resource management at regional and local scales, 38 

and they are expected to be more severe in the future if unsustainable development continues (Wang and Liu, 2023). Therefore, 39 

understanding of the potential climate change impact from a long-term and systematic perspective serves as a key basis to 40 

develop climate adaptation strategies, such as incorporating climate projections into European building standards (EEA, 2025) 41 

and national climate risk adaptations (DCCEW, 2023).  42 

General circulation models (GCMs) are important tools to understand and predict climate behavior under various greenhouse 43 

gas emission scenarios on the global scale. GCMs have been developed rapidly in the last decades, with an increasing number 44 

of models from over 40 within the Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al., 2012) for 45 

Representative Concentration Pathway (RCP) emission scenarios to over 60 within CMIP6 (Eyring et al., 2016) for the Shared 46 

Socioeconomic Pathways (SSP) emission scenarios. Such a large ensemble of models provides valuable information of 47 

uncertainty for future climate projections, accounting for natural climate variability, unknown socio-economic developments, 48 

and model differences (Hawkins and Sutton, 2011). However, the use of the full ensemble can be challenging for impact 49 

models due to computational restrictions, so it often requires a careful selection of projections for specific study areas based 50 

on comprehensive analysis of the whole ensemble (Dalelane et al., 2018). In addition, GCM outputs are hardly applied for 51 

impact assessment at regional and local scales due to their coarse spatial resolutions (e.g., ~0.25 to 3° for the CMIP6 models 52 

and ~0.5 to 4° for the CMIP5 models) and systematic biases (Rössler et al., 2019), and they are usually downscaled to fine 53 

spatial resolutions and bias adjusted for climate impact assessment and adaptation planning (Martinich & Crimmins, 2019). 54 

The GCM outputs can be downscaled dynamically using regional climate models (RCMs) or statistically based on statistical 55 

relationships between coarse-resolution variables in GCMs and fine-resolution or local observations in the historical period 56 

(Zhang et al., 2020). Various RCMs and statistical downscaling methods have been developed and applied to downscale the 57 

GCM outputs, increasing the number of climate projections for region scales. For example, the European Coordinated Regional 58 

Downscaling Experiment (EURO-CORDEX, Jacob et al., 2020) applies 11 RCMs to downscale the outputs from 14 GCMs to 59 

0.11° (ca. 12.5 km) horizontal resolution. Due to the high computational cost and time consumption, each RCM is able to 60 

downscale one or a few GCMs outputs, resulting in 30, 25 and 64 regional climate projections for Europe under the RCP2.6, 61 

RCP4.5 and RCP8.5 scenarios, respectively. In contrast, statistical downscaling methods, which are often combined with bias 62 
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adjustment, can be easily applied for a large ensemble of GCMs due to low computational requirements and fast calculations, 63 

and over 50 statistical downscaling methods have been applied for Europe (Gutiérrez et al., 2019).  64 

Each downscaling method has its strengths and weaknesses. The dynamic downscaling ensures the physical relationships 65 

between climatic variables and spatial dependence, but it inherits significant biases from GCMs and requires further bias 66 

adjustment and/or statistical downscaling depending on the scale of impact studies (Hundecha et al., 2016; Maraun og 67 

Widmann, 2018). In contrast, the statistical downscaling usually outperforms the RCMs in terms of bias, but many methods 68 

downscale individual climatic variables independently (univariate) and can lead to inaccurate inter-variable dependence. Eum 69 

et al. (2020) demonstrated substantial impact of the univariate and multivariate statistical downscaling methods on 70 

reproduction of snowfall and recommended the use of the multivariate methods for climate change impact assessment in snow-71 

dominated watersheds. Meyer et al. (2019) also found underestimation of snow accumulation (up to 50%) in alpine catchments 72 

when using univariate contra multivariate bias-adjustment approach, which can be attributed to less precipitation below 73 

temperatures of 0 °C.  74 

Due to the large number of GCM projections and downscaling methods, as well as their strengths and weaknesses, to construct 75 

a downscaled and bias-corrected ensemble for specific regions is challenging. Different choices of GCM and downscaling 76 

methods can lead to considerably different local climate projections and thus contribute large uncertainty to local decision-77 

relevant climate outcomes (Tang et al., 2016; Lafferty & Sriver, 2023). In addition, they result in different climate impact 78 

projections for streamflow (Key, 2022), flood hazard (Kundzewicz et al., 2017), agriculture (Li et al., 2023), ecosystem 79 

(Pourmokhtarian et al., 2016), etc, causing inconsistent impact assessments not only within each impact sector but also across 80 

sectors. Therefore, a consistent and tailored ensemble of regional climate projections is highly appreciated for each region and 81 

many countries have put great efforts to create national ensembles of climate projections (Golding et al., 2025), such as 82 

Switzerland (Fischer et al., 2022), Germany (Hübener et al., 2017), UK (Reyniers et al., 2025) and Australia (Peter et al., 83 

2024).  84 

Norway is located in the northern high latitudes, which have experienced the strongest warming since 1980 among all regions 85 

in the world, with warming trends spanning from 0.2 to more than 0.6 °C/decade (IPCC, 2021). The strong warming in the 86 

historical period raises great attention from both the scientific community and the public to future climate change and its 87 

impacts on hydropower production (about 90% of total power production in the country), winter tourism (skiing), and water 88 

related natural hazards (i.e., flood, drought, avalanche and landslide). However, it is specifically challenging to construct robust 89 

and reliable climate projections as well as hydrological impact projections in Norway, due to the high heterogeneity in 90 

topographic and hydroclimatological characteristics.  91 

Norway is one of the most mountainous countries in Europe, with more than 90% of the landscape consisting of mountains. 92 

The rugged topography leads to a complex spatial and temporal pattern of temperature and precipitation, varying with 93 
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geographical position, elevation, aspect (slope direction), and slope angle (Dobrowski et al., 2009; Franke, 2024). The spatial 94 

resolutions of the state-of-the-art GCMs and RCMs are too coarse to provide sufficient spatial variations of climate for such 95 

complex terrain. In addition, these projections often show a cold bias for Norway (Wong et al., 2016), which for example leads 96 

to a prolonged snow season, low winter runoff and late snowmelt in hydrological projections (Nilsen et al., 2021). 97 

In order to construct a consistent and tailored ensemble of national climate projections as well as hydrological projections for 98 

Norway, the Norwegian Centre for Climate Services (NCCS) brings together experts from the Norwegian Meteorological 99 

Institute, the Norwegian Water Resources and Energy Directorate (NVE), the Norwegian Research Centre (NORCE) and 100 

Bjerknes Centre for Climate Research. NCCS is responsible for the national climate assessment report, updated about every 101 

10 years, which presents updated historical climate change and climate projections towards the end of this century and serves 102 

as a knowledge base for climate change adaptation to decision makers and planners at various administrative levels in Norway 103 

(Nilsen et al., 2022). The previous climate assessment report “Climate in Norway 2100” (Hanssen-Bauer et al., 2015; hereafter 104 

abbreviated CiN-2015), published in 2015, was based on 10 available GCM-RCM combinations within the CMIP5 and EURO-105 

CORDEX frameworks. The projections were further re-gridded and bias-adjusted into 1 × 1 km resolution using empirical 106 

quantile mapping and forced the distributed version of the HBV (Hydrologiska Byråns Vattenbalansavdelningen, i.e. “The 107 

Hydrological Bureau’s Water Balance Department”) hydrological model (distHBV, Beldring et al., 2003) to generate 108 

hydrological projections. This spatial resolution is the result of the need to serve projections that can be used locally on the 109 

one hand, and availability of computational resources and reference datasets to produce daily maps for the whole of Norway 110 

on the other. During the last 10 years, all methods along the modelling chain, including GCMs, RCMs, climate model 111 

selections, statistical downscaling and bias correction, and hydrological models, have been further developed, and the 112 

observation data has been updated and improved. These developments promote the new generation of high-resolution and 113 

bias-adjusted climate and hydrological projections, which are more robust than the previous ones in CiN-2015. 114 

In this paper, we present the full description of the methods to produce the updated downscaled and bias-adjusted climate 115 

projections and hydrological projections for the new climate assessment report for Norway “CiN-2025” (Dyrrdal et al., 2025), 116 

specifically focusing on selection of GCM-RCMs combinations, statistical downscaling and bias-adjustment and hydrological 117 

modelling. Section 2 introduces the study area and historical input data. The methods described include the overview of the 118 

whole modelling chain (Section 3), selection of atmospheric variables from a set of EURO-CORDEX simulations (Section 4), 119 

statistical downscaling and bias-adjustment method (Section 5) and hydrological modelling (Section 6). In Section 7 and 8, 120 

we present the climate and hydrological products and uncertainty analysis. Finally, we discuss the limitations of the methods 121 

and the potential applications of the products, and point out the way towards the next generation of national climate projections 122 

for Norway in Section 9.  123 
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2 Study area and historical data  124 

2.1 Study area 125 

The modelling domain of this study is the mainland of Norway and a few river catchments draining from neighbouring 126 

countries (Sweden and Finland) (Fig. 1), resulting in 354448 1x1 km2 grid cells. Due to large variations in latitude and altitude, 127 

Norway exhibits six climate regimes according to the Köppen-Geiger climate classification (Beck et al., 2018), ranging from 128 

temperate climate along the west coast to polar climate in high mountains and in the north (Fig. 1). The average elevation of 129 

Norway is about 460 m, ranging from 0 along the coast to 2469 m at Galdhøpiggen in the center of the country. Open firm 130 

ground and forest are the two major land covers in Norway, accounting for 36% and 37.8% of the mainland area, respectively 131 

(Statistics Norway, 2025). There are also large areas of bedrock (8.5%), followed by water (6.2%), bogs (5.4%), agricultural 132 

land (3.5%) and built-up (1.7%). About 1% of mainland Norway is covered by glaciers (Fig. 1). The mean annual temperature 133 

in the current standard normal period 1991–2020 ranges from -9.5 to +9.5 °C (Tveito, 2021). The warmest areas are found in 134 

lower-lying areas in southern Norway, and particularly along the coast in the southwest, while the coldest areas are in the high 135 

mountains and inland areas of the north. Norway also exhibits large spatial variability in precipitation, ranging from 212 mm 136 

in southern parts of Northern Norway to 6130 mm close to the Ålfotbreen glacier in Western Norway. The wet areas along the 137 

west coast are exposed to migrating low pressure systems most often arriving from the west-southwest (Lutz et al., 2024). 138 

We selected 85 and 38 catchments for calibration and validation of the hydrological model, respectively. All these catchments 139 

are near-natural catchments and 112 of the 123 catchments are smaller than 1000 km2. The distribution of the catchments 140 

represents various climate and hydrological regimes, geographic conditions and landscape types in Norway. The catchment 141 

boundary is delineated by NVE and the gauges at the outlet of these catchments are shown in Fig. 1.  142 
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 143 

Figure 1: the climatic and topographic characteristics of the simulation domain as well as the locations of glaciers and hydrological 144 

gauging stations and catchment boundaries. 145 
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2.2 Historical meteorological data 146 

The historical meteorological data is used as reference in the bias-adjustment procedures and for hydrological model calibration 147 

and validations. It consists of nine atmospheric meteorological variables at a 1 x 1 km2 grid covering Norway and river 148 

catchments in neighbouring countries (Fig. 1): mean, minimum and maximum 2m temperature (K), precipitation flux (mm/s), 149 

relative humidity (%), longwave and shortwave radiation (W/m²), pressure (Pa) and 10m wind speed (m/s).  150 

Daily minimum, maximum and mean temperatures as well as precipitation are provided by the seNorge2018 v20.05 dataset 151 

(Lussana et al., 2019; 2020). It covers the period 1957–2020 and is based on quality-assured daily datasets. The precipitation 152 

values are adjusted for wind-induced under-catch based on Wolff et al. (2015). Note that seNorge2018 continuously 153 

incorporates the latest available station data and is therefore not homogenized in time. This may affect the calculation of 154 

changes within the historical period. 155 

Daily wind speeds for Norway from 1958 to 2020 are obtained from the KliNoGrid 16.12 dataset. The KliNoGrid dataset is 156 

based on the Norwegian atmospheric reanalysis NORA10 (Reistad et al., 2011) wind speed data, downscaled onto a 1 km grid 157 

using a quantile mapping approach (Bremnes, 2004) to match the climatology of the high-resolution numerical weather 158 

prediction model AROME-MEtCoOp (Müller et al., 2017). 159 

Daily short- and longwave radiation, relative humidity and surface pressure are obtained from the HySN2018v2005ERA5 160 

dataset. It is generated based on the ECMWF atmospheric reanalysis ERA5 (Herschbach et al., 2018) and seNorge2018 v20.05 161 

and covers the period 1958–2020. The dataset is described in detail in Huang et al. (2022) and Erlandsen et al. (2021). 162 

2.3 Data for setting-up hydrological models 163 

To set up the hydrological model, a digital elevation model (DEM), as well as maps of soil type and land cover type with 1 164 

km horizontal resolution are required. The DEM map was provided by the Norwegian Mapping Authority. Five soil types are 165 

reclassified based on the sediment map from the Geological Survey of Norway (Erlandsen et al., 2021), and bare mountain 166 

soil and moraine soils account for ca. 80% of the total mainland area. Nine land cover types (open area, bog, built-up, forest, 167 

cropland, heather, bedrock, lake, permanent ice and snow) are classified based on the National Land Resource Map (Ahlstrøm 168 

et al., 2014) and the remote sensing based forest resource map SAT-SKOG (Gjertsen and Nilsen, 2012). The forest land cover 169 

is further classified into 12 structural forest types to distinguish three species groups (spruce, pine, and deciduous forest) and 170 

four forest development stages (underdevelopment, two intermediate development stages and mature forest) (Majasalmi et al., 171 

