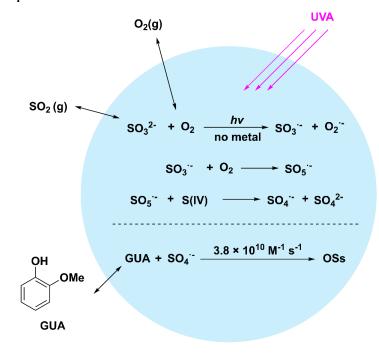


- 1 Rapid Secondary Organic Aerosol Formation at the Air–Water Interface from
- 2 Methoxyphenols in Wildfire Emissions: UVA-Driven S(IV) Photooxidation
- 3 to Organosulfates
- 4 Authors: Baohua Cai, ¹ Yuanlong Huang, ² Wenqing Jiang, ³ Yanchen Li, ¹ Yali Li, ¹ Jinghao Zhai, ^{1,4} Yaling
- 5 Zeng, ^{1,4} Jianhuai Ye, ^{1,4} Huizhong Shen, ^{1,4} Chen Wang, ^{1,4} Lei Zhu, ^{1,4} Tzung-May Fu, ^{1,4} Qi Zhang, ^{3*} Xin
- 6 Yang^{1,4}*
- 7 ¹Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban
- 8 Environmental Health Risks, School of Environmental Science and Engineering, Southern University of
- 9 Science and Technology, Shenzhen 518055, China.
- ²Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315201, China.
- 3Department of Environmental Toxicology, University of California, Davis, California 95616, United States.
- 12 ⁴Guangdong Provincial Field Observation and Research Station for Coastal Atmosphere and Climate of the
- 13 Greater Bay Area, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- 14 *Qi Zhang and Xin Yang.
- 15 Email: yangx@sustech.edu.cn and dkwzhang@ucdavis.edu
- 16 Keywords: Photooxidation, Atmospheric Organosulfates, Sulfate.
- 17 This PDF file includes:
- 18 Main Text
 19 Figures 1 to 6
 20 Table 1



Abstract

Wildfire emissions release large amounts of methoxyphenols, which serve as key precursors of aqueous-phase secondary organic aerosols (SOA). Their transformation is closely coupled with aqueous S(IV) oxidation, jointly driving the formation of sulfate and organosulfates; however, the underlying mechanisms remain poorly understood. Here, we identify a novel, metal-free mechanism for $SO_4^{\bullet-}$ generation under UVA light (370 nm), supported by experiments and quantum chemical calculations. Photolysis of the $[SO_3^{2-}+O_2]$ complex yields a $[SO_3^{\bullet-}+O_2^{\bullet-}]$ pair that forms peroxomonosulfate $(SO_5^{\bullet-})$ and ultimately $SO_4^{\bullet-}$. These radicals rapidly oxidize guaiacol, a biomass burning phenol, in bulk solution ($k = 3.8 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$), producing SOA enriched in organosulfates. Microdroplet experiments show 100-fold rate enhancement due to interfacial effects. Box and global modeling indicate that this aqueous UVA pathway is a significant, previously overlooked source of sulfate. This work established a new photochemical link between S(IV) oxidation and SOA formation, with implications for aerosol composition, oxidative capacity, and climate-relevant processes.

37 Abstract Graphic

1 INTRODUCTION

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64 65

66

67

68

69

70

71

72

73

74 75

76

Wildfires are occurring with increasing frequency, intensifying climate perturbation and exacerbating human health risks (Zhao et al., 2025; Teymoor Seydi et al., 2025). Their emissions, rich in methoxyphenols and other semi-volatile organic compounds, readily partition into cloud and aerosol water, where they undergo rapid transformations that produce substantial amounts of SOA (He et al., 2024; Li et al., 2023a; Liu et al., 2022). These aqueous-phase reactions are not isolated; rather, they are intricately coupled with other atmospheric chemical processes, resulting in complex multiphase chemistry that remains poorly understood. Sulfate is a major component of fine particulate matter (PM), with significant impacts on air quality and public health (Wang et al., 2016; Abbatt et al., 2006). In the atmosphere, sulfate forms primarily through gasphase SO₂ oxidation by hydroxyl radicals (•OH) and aqueous-phase oxidation of S(IV) species, such as dissolved SO₂, HSO₃, and SO₃², in cloud, fog, or aerosol water. The aqueous-phase pathway includes direct oxidation by H₂O₂ (Liu et al., 2020), O₃ (Hoffmann, 1986; Lan et al., 2011), and NO₂ (Zhang and Chan, 2023; Gao et al., 2022; Liu and Abbatt, 2021); catalytic oxidation mediated by transition metal ions (e.g., Fe and Mn) (Zuo et al., 2005; Wang et al., 2021; Harris et al., 2013; Brandt and Eldik, 1995); and photocatalytic processes involving humic-like substances (HULIS) in the presence of O2 (Wang et al., 2024; Pan et al., 2024). Despite extensive research, substantial discrepancies remain between observed sulfate levels and model predictions, indicating missing or poorly characterized pathways (Zheng et al., 2015). Beyond sulfate formation, aqueous S(IV) oxidation can also form organosulfates (OSs) in the presence of volatile organic compounds (VOCs) (Passananti et al., 2016; Duporté et al., 2020; Surratt et al., 2008; Iinuma et al., 2007; Darer et al., 2011; Riva et al., 2015). OSs constitute a substantial fraction (e.g., 5-30%) of the organic mass in atmospheric PM (Shakya and Peltier, 2015; Tolocka, 2012; Hughes et al., 2021; Romero and Oehme, 2005) and provide an important chemical link between sulfur and organic aerosols. As amphiphilic molecules, OSs affect aerosol surface activity and hygroscopicity (Riva et al., 2019), thereby enhancing their potential to act as cloud condensation nuclei (CCN) (Peng et al., 2021). Some OSs are also linked to adverse health outcomes, including oxidative stress and proinflammatory responses in human lung cells (Khan et al., 2023). The sulfate radical (SO₄) is a highly reactive intermediate in aqueous-phase S(IV) oxidation (Rudzinski et al., 2009), capable of rapidly oxidizing a wide variety of VOCs, including aldehydes (Coddens et al., 2018; Tran et al., 2022), olefins (Schindelka et al., 2013; Ren et al., 2021), phenols (Cope et al., 2022), and polycyclic aromatic hydrocarbons (Wang et al., 2008). These reactions produce oxidized organics that can subsequently form OSs through acid-catalyzed esterification or radical termination reactions. Solar radiation is a key driver of such radical chemistry, including the generation of SO₄. (George et al., 2015; Herrmann et al., 2015). For example, in high-ionic-strength aerosol solutions (e.g., 3.7 M ammonium sulfate), SO₄ forms under UVB (~ 310 nm) irradiation, reaching steady-state concentrations near 10⁻¹² M (Cope et al., 2022). While direct photolysis of S(IV) species by UVC radiation can also yield SO₄. (Cao et al., 2021), UVC is largely absorbed by the stratosphere and thus negligible in the troposphere.

Although UVA radiation is the dominant solar band at the Earth's surface, its role in aqueous S(IV) oxidation remains poorly understood. A recent study suggests that UVA light can promote SO₂ oxidation at the air-water interface (Gong et al., 2022), but the mechanisms and broader implications are unclear. To address this gap, we combined laboratory experiments with quantum chemical calculations to investigate a novel, metal-free UVA-induced pathway for SO₄. generation. Using guaiacol (GUA), a representative biomass burning phenol, as a molecular probe, we tracked radical activity and OSs formation. We also explored how droplet microphysics and interfacial effects enhance this chemistry. Our findings reveal a previously overlooked UVA-driven mechanism for sulfate and OSs formation, with important implications for atmospheric chemistry, air quality, and climate.

85 86 87

88

77

78

79

80

81

82

83

84

2 MATERIALS AND METHODS

2.1 Materials

- 89 Guaiacol (99%), sodium sulfite (Na₂SO₃, >99%), 2,2,6,6-tetramethyl-1-piperinedinyloxy (TEMPO, 98%),
- ethanol (99%), and tert-butanol (99%) were purchased from Macklin. Zero air is made up of 21% O₂ and 79%
- 91 N₂. All water used in the experiments was ultrapure Milli-O water (18.2 M Ω cm⁻¹).

