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Supplementary Text

Distribution factor of GUA and aqueous phase calculation (Xaq)

The concentrations of phenolic compounds in the gas and aqueous phases were calculated as a
function of liquid water content at 5 °C. Henry’s law constant for guaiacol (GUA) at 278 k (Kn,
278x) were calculated from the measured value at 289 K using the enthalpy of dissolution (AHso1)
1.

AHsol 1 1
K278k = Kn 208k X €Xp (—p= X (2981( a 278K))

where R is the ideal-gas constant (8.314 J K™! mol™). Ky 208K is 870 M atm™. So that the K 57gx
is 5326 M atm™.

The distribution factor (fynenois) and the aqueous-phase fraction (Xaq) were then calculated using 2:
fphenols = 10_6KH,279KRTL

f phenols

aq =
1+ fphenols

where R = 0.08205 atm L mol! K'!; 7= 278 K. L is the liquid water content in cloud or fog,

expressed in g m™.

X

Relative rate technique 3

Experimental Methods

All experiments were performed in a 25 mL airtight Pyrex tube with a magnetic stirrer and a bubble
tube for feeding high-purity zero air or nitrogen under 370 nm light. A 20 mL reaction solution of
the GUA and phenol, and Na,SO3 or Na>S>0sg. The pH of the reaction solution is regulated by
H>SO4 and NaOH. The pH of solutions was measured with a pH meter REDOX potentiometer
Conductivity meter (AZ-86555) that was calibrated with commercial pH standards. Aliquots of 3
mL reaction solution, to which 0.30 mL MeOH was added to stop the reaction, were sampled for
chemical analysis every 15 min for 1h. Each experiment was repeated at least twice.

Model 1 experimental conditions: [guaiacol] = 0.1 mM, [phenol] = 0.1 mM, [Na>SO3] = 3.0 mM,
with zero air bubbling, 370 nm light irradiation, room temperature.
Model 2 experimental conditions: [guaiacol] = 0.1 mM, [phenol] = 0.1 mM, [Na2S>0s] = 3.0 mM,
with zero air bubbling, 370 nm light irradiation, room temperature.

$208* + UVA — 2S04~

The rate constant calculation
Photodegradation correction is based on pseudo-first-order kinetics, where k is the second-order
rate constant for reactions of phenol (PhOH) and guaiacol (GUA) with SO4~. The effective
pseudo-first-order rate constants is k” = k[SO4 ss. and J = 0.0016 min™' is the first order photolytic
rate coefficient for GUA in the photodegradation control experiments (Phenol is basically non-
photodegradation at 370 nm irradiation).

[GUA], = [GUA]oexp (—(k'gua +]) X 1)

[PhOH], = [PhOH]gexp (—k',pon X t)



Therefore

[GUA] + /)Xt
[GUA] ( GUA ])
[PhOH], _ 't
Y Phom), ~ " proH
A ratio of Kgya/kpnon 1s achieved by:
[GUA] <t

kcua _ k'cua +] [GUA] —J
kpnon  Kpnon 1, [PROH]y

[PROH],



Coordinates of the structure
SOs%:
S 0.00015600 0.00018800 0.36151200

O  1.38572000 -0.24335000 -0.24107700
O -0.48223400 1.32083300 -0.24107800
O -0.90379800 -1.07785700 -0.24086900

Sum of electronic energy and thermal correction to G: -623.4450423 a.u.

O2:

O  0.00000000 0.00000000 0.59360300

O  0.00000000 0.00000000 -0.59360300

Sum of electronic energy and thermal correction to G: -150.1566305 a.u.