2018). The parametrization for each forest structural type, such as maximum leaf area index, vegetation height and shortwave 172 

albedo, is given by Majasalmi et al. (2018) and Bright et al. (2018). For glacier areas, the glacier modelling doesn’t accoun t 173 

for variation of soil types and uses simplified land cover types including open area, bog, forest, bedrock and glacier area 174 

coverage. However, it requires glacier ice thickness and glacier area data (Andreassen et al. 2015) to setup the model.  175 
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Discharge measurements from 123 gauging stations are used to calibrate and validate the hydrological model (Fig. 1). They 176 

are quality-assured by NVE. All 123 stations have measured daily discharge from 1980 to 2014 with less than 5% missing 177 

data. For the glacier modelling, mass balance data is only available for six glaciers and discharge measurements from 19 178 

gauging stations downstream of the glaciers are used to calibrate and validate the hydrological model. All discharge and mass 179 

balance data are publicly available at sildre.nve.no and glacier.nve.no/glacier/viewer/ci/en/. 180 

3 Modelling chain 181 

We followed the commonly used modelling chain in hydrological climate impact studies, i.e., 1) emission scenarios, 2) GCMs 182 

and RCMs, 3) statistical downscaling and bias correction and 4) hydrological model (Fig. 2). The first component of the 183 

modelling chain is to select emission scenarios. For the CiN-2025 report, two RCPs used in CMIP5 were selected, representing 184 

a very stringent pathway (RCP2.6) and a moderate-emissions pathway (RCP4.5). The shared socioeconomic pathway SSP3-185 

7.0 used in CMIP6 was selected to represent the high-emission scenario. The reason why only one SSP scenario was selected 186 

is that SSP1-2.6 and SSP3-7.0 were the first-priority scenarios for the EURO-CORDEX community (Katragkou et al., 2024). 187 

The data has become available late with regard to the time needed to run our complete modelling chain - it is in fact still not 188 

openly available - making the selection of more than one SSP scenario infeasible. Such a combination of CMIP5 and CMIP6 189 

scenarios has also been used in other national climate projections, e.g., the climate projections in Switzerland published at the 190 

end of 2025 (Schumacher et al., 2024) which combined EURO-CORDEX RCP8.5 with CMIP6 SSP5-8.5 GCM simulations. 191 
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 192 

Figure 2: Modelling chain to generate high-resolution climate and hydrological projections for the CiN-2025 report. 193 

In the second component of the modelling chain the task is to select a representative model ensemble from the EURO-194 

CORDEX simulations (Jacob et al., 2014) for each emission scenario. Within the EURO-CORDEX framework, CMIP5 and 195 

CMIP6 GCMs are downscaled by different RCMs, resulting in a set of GCM-RCM combinations. For CiN-2025 a larger 196 

EURO-CORDEX ensemble for RCP scenarios was available compared to CiN-2015, enabling a more robust data basis and 197 

requiring new model selection strategies (Section 4). 198 

Once the model ensemble was identified, the next step was to downscale the RCM projections of atmospheric variables from 199 

the original grid size of approximately 12.5 km to 1 km. It was followed by removal of biases in RCM simulations relative to 200 

observed meteorological data (Section 2.2) in the calibration period. For future projections, we adjusted the values based on 201 

the corrections established in the calibration period under the assumption that the relationship between the observed and 202 

modelled data remains unchanged. Two bias-adjustment methods were used: empirical quantile mapping (EQM) and three-203 

dimensional bias-correction (3DBC) additionally to EQM (Section 5). The former is a widely used univariate bias-adjustment 204 

method and was used for CiN-2015. The latter adds a post-processing procedure, taking into account inter-variable 205 

dependencies. To our knowledge, this is the first time the 3DBC method is applied in Norway, and we have identified several 206 

strengths and weaknesses with this multivariate method (Section 5.3). Since the two bias-adjustment methods complement 207 

each other, we decided to apply both bias-adjustment methods on the RCM projections and provided two complete datasets 208 
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(EQM only and EQM with 3DBC). To assess the uncertainty in the climate and hydrological projections from the choice of 209 

methods, we have carried out an uncertainty analysis (Section 7.3 and 8.3).  210 

The last component of the modelling chain is hydrological modelling. The distHBV model was still the main tool for simulating 211 

hydrological components under different climate scenarios for the CiN-2025 report, but two major improvements have been 212 

made since CiN-2015. The first improvement was to replace the temperature-based evaporation method with the Penman-213 

Monteith equation in the distHBV model (Huang et al., 2019), because physical-based approaches, such as the Penman-214 

Monteith method, consider more climatic variables and provide more robust changes in potential evaporation under climate 215 

scenarios than the empirical ones (McAfee, 2013; Tam et al., 2024). The second improvement was the inclusion of the 216 

Distributed Element Water balance model (DEW) (Beldring, 2008), which is an advanced version of distHBV in terms of the 217 

glacier module. Since distHBV was not able to simulate the changes in glacier area, glacier melt water can be unrealistically 218 

high under climate scenarios used in CiN-2015. In contrast, DEW is able to simulate glacier area, volume and surface elevation 219 

dynamically and thus gives more reliable hydrological projections under climate change for glacierized regions. Both models 220 

ran at 1 km spatial resolution and with daily time steps, but distHBV ran for all grid cells in Norway and DEW only ran for 221 

the grid cells covering glacierized regions. The smallest glaciers (< 1 km2) were omitted in the DEW model. 222 

The modelling chain resulted in two datasets with a spatial resolution of 1x1 km at daily time steps, which will be serving as 223 

the basis for climate impact assessment in mainland Norway. The first dataset is termed COR-BA-2025 (short for CORDEX-224 

Bias Adjusted, updated in 2025), consisting of 20 bias-adjusted high-resolution climate projections for each emission scenario 225 

and is available from 1970 to 2100 (2098 depending on GCMs). These projections include nine atmospheric variables at 1x1 226 

km spatial resolution and with daily time steps: mean, minimum and maximum 2m temperature (K), precipitation flux (mm/s), 227 

relative humidity (%), longwave and shortwave radiation (W/m²), surface air pressure (Pa) and 10m wind speed (m/s). The 228 

second dataset is called distHBV-COR-BA-2025 and consists of 20 hydrological projections for each emission scenario at the 229 

same spatial and temporal resolution and coverage as the atmospheric projections. The hydrological projections include two 230 

flux variables (runoff and evaporation) representing average values over each grid cell in mm/day, and two state variables (soil 231 

moisture and snow water equivalent), which describe the average condition of the hydrological components in a grid cell with 232 

unit mm. The evaporation, soil moisture and snow water equivalent projections were generated by distHBV, whereas the runoff 233 

projections were obtained by superimposing the results of the glacierized grid cells from the DEW model on the runoff 234 

projections from distHBV.  235 

To select the climate ensembles and assess future changes in climate and hydrology, we defined one reference period (1991–236 

2020) and two future periods (2041–2070 and 2071–2100). The reference period was selected by two factors: 1) a recent 237 

climate period better represents today’s climate, and 2) 1991–2020 is the current standard normal period defined by the World 238 

Meteorological Organization (WMO). However, in CMIP5 and CMIP6, the historical simulation runs end in 2005 and 2014, 239 
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respectively. Data from the emission scenario RCP4.5 was used to extend the historical period beyond 2005 for RCPs and the 240 

data from the emission scenario SSP3-7.0 was used to extend the historical period beyond 2014 for SSPs.  241 

Since the main focus of this paper is on the description of the methods in the modelling chain rather than assessing climate 242 

and hydrological projections under different emission scenarios, we only present the methods and results for the RCP4.5 243 

scenario as examples in the following sections. However, the methods described in this paper are valid for all three scenarios. 244 

4 Selection of GCM–RCM combinations 245 

Currently, the EURO-CORDEX CMIP5 projections comprise the largest high-resolution regional climate model ensemble for 246 

Europe and Norway. There are 17 identical model combinations based on the representative concentration pathways RCP2.6, 247 

RCP4.5 and RCP8.5. Based on all 17 models for RCP4.5, the projected temperature and precipitation changes in Norway 248 

ranges from 0.5 to 3.4 °C and from -2.6 to 12.5 % (indicated as grey shaded area in Fig. 3), respectively.  249 

 250 

Figure 3. Projected changes in temperature and precipitation for mainland Norway by the end of the century (2071–2100 minus 251 

1991–2020) under the RCP4.5 scenario (all dots). The grey shaded area indicates the distribution (kernel density estimate) of the 252 

projected changes comprising all 17 GCM-RCM combinations that were considered. The individual coloured points highlight the 253 

ten simulations selected for CiN-2025 (Table 1). 254 
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Given time and computational constraints, we defined an upper limit of ten model combinations that are used as forcing data 255 

for the hydrological models. The ten GCMs-RCMs combinations were chosen based on the five following criteria: 256 

1) High-resolution (0.11 x 0.11°) simulations based on the representative concentration pathways RCP2.6, RCP4.5 and 257 

RCP8.5 are available on the Earth System Grid Federation (ESGF). 258 

2) Important physical phenomena in the GCMs such as temperature and precipitation cycles, circulation and storm tracks 259 

over Europe are represented in an acceptable manner, i.e. the chosen GCM scores satisfactory for at least two of the 260 

physical phenomena (Table 6 in McSweeney et al., 2015).  261 

3) Include as many plausible GCMs as possible that fulfil criteria 2 in order to capture the potential impact of the 262 

projected climate change signal. 263 

4) The GCM-RCM combination should be ranked in the ‘best half’ for 24 variables and impact-based indices (Table 2 264 

in Vautard et al., 2020) for the region of Scandinavia (Figure 12a in Vautard et al., 2020). 265 

5) The temperature and precipitation biases for Norway, i.e. simulated vs. observed values from seNorge2018 v20.05 266 

from 1971–2000 should not be visually striking compared to the biases in all available model combinations. 267 

The selected model-combinations based on these five criteria are presented in Table 1. The projected changes in temperature 268 

and precipitation are shown for each model combination in Fig. 3. In total, these model combinations consist of five GCMs 269 

and six RCMs. Based on the selection of the ten GCM-RCM combinations (coloured dots in Fig. 3), the projected changes in 270 

temperature and precipitation in Norway range from 1.15 °C to 2.8 °C and from -1 % to 9 % in the future period 2071–2100 271 

relative to the reference period 1991–2020.  272 

The selected GCM-RCM combinations vary in data coverage and quality (Table 1). The GCM MOHC-HadGEM2-ES lacks 273 

13 months towards the end of the time series, so we only used the simulations forced by this GCM until the end of 2098. When 274 

looking at near (2041–2070) and far future (2071–2100) changes, the MOHC-HadGEM2-ES simulations were shifted by two 275 

years, i.e. the periods for MOHC-HadGEM2-ES were 2039–2068 and 2069–2098. In addition, MOHC-HadGEM2-ES 276 

simulates 360 days instead of 365 (366) days. To fill in the missing five days, we simply copied the day number 150, 210, 240, 277 

300 and 360 from the 360-day year and added these extra days to the day number 151, 212, 243, 304 and 365 in a normal year. 278 

For a leap year, a copy of day number 59 was added similarly. This simple technique was also used on NCC-NorESM1-M 279 

coupled with SMHI-RCA4 as this model combination does not support leap years. Unrealistically large snow accumulation at 280 

isolated grid cells have been discovered in the simulations from SMHI-RCA4 and DMI-HIRHAM5. They were considered as 281 

minor quality issues and their effects were reduced by applying a spatial smoothing on the variables minimum, mean and 282 

maximum temperature, and humidity, an approach adopted from CH2018 (2018). 283 

 284 
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Table 1. Summary of GCM-RCM combinations for RCPs which were selected for downscaling and bias-adjustment for the mainland 285 

of Norway. 1: Original data has 360 days only. Additional days added. 2: Leap-year days added. 3: Spatial smoothing applied to 286 

tasmin, tasmax, tas and hurs 287 

Model combination name  GCM model id (CMIP5) RCM model id (CORDEX) Data coverage 

cnrm-r1i1p1-aladin CNRM-CERFACS-CNRM-CM5 CNRM-ALADIN63 1960–2100 

ecearth-r12i1p1-rca3 ICHEC-EC-EARTH SMHI-RCA4 1970–2100 

ecearth-r12i1p1-cclm ICHEC-EC-EARTH CLMcom-CCLM4-8-17 1960–2100 

ecearth-r3i1p1-hirham ICHEC-EC-EARTH DMI-HIRHAM5 1960–2100 

hadgem-r1i1p1-rca1,3 MOHC-HadGEM2-ES SMHI-RCA4 1970–2098 

hadgem-r1i1p1-remo1 MOHC-HadGEM2-ES GERICS-REMO2015 1960–2098 

mpi-r1i1p1-cclm MPI-M-MPI-ESM-LR CLMcom-BTU-CCLM4-8-17 1960–2100 

mpi-r2i1p1-remo MPI-M-MPI-ESM-LR MPI-CSC-REMO2009 1960–2100 

noresm-r1i1p1-rca2,3 NCC-NorESM1-M SMHI-RCA4 1970–2100 

noresm-r1i1p1-remo NCC-NorESM1-M GERICS-REMO2015 1960–2100 

5 Downscaling and bias-adjustment methods 288 

For CiN-2015, only daily mean temperature and precipitation were bias-adjusted, but for CiN-2025, nine surface variables 289 

from the RCM outputs were downscaled and bias-adjusted, namely mean, minimum and maximum air temperature at two 290 

meters height, precipitation, mean wind speed at 10 meters height, long- and shortwave radiation, surface pressure, and relative 291 

humidity at two meters height.  292 

The nine climate variables from the RCM outputs were firstly re-gridded to the seNorge grid with a 1 km spatial resolution 293 

using nearest-neighbour method. This conservative way to downscale from a coarse to fine scale grid ensures that the original 294 

model outputs are preserved and not altered unintentionally by the downscaling step. The bias-adjustment procedure was then 295 

implemented on the grid cell basis. Depending on the variable adjusted, different reference datasets (see Section 2.2) were 296 
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used for calibration. Wet-day correction has also been applied prior to bias-adjustment of precipitation because RCMs 297 

generally provide more rainy days than the observed ones (Frei et al., 2003).  298 