92 93

2.2 Experimental Methods

- 94 Bulk aqueous experiment. All experiments were performed in a 25 mL airtight Pyrex tube equipped with a
- 95 magnetic stir bar and a gas inlet tube for feeding high-purity zero air or nitrogen under 370 nm light or LED
- 96 light irradiation. A 20 mL reaction solution containing guaiacol, Na₂SO₃, and other reactants was prepared.
- 97 The pH of the reaction solution was adjusted using H₂SO₄ and NaOH and measured with a pH meter REDOX
- 98 potentiometer Conductivity meter (AZ-86555) that was calibrated with commercial pH standards. In
- 99 experiments requiring the measurement of total inorganic sulfur, the pH is adjusted with either phosphoric
- 100 acid or phosphate. Aliquots (3 mL) were sampled every 20 min for 1h, with 0.30 mL MeOH added
- immediately to quench the reaction. Each experiment was repeated at least twice.
- 102 HPLC analysis. The concentrations of the guaiacol and phenol were determined using an HPLC (Thermo
- 103 ScientificTM UltiMateTM 3000) equipped with a diode array detector (DAD) and an Agilent 5 TC-C18 column
- 104 (150×4.60 mm, 5 μm). The column temperature was maintained at 25 °C, and the flow rate was set to 1
- 105 ml/min. Detection was performed at 274 nm. The mobile phase consisted of 60/40 (v/v) acetonitrile/water
- acidified with 0.1% trifluoroacetic acid (TFA).
- 107 Direct infusion HRMS. Reaction solutions were filtered through a membrane and then directly introduced
- 108 into an Agilent 6546 quadrupole time-of-flight mass spectrometer (QTOF-MS, Santa Clara, CA) with
- 109 electrospray ionization (ESI) source in negative mode. The MS parameters were as follows: nebulizer, 25
- psi; gas flow, 10 L/min; sheath gas temperature, 330 °C; capillary voltage, 3500 V; sheath gas flow, 12 L/min.
- 111 MS data were collected in an m/z range of 90-500. Agilent MassHunter Qualitative Analysis software
- 112 (version 10.0) was used for data analysis.

https://doi.org/10.5194/egusphere-2025-5323 Preprint. Discussion started: 12 November 2025 © Author(s) 2025. CC BY 4.0 License.

113

114 to monitor guaiacol absorbance during reaction with Na₂SO₃ and to record sample spectra from 200 to 500 115 nm. The reaction solution was directly loaded without dilution or modification. Spectra of the guaiacol -116 Na₂SO₃ reaction were collected every 20 min for 1 h. 117 IC measurements. Sulfite (SO₃²) and sulfate (SO₄²) concentrations were analyzed using a Metrohm 883 118 Basic IC system quipped with a Metrosep A supply 5-250/4.0 analytical column and a conductivity detector 119 (Liu et al., 2025). Prior to analysis, 2% isopropanol and 1.0 mM NaOH was added into the reaction solution. 120 The eluent used was 3.2 mM Na₂CO₃/1.0 mM NaHCO₃, with a flow rate of 0.8 mL min⁻¹. For total inorganic 121 sulfur analysis, samples were pre-oxidized to SO_4^{2-} using hydrogen peroxide (H₂O₂) before IC detection. 122 FIDI-MS experiment. Droplets approximately 2 mm in diameter (~4 µL volume) were suspended from the 123 tip of a stainless-steel capillary, which was positioned equidistantly between two parallel plate electrodes 124 separated by 6.3 mm apart. The droplets were formed by injecting the analyte solution through the capillary 125 using a syringe pump. The parallel plates were mounted on a translation stage to align the front electrode's 126 aperture with the atmospheric pressure inlet of a Thermo-Fischer LTQ-XL mass spectrometer (Waltham, 127 MA), which was operated under laboratory ambient air. Once the droplets were formed, a 60-second 128 equilibration period was allowed to enable compound diffusion and achieve equilibrium coverage at the air-129 water interface. 130 Sampling of the suspended droplets was accomplished by applying a high-voltage pulse (3 - 5 kV, 100 ms 131 duration, variable polarity) to the rear electrode and capillary, with half the voltage simultaneously applied 132 to the rear plate, thereby establishing a uniform electric field. This field induced a dipole in the suspended 133 droplets, causing it to elongate and form a double Taylor cone at both ends, which ejected oppositely charged 134 submicron-sized droplets. These negatively charged droplets passed through the aperture of the front plate 135 and entered the mass spectrometer for gas-phase ion detection. Due to the significant disturbance caused by 136 the ionization droplet interface (IDI) sampling, a new droplet was generated for each measurement. In this 137 study, a negative voltage polarity was applied to the rear plate and capillary to facilitate detection of 138 deprotonated guaiacol ions ([GUA]-). 139 HR-ToF-AMS experiment. During photochemical experiments, reaction solutions were aerosolized with a 140 constant output atomizer (TSI Inc.) using N2 as the carrier gas. The resulting aerosols were dried with a 141 diffusion dryer and then introduced into a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-142 AMS; Aerodyne Research, Inc.) for chemical characterization. Drying allowed evaporation of volatile and 143 semi-volatile species; therefore, the AMS primarily measured the mass concentration and bulk composition 144 of the remaining low-volatility products. The operating principles of AMS have been described previously (Decarlo et al., 2006; Canagaratna et al., 2007). Briefly, the AMS analyzes non-refractory aerosols that 145 146 vaporize at ~600 °C under high vacuum via 70 eV electron impact ionization. In this study, the AMS was 147 operated in "V" ion optical mode (mass resolution ~3000) to acquire mass spectra up to m/z 422. The AMS

UV-vis spectroscopy. An ultraviolet-visible Spectrophotometer (Youke, T2602, Shanghai, China) was used

data were processed with the standard AMS toolkits SQUIRREL (v1.67) and PIKA (v1.27), available at http://cires.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/.

149150151

148

2.3 Theoretical Calculations

- 152 DFT and TDDFT calculations. Geometry optimizations and frequency calculation for all molecular 153 structures (reactants, products, and transition states) were performed using the M06-2X (Zhao and Truhlar, 154 2007) functional with the ma-TZVP basis set (Zheng et al., 2010), employing the SMD solvation model 155 (Marenich et al., 2009) to simulate aqueous-phase effects in water, as implemented in the Gaussian 16 156 software package (Frisch et al., 2016). Optimized structures were verified by frequency computations to 157 confirm local minima (zero imaginary frequencies) or transition structures (single imaginary frequency). 158 Intrinsic reaction coordinate (IRC) calculations were performed to ensure that the first-order saddle points 159 found were true transition states (TS) connecting the reactants and the products. Single-point energy 160 calculations and solvation effects were evaluated at the CCSD(T)/aug-cc-pVTZ (Guo et al., 2018; Noga and 161 Bartlett, 1987) level using the SMD solvation model, with geometries optimized at M06-2X/ma-TZVP and 162 zero-point energy (ZPE) correction applied. The calculations were carried out using the ORCA 5.0.3 program 163 package (Neese, 2012). Multiwfn 3.8 (Lu and Chen, 2012) and Shermo 2.4 (Lu and Chen, 2021) were used 164 for further data analysis.
- GROMACS 4.5.5 (Hess et al., 2008). In a cubic box with periodic boundary conditions, the system consisted
 of 1000 SPC/E water molecules and one GUA molecule using the OPLS-AA force field. Electrostatics were
 treated with the particle-mesh Ewald (PME) method; van der Waals interactions were truncated at 10 Å. A

Classical MD calculations. Classical molecular dynamics (MD) calculations were performed using

- leap-frog integrator was used with a 2 fs timestep, and the trajectories were recorded every 10 steps.
- Umbrella Sampling: To determine the average volume for each system, 10 ns simulations were conducted
 in the NVT ensemble, where the temperature was set to 300 K using the V-rescale method. The potentials of
 mean force (PMF) were calculated using the Weighted Histogram Analysis Method (WHAM) calculations,
 which were performed in one additional 10 ps simulation with initial configurations from the preceding
- which were performed in one additional 10 ns simulation with initial configurations from the preceding simulations. The GUA moved in the z-dimension around their frozen positions under a harmonic restoring force. The force constant was set at 1×10³ (kJ/mol/nm), and configurations were recorded every 0.5 ps.
- 176 Visualization and trajectory analysis were implemented using VMD (Humphrey et al., 1996).

