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Figure S1. Example of OGIVE Optimization (OGM) analysis output illustrating modelled vs measured
Cospectra amounting to a positive CO» flux (efflux). Cospectral Visual inspection of the cospectra can
be done as part of the OGM method and after Haar analysis, where cospectral comparison is the
summation of the molar concentration of dry air (cgs) and the covariance of vertical windspeed and the

CO: concentration (Cowr).



(mmolm2d™")

|
N
o
o

-400

»®

Sensible Heat Flux

CO, Flux

(-]

[

Py

@ EddyPro
@ OGM

) Q A 2 J X
R N N S

»*®

'

W <

0 >
B 8?7

Date

50\\% o N

w2

P

© Al ® £ 0 A N
RN LN R e

Figure S2. Comparison of two micrometeorological analysis techniques for CO> flux estimation over
Young Sound during the transition from sea ice breakup to open water from 16 July 2017 to 1 August
2017. The standard eddy covariance (EC) method implemented in EddyPro software (Version 7.0.6, LI-
COR Inc., 2019), and the ogive optimization method (OGM) described by Sievers et al. (2015).
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Figure S3. CO: (a) Sensible heat (b) and Latent heat (c) fluxes compared with their calculated
uncertainties. Uncertainties were typically low compared with flux magnitudes demonstrating a good
signal to noise ratio for those fluxes which were approved by OGM.
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Figure S4. DIC (a) and TA (b) vertical profiles taken during July 2017.
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Figure SS. Calculated pH profiles based on measured carbonate chemistry parameters (dissolved
inorganic carbon [DIC] and total alkalinity [TA]). The results illustrate that during both ice cover and
sea ice breakup, surface water pH fluctuates significantly, influencing the distribution of inorganic
carbon species (CO2, HCO3", COs*) and consequently pCOs.
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Figure S6. CO; fluxes (a) measured CO; concentrations (b) and Relative humidity (¢) during the spring
seasonal transition in Young Sound 2017. Elevated CO> concentrations were observed at high relative
humidities (RH). However similar periods of high RH showed low CO> concentrations, indicating CO»
measurements measured on the open-path NDIR sensor were not continuously biased by water-vapor.

Indeed, some of the outgassing events, depicted as positive CO» fluxes occurred at both lower CO»
concentrations and lower RH.
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Figure S7. The relationship between CO, fluxes and Latent Heat (a) or Sensible heat (b) fluxes during

Latent Heat Flux (W m™)

the study period.
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