Since the grid cells are bias-adjusted individually, we need to select methods that are computational efficient, or at least 299 

applicable, and numerically stable (François et al., 2020) for a large number of grid cells (354 448 in total). We have tested a 300 

few bias-adjustment techniques categorized as quantile mapping (Cannon et al., 2015) and multivariate approaches (François 301 

et al., 2020). In the end, the univariate bias-adjustment adopting empirical quantile mapping (EQM) approach (Gudmundsson 302 

et al., 2012) was used to bias-adjust one climate variable at a time because the method meets all the aforementioned criteria 303 

and is widely used in adjusting climate model data. The results were further post-processed with the multivariate 3DBC 304 

approach (Mehrota and Sharma, 2019) to rectify inter-variable and spatial dependency structures. 305 

5.1 EQM 306 

The quantile mapping approaches establish a statistical transfer function for a variable between RCM outputs and observations 307 

in the calibration period 1985–2014, which is assumed to be valid for use in the projection period. Specifically, for EQM, 12 308 

calendar-month-specific transfer functions were derived by fitting the empirical cumulative distribution functions (eCDFs) of 309 

the modelled values with the eCDFs based on observations for each grid cell. Daily data within a 3-month window centred on 310 

the month of interest were pooled and used to develop monthly eCDF to avoid overfitting (Cannon et al., 2015). For example, 311 

data from February to April were used to develop the eCDF for March. The transfer function was approximated by a series of 312 

empirical quantiles with fixed intervals of 0.01 spanning the probability space (0,1) (Gudmundsson et al., 2012). Only the 1st 313 

to 99th quantiles were obtained and used. Linear interpolation was applied for values in between those fixed quantiles. For 314 

values smaller than the 1st quantile and larger than the 99th quantile, constant linear extrapolation based on the 1st and 99th 315 

quantiles was performed accordingly.  316 

The projection period starting from 2015 to 2100 was further divided into seven overlapping 30-year time slices. The first time 317 

slice, however, only covers 2015-2040, followed by 2021-2050, 2031-2060, etc. After the bias-adjustment of each time slice 318 

using the established transfer functions on a monthly basis, only the 10-year results in the middle of the period were being 319 

kept. For the first and the last time slices, the results of the first 16 years and the last 20 years were used respectively. A 320 

continuous time series covering the whole projection period was put together afterwards. 321 

To reduce the potential impact of over-adjustment (modifying the long-term linear trend) and extrapolation (model-projected 322 

values lying outside the range of the historical distribution), the long-term mean of the projected period was first removed from 323 

model-projected values. This shifting of the future distribution can better secure the applicability of the transfer function based 324 

on historical distribution. The long-term mean was later reimposed after the bias-adjustment of the ‘residuals’. For all the 325 

variables other than temperatures, long-term mean removal and reimposition were performed multiplicatively (see Cannon et 326 
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al., 2015, for more details). Similar linear trend removal and reimposition for the projected values of temperature variables 327 

were done additively.  328 

5.2 3DBC 329 

The bias-adjusted climate projections obtained from the univariate EQM approach were further processed with an additional 330 

step to impose inter-variable, temporal and spatial dependency structures. The multivariate method we used is called 3DBC 331 

(three-dimensional bias-correction) as it adjusts along the three dimensions: variables, time and space. It is described in detail 332 

in Mehrotra and Sharma (2019). 3DBC is re-establishing the spatial, temporal and inter-variable structures from the reference 333 

data by reordering the daily EQM values according to observed time-ranks at each grid-point, resulting in the bias-adjusted 334 

data having the same rank structure (ordering) as the reference data in the calibration period. Compared to other multivariate 335 

bias correction methods (e.g. the MBCn method developed by Cannon, 2018) the computational requirements of 3DBC are 336 

relatively small, making its application on a large number of grid cells feasible. Note that 3DBC adjusts the ranks for future 337 

periods according to changes in the variable auto-correlations as simulated by the RCMs. Thus, it does not strictly assume that 338 

the dependency structures remain stable in future climates. However, while the original implementation by Mehrotra and 339 

Sharma (2019) works on single calendar days across a future period of 30 years, our future period (2021-2100) consists of 80 340 

years. Following the original approach would have resulted in imposing observed trends repeatedly on the future period. We 341 

thus adapted the 3DBC method to work within single years of the EQM data, an ansatz that maintains the climate change 342 

signals from the RCMs (and EQM) on an annual scale. As a result, the adjustments in the variable auto-correlations for the 343 

future periods have a limited effect and do not fully transfer the dependency structure changes from the RCMs to the 3DBC 344 

bias-adjusted data. 345 

5.3 Evaluation of bias-adjustment methods 346 

5.3.1 Performance of bias-adjustment methods  347 

Thorarinsdottir et al. (2013) proposed the use of integrated quadratic distance (IQD) as a performance measure to compare the 348 

full distribution of climate model output to the corresponding distribution of observed data. IQD was further employed by 349 

Yuan et al. (2019; 2021) to assess the performance of different bias-adjustment approaches. IQD (Eq. 1) is defined as: 350 

𝑑𝐼𝑄(𝐹, 𝐺) = ∫ (𝐹(𝑡) − 𝐺(𝑡))2𝑑𝑡
+∞

−∞
                                                                                                          (1) 351 

where F, G are two cumulative distribution functions. dIQ (F, G) summarizes the differences, and a lower value implies a 352 

smaller difference between F and G. dIQ (F, G) = 0 if F = G. For further details, please see Thorarinsdottir et al. (2013). In this 353 

study, we compared the eCDFs of bias-adjusted precipitation and temperature with corresponding seNorge2018 v20.05 data 354 

over the calibration (1985–2014) and validation (1960–1984 or 1970–1984 depending on the period start of the RCM) periods 355 
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in each grid cell. In addition, we calculated IQD scores derived from comparison of original RCM outputs with the observed 356 

data.  357 

IQD scores presented in Table 2 are averaged over all grid cells and GCM-RCM combinations. We evaluated and ranked the 358 

bias-adjustment methods according to the IQD scores averaged on an annual and seasonal basis. The results clearly 359 

demonstrate that both bias-adjustment approaches are far better at reproducing the full distributions of observed precipitation 360 

and temperature by several orders of magnitude than the original RCM outputs. As expected, the improvements are larger 361 

(smaller dIQ) in the calibration period than the validation period. Furthermore, 3DBC performs better overall than EQM on 362 

seasonal results because 3DBC utilizes additional information about the intra-annual order of the observed time series in the 363 

post-processing, whereas the annual results remain the same. Thus, 3DBC provides added value as compared to EQM when 364 

seasonal statistical properties are of importance.  365 

Table 2: Integrated quadratic distance (IQD) scores comparing eCDFs derived from two bias-adjustment approaches (EQM and 366 

3DBC) in addition to original RCM outputs with reference datasets seNorge2018 v20.05 over the calibration (1985–2014) and 367 

validation (1960/70–1984) periods. All IQD scores are averages over all grid cells and GCM-RCM combinations. The best 368 

performance on each time scale is indicated in bold italic.  369 

  Calibration Validation 

Original EQM 3DBC Original EQM 3DBC 

Precipitation 

Annual 1.17E-01  2.27E-05  2.27E-05  1.32E-01  7.19E-03  7.19E-03 

Winter (DJF) 1.61E-01  1.65E-03  5.61E-04  1.87E-01  2.90E-02  8.42E-03 

Spring (MAM) 1.16E-01  6.42E-04  2.50E-04

  

1.52E-01 2.04E-02  5.22E-03 

Summer (JJA) 1.34E-01  1.21E-03  3.50E-04  1.47E-01  1.11E-02  8.09E-03 
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Autumn (SON) 1.60E-01  1.03E-03  3.79E-04  1.42E-01  1.37E-02  1.04E-02 

Temperature 

Annual 1.81E-01  9.98E-05  9.98E-05  1.91E-01  1.37E-02  1.37E-02 

Winter (DJF) 3.59E-01  1.71E-03  1.40E-03  4.26E-01  7.73E-02  5.21E-02 

Spring (MAM) 3.00E-01  3.40E-03  1.06E-03  2.97E-01  2.77E-02  1.84E-02 

Summer (JJA) 5.72E-01  1.59E-03  7.09E-04  6.38E-01  3.03E-02 2.41E-02 

Autumn (SON) 1.79E-01  1.69E-03  9.86E-04  1.82E-01  1.81E-02  1.45E-02 

3DBC as a post-processing procedure follows the ranks of observed precipitation and temperature. It reorders the modelled 370 

results accordingly and can simulate the spatial correlation structures between these two variables in the historical period better 371 

than EQM can achieve. EQM inherits the spatial rank correlation pattern from the RCM. The seasonal differences between 372 

these two methods are often most pronounced in winter (DJF) and summer (JJA). Figure 4 shows an example for winter, 373 

comparing the bias-adjusted datasets from EQM and 3DBC with the reference datasets for calibration (1985–2014) and 374 

validation (1960–1984) periods for one RCM. EQM generally overestimates the rank correlations between precipitation and 375 

temperature almost over the whole country in winter. And this spatial rank correlation pattern seems to be rather stable from 376 

one period to another. Generally, the results confirm that 3DBC performs better in recovering the inter-variable spatial 377 

dependency structure.  378 
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 379 

Figure 4: Rank correlation of daily precipitation and temperature in winter (DJF) for the two bias-adjustment methods. For 380 

calibration (1985–2014) and validation (1960–1984) periods, the two bias-adjusted datasets, EQM and 3DBC are based on historical 381 

run from mpi-r1i1p1-cclm and compared with reference datasets seNorge2018 v20.05.  382 

5.3.2 Climate change signal preservation 383 

When comparing the two methods of bias-adjustment in terms of climate change signals, EQM preserves the original climate 384 

change signals from the climate models better than 3DBC (Fig. 5). For precipitation, the larger increase in relative changes in 385 

winter for 3DBC than EQM are offset by smaller increases in relative changes in spring and summer. Changes in temperature 386 

show similar characteristics. Larger positive winter temperature changes for 3DBC are compensated by smaller positive spring 387 

temperature changes. The spreads of the changes are comparable between EQM and the original model outputs. 3DBC, on the 388 

other hand, exhibits varying spreads depending on the seasons and variables, as the climate change signal preservation is not 389 

strictly prescribed in the method. On an annual basis, these two methods provide identical results since 3DBC uses the same 390 

bias-adjusted results from EQM before further post-processing. By reshuffling the chronological order intra-annually, 3DBC 391 

modifies the seasonal change signals substantially.  392 
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 393 

Figure 5: Comparison of projected annual and seasonal changes in precipitation (relative change in %, left panel) and temperature 394 

(change in °C, right panel) from 1991–2020 to 2071–2100 for RCP4.5. Results averaged over all grid cells and RCM model ensemble 395 

from two bias-adjustment procedures, EQM and 3DBC, are compared to the original RCM projections. The thick red line on the 396 

box indicates the median value whilst the dotted line represents the mean. The lower and upper boundaries of the box are the 25th 397 

and 75th percentiles. The lower and upper ends of the whiskers refer to the 5th and 95th percentiles. 398 

6 Hydrological modelling 399 

6.1 DistHBV 400 

DistHBV is a spatially distributed version of the HBV precipitation-runoff model (Beldring et al., 2003) and is the major tool 401 

applied to assess hydrological responses to climate change in Norway. The model calculates the water balance for 1 x 1 km 402 

grid cells at a daily time step covering the entire mainland surface area of Norway and upstream areas in Finland and Sweden 403 

contributing to streamflow in Norwegian catchments. Each grid cell includes one soil type and up to five land cover types. 404 

DistHBV has components for accumulation, sub-grid scale distribution and ablation of snow, interception storage, sub-grid 405 

scale distribution of soil moisture storage, evapotranspiration, groundwater storage and runoff response, lake evaporation and 406 

glacier mass balance. The newly implemented Penman-Monteith method and the prescribed parameterizations are presented 407 

in Huang et al. (2019) and Erlandsen et al. (2021).  408 

As for other conceptual hydrological models, calibration is necessary to adjust the DistHBV parameters to improve the model 409 

performance of reproducing observed discharge, due to the absence of directly measured catchment characteristics, natural 410 

variability and the non-linearity of the processes involved. Since all parameters to calculate potential evaporation are prescribed 411 
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in the Penman-Monteith equation, the calibration parameters are mainly associated with lake, subsurface and snow processes. 412 