177178

165

2.4 Model Calculation

- Box model conditions. Under illumination from the Kessil PR160L-370nm lamp, the observed photooxidation rate constant (k_{obs}) for S(IV) is described by the following equation for pH \geq 4.0:
- 181 $-d[S(IV)]/dt = k [H^+]^{-0.47}[O_2] [S(IV)], \text{ where } k = 6.6 \times 10^{-3}$
- The lamp's intensity in the 340 400 nm range was measured as 850 W m $^{-2}$ using a PL-MW2000 strong
- light optical power meter (Beijing Perfectlight Technology Co., Ltd.), compared 63.3 W m⁻² for solar AM0

- 184 radiation in the same range (John H. Seinfeld and Pandis, 2016). Therefore, the S(IV) photooxidation rate
- 185 under sunlight is approximately 7.4% of that under the Kessil PR160L-370nm lamp. Sulfate production rates
- at 271 K were calculated for different aqueous-phase reaction pathways with O₃, H₂O₂, TMIs, and NO₂,
- following Cheng (Cheng et al., 2016), excluding ionic strength effects.
- The Henry's law constants at 271 K for SO_2 , O_3 , H_2O_2 , and NO_2 are 3.521 M/atm, 0.025 M/atm, 1.147×10^{-2}
- 189 10^6 M/atm, and 2.319×10^{-2} M/atm, respectively. Equilibrium constants for $SO_2 \cdot H_2O$ are $K_{S1} = 0.025$ M and
- 190 $K_{S2} = 1.09 \times 10^{-7} \text{ M}$ (Cheng et al., 2016).
- Scenario Conditions. "Cloud droplets" scenario: $[SO_2(g)] = 5$ ppb, $[NO_2(g)] = 1$ ppb, $[H_2O_2(g)] = 1$ ppb,
- 192 $[O_3(g)] = 50 \text{ ppb}$, $[Fe(III)] = 0.3 \mu\text{M}$, $[Mn(II)] = 0.03 \mu\text{M}$, liquid water content (LWC) = 0.1 g/m^3 .
- "Beijing haze" scenario: $[SO_2(g)] = 40$ ppb, $[NO_2(g)] = 66$ ppb, $[H_2O_2(g)] = 0.01$ ppb, $[O_3(g)] = 1$ ppb,
- 194 LWC = $300 \mu g/m^3$. The concentrations of Fe(III) and Mn(II) were assumed to vary with pH (Cheng et al.,
- **195** 2016).
- 196 Globel seasonal simulation. Using global SO₂ concentrations (Fig. S24), cloud pH (Fig. S25), global
- 197 aqueous-phase S(IV) concentration (Fig. S26), liquid water content (Fig. S27), and UVA radiation (345 -
- 198 412.5 nm; Fig. S28), we estimated global aqueous-phase sulfate production rates.
- The aqueous-phase S(IV) concentration was calculated as:

200
$$[S(IV)] (M) = [SO_2]_g (ppb) \times 10^{-9} \times (1 + \frac{K_{s1}}{[H^+]} + \frac{K_{s1} \times K_{s2}}{[H^+]^2}) \times H_{so2}$$

- The sulfate production rate was calculated using:
- 202 $P[SO_A^{2-}] (\mu g m^{-3} h^{-1})$

$$= \frac{UVA \ (W \ m^{-2})}{850 \ (W \ m^{-2})} \times k_{obs} \ (mol \ L^{-1} \ s^{-1}) \times \frac{LWC \ (kg \ m^{-3})}{\rho \ (kg \ L^{-1})} \times 96 \ (g \ mol^{-1})$$

204
$$\times 3600 (s h^{-1}) \times 10^6 (\mu g g^{-1})$$

- where UVA is in W m⁻², k_{obs} in mol L⁻¹ s⁻¹, LWC in kg m⁻³, and ρ is the water density (kg L⁻¹).
- 206 Global distributions of SO₂, LWC, and cloud pH were derived using the GEOS-Chem Classic v14.0.2 model
- 207 (Bey et al., 2001), driven by MERRA-2 meteorological product from the Goddard Earth Observing System
- 208 (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). SO₂ emissions were taken from
- the Community Emissions Data System (CEDS) inventory (Hoesly et al., 2018). Simulations were conducted
- at $4^{\circ} \times 5^{\circ}$ resolution with 72 vertical layers from the surface to 0.01 hPa, and results were analyzed after a 2-
- 211 year spin-up.

3 RESULTS AND DISCUSSION

- 215 3.1 Photooxidation of Na₂SO₃ solution under 370 nm irradiation. To simulate atmospheric aqueous-phase
- 216 SO₂ oxidation, Na₂SO₃ solutions with controlled initial pH were prepared and continuously bubbled with
- 217 zero air (Fig. S1). At pH 4.0 and 0.5 mM Na₂SO₃, sulfite loss in the dark was slow, with an observed rate
- 218 constant of 2.27 × 10⁻⁵ s⁻¹ (Fig. S2) (Brandt and Eldik, 1995). Under UVA irradiation (370 nm; light spectrum

shown in Fig. S3A), the sulfite loss rate increased nearly tenfold to 2.02×10^{-4} s⁻¹, with sulfate (SO₄²⁻) as the primary product (Fig. S4). Increasing Na₂SO₃ concentration to 2.0 mM had only a moderate effect, with rate constants averaging (2.41 ± 0.79) ×10⁻⁴ s⁻¹ (Fig. S5 and S6). In contrast, pH significantly influenced photooxidation kinetics (Fig. S7): the apparent sulfite decay rate increased by nearly 14-fold from pH 4.0 to 7.0, reflecting shifts in dominant S(IV) species (HSO₃⁻¹ vs. SO₃²⁻¹) with different photochemical reactivities. These findings demonstrate that UVA light substantially enhances S(IV) oxidation in metal-free systems and that the reaction is strongly pH-dependent.

3.2 Photodegradation of Guaiacol in Na₂SO₃ solution. Guaiacol (GUA), a methoxyphenol emitted primarily from biomass burning (4.7 Tg yr⁻¹ globally) (Liu et al., 2022; Li et al., 2023a), was used as a molecular probe to trace reactive intermediates formed during UVA-driven S(IV) oxidation. Given its Henry's law constant (Mcfall et al., 2020), up to 40% of atmospheric GUA can partition into the aqueous phase (Fig. S8), making it a relevant proxy for aqueous-phase organic transformations.

At pH 4.0, GUA (0.1 mM) was added to 2.0 mM Na_2SO_3 solution under continuous zero-air bubbling. GUA remained stable in the dark, with minor losses attributed to evaporation (Fig. 1A). Under UVA irradiation (370 nm), however, it degraded rapidly following pseudo-first-order kinetics ($k \approx 0.023 \, \text{min}^{-1}$; Fig. S9A) that is approximately 14 times faster than direct photolysis (Fig. S9B), highlighting the critical role of S(IV)-derived reactive intermediates. Suppressing O_2 via N_2 purging significantly reduced GUA degradation (Fig. 1A), and no degradation was observed under visible light (> 400 nm; Fig. S3B), confirming the importance of O_2 -dependent photochemistry induced by UVA (Fig. S10).

We further investigated how reagent concentrations influence degradation kinetics. At high Na_2SO_3 : GUA molar ratios (≥ 20), GUA degradation followed pseudo-first-order kinetics, with rates increasing linearly with Na_2SO_3 concentration (Fig. 1B). At lower ratios, deviations from first-order behavior were observed (Fig. S11), suggesting a shift in the limiting reagent or changes in radical propagation dynamics.

3.3 Formation of organosulfates and steady-state SO_4 concentration. Figure S12 presents the kinetics of UVA-irradiated solutions containing 0.1 mM GUA and 0.5 mM Na_2SO_3 . The apparent oxidation rate constant for SO_3^{2-} was 6.34×10^{-4} s⁻¹ (Fig. S13), about three times higher than that without GUA $(2.02 \times 10^{-4} \text{ s}^{-1})$ (Fig. S4B), indicating that GUA significantly promoted S(IV) oxidation. The concurrent decrease in total inorganic sulfur closely tracked GUA degradation, suggesting that GUA reacted with photochemically generated intermediates to form S-containing organic species, such as organosulfates (OSs).

High-resolution mass spectrometry (HRMS; $m/\Delta m = 5 \times 10^4$) was used to identify reaction products. Negative-mode ESI analysis of a solution containing 0.1 mM GUA and 2.0 mM Na₂SO₃ at pH 4.0 (Fig. 2A) revealed unreacted GUA ($C_7H_7O_2$, m/z = 123.0446) along with multiple sulfate ester derivatives: $C_6H_5O_5S^2$ (m/z = 188.9858), $C_7H_7O_5S^2$ (m/z = 203.0014), $C_7H_7O_6S^2$ (m/z = 218.9963), and $C_7H_7O_7S^2$ (m/z = 234.9912).

254 These signals indicate OSs formation from GUA reacting with SO₄ radicals photochemically generated from 255 SO₃²⁻ and O₂ under UVA. 256 To verify SO₄ involvement, we introduced 2,2,6,6-tetramethyl-1-piperinedinyloxy (TEMPO; C₉H₁₈NO) 257 as a radical scavenger (Bai et al., 2016). In the Na₂SO₃ + TEMPO system without UVA (Fig. 2B) or after 30 258 minutes in the dark (Fig. 2C), only the TEMPO⁺ - SO_3^{2-} adduct ($C_9H_{18}NO_4S^-$, m/z = 236.0968) was observed. 259 However, under 370 nm irradiation, new peaks appeared at m/z = 252.0903 and 220.1019, corresponding to 260 the TEMPO-SO₄ adduct (C₉H₁₈NO₅S) and its O₂-loss fragment (C₉H₁₈NO₃S, Fig. 2D), respectively, 261 confirming SO₄ generation. 262 Finally, adding TEMPO to the GUA + Na₂SO₃ + UVA system (Fig. 2E) eliminated all OS peaks, leaving 263 only signals for the TEMPO-SO₄ adduct and its fragment. This demonstrates that TEMPO scavenged SO₄ 264 and suppressed GUA-derived OS formation, confirming SO4. as the key intermediate driving the observed 265 OSs production. 266 SO₄ can also oxidize water or OH to form hydroxyl radicals (•OH) (Wojnárovits and Takács, 2019), which effectively oxidize GUA in aqueous phase (Yu et al., 2014). To assess the relative contributions of 267 268 •OH versus SO₄·, we used ethanol (EtOH) and tert-butyl alcohol (tBuOH) as radical scavengers: EtOH reacts rapidly with both •OH (1.2 × 10⁹ M⁻¹ s⁻¹) and SO₄• (1.6 × 10⁷ M⁻¹ s⁻¹), while tBuOH reacts primarily with 269 •OH $(3.8 \times 10^8 \, \text{M}^{-1} \, \text{s}^{-1})$ and only weakly with SO_4 · $(4 \times 10^5 \, \text{M}^{-1} \, \text{s}^{-1})$ (Liang and Su, 2009). At pH 4.0, adding 270 271 0.5 M EtOH significantly suppressed GUA photodegradation, while tBuOH had little effect, supporting SO₄. 272 as the dominant oxidant (Fig. S14). 273 The second-order rate constant for GUA + SO₄ was determined using the relative rate method, with 274 phenol ($k = 8.8 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) as a reference (Fig. S15A) (Tran et al., 2022; Liang and Su, 2009). After accounting for direct photodegradation, the rate constant for GUA + SO_4 was 3.78 (\pm 0.42) \times 10¹⁰ M⁻¹ s⁻¹, 275 276 which agrees well with the rate constant obtained from quantum chemical calculations (Li et al., 2023b). 277 From pseudo-first-order kinetics (Fig. 1B), the steady-state concentration of SO₄ under varying [Na₂SO₃] was estimated to be on the order of $\sim 10^{-14}$ M (Fig. S15B). 278 279 280 3.4 Photochemical Pathway of SO₄: formation from Na₂SO₃ under UVA irradiation. In aqueous Na₂SO₃, the primary S(IV) species are SO₂•H₂O, HSO₃, and SO₃², with HSO₃ dominant under the experimental pH 281 282 range (Fig. S16). At pH 4.0, Na₂SO₃ showed nearly no UV-vis absorption above 250 nm (Fig. 3A). Adding 283 0.1 mM GUA introduced a strong 274 nm peak from $\pi - \pi^*$ transitions in GUA's aromatic ring. Although 284 initial UVA absorption was minimal, it increased markedly during irradiation, indicating the formation of 285 new light-absorbing products. 286 Since 370 nm UVA light (~ 3.35eV) lacks sufficient energy to directly excite either HSO₃ or the HSO₃-287 GUA complex, the formation of SO₄. likely involved photoactivation of intermediate complexes such as 288 $[HSO_3^- + O_2]$ or $[SO_3^{2-} + O_2]$. Time-dependent density functional theory (TDDFT) calculations support this,

showing that [SO₃²⁻ + O₂] can absorb UVA light (Fig. S17) and subsequently form reactive radicals. This is

consistent with previous findings that halide-O2 complexes can be photoexcited by UVA to yield radicals

291 like X• and HO_{2•} (Cao et al., 2024a; Cao et al., 2024b).

- Density functional theory (DFT) calculations (Fig. 3B) reveal that electron transfer from the triplet state (T1) of $[SO_3^2 + O_2]$ to form SO_3^- and O_2^+ is endergonic (~ 13 kcal/mol) and unfavorable without light.
- 294 TDDFT results indicate that UVA can excite T1 to higher-energy triplet states (T2), enabling this electron
- 295 transfer. The resulting SO₃ is oxidized by O₂ to SO₅, which decomposes to SO₄, while O₂ further oxidizes
- 296 S(IV) species.

297 298

299

300

301

302

303

304

305

306 307

308

309 310

311

312 313

290

292

293

3.5 Mechanism of Guaiacol Photodegradation in Na₂SO₃ Solutions Under UVA Irradiation

The photodegradation of GUA in aqueous Na₂SO₃ solution under UVA irradiation proceeds through three major mechanisms, summarized in Table 1:

- 1) Formation of sulfur-centered radicals: Under UVA irradiation, the [SO₃² + O₂] complex is photoexcited from the triplet state (T_1) to a higher triplet (T_2) , enabling electron transfer to produce SO_3 and O_2^{\bullet} . SO_3^{\bullet} is rapidly oxidized by molecular O_2 to form SO_5^{\bullet} at a high rate $(k = 1.5 \times 10^9 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1})$.
- 2) Oxidation of sulfites to sulfate: SO₅ reacts with HSO₃ or SO₃² to produce SO₄, SO₃ and SO₅². SO₃ re-enters the cycle by reacting with O₂ to regenerate SO₅ SO₅ protonates to HSO₅, which continues oxidizing S(IV) species to SO₄². O₂ also oxidizes S(IV), but more slowly than SO₅ or SO₄ (Table S1). Importantly, SO₅- reacts approximately 100 times faster with SO₃²- than with HSO₃-, leading to a significant acceleration of sulfite photooxidation at pH > 4.0 where SO₃²⁻ dominates (Fig. S7).
- 3) Formation of organosulfates: SO_4 reacts with GUA extremely rapidly $(k = 3.8 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1})$, much faster than with S(IV) species. This rapid reaction leads to substantial formation of low-volatility organics compounds, including OSs and GUA dimers and derivatives, with a SOA yield of ~ 80% (Fig. S18). GUA also increases the overall rate of sulfite oxidation by nearly threefold (Fig. S4B and S14), probably via additional reactive radicals generated during its reaction with SO₄. Proposed mechanisms for the GUA-SO₄. reaction are shown in Fig. S19 and S20.

314 315 316

317

318 319

320

321

322

- 3.6 Photodegradation of GUA at aqueous interfaces. In atmospheric environments, cloud and fog droplets typically range from a few to tens of micrometers in diameter. Within these microdroplets, surface-active solutes often concentrate at the air-water interface, where reactions are accelerated due to surface enrichment and reduced activation energies (Ruiz-Lopez et al., 2020). Classical molecular dynamics (MD) simulations revealed that GUA is energetically favored at the interface, with an interfacial free energy 2.8 kcal/mol lower than in bulk water (Fig. 4A and S21). SO₄ also shows an interfacial preference, although much smaller (0.17 kcal/mol difference) (Xie et al., 2024), suggesting that both species are enriched at the interface.
- 323 Microdroplets also facilitate gas exchange, boosting [SO₃²⁻ + O₂] complex formation and SO₄ production 324 under UVA. Thus, GUA photodegradation is expected to be far greater in microdroplets than in bulk water - potentially by several orders of magnitude.

To test this, we used field-induced droplet ionization mass spectrometry (FIDI-MS) (Huang et al., 2018; Gong et al., 2022; Zhang et al., 2023) to monitor UVA-induced photodegradation of 0.1 mM GUA in microdroplets, with and without 3.0 mM Na₂SO₃ (see Methods). Fig. 4B shows averaged FIDI-MS signals from five droplets, fitted to pseudo-first-order kinetics (Fig. S22 and S23). GUA degraded nearly 200 times faster at the interface than in bulk ($k_{\text{bulk}} = 2.6 \times 10^{-5} \text{ s}^{-1} \text{ vs. } k_{\text{interface}} = 4.8 \times 10^{-3} \text{ s}^{-1}$). With Na₂SO₃, the rate similarly increased ~ 60 -fold, indicating interfacial SO₄⁻⁻ concentrations of $\sim 10^{-12}$ M, about two orders magnitude higher than in bulk.

Overall, these findings demonstrate that phenolic compounds like GUA are enriched and highly reactive at air-water interfaces, where UVA-driven SO₄- formation greatly accelerates photodegradation and OS production.

3.7 Atmospheric Implications

- When gas-phase SO₂ dissolves into cloud and fog droplets, it hydrates to from S(IV) species such as SO₃²⁻. In the presence of O₂ and UVA irradiation, SO₃²⁻ can be oxidized to SO₄²⁻ through radical pathways. Using experimental data (Fig. S7), we derived a rate expression for sulfite oxidation at pH > 4.0. Under oxygen-saturated conditions ($[O_2] = 2.5 \times 10^{-4} \text{ M}$), the rate constant is given by:
- Rate constant = $1.75 \times 10^{-8} \times pH^{6.23}$ (s⁻¹)
- Using these equations, we simulated UVA-driven sulfate formation under the AM0 standard solar spectrum and compared it with oxidation driven by conventional atmospheric oxidants (NO₂, O₃, and TMIs) (Cheng et al., 2016) (Fig. 5, see Methods). Under "Cloud droplets" conditions (John H. Seinfeld and Pandis, 2016; Herrmann et al., 2015) (Fig. 5A), UVA-driven sulfate formation in bulk solution (UVA_{low}) is comparable in magnitude to conventional pathways, with its relative importance increasing in slightly acidic environments. Under "Beijing haze" conditions (Cheng et al., 2016), even with a 50% reduction in UVA intensity, UVA-induced sulfate formation can still dominate, particularly in the presence of small droplets (UVAhigh) (Fig. 5B).