There are ten main calibration parameters (Table 3), of which three are land use specific and six are soil-specific, resulting in 413 

a total of 44 parameters. 414 

Table 3: list of calibration parameters. Note that the parameters in the landuse and soil categories vary across land use and soil 415 

types, respectively.  416 

 417 

The model was calibrated against discharges at 85 gauges (Fig. 1) from 2000 to 2007 using the parameter estimation routine 418 

PEST (Doherty and Skahill, 2006) and a multi-criteria calibration approach (Huang et al., 2019). The multi-criteria include the 419 

Nash and Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), the bias in water balance (BIAS) and the volume bias in the 420 

high-flow segment of the flow duration curve (ΔFHV, 0 – 0.02 flow exceedance probabilities) (Yilmaz et al., 2008). Since 421 

PEST minimizes the difference between the criteria results and their ideal values (1 for NSE and 0 for biases), the calibration 422 

objective function θ containing the three criteria at multiple gauges can be formulated as Eq. 2.  423 

𝜃 =  𝑊𝑁𝑆𝐸 ∗ ∑ (1 − 𝑁𝑆𝐸𝑖)
2𝑛

𝑖=1 + 𝑊𝐵𝐼𝐴𝑆 ∗ ∑ (𝐵𝐼𝐴𝑆𝑖)2𝑛
𝑖=1 + 𝑊∆𝐹𝐻𝑉 ∗ ∑ (∆𝐹𝐻𝑉𝑖)2𝑛

𝑖=1                                       (2) 424 

where 𝑊 are weights for each criterion and 𝑛 = 85, the number of calibration catchments. 𝑊𝑁𝑆𝐸 equals to 8 and 𝑊𝐵𝐼𝐴𝑆 and 425 

𝑊∆𝐹𝐻𝑉 equal to 1 to achieve a good calibration performance.  426 

Five PEST runs were carried out with different initial parameter values and only the parameter set giving the best model 427 

performance was selected for model validation. The model was validated against the discharge of the 85 calibration stations 428 

and additional 38 gauging stations from 2008 to 2014 to evaluate the temporal and spatial transferability of the model, 429 

respectively. Finally, long-term model performance is assessed based on the discharge of all 123 gauges from 1981 to 2014. 430 

Figure 6 shows the calibration and validation results in terms of NSE and BIAS. During the calibration period, about 50% and 431 

29% of the catchments show good (NSE>0.65 and |BIAS|<0.1) and satisfactory (0.65>NSE>0.55 and 0.1<|BIAS|<0.15) results 432 

(Moriasi et al., 2007), respectively. The model generally underestimates discharge with the median bias of -5%, mainly due to 433 

underestimation of precipitation in seNorge2018 v20.05 data. The model performs similarly in terms of median NSE in the 434 
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validation period for the 85 gauging stations, but underestimates the discharge for about 75% of the 38 gauges. Nevertheless, 435 

the validation results for the whole historical period (1981–2014) are similar to the calibration results in terms of both NSE 436 

and BIAS, indicating a robust long-term model performance. 437 

 438 

Figure 6: DistHBV model performance in terms of NSE and BIAS for the 85 calibration catchments in the calibration period 2000 439 

– 2007 (Cali), for the 85 calibration catchments in the validation period 2008 – 2014 (Vali1), for the 38 validation catchments in the 440 

validation period 2008 – 2014 (Vali2) and for all 123 catchments in the period 1981–2014 (Vali3). 441 

 442 

6.2 DEW 443 

Distributed Element Water balance model (DEW) hydrological model (Beldring, 2008; Li et al., 2015) was used to calculate 444 

climate change impacts on glaciers and hydrological processes for 12 given glacier regions in Norway. This model differs 445 

from distHBV in the respect that it also calculates changes in glacier ice area, volume and surface elevation, and water balance. 446 

In addition, the model requires additional information as input, such as ice thickness and glacier area for grid cells with glaciers.  447 

DEW applies a simplified model called DeltaH (Huss et al., 2010) to describe the changes in glacier ice area, volume and 448 

surface elevation. The method simulates the impacts of ice movement that transports mass from the highest to the lowest areas 449 

of the glacier. Simulations without taking this redistribution of glacier ice into account will give incorrect estimates for both 450 

glacier changes and the water flow from the glacier. It is based on historically observed elevation changes of the glacier surface 451 

elevation and how these are distributed over the glacier area. The pattern of change is then used when simulating the 452 

development of glacier ice area, volume and surface elevation under climate scenarios by having the model redistribute mass 453 

over the glacier at the end of each mass balance year. Ice melt caused by negative mass balance results in diminishing of the 454 
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glacier ablation area. Simulations with more advanced, physically based glacier models that simulate the flow of ice in the 455 

glaciers would probably be more realistic but are more demanding to run and require much more input data than are not 456 

available for most glacier areas in Norway.  457 

Different from the DistHBV model, DEW was calibrated against observed daily streamflow and annual mass balance data for 458 

six out of the twelve regions. Within each of the six regions, one optimal model parameter set was determined for all glaciers 459 

and catchments. This strategy was chosen to avoid discontinuities in model results between or along catchment boundaries 460 

and ice divides. For the remaining six glacier regions where there were no streamflow data available, model parameters were 461 

transferred from the nearest glacier region with calibrated parameters. Fixed periods were not used for calibration and 462 

validation as in the case of DistHBV, because the availability of observed data varied both in time and space. It was a challenge 463 

to find both mass balance and streamflow time series of good quality at the same period, leading to limited time series available 464 

for model validation in some cases.  465 

Although the glacier module in DEW is more advanced than in DistHBV, DEW uses a temperature-based degree-day model 466 

to estimate potential evapotranspiration, and it uses only daily mean temperature and precipitation as forcing data. Snow and 467 

glacier ice melt were calculated using a degree-day model, with different degree-day factors for snow and ice.  468 

DEW was calibrated using the same parameter estimation routine (PEST) as used for distHBV. During model calibration, 469 

mean NSE value is 0.75 for daily discharge of 19 gauging stations downstream of the glaciers, and 0.72 for annual mass 470 

balance for six glaciers. The mean NSE value for daily discharge during model validation is 0.74. Figure 7 compares the 471 

observed and simulated discharge and mass balance for one of the best performing glacierized catchment (Engabreen) as an 472 

example. It shows that the model can well reproduce both monthly discharge and annual glacier mass balance with NSE larger 473 

than 0.7.  474 

 475 

Figure 7: The observed and simulated discharge (left) and annual mass balance (right) for the catchment Engabreen. 476 
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7 National climate projections 477 

7.1 Ensemble means and ranges 478 

There are 20 climate projections for mainland Norway at 1km spatial resolution with daily time steps under the RCP4.5 479 

scenario from the COR-BA-2025 dataset. Figure 8 shows 30-year running means of annual temperature and precipitation sums 480 

from 1971 to 2098 for Norway. There is a clear increase in temperatures visible in the mean and the whole ensemble. For 481 

precipitation, the ensemble mean is also increasing but the lower limit of the projection ensemble is showing a stable 482 

precipitation amount of about 1325 mm/year. The observed historical values are mostly within the simulated precipitation and 483 

temperature ensembles but are located at the lower end of the ensemble before the year 2000 and at the upper end afterwards, 484 

indicating that the RCP4.5 ensemble underestimates recent temperature and precipitation trends in Norway. 485 

 486 

Figure 8: Simulated 30-year running means of temperature (left) and precipitation (right) from the COR-BA-2025 ensemble of 20 487 

climate projections (10 GCM-RCM combinations x 2 bias-adjustment methods) for Norway under the RCP4.5 emission scenario.  488 

Looking at the spatial distribution of changes from the reference period 1991–2020 to the far future period 2071–2100 (Fig. 489 

9), a generally larger increase in temperatures towards the North is apparent, with about one to two °C in the southern and two 490 

to three °C in the northern half of Norway. Precipitation is increasing as well with exceptions of some isolated areas along the 491 

coast and in the mountains. Generally, the precipitation increases are small and below +12%. 492 
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 493 

Figure 9: COR-BA-2025 ensemble mean (left) changes in temperature (°C) and (right) relative changes in precipitation (%) in the 494 

scenario period 2071–2100 relative to the reference period 1991–2020 under the RCP4.5 scenario for mainland Norway. 495 

7.2 Effects of two bias-adjustment methods 496 

The effects of the two bias-adjustment methods on the preservation and altering of the seasonal climate change signals of the 497 

RCMs is shown in Fig. 5 and discussed in Section 5.3.2. Similarly, the two methods have different effects on the monthly 498 

climate change signal due to their design. While EQM is designed to preserve the monthly climate change signals, the 3DBC 499 

method is designed to provide spatial, temporal and inter-variable structures based on the reference data. However, as can be 500 

seen in Fig. 10 and 11, the shapes of the climatologies from EQM and 3DBC are similar and in agreement with the observed 501 

ones. As already seen for the seasonal changes (Fig. 5), precipitation and temperature changes in 3DBC are larger than in EQM 502 

in winter months (especially January and February) and smaller in spring and summer (April to June) for the far future period 503 

(2071–2100). For the near future (2041–2070), the difference in the changes from EQM and 3DBC are less systematic but 504 

3DBC shows a more pronounced increase in autumn precipitation than EQM (Fig, 11). For the current climate (1991–2020), 505 

the 3DBC method results in climatologies that are similar for all models and thus a small ensemble-spread compared to the 506 

EQM data. This is especially true for precipitation (Fig. 11). 507 
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 508 

Figure 10: 30-year mean monthly temperatures for Norway for different time periods using the EQM (left) and 3DBC (right) bias-509 

adjusted climate projections. 510 

 511 

Figure 11: 30-year mean monthly precipitation amounts for Norway for different time periods using the EQM (left) and 3DBC 512 

(right) bias-adjusted climate projections.  513 

7.3 Uncertainty analysis 514 

Besides the two different bias-adjustment methods, the various GCM-RCM combinations contribute to uncertainties in the 515 

climate projections. In this section, we analyse the contribution of these two uncertainty sources using the ANOVA method 516 

(Vetter et al., 2017). Since each GCM is combined with different RCMs (see Section 4), we don’t distinguish the GCMs and 517 

RCMs as different uncertainty sources here, but consider the GCM-RCM combinations as one uncertainty source. The two 518 

bias-adjustment methods are considered the second uncertainty source. 519 
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Since our implementation of 3DBC conserves the annual changes from EQM, the annual fraction of variance from the ANOVA 520 

analysis (Fig. 12 and 13) is solely dependent on the GCM-RCM combination. On a seasonal scale, the largest contribution to 521 

temperature uncertainties still comes from the GCM-RCM combinations. However, for spring and autumn the bias-adjustment 522 

contribution can be of similar size, especially in the near future projections. Interactions between the two uncertainty sources 523 

are generally small. 524 

For precipitation, the contribution to the overall uncertainty from the bias-adjustment methods is larger than the contribution 525 

from the climate models for spring and autumn in the near future. Also for the other two seasons, the different contributions 526 

are of similar size for the near future. Interestingly, for the far future, the contribution from the climate models is clearly larger 527 

than the contribution from the bias-adjustment methods for all seasons. For precipitation, the interactions are larger than for 528 

temperature and can reach magnitudes similar to the single contributions. 529 

 530 

Figure 12: the fraction of variance in projected temperature changes explained by bias-adjustment methods (BA), GCM-RCM 531 

combinations and their interactions for the near-future period (2041–2070, left) and far-future period (2071–2100, right). 532 
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533 

Figure 13: the fraction of variance in projected precipitation changes explained by bias-adjusted methods (BA), GCM-RCM 534 

combinations and their interactions for the near-future period (2041–2070, left) and far-future period (2071–2100, right). 535 
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8 National hydrological projections 536 

8.1 Ensemble means and ranges 537 

 538 

Figure 14: Simulated 30-year running means of annual runoff, evaporation (ET), mean snow water equivalent (SWE) and mean soil 539 

moisture (SM) driven by the ensemble of 20 climate projections (10 GCM-RCMs x 2 bias correction methods) under the RCP4.5 540 

scenario. The black line is the simulated water components driven by the observed forcing data.  541 

There are 20 hydrological projections for mainland Norway at 1km spatial resolution with daily time steps under the RCP4.5 542 

scenario from the distHBV-COR-BA-2025 dataset. Figure 14 shows the projected annual sum/mean of these variables from 543 

1971 to 2098 for mainland Norway. Both the ensemble means of runoff and evaporation have an increasing trend while the 544 

ensemble means of snow water equivalent and soil moisture trend to decrease towards the end of this century. The simulated 545 

runoff, evaporation, and soil moisture driven by the seNorge forcing data (black lines) are generally within the boundary of 546 

the 20 simulations in the historical period, and they have a good agreement with the ensemble mean after the year 2000, 547 

indicating good estimates of these variables driven by the bias-adjusted climate projections. However, all snow water 548 

equivalent simulations are generally underestimated compared with the simulated snow water equivalent driven by the seNorge 549 
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data, indicating that snow generation is not well reproduced. It is mainly due to inaccurate inter-variable, spatial and temporal 550 

dependence between the bias-adjusted atmospheric variables when only the EQM method is used (see section 8.2).  551 