We further modeled the global, seasonal SO_4^{2-} formation in atmospheric aqueous phases via S(IV) photooxidation of for the year 2023 (Fig. S24-28). At surface (Fig. 6) and at 1.29 km altitude (Fig. S29), SO_4^{2-} formation rates showed clear seasonal variation, with surface-level rates peaking at $1.46 \times 10^{-2} \, \mu g \, m^{-3} \, h^{-1}$. Higher rates were observed in regions such as Asia and South Africa, driven by elevated SO_2 emissions from industry and power generation and strong solar radiation during warmer months. In North America and the Mediterranean, despite lower SO_2 levels, higher aqueous-phase pH promotes S(IV) accumulation and accelerates oxidation rates. Over marine regions, limited direct SO_2 emissions lead to lower S(IV) concentrations than over the land. However, at 1.29 km, the greater availability of liquid water makes these areas stable and significant zones for sulfate formation, with production rates ($P[SO_4^{2-}]$) ranging from 10^{-6} to $10^{-4} \, \mu g \, m^{-3} \, h^{-1}$.

362

363

364

365

366

367 368

369

370

371

372

373

374375

376377

378

379 380

381

382

383 384

385 386

387 388

389 390

391

392

393 394

395

In summary, our results reveal a previously unrecognized, metal-free pathway for SO2 oxidation to sulfate in atmospheric aqueous phases under UVA irradiation. Unlike traditional mechanisms that rely on metal catalysts or high-energy UVB/UVC lights, we show that the [SO₃²⁻ + O₂] complex can initiate sulfate radical production under UVA – wavelengths far more prevalent in the solar spectrum. In the presence of guaiacol - a common phenolic compound from biomass burning, these sulfate radicals drive rapid GUA oxidation, producing low-volatility organic compounds, including organosulfates, at a high second-order rate constant of $3.8 \times 10^{10}~M^{\text{--}1}~\text{s}^{\text{--}1}$. Moreover, microdroplet experiments show that GUA photodegradation is dramatically accelerated in small droplets under UVA light due to intensified interfacial chemistry. The high surface-area-to-volume ratio of microdroplets promotes efficient generation of reactive oxidants, particularly sulfate radicals, which accelerate both S(IV) oxidation and organics transformations. Together, these findings uncover a novel, sunlight-accessible, metal-free pathway for sulfate and SOA formation, especially relevant to slightly acidic, sunlit, and water-rich atmospheric environments. **Supplement.** The supplement related to this article is available online. Data availability. The data that support the findings of this study are available in the supplement of this article. Author contributions. B.C., X.Y., and Q.Z. designed research; B.C., Y.H., W.J., X.Y., and Q.Z. performed research; B.C., Y.H., W.J., Y.L., Y.L., J.Z., Y.Z., J.Y., H.S., C.W., L.Z., T.F., Q.Z., and X.Y. analyzed data; B.C., Y.H., Q.Z., and X.Y. wrote the paper. Competing interests. The contact author has declared that none of the authors has any competing interests. Acknowledgments. Supported by Center for Computational Science and Engineering at Southern University of Science and Technology. Qi Zhang acknowledges support from the Donald G. Crosby Endowed Chair at the University of California at Davis. Financial support. This work was supported by Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks (ZDSYS20220606100604008), Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area (2021B1212050024), Shenzhen Science and Technology Program (KQTD20210811090048025, KCXFZ20230731093601003).

396 References:

- 397 Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Möhler, O.: Solid Ammonium
- 398 Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation, Science, 313, 1770–1773,
- 399 doi:10.1126/science.1129726, 2006.
- 400 Bai, C.-B., Wang, N.-X., Lan, X.-W., Wang, Y.-J., Xing, Y., Wen, J.-L., Gao, X.-W., and Zhang, W.: An
- 401 Unexpected Controlled New Oxidant: SO₄-, Sci. Rep., 6, 20163, 10.1038/srep20163, 2016.
- 402 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y.,
- 403 Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated
- 404 meteorology: Model description and evaluation, J. Geophys. Res. Atmos., 106, 23073–23095,
- 405 10.1029/2001jd000807, 2001.
- 406 Brandt, C. and Eldik, R. v.: Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides.
- 407 Atmospheric-Relevant Processes and Mechanisms, Chem Rev, 95, 119–190,
- 408 10.1021/cr00033a006,, 1995.
- 409 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B.,
- 410 Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M.
- 411 J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
- 412 characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass
- 413 Spectrom. Rev., 26, 185–222, 10.1002/mas.20115, 2007.
- 414 Cao, Y., Qiu, W., Li, J., Jiang, J., and Pang, S.: Review on UV/sulfite process for water and
- 415 wastewater treatments in the presence or absence of O₂, Sci. Total Environ., 765, 142762,
- 416 10.1016/j.scitotenv.2020.142762, 2021.
- 417 Cao, Y., Liu, J., Ma, Q., Zhang, C., Zhang, P., Chen, T., Wang, Y., Chu, B., Zhang, X., Francisco, J. S.,
- 418 and He, H.: Photoactivation of Chlorine and Its Catalytic Role in the Formation of Sulfate
- 419 Aerosols, J. Am. Chem. Soc., 146, 1467–1475, 10.1021/jacs.3c10840, 2024a.
- 420 Cao, Y., Wang, Z., Liu, J., Ma, Q., Li, S., Liu, J., Li, H., Zhang, P., Chen, T., Wang, Y., Chu, B., Zhang,
- 421 X., Saiz-Lopez, A., Francisco, J. S., and He, H.: Spontaneous molecular bromine production in sea
- 422 salt aerosols, Angew. Chem. Int. Ed., 63, e202409779, 10.1002/anie.202409779, 2024b.
- 423 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,
- 424 G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate
- during haze events in China, Sci. Adv., 2, e1601530, 10.1126/sciadv.1601530, 2016.
- 426 Coddens, E. M., Huang, L., Wong, C., and Grassian, V. H.: Influence of Glyoxal on the Catalytic
- Oxidation of S(IV) in Acidic Aqueous Media, ACS Earth Space Chem., 3, 142–149,
- 428 10.1021/acsearthspacechem.8b00168, 2018.
- 429 Cope, J. D., Bates, K. H., Tran, L. N., Abellar, K. A., and Nguyen, T. B.: Sulfur radical formation
- 430 from the tropospheric irradiation of aqueous sulfate aerosols, Proc. Natl. Acad. Sci. U.S.A., 119,
- 431 e2202857119, 10.1073/pnas.2202857119, 2022.
- Darer, A. I., Cole-Filipiak, N. C., O'Connor, A. E., and Elrod, M. J.: Formation and stability of
- atmospherically relevant isoprene-derived organosulfates and organonitrates, Environ. Sci.
- 434 Technol., 45, 1895–1902, 10.1021/es103797z, 2011.
- 435 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M.,
- 436 Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-Deployable,
- 437 High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Anal. Chem., 78, 8281–8289,
- 438 10.1029/2001jd001213, 2006.
- 439 Duporté, G., Flaud, P. M., Kammer, J., Geneste, E., Augagneur, S., Pangui, E., Lamkaddam, H.,
- 440 Gratien, A., Doussin, J. F., Budzinski, H., Villenave, E., and Perraudin, E.: Experimental Study of

- 441 the Formation of Organosulfates from α-Pinene Oxidation. 2. Time Evolution and Effect of
- 442 Particle Acidity, J. Phys. Chem. A, 124, 409–421, 10.1021/acs.jpca.9b07156, 2020.
- 443 Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone,
- V., Petersson, G., and Nakatsuji, H.: Gaussian 16, Revision A. 03, Gaussian [code], 2016.
- 445 Gao, Y., Zhang, M., Guo, J., and Xu, L.: Impact of the oxidation of SO2 by NO2 on regional sulfate
- concentrations over the North China Plain, Atmos. Pollut. Res., 13, 101337,
- 447 10.1016/j.apr.2022.101337, 2022.
- 448 George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.: Heterogeneous
- 449 photochemistry in the atmosphere, Chem Rev, 115, 4218–4258, 10.1021/cr500648z, 2015.
- 450 Gong, C., Yuan, X., Xing, D., Zhang, D., Martins-Costa, M. T. C., Anglada, J. M., Ruiz-Lopez, M. F.,
- 451 Francisco, J. S., and Zhang, X.: Fast Sulfate Formation Initiated by the Spin-Forbidden Excitation
- 452 of SO₂ at the Air-Water Interface, J. Am. Chem. Soc., 144, 22302–22308, 10.1021/jacs.2c10830,
- 453 2022.
- 454 Guo, Y., Riplinger, C., Becker, U., Liakos, D. G., Minenkov, Y., Cavallo, L., and Neese, F.:
- 455 Communication: An improved linear scaling perturbative triples correction for the domain based
- 456 local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)], J.
- 457 Chem. Phys., 148, 011101, 10.1063/1.5011798, 2018.
- 458 Harris, E., Sinha, B., Pinxteren, D. v., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A., Gnauk, T.,
- 459 Fahlbusch, B., Mertes, S., Lee, T., Collett, J., Foley, S., Borrmann, S., Hoppe, P., and Herrmann, H.:
- 460 Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO₂, Science, 340,
- 461 727–730, 10.1126/science.1230911, 2013.
- 462 He, Y., Zhao, B., Wang, S., Valorso, R., Chang, X., Yin, D., Feng, B., Camredon, M., Aumont, B.,
- 463 Dearden, A., Jathar, S. H., Shrivastava, M., Jiang, Z., Cappa, C. D., Yee, L. D., Seinfeld, J. H., Hao,
- 464 J., and Donahue, N. M.: Formation of secondary organic aerosol from wildfire emissions
- 465 enhanced by long-time ageing, Nature Geoscience, 17, 124-129, 10.1038/s41561-023-01355-4,
- 466 2024.
- 467 Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.:
- 468 Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas
- 469 phase, Chem Rev, 115, 4259–4334, 10.1021/cr500447k, 2015.
- 470 Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E.: GROMACS 4: Algorithms for Highly
- 471 Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comput., 4, 435–
- 472 447, 10.1021/ct700301q, 2008.
- 473 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J.,
- 474 Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-i., Li, M.,
- 475 Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014)
- 476 anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data
- 477 System (CEDS), Geoscientific Model Development, 11, 369–408, 10.5194/gmd-11-369-2018,
- 478 2018.
- 479 Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by
- 480 ozone, Atmos. Environ., 20, 1145–1154, 10.1016/0004-6981(86)90147-2, 1986.
- 481 Huang, Y., Barraza, K. M., Kenseth, C. M., Zhao, R., Wang, C., Beauchamp, J. L., and Seinfeld, J.
- 482 H.: Probing the OH Oxidation of Pinonic Acid at the Air–Water Interface Using Field-Induced
- 483 Droplet Ionization Mass Spectrometry (FIDI-MS), J. Phys. Chem. A, 122, 6445–6456,
- 484 10.1021/acs.jpca.8b05353, 2018.
- 485 Hughes, D. D., Christiansen, M. B., Milani, A., Vermeuel, M. P., Novak, G. A., Alwe, H. D., Dickens,
- 486 A. F., Pierce, R. B., Millet, D. B., Bertram, T. H., Stanier, C. O., and Stone, E. A.: PM_{2.5} chemistry,

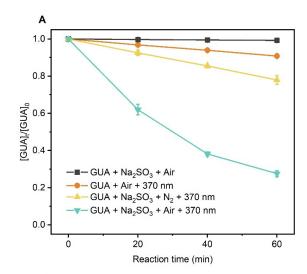
- 487 organosulfates, and secondary organic aerosol during the 2017 Lake Michigan Ozone Study,
- 488 Atmos. Environ., 244, 117939, 10.1016/j.atmosenv.2020.117939, 2021.
- 489 Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics, J. Mol. Graph., 14,
- 490 33–38, 10.1016/0263-7855(96)00018-5, 1996.
- 491 linuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and Herrmann, H.: Evidence for the
- 492 Existence of Organosulfates from β-Pinene Ozonolysis in Ambient Secondary Organic Aerosol,
- 493 Environ. Sci. Technol., 41, 6678–6683, 10.1021/es070938t, 2007.
- 494 John H. Seinfeld and Pandis, S. N.: ATMOSPHERIC CHEMISTRY AND PHYSICS From Air Pollution to
- 495 Climate Change Third Edition, Wiley2016.
- 496 Khan, F., Chen, Y., Hartwell, H. J., Yan, J., Lin, Y.-H., Freedman, A., Zhang, Z., Zhang, Y., Lambe, A.
- 497 T., Turpin, B. J., Gold, A., Ault, A. P., Szmigielski, R., Fry, R. C., and Surratt, J. D.: Heterogeneous
- 498 Oxidation Products of Fine Particulate Isoprene Epoxydiol-Derived Methyltetrol Sulfates
- 499 Increase Oxidative Stress and Inflammatory Gene Responses in Human Lung Cells, Chem. Res.
- 500 Toxicol., 36, 1814–1825, 10.1021/acs.chemrestox.3c00278, 2023.
- 501 Lan, Y., Wheeler, S. E., and Houk, K. N.: Extraordinary Difference in Reactivity of Ozone (OOO)
- 502 and Sulfur Dioxide (OSO): A Theoretical Study, J. Chem. Theory Comput., 7, 2104–2111,
- 503 10.1021/ct200293w, 2011.
- 504 Li, F., Zhou, S., Du, L., Zhao, J., Hang, J., and Wang, X.: Aqueous-phase chemistry of atmospheric
- 505 phenolic compounds: A critical review of laboratory studies, Sci. Total Environ., 856, 158895,
- 506 10.1016/j.scitotenv.2022.158895, 2023a.
- 507 Li, M., Duan, P., Huo, Y., Jiang, J., Zhou, Y., Ma, Y., Jin, Z., Mei, Q., Xie, J., and He, M.: The
- 508 multiple roles of phenols in the degradation of aniline contaminants by sulfate radicals: A
- 509 combined study of DFT calculations and experiments, J. Hazard. Mater., 443, 130216,
- 510 10.1016/j.jhazmat.2022.130216, 2023b.
- 511 Liang, C. and Su, H.-W.: Identification of Sulfate and Hydroxyl Radicals in Thermally Activated
- 512 Persulfate, Ind. Eng. Chem. Res., 48, 5558–5562, 10.1021/ie9002848, 2009.
- 513 Liu, C., Chen, D., and Chen, X.: Atmospheric Reactivity of Methoxyphenols: A Review, Environ.
- 514 Sci. Technol., 56, 2897–2916, 10.1021/acs.est.1c06535, 2022.
- 515 Liu, T. and Abbatt, J. P. D.: Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the
- 516 interface of deliquesced aerosol particles, Nat. Chem., 13, 1173–1177, 10.1038/s41557-021-
- 517 00777-0, 2021.
- 518 Liu, T., Clegg, S. L., and Abbatt, J. P. D.: Fast oxidation of sulfur dioxide by hydrogen peroxide in
- deliquesced aerosol particles, Proc. Natl. Acad. Sci. U.S.A., 117, 1354–1359,
- 520 10.1073/pnas.1916401117, 2020.
- 521 Liu, Y., Li, X., Ge, Q., Fang, X., Wang, T., You, W., Wang, W., Xie, L., Li, K., Gong, K., Yang, L.,
- Wang, R., Wang, J., Wang, L., Ma, M., Huang, T., Fu, H., Chen, J., Dong, X., and Zhang, L.:
- 523 Carbonate radical ion as a key driver of rapid atmospheric sulfate formation, npj Clim. Atmos.
- 524 Sci., 8, 45, 10.1038/s41612-025-00905-4, 2025.
- 525 Lu, T. and Chen, F.: Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33,
- 526 580–592, 10.1002/jcc.22885, 2012.
- 527 Lu, T. and Chen, Q.: Shermo: A general code for calculating molecular thermochemistry
- 528 properties, Comput. Theor. Chem., 1200, 113249, 2021.
- 529 Marenich, A. V., Cramer, C. J., and Truhlar, D. G.: Performance of SM6, SM8, and SMD on the
- 530 SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies, J. Phys. Chem. B,
- 531 113, 4538–4543, 10.1021/jp809094y, 2009.