Figure 15 shows the spatial distribution of the ensemble mean changes in the last scenario period (2071–2100) relative to the 552 

reference period (1991–2020). In general, the increasing changes in runoff are dominant in the whole country, except glacier 553 

retreat areas around the glaciers and the coastal areas in the northern part of Norway. The increasing changes are minor (<5%) 554 

or moderate (5–10%) in most parts of the country and strong increase in runoff (> 10%) occurs mainly in the glacier areas, 555 

lakes and rivers as well as some northernmost areas. Due to the warmer and wetter climate in the future, evaporation is 556 

projected to increase in the whole country, especially in western and central Norway. In contrast, the annual mean snow water 557 

equivalent will decrease in the whole country in the far future, with a strong decrease (<-75%) along the coast. Note that snow 558 

volumes along the coast of Southern Norway are small in today’s climate. The absolute decrease in annual mean snow water 559 

equivalent is not stronger along the coast than mountainous areas. Soil moisture will decrease in most parts of the country due 560 

to the increase in evaporation, and moderate to strong decreases (<-5%) are mainly found in some southern areas and the 561 

coastal regions in the north. 562 
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 563 

Figure 15: ensemble mean changes (%) in annual runoff (a), evaporation (ET) (b), snow water equivalent (SWE) (c) and soil moisture 564 

(SM) (d) in the scenario period 2071–2100 relative to the reference period 1991–2020 under the RCP4.5 scenario for mainland 565 

Norway. 566 

8.2 Effects of the two bias-adjustment methods  567 

In this section, we provide a general overview of the effects of the bias-adjustment methods on hydrological projections. Figure 568 

16 shows the seasonal relative changes in runoff including all 20 projections, 10 projections using the EQM bias-adjustment 569 
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method and 10 projections using the 3DBC method, respectively. The results show that there is a neglectable difference in 570 

annual changes between the bias-adjustment methods. However, the bias-adjustment methods lead to different seasonal runoff 571 

changes and their effects vary in scenario periods and seasons. In the near future, the largest difference in the ensemble median 572 

changes between the bias-adjustment methods is found in autumn (ca. 13%), followed by the difference in spring (ca. 8%), 573 

winter (ca. 5%) and summer (ca. 3%). The 3DBC method leads to higher runoff changes in winter and autumn, but lower 574 

runoff changes in spring and summer than the EQM method. As a result, the two methods lead to similar changes in annual 575 

changes. In the far future, the bias-adjustment methods mainly affect the runoff changes in winter and spring, resulting in a 576 

difference in median changes of 12% in winter and 5% in spring. There is almost no difference in median runoff changes 577 

between the methods in summer and autumn. These results indicate that the two bias-adjusted methods mainly affect the snow 578 

accumulation and melt processes, which occur in autumn, winter and spring in the near future and in winter and spring in the 579 

far future. In addition, 3DBC always leads to higher runoff in winter and lower runoff in spring than EQM in both scenario 580 

periods. 581 

 582 

Figure 16: relative changes in runoff for different seasons in the scenario periods 2041–2070 (left) and 2071–2100 (right) relative to 583 

the reference period 1991–2020 under the RCP4.5 scenario for mainland Norway. 584 

 585 
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 586 

Figure 17: Simulated monthly snow water equivalent (SWE) for mainland Norway using the EQM (left) and 3DBC (right) bias-587 

adjusted climate projections. Black line: the simulated SWE using observed forcing data in 1991–2020. Blue, yellow and red dash 588 

lines: the ensemble mean of simulated SWE in different periods, while the blue, yellow and red areas include the ensemble of 10 589 

projections. 590 

In order to illustrate the effects of the two bias-adjustment methods on snow processes, we compared the monthly snow water 591 

equivalent in the historical and scenario periods driven by different bias-adjusted projections as well as the ones driven by the 592 

observed forcing data (Fig. 17). In the historical period, the ensemble mean of monthly snow water equivalent driven by the 593 

3DBC bias-adjusted projections agrees well with the simulated one driven by the observed forcing data. The EQM bias-594 

adjusted simulations generally lead to underestimation of monthly snow water equivalent, especially in March and April, 595 

similar to the findings by Meyer et al. (2019). In addition, the historical snow simulations using the EQM method vary 596 

substantially between climate models, while all bias-adjusted climate projections using the 3DBC method lead to similar 597 

monthly SWE, indicating more robust snow projections in the historical period using the 3DBC method than the EQM method. 598 

The two bias-adjusted methods also affect the projected changes in snow water equivalent in the scenario periods, especially 599 

in the near future. The ensemble mean of monthly snow projections using the 3DBC methods show average decreases of about 600 

44 and 55 mm/month in the near and far future periods relative to the reference period respectively, while the ensemble mean 601 

using the EQM method decreases by 33 and 50 mm/month on average in the near and far future periods, respectively. It is due 602 

to higher snow water equivalent in the historical period and lower snow water equivalent in the near future using the 3DBC 603 

bias-adjusted projections than those using the EQM projections. However, the differences in snow water equivalent between 604 

the near and far-future periods are smaller using the 3DBC than the EQM method, leading to closer agreement on snow water 605 

equivalent changes in the far future between the two methods. The uncertainty bounds of snow projections using the 3DBC 606 
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method are still smaller than the uncertainty bounds using the EQM method in both future periods, but the differences in 607 

uncertainty bounds between the two methods is less substantial than the ones in the historical period.  608 

 609 

Figure 18: Simulated monthly runoff for mainland Norway using the EQM and 3DBC bias-adjusted climate projections. Black line: 610 

the simulated runoff using observed forcing data in 1991–2020. Blue, yellow and red dash lines: the ensemble mean of simulated 611 

runoff in different periods, while the blue, yellow and red areas include the ensemble of 10 projections. 612 

Partly due to different snow simulations, the monthly runoff projections also differ between the two bias-adjustment methods 613 

(Fig. 18). In the historical period, the simulated runoff using the 3DBC bias-adjusted climate simulations also agrees well with 614 

the simulated runoff using observed forcing data, while the simulations using the EQM bias-adjusted climate simulations 615 

underestimate runoff from June to July that is generated by snow melt, mainly due to less snow storage in winter and spring 616 

(Fig. 17). There is also an overestimate of runoff from October to November using the EQM bias-adjusted climate simulations, 617 

indicating that other hydrological processes besides snow are also affected by the inaccurate spatial and temporal correlations 618 

of climate variables. Similarly, the runoff simulations using the EQM bias-adjusted climate projections have larger uncertainty 619 

bounds than the ones using the 3DBC projections. 620 

In the future periods, the runoff projections using the 3DBC method show larger increase and decrease in monthly changes 621 

relative to the historical period than using the EQM ones. In addition, the 3DBC bias-adjusted climate projections lead to 622 

higher runoff in autumn in the near-future than in the far-future while the EQM projections show contradicting changes. 623 

Different from the snow projection uncertainty, the runoff uncertainty using the 3DBC method is not always smaller than the 624 

one using the EQM method in all months. In addition, the large runoff uncertainty in the historical and future periods does not 625 

lead to large uncertainty of runoff changes. As shown in Fig. 16, the uncertainty bounds of runoff changes using the 3DBC 626 

method is not substantially larger than the uncertainty of changes using the EQM method.  627 
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8.3 Uncertainty analysis 628 

 629 

Figure 19: the fraction of variance in runoff change projections explained by bias-adjustment methods (BA), GCM-RCM 630 

combinations and their interactions for the near-future period (2041-2070) (left) and far-future period (2071-2100). 631 

Similar to temperature and precipitation, we assessed the contribution of the two bias-adjustment methods and GCM-RCM 632 

combinations to the uncertainty in the runoff projections. Figure 19 shows the fraction of variance from the ANOVA analysis 633 

for the GCM-RCM combinations, bias-adjustment methods and their interactions for the two future periods. For both periods, 634 

it is obvious that the climate model combinations contribute to the majority of the annual runoff change variance (> 90%). 635 

However, the bias-adjustment methods play important roles in the seasonal runoff changes, especially in spring and autumn in 636 

the near future and in the winter and spring in the far future, explaining more than 50% of the runoff change variance. For 637 

summer, the climate model combinations are always the major uncertainty source, explaining more than 50% of the total runoff 638 

change variance. These results highlight the effects of bias-adjustment methods on seasonal runoff change projections.  639 

9 Discussion 640 

9.1 Limitations of the methodology 641 

In this study, we present the whole modelling chain that produces the updated national ensembles of climate and hydrological 642 

projections for the new Climate in Norway report CiN-2025. This modelling chain includes selection of emission scenarios 643 

and climate models, downscaling and bias-adjustment methods and hydrological models. Although we have made a number 644 
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of substantial improvements in each component of the modelling chain, there are still limitations and weaknesses in the 645 

methodology, which require further development for future climate impact assessments. 646 

The first component in the modelling chain is to select appropriate emission scenarios and climate projections from a large 647 

ensemble of GCM and RCM outputs manageable throughout the complete chain. As a national climate assessment report 648 

following the sixth IPCC report, it would have been ideal to apply the most updated emission scenarios (i.e., the SSPs) and the 649 

corresponding climate projections. However, due to the long time needed to make the newest RCM results available within 650 

the CORDEX framework and the time limit of the national report, we had to apply the climate projections corresponding to 651 

the fifth IPCC report for the low- and median emission scenarios (RCP scenarios). Complements of the national climate 652 

projections for SSP emission scenarios are expected in the future to provide up-to-date knowledge on climate change impacts. 653 

Since the EURO-CORDEX ensemble for the RCP scenarios is now much larger than for CiN-2015, the climate projections 654 

for CiN-2025 are more representative of the full range of climate changes ensembles. However, the restriction to ten models 655 

per scenario stemming from the complete modelling chain still partly limits the representativeness of the full possible outcome 656 

and model variability. In CiN-2025, this limitation is taken into account for temperature and precipitation using empirical-657 

statistical downscaling results from the complete set of available GCMs, which is not shown in this study. Additionally, RCMs 658 

are still subject to general limitations of model simplifications, such as internal parameterizations and spatial resolution. 659 

Further, some technical limitations remain in the RCM outputs, for example, some models provide outputs for 360 days per 660 

year, no leap year days or start in 1970 and end in 2098. This brings challenges for impact models and requires pre-processing 661 

before bias-adjustment. In addition, the historical period simulated by the RCMs does not cover the current standard normal 662 

period (1991–2020). This is a drawback since it is easier for the general public to compare the climate change signals with 663 

respect to the climate normal than other non-standard periods (e.g., 1976–2005). Although the use of the first few years from 664 

the scenario projections as reference period is not optimal, and the choice of the reference period can lead to different climate 665 

changes signals (Liersch et al., 2020), the use of the most recent standard normal period improves the public acceptance and 666 

understandability substantially, which is most important for the target users of a national report such as CiN-2025. 667 

As the second component of the modelling chain, downscaling and bias-adjustment methods allow presenting projected climate 668 

and hydrological changes at a spatial resolution of 1x1 km for the complex topography of Norway. Providing such high 669 

resolution data needs high computational costs and makes it challenging to test and apply a large number of bias-adjustment 670 

methods. Hence, we only selected EQM as the bias-adjustment method as it is robust for different climatological regimes and 671 

well established. The 3DBC method is further applied on the EQM bias-adjusted variables to improve the inter-variable, spatial 672 

and temporal dependencies. This multivariate bias-adjustment method indeed improves the hydrological projections, 673 

especially for snow simulations, and reduces the uncertainty range, especially in the reference period. However, the 3DBC 674 

method (Section 5.2) leads to different climate change signals compared to the original RCM signals on sub-annual scales 675 
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because it imposes temporal dependency structures on the future projections similar to the ones from the reference datasets. 676 

This may be considered a weakness of the approach and more evaluation and development of multivariate bias-adjustment 677 

methods are required to further improve the existing methods. As discussed in François et al. (2020), the choice of method 678 

may differ from case to case, depending on which statistical properties from the RCMs need to be preserved or corrected. 679 

Based on our findings, users of the bias-adjusted data may select the appropriate dataset depending on their needs, or simply 680 

consider the two methods being equal, resulting in a broader ensemble.  681 

Regarding hydrological models, both the potential evaporation module and glacier modelling have been improved compared 682 

to the model used in CiN-2015. The Penman-Monteith method substantially improves the spatial distribution of evaporation 683 

estimates under climate scenarios by considering more climate variables and representing different land cover types, while the 684 

dynamic glacier modelling by DEW successfully avoids unrealistically high runoff from the glacier retreat areas under a 685 

warming climate. However, the simulations of DistHBV may still suffer equifinality problems due to a large number of 686 

calibration parameters, which do not represent the physical characteristics of specific land use and soil types. In addition, we 687 

reclassify the soil types into five major groups in order to reduce the number of calibration parameters related to soil processes. 688 

This may lead to unreliable simulations for the areas where the soil condition is largely different from the major soil types. 689 

Therefore, both the calibration procedure and the spatial representation of soil physical characteristics are expected to improve 690 

in the future national applications. The emerging machine learning techniques have been successfully used to calibrate one 691 

distributed land surface model (Farahani et al., 2025), and they are expected to play more important roles in hydrological 692 

model calibrations. 693 

Last but not least, vegetation types and characteristics are static in our hydrological modelling under climate change scenarios, 694 

but the changes in vegetation characteristics are expected under a warming climate. Huang et al. (2025) assessed the effects of 695 

forest growth and forest management on water resources in six Norwegian catchments under the RCP2.6 and RCP4.5 emission 696 

scenarios. They found that forest growth would offset the increase in runoff in the catchments, where the deciduous forest is 697 

dominant. It implies that the runoff in the deciduous forest areas, especially in North Norway, may be overestimated in our 698 

present runoff projections. For the next generation CiN report, the land use and vegetation change scenarios should be included 699 

in the hydrological modelling if such scenarios are available. 700 

9.2 Application 701 

Despite the limitations mentioned above, the COR-BA-2025 and distHBV-COR-BA-2025 datasets generated by the presented 702 

modelling chain provide the most updated, comprehensive and detailed hydrometeorological projections for mainland Norway. 703 