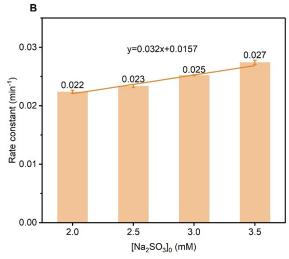
- 532 McFall, A. S., Johnson, A. W., and Anastasio, C.: Air–Water Partitioning of Biomass-Burning
- Phenols and the Effects of Temperature and Salinity, Environ. Sci. Technol., 54, 3823–3830,
- 534 10.1021/acs.est.9b06443, 2020.
- Neese, F.: The ORCA program system, WIREs Comput. Mol. Sci., 73–78, 2012.
- Noga, J. and Bartlett, R. J.: The full CCSDT model for molecular electronic structure, J. Chem.
- 537 Phys., 86, 7041–7050, 10.1063/1.452353, 1987.
- 538 Pan, Y., Zhang, F., Tan, W., and Feng, X.: New insight into wastewater treatment by activation of
- sulfite with humic acid under visible light irradiation, Water Res., 258, 121773,
- 540 10.1016/j.watres.2024.121773, 2024.
- 541 Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J., Donaldson, D. J., and George,
- 542 C.: Organosulfate Formationthrough the Heterogeneous Reaction of Sulfur Dioxide with
- 543 Unsaturated Fatty Acids and Long-Chain Alkenes, Angew. Chem. Int. Ed., 55, 10336 –10339,
- 544 10.1002/anie.201605266, 2016.
- Peng, C., Razafindrambinina, P. N., Malek, K. A., Chen, L., Wang, W., Huang, R.-J., Zhang, Y., Ding,
- 546 X., Ge, M., Wang, X., Asa-Awuku, A. A., and Tang, M.: Interactions of organosulfates with water
- vapor under sub- and supersaturated conditions, Atmos. Chem. Phys., 21, 7135–7148,
- 548 10.5194/acp-21-7135-2021, 2021.
- 849 Ren, H., Sedlak, J. A., and Elrod, M. J.: General Mechanism for Sulfate Radical Addition to Olefinic
- 550 Volatile Organic Compounds in Secondary Organic Aerosol, Environ. Sci. Technol., 55, 1456–
- 551 1465, 10.1021/acs.est.0c05256, 2021.
- 552 Riva, M., Tomaz, S., Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E. A., Villenave, E., and
- 553 Surratt, J. D.: Evidence for an unrecognized secondary anthropogenic source of organosulfates
- 554 and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of
- sulfate aerosol, Environ. Sci. Technol., 49, 6654–6664, 10.1021/acs.est.5b00836, 2015.
- 556 Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan, S., Yee, L. D., Green, H. S.,
- 557 Cui, T., Zhang, Z., Baumann, K., Fort, M., Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro,
- 558 I. O., RL, E. O., Dos Santos, E. O., Machado, C. M. D., Szopa, S., Zhao, Y., Alves, E. G., de Sa, S. S.,
- Hu, W., Knipping, E. M., Shaw, S. L., Duvoisin Junior, S., de Souza, R. A. F., Palm, B. B., Jimenez, J.
- 560 L., Glasius, M., Goldstein, A. H., Pye, H. O. T., Gold, A., Turpin, B. J., Vizuete, W., Martin, S. T.,
- Thornton, J. A., Dutcher, C. S., Ault, A. P., and Surratt, J. D.: Increasing Isoprene Epoxydiol-to-
- 562 Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to
- 563 Organosulfur Forms: Implications for Aerosol Physicochemical Properties, Environ. Sci. Technol.,
- 564 53, 8682–8694, 10.1021/acs.est.9b01019, 2019.
- 565 Romero, F. and Oehme, M.: Organosulfates A New Component of Humic-Like Substances in
- 566 Atmospheric Aerosols?, J. Atmos. Chem., 52, 283–294, 10.1007/s10874-005-0594-y, 2005.
- Rudzinski, K. J., Gmachowski, L., and Kuznietsova, I.: Reactions of isoprene and sulphoxy radical-
- 568 anions a possible source of atmospheric organosulphites and organosulphates, Atmos. Chem.
- 569 Phys., 9, 2129–2140, 10.5194/acp-9-2129-2009, 2009.
- 570 Ruiz-Lopez, M. F., Francisco, J. S., Martins-Costa, M. T. C., and Anglada, J. M.: Molecular
- reactions at aqueous interfaces, Nat. Rev. Chem., 4, 459–475, 10.1038/s41570-020-0203-2,
- 572 2020.
- 573 Schindelka, J., Iinuma, Y., Hoffmann, D., and Herrmann, H.: Sulfate radical-initiated formation of
- 574 isoprene-derived organosulfates in atmospheric aerosols, Faraday Discuss., 165, 237–259,
- 575 10.1039/c3fd00042g, 2013.

- 576 Shakya, K. M. and Peltier, R. E.: Non-sulfate sulfur in fine aerosols across the United States:
- 577 Insight for organosulfate prevalence, Atmos. Environ., 100, 159–166,
- 578 10.1016/j.atmosenv.2014.10.058, 2015.
- 579 Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T.
- 580 E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan,
- 581 R. C., and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, J.
- 582 Phys. Chem. A, 112, 8345–8378, 10.1021/jp802310p, 2008.
- Teymoor Seydi, S., Abatzoglou, J. T., Jones, M. W., Kolden, C. A., Filippelli, G., Hurteau, M. D.,
- AghaKouchak, A., Luce, C. H., Miao, C., and Sadegh, M.: Increasing global human exposure to
- wildland fires despite declining burned area, Science, 389, 826–829, 10.1126/science.adu6408,
- 586 2025.
- 587 Tolocka, M. P.: Contribution of Organosulfur Compounds to Organic Aerosol Mass, Environ. Sci.
- 588 Technol., 46, 7978-7983, 10.1021/es300651v, 2012.
- 589 Tran, L. N., Abellar, K. A., Cope, J. D., and Nguyen, T. B.: Second-Order Kinetic Rate Coefficients
- 590 for the Aqueous-Phase Sulfate Radical (SO₄*-) Oxidation of Some Atmospherically Relevant
- 591 Organic Compounds, J. Phys. Chem. A, 126, 6517–6525, 10.1021/acs.jpca.2c04964, 2022.
- 592 Wang, D., Li, Y., Yang, M., and Han, M.: Decomposition of polycyclic aromatic hydrocarbons in
- 593 atmospheric aqueous droplets through sulfate anion radicals: An experimental and theoretical
- 594 study, Sci. Total Environ., 393, 64–71, 10.1016/j.scitotenv.2007.11.036, 2008.
- 595 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S.,
- 596 Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang,
- 597 J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang,
- 598 W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld,
- 599 D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London
- 600 Fog to Chinese haze, Proc. Natl. Acad. Sci. U.S.A., 113, 13630–13635, 10.1073/pnas.1616540113,
- 601 2016.
- 602 Wang, W., Liu, Y., Wang, T., Ge, Q., Li, K., Liu, J., You, W., Wang, L., Xie, L., Fu, H., Chen, J., and
- 603 Zhang, L.: Significantly Accelerated Photosensitized Formation of Atmospheric Sulfate at the Air-
- 604 Water Interface of Microdroplets, J. Am. Chem. Soc., 146, 6580–6590, 10.1021/jacs.3c11892,
- 605 2024
- 606 Wang, W., Liu, M., Wang, T., Song, Y., Zhou, L., Cao, J., Hu, J., Tang, G., Chen, Z., Li, Z., Xu, Z.,
- 607 Peng, C., Lian, C., Chen, Y., Pan, Y., Zhang, Y., Sun, Y., Li, W., Zhu, T., Tian, H., and Ge, M.: Sulfate
- 608 formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during
- 609 haze events, Nat. Commun., 12, 1993, 10.1038/s41467-021-22091-6, 2021.
- 610 Wojnárovits, L. and Takács, E.: Rate constants of sulfate radical anion reactions with organic
- 611 molecules: A review, Chemosphere, 220, 1014–1032, 10.1016/j.chemosphere.2018.12.156,
- 612 2019.
- Kie, R., Guo, K., Li, Y., Zhang, Y., Zhong, H., Leung, D. Y. C., and Huang, H.: Harnessing air-water
- 614 interface to generate interfacial ROS for ultrafast environmental remediation, Nat. Commun.,
- 615 15, 8860, 10.1038/s41467-024-53289-z, 2024.
- 616 Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical characterization of
- 617 SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl
- and hydroxyl radical, Atmos. Chem. Phys., 14, 13801–13816, 10.5194/acp-14-13801-2014, 2014.
- 619 Zhang, D., Wang, J., Chen, H., Gong, C., Xing, D., Liu, Z., Gladich, I., Francisco, J. S., and Zhang, X.:
- 620 Fast Hydroxyl Radical Generation at the Air-Water Interface of Aerosols Mediated by Water-

https://doi.org/10.5194/egusphere-2025-5323 Preprint. Discussion started: 12 November 2025 © Author(s) 2025. CC BY 4.0 License.

- 621 Soluble PM_{2.5} under Ultraviolet A Radiation, J. Am. Chem. Soc., 145, 6462–6470,
- 622 10.1021/jacs.3c00300, 2023.
- 623 Zhang, R. and Chan, C. K.: Simultaneous formation of sulfate and nitrate via co-uptake of SO₂
- and NO₂ by aqueous NaCl droplets: combined effect of nitrate photolysis and chlorine
- chemistry, Atmos. Chem. Phys., 23, 6113–6126, 10.5194/acp-23-6113-2023, 2023.
- 626 Zhao, J., Zheng, B., Ciais, P., Chen, Y., Gasser, T., Canadell, J. G., Zhang, L., and Zhang, Q.: Global
- 627 warming amplifies wildfire health burden and reshapes inequality, Nature, 10.1038/s41586-
- 628 41025-09612-41589, 10.1038/s41586-025-09612-9, 2025.
- 629 Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main group
- 630 thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and
- 631 transition elements: two new functionals and systematic testing of four M06-class functionals
- 632 and 12 other functionals, Theor. Chem. Acc., 120, 215–241, 10.1007/s00214-007-0310-x, 2007.
- 633 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and
- Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain
- 635 secondary inorganic aerosol formation during the January 2013 haze episode in North China,
- 636 Atmos. Chem. Phys., 15, 2031–2049, 10.5194/acp-15-2031-2015, 2015.
- 637 Zheng, J., Xu, X., and Truhlar, D. G.: Minimally augmented Karlsruhe basis sets, Theor. Chem.
- 638 Acc., 128, 295–305, 10.1007/s00214-010-0846-z, 2010.
- 639 Zuo, Y., Zhan, J., and Wu, T.: Effects of Monochromatic UV-Visible Light and Sunlight on Fe(III)-
- 640 Catalyzed Oxidation of Dissolved Sulfur Dioxide, J. Atmos. Chem., 50, 195-210, 10.1007/s10874-
- 641 005-2813-y, 2005.


642

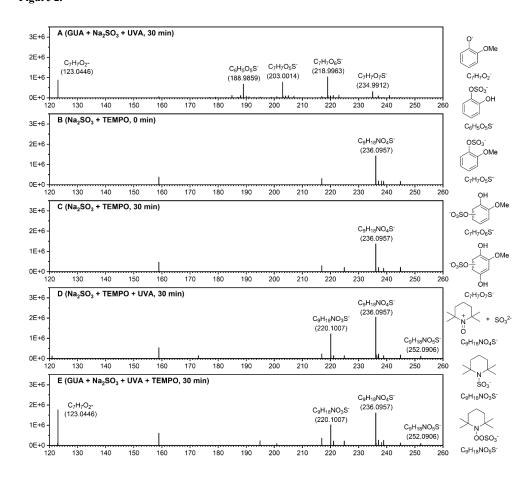


644 Figures and Tables

645 Figure 1.

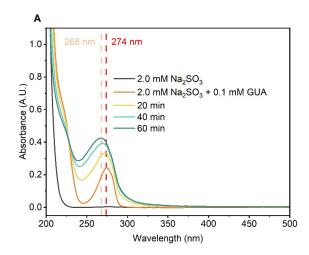
(A) Kinetics of the aqueous-phase reaction between guaiacol and Na₂SO₃ under different conditions. (B) The dependence of the pseudo-first-order rate constant for GUA decay on the concentration of Na₂SO₃. Error bars represent the standard deviations from independent experiments. Experimental conditions: [guaiacol] = 0.1 mM, [Na₂SO₃] = 2.0 mM, pH = 4.0 ± 0.1 , zero-air bubbling, 370 nm light irradiation, room temperature.

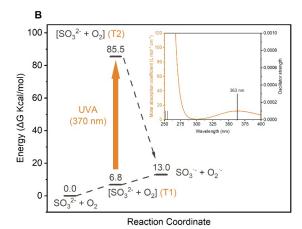
650 651


646 647

648

652 Figure 2.




High-resolution mass spectra of reaction products from: (A) GUA + Na_2SO_3 under after 30 min of 370 nm irradiation; (B) Na_2SO_3 + TEMPO at 0 min; (C) Na_2SO_3 + TEMPO after 30 min in the dark; (D) Na_2SO_3 + TEMPO after 30 min of 370 nm irradiation; and (E) GUA + Na_2SO_3 + TEMPO after 30 min of 370 nm irradiation. Experimental conditions: [guaiacol] = 0.1 mM, [Na_2SO_3] = 2.0 mM, [TEMPO] = 4.0 mM, pH = 4.0 ± 0.1 , zero-air bubbling, and room temperature. Proposed chemical structures corresponding to the key mass spectral peaks are shown to the right of the spectra.

661 Figure 3.

662663

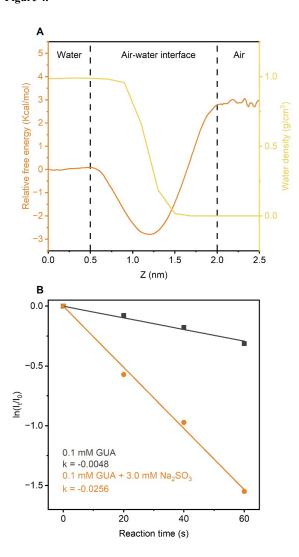
664

665

666

667

(A) UV-vis absorption spectra of the GUA + Na_2SO_3 reaction solution at different time points. (B) Gibbs free energy profiles (kcal/mol, 298.15 K) for the SO_3^{2-} + O_2 reaction, calculated at the CCSD(T)/aug-cc-pVTZ/SMD(water)//M06-2X/ma-TZVP/SMD(water) level with Zero Point Energy (ZPE) correction, with the inset showing the vertical excitation spectra of the $[SO_3^{2-} + O_2]$ complex, calculated using TDDFT at the M06-2X/ma-TZVP/SMD(water) level.

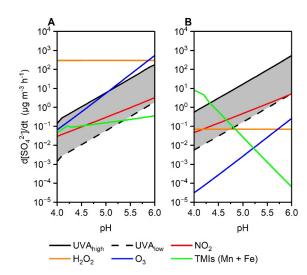

669 Figure 4.

670 671

672

673

674



(A) Free energy profiles for GUA transfer from the gas phase to bulk water, overlaid with water density distribution at air-water interface. (B) Kinetics of direct photodegradation of GUA in microdroplets, with and without Na₂SO₃, under UVA irradiation.

675 Figure 5.

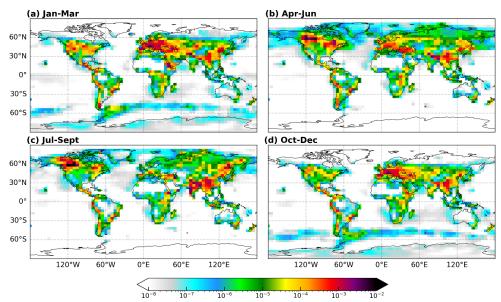
Simulated aqueous-phase sulfate production rates from SO₂ oxidation as a function of pH under two atmospheric scenarios: (A) "Cloud droplets" scenario with full UVA intensity (AM0 standard). (B) "Beijing haze" scenario with 50% reduced UVA intensity. Colored lines represent contributions from individual oxidants and the shaded region indicates the total sulfate production range bounded by the UVA high and

UVA_{low} estimates.

676 677

678

679


680

681

683 Figure 6.

 $P[SO_4{}^{2-}]\;\; in \; aqueous-phase at surface from GEOS-Chem <math display="inline">[\mu g/m^3/h]$

Seasonal variations in surface-level aqueous-phase SO₄²⁻ formation rates from S(IV) photoreactions in 2023.

685 686

Table 1. Reactions and rate constants of GUA photodegradation in Na₂SO₃ solutions (John H. Seinfeld and
 Pandis, 2016; Rudzinski et al., 2009).

1) Formation of sulfur radical	
$HSO_3^- \rightarrow SO_3^{2-} + H^+$	$6.75 \times 10^3 \text{ s}^{-1}$
$SO_3^{2-} + H^+ \rightarrow HSO_3^-$	$1.0 \times 10^{11} M^{-1} s^{-1}$
$SO_3^{2-} + O_2 \rightarrow [SO_3^{2-} + O_2]$	
$[SO_3^{2-} + O_2] + UVA \rightarrow SO_3^{-} + O_2^{-}$	
$SO_3^{\bullet} + O_2 \rightarrow SO_5^{\bullet}$	$1.5 \times 10^9 M^{1} \mathrm{s}^{1}$
2) Oxidation of sulfites	
$SO_5^{\bullet -} + HSO_3^{-} \rightarrow SO_3^{\bullet -} + SO_5^{2-} + H^+$	$2.5 \times 10^4 M^{1} \text{s}^{1}$
$SO_5^{\bullet -} + HSO_3^{-} \rightarrow SO_4^{\bullet -} + SO_4^{2-} + H^+$	$7.5 \times 10^4 M^{1} \text{s}^{1}$
$SO_5^{\bullet -} + SO_3^{2-} \longrightarrow SO_3^{\bullet -} + SO_5^{2-}$	$3.25 \times 10^6 \ M^{1} \ \text{s}^{1}$
$SO_5^{\bullet -} + SO_3^{2-} \longrightarrow SO_4^{\bullet -} + SO_4^{2-}$	$9.75 \times 10^6 M^{1} \text{s}^{1}$
SO_4 + HSO_3 $\rightarrow SO_3$ + SO_4 + H	$1.4 \times 10^7 \text{M}^{1} \text{s}^{1}$
SO_4 + SO_3 ²⁻ $\rightarrow SO_3$ + SO_4 ²⁻	$1.4 \times 10^7 M^{1} \text{s}^{1}$
$SO_5^{2-} + H^+ \rightarrow HSO_5^-$	$1.0 \times 10^{10} M^{1} s^{1}$
$\mathrm{HSO_5^-} \rightarrow \mathrm{SO_5^{2-}} + \mathrm{H^+}$	3.98 s ⁻¹
$HSO_5^- + HSO_3^- \rightarrow 2SO_4^{2-} + 2H^+$	$7.5 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$
$HSO_5^- + SO_3^{2-} \rightarrow 2SO_4^{2-} + H^+$	$7.5 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$
3) Formation of OSs	
GUA + SO₄*- → Products (including OSs)	$3.8 \times 10^{10} \ M^{1} \ s^{1}$