These national projections serve as the scientific basis for research on climate change impacts in Norway. The gridded 704 

hydrometeorological projections from CiN-2015 have already been used to derive new indices for specific application, e.g. 705 

snow-dependent tourism (Kuya et al., 2024; Mayer et al., 2023), reindeer husbandry (Hanssen-Bauer et al., 2022), frost decay 706 
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exposure on building projects (Gaarder et al., 2024) and road maintenance (Nilsen et al., 2021). In addition to impact modellers, 707 

who represent an advanced user group, NCCS aims at providing tailored information for practical climate adaptation. Products 708 

derived from the national projections have also been widely used in local planning, mainly because government guidelines 709 

(Norwegian Government, 2024) required municipalities to take climate change into account in planning. Climate factsheets 710 

(Hisdal et al., 2021) provided the most relevant information to guide the climate adaptation work, and were pointed out as a 711 

core reference in government guidelines. See Nilsen et al. (2022) for an overview of the steps from climate model output to 712 

actionable climate information.  713 

Besides the possibility to update existing applications that used the gridded dataset from CiN-2015, COR-BA-2025 and 714 

distHBV-COR-BA-2025 provide additional variables, such as wind speed, pressure, evaporation, radiation and relative 715 

humidity. This improves the utility of the dataset for e.g., ecological modelling (see Pirk et al., 2023 for an example). It is 716 

expected that the new dataset will facilitate use in an even wider range of applications in the coming years, for climate change 717 

impacts on e.g., glaciers, drought, landslides and water availability. Further work will involve user groups such as municipal 718 

planners to co-create climate services based on the hydrometeorological projections presented.  719 

Finally, we should note that the gridded datasets distHBV-COR-BA-2025 are not designed to use for flood indices, or climate 720 

change allowances for floods because distHBV was calibrated against many catchments simultaneously. Instead, the outputs 721 

from specific flood models should be used (Lawrence, 2020; Carr et al., 2023). The flood models include two lumped 722 

hydrological models and were calibrated against observed discharges for each catchment separately. Hence, the flood models 723 

produce more reliable estimates of high (and low) flow for specific catchments. 724 

10 Conclusions 725 

In this study, we present the whole modelling chain behind the production of updated national ensembles of climate and 726 

hydrological projections for the official “Climate in Norway” assessment report. We also provide insight into the 727 

hydrometeorological projections, which we termed COR-BA-2025 (standing for CORDEX-Bias Adjusted, updated in 2025) 728 

for climate projections and distHBV-COR-BA-2025 for hydrological projections, and analyse their uncertainties. The 729 

modelling chain (Fig. 2) includes the selection of GCM-RCM combinations for Norway from a large ensemble of EURO-730 

CORDEX simulations, the application of two bias-adjustment methods and distributed hydrological modelling including a 731 

physically-based potential evaporation approach and a dynamic glacier model. Compared to the previous national assessment 732 

report, the new climate projections are considered more representative for Norway due to a larger ensemble of EURO-733 

CORDEX simulations taken into account and a systematic analysis of the projections. 734 

A multivariate bias-adjustment method has been applied for the first time over the whole of Norway for the complete 735 

atmospheric dataset consisting of nine variables. This new method leads to more consistent data in space, time and between 736 
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variables, and to more robust hydrological simulations than the univariate empirical quantile mapping method (especially for 737 

snow and in the reference period), but it does not preserve climate change signals on a sub-annual scale. However, the 738 

uncertainty ranges of runoff change projections are not significantly different between the two bias-adjustment methods, 739 

especially at the annual scale. An uncertainty analysis shows that the climate projections are the major source of uncertainty 740 

for annual runoff change, while the selection of the bias-adjustment method plays an important role on seasonal changes. 741 

Despite the advancement in the presented methodologies and modelling chain, there is still room for further improvement in 742 

future climate impact assessment studies. Currently we foresee that additional emission scenarios and GCM-RCM 743 

combinations from the EURO-CORDEX initiative will be evaluated and the bias-adjustment methods will be further developed 744 

to overcome the current limitations. In addition, the calibration procedure and the calibration parameters in the hydrological 745 

modelling will be further improved using advanced machine learning techniques. If possible, the land use and vegetation 746 

changes scenarios should also be considered in hydrological modelling. 747 

The methodological description provided here serves as core knowledge for any further application of the gridded products, 748 

which are expected to be used in a wide range of climate impact assessments and development of climate adaptation strategies 749 

in Norway. We have thrived to meet the FAIR principles (Wilkinson et al., 2016) for data management. Thus, the complete 750 

COR-BA-2025 and distHBV-COR-BA-2025 datasets (Wong et al. 2025) are findable and accessible through the Arctic Data 751 

Centre (adc.met.no) at https://doi.org/10.21343/0k90-6w67. The data is stored in NetCDF format following the attribute 752 

convention for data discovery (ACDD version 1-3, https://wiki.esipfed.org/Attribute_Convention_for_Data_Discovery_1-3) 753 

and the climate and forecast metadata conventions (CF version 1.10, Eaton et al., 2022). The code and data are reusable, being 754 

open source with non-restrictive licenses. 755 

Code availability  756 

The code of DistHBV is available at https://doi.org/10.5281/zenodo.17531118 (Beldring, 2025a) 757 

The code of DEW is available at https://doi.org/10.5281/zenodo.17530242, (Beldring, 2025b) 758 

The R source code of the 3DBC implementation used in this work is available at https://doi.org/10.5281/zenodo.15260334 759 

(Dobler, 2025). 760 

EQM implementation used the functions fitQmapQUANT and doQmapQUANT from R package qmap which is available at 761 

https://doi.org/10.32614/CRAN.package.qmap (Gudmundsson, 2025). 762 
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The COR-BA-2025 and distHBV-COR-BA-2025 bias-adjusted daily high-resolution climate and hydrological projections 764 
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The reference datasets used in the modelling chain are available at https://doi.org/10.21343/gbq0-4t97 (Huang et al., 2025). 767 

Author contribution  768 

SM, SLS, TL, WKW and AD performed the analysis of climate model selections and collected the RCM data. WKW and AD 769 

designed the bias-adjustment experiments and methods and carried them out. IH modified the model code DistHBV and IH 770 

and SH performed the simulations. SB and KM developed the model code DEW, designed the experiments of DEW and GR 771 

performed the simulations. SH prepared the manuscript with contributions from all co-authors. AVD, HOH, IBN and SJB 772 

coordinated the whole project.  773 

Competing interests  774 

The authors declare that they have no conflict of interest. 775 

Acknowledgement 776 

We acknowledge the World Climate Research Programme, the CORDEX Science Advisory Team (SAT) - coordinating body 777 

of CORDEX, and the Working Group on Coupled Modelling (WGCM) - responsible panel for CMIP5 and CMIP6. We thank 778 

the CORDEX climate modeling groups (listed in Table 1) for producing and making available their model output, CMIP5 for 779 

providing the driving data, the Earth System Grid Federation (ESGF) for providing access, and the multiple funding agencies 780 

who support CORDEX, CMIP and ESGF. 781 

Financial support  782 

This article was funded by the Norwegian Centre for Climate Services, and thus supported by the Norwegian Environment 783 

Agency and the Ministry of Climate and Environment in addition to in-kind contributions from the Norwegian Water 784 

Resources and Energy Directorate, NORCE and the Norwegian Meteorological Institute. 785 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

40 

 

 

References 786 

Ahlstrøm, A., Bjørkelo, K., and Frydenlund, J.: AR5 klassifikasjonssystem - klassifikasjon av arealressurser, Skog og 787 

landskap, rapport nr. 6/2014, 38 pp. http://hdl.handle.net/11250/2440173, 2014. 788 

Alifu, H., Hirabayashi, Y., Imada, Y., and Shiogama, H.: Enhancement of river flooding due to global warming, Sci Rep, 12, 789 

20687, https://doi.org/10.1038/s41598-022-25182-6, 2022. 790 

Andreassen, L. M., Huss, M., Melvold, K., Elvehøy, H. og Winsvold, S. H.:. Ice thickness measurements and volume 791 

estimates for glaciers in Norway. Journal of Glaciology, 61(228), 763-775. https://doi.org/10.3189/2015JoG14J161, 2015. 792 

Ayar, P. V., Vrac, M., Bastin, S., Carreau, J., Déqué, M., and Gallardo, C.: Intercomparison of statistical and dynamical 793 

downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations, Clim Dyn, 46, 794 

1301–1329, https://doi.org/10.1007/s00382-015-2647-5, 2016. 795 

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-796 

Geiger climate classification maps at 1-km resolution, Sci Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. 797 

Beldring, S.: Distributed element water balance model system. Norwegian Water Resources and Energy Directorate, Report 798 

no. 4/2008, 40 pp. https://publikasjoner.nve.no/report/2008/report2008_04.pdf 799 

https://github.com/DistributedElementWaterModel/Version_3.03, 2008.  800 

Beldring, S.: nve-sbe/DistributedHbv: v_1 (v_1), Zenodo, https://doi.org/10.5281/zenodo.17531118, 2025a. 801 

Beldring, S.: DistributedElementWaterModel/Version_3.03: v_1 (v_1), Zenodo, https://doi.org/10.5281/zenodo.17530242, 802 

2025b. 803 

Beldring, S., Engeland, K., Holmqvist, E., Pedersen, A.I., Ruan, G., Veie, C.A. and Cabrol, J.: Avrenningskart for Norge 1991–804 

2020. NVE rapport nr. 36/2022, https://publikasjoner.nve.no/rapport/2022/rapport2022_36.pdf, 2022. 805 

Beldring, S., Engeland, K., Roald, L. A., Sælthun, N. R., and Voksø, A.: Estimation of parameters in a distributed precipitation-806 

runoff model for Norway, Hydrology and Earth System Sciences, 7, 304–316, https://doi.org/10.5194/hess-7-304-2003, 2003. 807 

Bergström, S.: The HBV model. V.P. Singh (Ed.), Computer Models of Watershed Hydrology, Water resources publications, 808 

pp. 443-476, 1995. 809 

Bremnes, J. B.: Probabilistic wind power forecasts using local quantile regression, Wind Energy, 7, 47–54, 810 

https://doi.org/10.1002/we.107, 2004. 811 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

41 

 

 

Bright, R. M., Eisner, S., Lund, M. T., Majasalmi, T., Myhre, G., and Astrup, R.: Inferring Surface Albedo Prediction Error 812 

Linked to Forest Structure at High Latitudes, Journal of Geophysical Research: Atmospheres, 123, 4910–4925, 813 

https://doi.org/10.1029/2018JD028293, 2018. 814 

Carr, S., Lawrence, D., Skaugen, T., and Wong, W. K.: Projected future changes in peak flows and implications for climate 815 

change allowances, NVE report nr. 26/2023, The Norwegian Water Resources and Energy Directorate, Oslo, Norway, 816 

https://publikasjoner.nve.no/rapport/2023/rapport2023_26.pdf, 2023. 817 

Cannon, A.J., Sobie, S.R. and Murdock, T.Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do 818 

Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28, 6938-6959, https://doi.org/10.1175/JCLI-D-819 

14-00754.1, 2015. 820 

CH2018: CH2018 – Climate Scenarios for Switzerland, Technical Report. National Centre for Climate Services, Zürich, 271 821 

pp, ISBN: 978-3-9525031-4-0, 2018. 822 

Chinita, M. J., Richardson, M., Teixeira, J., and Miranda, P. M. A.: Global mean frequency increases of daily and sub-daily 823 

heavy precipitation in ERA5, Environ. Res. Lett., 16, 074035, https://doi.org/10.1088/1748-9326/ac0caa, 2021. 824 

Dalelane, C., Früh, B., Steger, C., and Walter, A.: A Pragmatic Approach to Build a Reduced Regional Climate Projection 825 

Ensemble for Germany Using the EURO-CORDEX 8.5 Ensemble, https://doi.org/10.1175/JAMC-D-17-0141.1, 2018. 826 

DCCEEW: National Climate Risk Assessment: Methodology. Department of Climate Change, Energy, the Environment and 827 

Water, https://www.dcceew.gov.au/climate-change/publications/national-climate-risk-assessment, 2023. 828 

Dobler, A.: doblerone/3DBC: Version 2023 (Versjon v2023), Zenodo, https://doi.org/10.5281/zenodo.15260335, 2025. 829 

Dobrowski, S. Z., Abatzoglou, J. T., Greenberg, J. A., and Schladow, S. G.: How much influence does landscape-scale 830 

physiography have on air temperature in a mountain environment?, Agricultural and Forest Meteorology, 149, 1751–1758, 831 

https://doi.org/10.1016/j.agrformet.2009.06.006, 2009. 832 

Doherty, J. and Skahill, B. E.: An advanced regularization methodology for use in watershed model calibration, Journal of 833 

Hydrology, 327, 564–577, https://doi.org/10.1016/j.jhydrol.2005.11.058, 2006. 834 

Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, 835 

A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Wan Ibadullah, W. 836 

M., Bin Ibrahim, M. K. I., Khoshkam, M., Kruger, A., Kubota, H., Leng, T. W., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., 837 

McGree, S., Menne, M., de los Milagros Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J. D., Panthou, 838 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

42 

 

 

G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., 839 

Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, 840 

T., Vose, R., and Bin Hj Yussof, M. N.: Development of an Updated Global Land In Situ-Based Data Set of Temperature and 841 

Precipitation Extremes: HadEX3, Journal of Geophysical Research: Atmospheres, 125, e2019JD032263, 842 

https://doi.org/10.1029/2019JD032263, 2020. 843 

Dyrrdal, A.V., Bakke, S.J., Hanssen-Bauer, I., Mayer, S., Nilsen, I.B., Nilsen, J.E.Ø., Paasche, Ø., Saloranta, T., Årthun, M. 844 

[editors]: Klima i Norge – kunnskapsgrunnlag for klimatilpasning oppdatert i 2025 (“Climate in Norway – knowledge base 845 

for climate adaptation updated in 2025”), NCCS Report 1/2025, Norwegian Centre for Climate Services, Oslo, Norway. (In 846 

Norwegian.). https://doi.org/10.60839/4rgq-nn84, 2025. 847 

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron, J., Signell, R., Bentley, P., Rappa, G., Höck, H., Pamment, 848 

A., Juckes, M., Raspaud, M., Blower, J., Horne, R., Whiteaker, T., Blodgett, D., Zender, C., Lee, D., Hassell, D., Snow, A. D., 849 

Kölling, T., Allured, D., Jelenak, A. Soerensen, A. M., Gaultier, L., Herlédan, S.: NetCDF Climate and Forecast (CF) Metadata 850 

Conventions (1.10). CF Community. https://doi.org/10.5281/zenodo.14275561, 2022. 851 

EEA (European Environment Agency): Energy Performance of Buildings Directive. 852 

https://energy.ec.europa.eu/topics/energy-efficiency/energy-performance-buildings/energy-performance-buildings-853 

directive_en, last access: 19 August 2025. 854 

Erlandsen, H. B., Tallaksen, L. M., and Kristiansen, J.: Merits of novel high-resolution estimates and existing long-term 855 

estimates of humidity and incident radiation in a complex domain, Earth System Science Data, 11, 797–821, 856 

https://doi.org/10.5194/essd-11-797-2019, 2019. 857 

Erlandsen, H. B., Parding, K. M., Benestad, R., Mezghani, A., and Pontoppidan, M.: A Hybrid Downscaling Approach for 858 

Future Temperature and Precipitation Change, https://doi.org/10.1175/JAMC-D-20-0013.1, 2020. 859 

Erlandsen, H. B., Beldring, S., Eisner, S., Hisdal, H., Huang, S., and Tallaksen, L. M.: Constraining the HBV model for robust 860 

water balance assessments in a cold climate, Hydrology Research, 52, 356–372, https://doi.org/10.2166/nh.2021.132, 2021. 861 

Eum, H.-I., Gupta, A., and Dibike, Y.: Effects of univariate and multivariate statistical downscaling methods on climatic and 862 

hydrologic indicators for Alberta, Canada, Journal of Hydrology, 588, 125065, https://doi.org/10.1016/j.jhydrol.2020.125065, 863 

2020. 864 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

43 

 

 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled 865 

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 866 

9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. 867 

Farahani, M. A., Wood, A. W., Tang, G., and Mizukami, N.: Calibrating a large-domain land/hydrology process model in the 868 

age of AI: the SUMMA CAMELS experiments, EGUsphere, 1–35, https://doi.org/10.5194/egusphere-2025-38, 2025. 869 

Fischer, A. M., Strassmann, K. M., Croci-Maspoli, M., Hama, A. M., Knutti, R., Kotlarski, S., Schär, C., Schnadt Poberaj, C., 870 

Ban, N., Bavay, M., Beyerle, U., Bresch, D. N., Brönnimann, S., Burlando, P., Casanueva, A., Fatichi, S., Feigenwinter, I., 871 

Fischer, E. M., Hirschi, M., Liniger, M. A., Marty, C., Medhaug, I., Peleg, N., Pickl, M., Raible, C. C., Rajczak, J., Rössler, 872 

O., Scherrer, S. C., Schwierz, C., Seneviratne, S. I., Skelton, M., Sørland, S. L., Spirig, C., Tschurr, F., Zeder, J., and Zubler, 873 

E. M.: Climate Scenarios for Switzerland CH2018 – Approach and Implications, Climate Services, 26, 100288, 874 

https://doi.org/10.1016/j.cliser.2022.100288, 2022. 875 

François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which 876 

benefits for which losses?, Earth System Dynamics, 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020. 877 

Franke, J.: Rainfall complexity in mountains, Nat. Clim. Chang., 14, 1223–1223, https://doi.org/10.1038/s41558-024-02209-878 

6, 2024. 879 

Frei, C., Christensen, J. H., De´que´, M., Jacob, D., Jones, R. G., and Vidale, P. L.: Daily precipitation statistics in regional 880 

climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108, 4124, 881 

https://doi.org/10.1029/2002JD002287, 2003. 882 

Gaarder, J.E., Tajet, H.T.T., Dobler, A., Hygen, H.O. and Kvande, T.: Future Climate Projections and Uncertainty Evaluations 883 

for Frost Decay Exposure Index in Norway. Buildings, 14(9), p.2873, https://doi.org/10.3390/buildings14092873, 2024 884 

Golding, N., Lambkin, K., Wilson, L., Troch, R. D., Fischer, A. M., Hygen, H. O., Hama, A. M., Dyrrdal, A. V., Jamsin, E., 885 

Termonia, P., and Hewitt, C.: Developing national frameworks for climate services: Experiences, challenges and learnings 886 

from across Europe, Climate Services, 37, 100530, https://doi.org/10.1016/j.cliser.2024.100530, 2025. 887 

Gjertsen, A.K. and Nilsen, J.E.: SAT-SKOG: Et skogkart basert på tolking av satellittbilder. Skog og landskap, rapport nr. 888 

23/2012, 54 pp, http://hdl.handle.net/11250/2453917 2012. 889 

Gu, G. and Adler, R. F.: Spatial Patterns of Global Precipitation Change and Variability during 1901–2010, 890 

https://doi.org/10.1175/JCLI-D-14-00201.1, 2015. 891 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

44 

 

 

Gudmundsson, L.: qmap: Statistical Transformations for Post-Processing Climate Model Output, version 1.0-6, 892 

https://doi.org/10.32614/CRAN.package.qmap, 2025. 893 

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to 894 

the station scale using statistical transformations &ndash; a comparison of methods, Hydrology and Earth System Sciences, 895 

16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. 896 

Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G., Koutroulis, A. G., Leonard, M., Liu, J., Müller 897 

Schmied, H., Papadimitriou, L., Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., and Zhao, F.: 898 

Globally observed trends in mean and extreme river flow attributed to climate change, Science, 371, 1159–1162, 899 

https://doi.org/10.1126/science.aba3996, 2021. 900 

Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, 901 

S., San Martín, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, 902 

J., Pórtoles, J., Räty, O., Räisänen, J., Hingray, B., Raynaud, D., Casado, M. J., Ramos, P., Zerenner, T., Turco, M., Bosshard, 903 

T., Štěpánek, P., Bartholy, J., Pongracz, R., Keller, D. E., Fischer, A. M., Cardoso, R. M., Soares, P. M. M., Czernecki, B.,  904 

and Pagé, C.: An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the 905 

VALUE perfect predictor cross-validation experiment, International Journal of Climatology, 39, 3750–3785, 906 

https://doi.org/10.1002/joc.5462, 2019. 907 

Hanssen-Bauer, I., Benestad, R.E., Lutz, J., Vikhamar-Schuler, D., Svyashchennikov, P. and Førland, E.J: Comparative 908 

Analyses of Local Historical and Future Climate Conditions Important for Reindeer Herding in Finnmark, Norway and the 909 

Yamal Nenets Autonomous Okrug, Russia. In: Mathiesen, S.D., Eira, I.M.G., Turi, E.I., Oskal, A., Pogodaev, M., Tonkopeeva, 910 

M. (eds) Reindeer Husbandry. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-17625-8_8, 2022 911 

Hanssen-Bauer,I., E.J.Førland, I.Haddeland, H.Hisdal, S.Mayer, A.Nesje, J.E.Ø.Nilsen, S.Sandven, A.B.Sandø, A.Sorteberg 912 

og B.Ådlandsvik, Klima i Norge 2100 – Kunnskapsgrunnlag for klimatilpasning oppdatert i 2015. Norsk Klimaservicesenter, 913 

NCCS Report 2/2015 203pp. ISSN: 2387-3027, 2015. 914 

Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change, Clim Dyn, 37, 915 

407–418, https://doi.org/10.1007/s00382-010-0810-6, 2011. 916 

Hisdal, H., Vikhamar-Schuler, D., Førland, E., and Nilsen, I. (2021). Klimaprofiler for fylker. (“Climate factsheets for 917 

counties”). NCCS Report 2/2021, Norwegian Centre for Climate Services, Oslo, Norway. (In Norwegian.). 918 

https://klimaservicesenter.no/kss/rapporter/rapporter-og-publikasjoner_2  919 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

45 

 

 

Huang, S., Eisner, S., Magnusson, J. O., Lussana, C., Yang, X., and Beldring, S.: Improvements of the spatially distributed 920 

hydrological modelling using the HBV model at 1 km resolution for Norway, Journal of Hydrology, 577, 123585, 921 

https://doi.org/10.1016/j.jhydrol.2019.03.051, 2019. 922 

Huang, S., Eisner, S., Haddeland, I., and Tadege Mengistu, Z.: Evaluation of two new-generation global soil databases for 923 

macro-scale hydrological modelling in Norway, Journal of Hydrology, 610, 127895, 924 

https://doi.org/10.1016/j.jhydrol.2022.127895, 2022. 925 

Huang, S., Haddeland, I., Lussana, C., Dobler, A., and Tveito, O.E.: Daily climate and hydrological reference data for Norway 926 

[Data set]. Dataset published 2025 via Norwegian Meteorological Institute, https://doi.org/10.21343/gbq0-4t97, 2025 927 

Hundecha, Y., Sunyer, M. A., Lawrence, D., Madsen, H., Willems, P., Bürger, G., Kriaučiūnienė, J., Loukas, A., Martinkova, 928 

M., Osuch, M., Vasiliades, L., von Christierson, B., Vormoor, K., and Yücel, I.: Inter-comparison of statistical downscaling 929 

methods for projection of extreme flow indices across Europe, Journal of Hydrology, 541, 1273–1286, 930 

https://doi.org/10.1016/j.jhydrol.2016.08.033, 2016. 931 

Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain hydrology: a new parameterization of glacier retreat, 932 

Hydrology and Earth System Sciences, 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010. 933 

IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report 934 

of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, 935 

N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, 936 

O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 937 

In press, doi:10.1017/9781009157896, 2021. 938 

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, 939 

G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., 940 

Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., 941 

Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., 942 

Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for 943 

European impact research, Reg Environ Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. 944 

Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., 945 

Cardoso, R. M., Casanueva, A., Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin, E. L., Dobler, A., 946 

Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M. A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-947 

Navarro, J. J., Alemán, J. J. G., Gutiérrez, C., Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S., Jiménez-948 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

46 

 

 

Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P., 949 

Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., 950 

Pietikäinen, J.-P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez, E., Sieck, K., Soares, P. M. M., 951 

Somot, S., Srnec, L., Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional 952 

climate downscaling over Europe: perspectives from the EURO-CORDEX community, Reg Environ Change, 20, 51, 953 

https://doi.org/10.1007/s10113-020-01606-9, 2020. 954 

Katragkou, E., Sobolowski, S.P., Teichmann, C., Solmon, F., Pavlidis, V., Rechid, D., Hoffmann, P., Fernández, J., Nikulin, 955 

G. and Jacob, D.: Delivering an improved framework for the new generation of CMIP6-driven EURO-CORDEX regional 956 

climate simulations. Bulletin of the American Meteorological Society, 105(6), pp.E962-E974, https://doi.org/10.1175/BAMS-957 

D-23-0131.1, 2024. 958 

Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S., Hattermann, F. F., Huang, S., Milly, P. C. D., 959 

Stoffel, M., Driessen, P. P. J., Matczak, P., Quevauviller, P., and Schellnhuber, H.-J.: Differences in flood hazard projections 960 

in Europe – their causes and consequences for decision making, Hydrological Sciences Journal, 62, 1–14, 961 

https://doi.org/10.1080/02626667.2016.1241398, 2017. 962 

Kuya, E. K., Hanssen-Bauer, I., Mayer, S., and Heiberg, H.: Projected changes of rain, sleet, and snowfall in Norway, Norsk 963 

Geografisk Tidsskrift - Norwegian Journal of Geography, 78, 73–87, https://doi.org/10.1080/00291951.2024.2360409, 2024. 964 

Lafferty, D. C. and Sriver, R. L.: Downscaling and bias-correction contribute considerable uncertainty to local climate 965 

projections in CMIP6, npj Clim Atmos Sci, 6, 158, https://doi.org/10.1038/s41612-023-00486-0, 2023. 966 

Lawrence, D.: Uncertainty introduced by flood frequency analysis in projections for changes in flood magnitudes under a 967 

future climate in Norway. Journal of Hydrology: Regional Studies 28:100675, https://doi.org/10.1016/j.ejrh.2020.100675, 968 

2020. 969 

Li, H., Beldring, S., Xu, C.-Y., Huss, M., Melvold, K., and Jain, S. K.: Integrating a glacier retreat model into a hydrological 970 

model – Case studies of three glacierised catchments in Norway and Himalayan region, Journal of Hydrology, 527, 656–667, 971 

https://doi.org/10.1016/j.jhydrol.2015.05.017, 2015. 972 

Li, L., Wang, B., Feng, P., Jägermeyr, J., Asseng, S., Müller, C., Macadam, I., Liu, D. L., Waters, C., Zhang, Y., He, Q., Shi, 973 

Y., Chen, S., Guo, X., Li, Y., He, J., Feng, H., Yang, G., Tian, H., and Yu, Q.: The optimization of model ensemble composition 974 

and size can enhance the robustness of crop yield projections, Commun Earth Environ, 4, 362, https://doi.org/10.1038/s43247-975 

023-01016-9, 2023. 976 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

47 

 

 

Lussana, C: seNorge observational gridded datasets, MET report 7-2020, https://www.met.no/publikasjoner/met-report/met-977 

report-2020/_/attachment/download/9f79d391-62d8-4fc1-a61a-978 

9f0e7f1de389:8c74ebf2118593aa75272e6aff416ce66f86e73f/MET-report-07-2020.pdf, 2020. 979 

Lussana, C., Tveito, O. E., Dobler, A., and Tunheim, K.: seNorge_2018, daily precipitation, and temperature datasets over 980 

Norway, Earth System Science Data, 11, 1531–1551, https://doi.org/10.5194/essd-11-1531-2019, 2019. 981 

Lutz, J., Hanssen-Bauer, I., Tveito, O. E. and Dobler, A.: Precipitation variability in Norway 1961–2020. MET-report 01-982 

2024, https://www.met.no/publikasjoner/met-report/_/attachment/download/f5ba4d69-dba2-4eb6-bed9-983 

0189178b5e7a:ba4f4974e503f9509d33f101efc40145b47a59e6/MET%20report%201%202024.pdf, 2024. 984 

Majasalmi, T., Eisner, S., Astrup, R., Fridman, J., and Bright, R. M.: An enhanced forest classification scheme for modeling 985 

vegetation–climate interactions based on national forest inventory data, Biogeosciences, 15, 399–412, 986 

https://doi.org/10.5194/bg-15-399-2018, 2018. 987 

Martinich, J. and Crimmins, A.: Climate damages and adaptation potential across diverse sectors of the United States, Nature 988 

Climate Change, 9, 397-404, 2019. 989 

Mayer, S., Khasandi Kuya, E., Antonsen, K., Abegg, B., and Hanssen-Bauer, I.: Warmer and wetter: Outlining climate services 990 

for snow-dependent tourism in Norway – The case of Lofoten, Climate Services, 32, 100405, 991 

https://doi.org/10.1016/j.cliser.2023.100405, 2023. 992 

McAfee, S. A.: Methodological differences in projected potential evapotranspiration, Climatic Change, 120, 915–930, 993 

https://doi.org/10.1007/s10584-013-0864-7, 2013. 994 

Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for Climate Research. Cambridge University 995 

Press, 347 pp, 2018. 996 

McSweeney, C. F., Jones, R. G., Lee, R. W., and Rowell, D. P.: Selecting CMIP5 GCMs for downscaling over multiple 997 

regions, Clim Dyn, 44, 3237–3260, https://doi.org/10.1007/s00382-014-2418-8, 2015. 998 

Mehrotra, R. and Sharma, A.: A Resampling Approach for Correcting Systematic Spatiotemporal Biases for Multiple Variables 999 

in a Changing Climate, Water Resources Research, 55, 754–770, https://doi.org/10.1029/2018WR023270, 2019. 1000 

Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., and Cannon, A. J.: Effects of univariate and multivariate bias correction 1001 

on hydrological impact projections in alpine catchments, Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-1002 

23-1339-2019, 2019. 1003 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

48 

 

 

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines 1004 

for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE, 50, 885–900, 1005 

https://doi.org/10.13031/2013.23153, 2007. 1006 

Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A. Ø., Lindskog, M., Midtbø, K. H., Andrae, U., Aspelien, T., Berggren, 1007 

L., Bjørge, D., Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., and Vignes, O.: AROME-MetCoOp: A Nordic 1008 

Convective-Scale Operational Weather Prediction Model, https://doi.org/10.1175/WAF-D-16-0099.1, 2017. 1009 

Nash, J.E. and Sutcliffe, J.V.: River flow forecasting through conceptual models part I -A discussion of principles, J Hydrol, 1010 

10, 282–290, 1970. 1011 

Nilsen, I. B., Hanssen-Bauer, I., Tveito, O. E., and Wong, W. K.: Projected changes in days with zero-crossings for Norway, 1012 

International Journal of Climatology, 41, 2173–2188, https://doi.org/10.1002/joc.6913, 2021. 1013 

Nilsen, I. B., Hanssen-Bauer, I., Dyrrdal, A. V., Hisdal, H., Lawrence, D., Haddeland, I., and Wong, W. K.: From Climate 1014 

Model Output to Actionable Climate Information in Norway, Front. Clim., 4, https://doi.org/10.3389/fclim.2022.866563, 1015 

2022. 1016 

Norwegian Government (2024). Statlige Planretningslinjer for klima- og energi. (“government guidelines on climate and 1017 

renergy”). Available online at: https://lovdata.no/dokument/SF/forskrift/2024-12-20-3359 (accessed December 06. October 1018 

2025). 1019 

Padrón, R. S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D. M., Mao, J., Peano, D., Krinner, G., Kim, H., 1020 

and Seneviratne, S. I.: Observed changes in dry-season water availability attributed to human-induced climate change, Nat. 1021 

Geosci., 13, 477–481, https://doi.org/10.1038/s41561-020-0594-1, 2020. 1022 

Peter, J., Vogel, E., Sharples, W., Bende-Michl, U., Wilson, L., Hope, P., Dowdy, A., Kociuba, G., Srikanthan, S., Duong, V. 1023 

C., Roussis, J., Matic, V., Khan, Z., Oke, A., Turner, M., Baron-Hay, S., Johnson, F., Mehrotra, R., Sharma, A., Thatcher, M., 1024 

Azarvinand, A., Thomas, S., Boschat, G., Donnelly, C., and Argent, R.: Continental-scale bias-corrected climate and 1025 

hydrological projections for Australia, Geoscientific Model Development, 17, 2755–2781, https://doi.org/10.5194/gmd-17-1026 

2755-2024, 2024. 1027 

Pirk, N., Aalstad, K., Yilmaz, Y. A., Vatne, A., Popp, A. L., Horvath, P., Bryn, A., Vollsnes, A. V., Westermann, S., Berntsen, 1028 

T. K., Stordal, F., and Tallaksen, L. M.: Snow–vegetation–atmosphere interactions in alpine tundra, Biogeosciences, 20, 2031–1029 

2047, https://doi.org/10.5194/bg-20-2031-2023, 2023. 1030 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

49 

 

 

Pourmokhtarian, A., Driscoll, C. T., Campbell, J. L., Hayhoe, K., and Stoner, A. M. K.: The effects of climate downscaling 1031 

technique and observational data set on modeled ecological responses, Ecological Applications, 26, 1321–1337, 1032 

https://doi.org/10.1890/15-0745, 2016. 1033 

Reistad, M., Øyvind Breivik, Haakenstad, H., Aarnes, O. J., Furevik, B. R., and Bidlot, J.-R.: A high‐resolution hindcast of 1034 

wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea, J. Geophys. Res., 116, 1035 

https://doi.org/10.1029/2010JC006402, 2011. 1036 

Reyniers, N., Zha, Q., Addor, N., Osborn, T. J., Forstenhäusler, N., and He, Y.: Two sets of bias-corrected regional UK Climate 1037 

Projections 2018 (UKCP18) of temperature, precipitation and potential evapotranspiration for Great Britain, Earth System 1038 

Science Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025, 2025. 1039 

Rössler, O., Fischer, A. M., Huebener, H., Maraun, D., Benestad, R. E., Christodoulides, P., Soares, P. M. M., Cardoso, R. M., 1040 

Pagé, C., Kanamaru, H., Kreienkamp, F., and Vlachogiannis, D.: Challenges to link climate change data provision and user 1041 

needs: Perspective from the COST-action VALUE, International Journal of Climatology, 39, 3704–3716, 1042 

https://doi.org/10.1002/joc.5060, 2019. 1043 

Statistics Norway: Land use and land cover – SSB, last accessed on 27.03.2025. 1044 

Schumacher, D.L., Singh, J., Hauser, M., Fischer, E.M., Wild, M. and Seneviratne, S.I.:. Exacerbated summer European 1045 

warming not captured by climate models neglecting long-term aerosol changes. Communications Earth & Environment, 5(1), 1046 

p.182, https://doi.org/10.1038/s43247-024-01332-8, 2024. 1047 

Tam, B., Bonsal, B., Zhang, X., Zhang, Q., and Rong, R.: Assessing Potential Evapotranspiration Methods in Future Drought 1048 

Projections across Canada, Atmosphere-Ocean, 62, 193–205, https://doi.org/10.1080/07055900.2023.2288632, 2024. 1049 

Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., and Wu, J.: Statistical downscaling and dynamical downscaling of regional 1050 

climate in China: Present climate evaluations and future climate projections, Journal of Geophysical Research: Atmospheres, 1051 

121, 2110–2129, https://doi.org/10.1002/2015JD023977, 2016. 1052 

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 1053 

93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. 1054 

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, 1055 

https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. 1056 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

50 

 

 

Thorarinsdottir, T. L., Gneiting, T., and Gissibl, N.: Using proper divergence functions to evaluate climate models. SIAM-1057 

ASA J. Uncertainty Quantif., 1, 522–534, https://doi.org/10.1137/130907550, 2013. 1058 

Tveito, O. E.: Norwegian standard climate normals 1991-2020 – the methodological approach, MET report 5 2021, 1059 

https://www.met.no/publikasjoner/met-report/met-report-2021/_/attachment/download/31bb0160-d8cf-4a2b-9646-1060 

4df6f5904059:3ac4fec6cf3fb7919aefe42db2b63ad8e8b9e6a6/METreport%2005_2021_New_Norwegian_standard_climate_1061 

normals_1991_2020-signert.pdf, 2021. 1062 

Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K., Coppola, E., Corre, L., van Meijgaard, E., 1063 

Nogherotto, R., Sandstad, M., Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J. M., Demory, M.-E., 1064 

Giorgi, F., Jacob, D., Jones, R. G., Keuler, K., Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann, J., 1065 

Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the Large EURO-1066 

CORDEX Regional Climate Model Ensemble, Journal of Geophysical Research: Atmospheres, 126, e2019JD032344, 1067 

https://doi.org/10.1029/2019JD032344, 2021. 1068 

Wang, X. and Liu, L.: The Impacts of Climate Change on the Hydrological Cycle and Water Resource Management, Water, 1069 

15, 2342, https://doi.org/10.3390/w15132342, 2023. 1070 

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous 1071 

adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrology and 1072 

Earth System Sciences, 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, 2015. 1073 

Wong, W.K., Dobler, A., Huang, S., Beldring, S., Melvold, K., Ruan, G.: Daily bias-adjusted climate (COR-BA-2025) and 1074 

hydrological (distHBV-COR-BA-2025) projections for Norway [Data set]. Dataset published 2025 via Norwegian 1075 

Meteorological Institute https://doi.org/10.21343/0k90-6w67, 2025 1076 

Wong, W.K., Haddeland, I., Lawrence, D., and Beldring, S.: Gridded 1x1 km climate and hydrological projections for Norway. 1077 

NVE Report No. 59, Norwegian Water Resources and Energy Directorate, Oslo, Norway, 2016. 1078 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model evaluation: Application to the 1079 

NWS distributed hydrologic model, Water Resources Research, 44, https://doi.org/10.1029/2007WR006716, 2008. 1080 

Yuan, Q., Thorarinsdottir, T. L., Beldring, S., Wong, W. K., Huang, S., and Xu, C.-Y.: New Approach for Bias Correction and 1081 

Stochastic Downscaling of Future Projections for Daily Mean Temperatures to a High-Resolution Grid, J. Appl. Meteorol. 1082 

Clim., 58, 2617–2632, https://doi.org/10.1175/JAMC-D-19-0086.1, 2019. 1083 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 

51 

 

 

Yuan Q., Thorarinsdottir T.L., Beldring S., Wong W.K., and Xu C.-Y.: Bridging the scale gap: obtaining high-resolution 1084 

stochastic simulations of gridded daily precipitation in a future climate, Hydrol. Earth Syst. Sci., 25 (9), pp. 5259-5275, 1085 

https://doi.org/10.5194/hess-25-5259-2021, 2021. 1086 

Zhang, L., Xu, Y., Meng, C., Li, X., Liu, H., and Wang, C.: Comparison of Statistical and Dynamic Downscaling Techniques 1087 

in Generating High-Resolution Temperatures in China from CMIP5 GCMs, https://doi.org/10.1175/JAMC-D-19-0048.1, 1088 

2020. 1089 

 1090 

https://doi.org/10.5194/egusphere-2025-5331
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.