[8032' + O2]:

S
O
O
O
O
O

Sum of electronic energy and thermal correction to G:

SO5™:

S 0.00001100 -0.00005500 0.23076000

O  1.26234500 -0.64995800 -0.15385200

O -0.06818600 1.41809700 -0.15382000

O -1.19418100 -0.76802900 -0.15384700

Sum of electronic energy and thermal correction to G: -623.2845358 a.u.
0

O  0.00000000 0.00000000 0.65791100

O  0.00000000 0.00000000 -0.65791100

Sum of electronic energy and thermal correction to G: -150.2964283 a.u.
SOs5”~

S 0.45122400 0.14219000 0.00000000

O  0.73865300 1.54990000 0.00000000

O 0.73865300 -0.56776700 1.21625700

O  0.73865300 -0.56776700 -1.21625700

O -1.28477600 0.23510800 0.00000000

O -1.83363100 -0.93385400 0.00000000

Sum of electronic energy and thermal correction to G:

0.96864400
2.38919700
1.06524600
0.66735600

-2.94989700

-3.10919000

-0.04418400
-0.44069500
1.41394400
-0.84784400
0.52084100
-0.55787800

-0.20653100
-0.61297600
0.24872600
1.05959300
0.09346400
-0.37574400

-773.5908018 a.u.

-773.4558495 a.u.



Fig. S1. The glass instrument was used in the experiment.
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Fig. S2. (A) Kinetics of the aqueous-phase oxidation of SO3* under dark conditions. (B) The
pseudo-first-order rate constant for the oxidation of Na>SOs. Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [Na>SOsz] = 0.5
mM, pH =4.0 + 0.1, zero-air bubbling, room temperature, Solution acidity was controlled using a
phosphoric acid / phosphate buffer system.
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Fig. S3. (A) The Kessil PR160L-370nm lamp spectra. (B) The LED lamp spectra (Beijing
Perfectlight Technology Co., Ltd.).
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Fig. S4. (A) Kinetics of the aqueous-phase oxidation of SO3*" under 370 nm irradiation. (B) The
pseudo-first-order rate constant for the photooxidation of Na;SOs. Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [Na>SOsz] = 0.5
mM, pH = 4.0 £ 0.1, zero-air bubbling, 370 nm light irradiation, room temperature. Solution
acidity was controlled using a phosphoric acid / phosphate buffer system.
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Fig. S5. (A) Kinetics of the aqueous-phase oxidation of SO3* under 370 nm irradiation. (B) The
pseudo-first-order rate constant for the photooxidation of Na;SOs. Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [Na;SOs3] = 1.0
mM, pH = 4.0 £ 0.1, zero-air bubbling, 370 nm light irradiation, room temperature. Solution
acidity was controlled using a phosphoric acid / phosphate buffer system.
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Fig. S6. (A) Kinetics of the aqueous-phase oxidation of SO3* under 370 nm irradiation. (B) The
pseudo-first-order rate constant for the photooxidation of Na;SOs. Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [Na;SO3] = 2.0
mM, pH = 4.0 £ 0.1, zero-air bubbling, 370 nm light irradiation, room temperature. Solution
acidity was controlled using a phosphoric acid / phosphate buffer system.
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Fig. S7. Variation in the oxidation rate constants for SO3* under 370 nm light as a function of
initial pH. Error bars represent the standard deviation from at least two independent experiments.
Experimental conditions: [Na;SO3] = 0.5 mM, zero-air bubbling, 370 nm light, room temperature.
Solution acidity was controlled using a phosphoric acid / phosphate buffer system.
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Fig. S8. The gas-water distribution of GUA under an air temperature of 5 °C and varying liquid
water content.
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Fig. S9. (A) The pseudo-first-order rate constant for the reaction between GUA and Na,SOs3 under
370 nm irradiation. (B) The pseudo-first-order rate constant for the photooxidation of GUA under
370 nm irradiation. Error bars represent the standard deviation from at least two independent
experiments. Experimental conditions: [guaiacol] = 0.1 mM, [Na2SO3] =2.0 mM, pH=4.0 £ 0.1,
with zero-air bubbling, 370 nm light irradiation, room temperature.
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Fig. S10. Effects of different light sources on the reaction. Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [guaiacol] = 0.1
mM, [NaxSO3] =2 mM, pH =4.0 + 0.1, with zero-air bubbling, 370 nm light and LED irradiation,

room temperature.
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Fig. S11. Reaction kinetics of guaiacol degradation in aqueous solution as a function of Na>SOs
concentration. Error bars represent the standard deviation from at least two independent
experiments. Experimental conditions: [guaiacol] = 0.1 mM, pH = 4.0 £ 0.1, zero-air bubbling,
370 nm irradiation, room temperature.
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Fig. S12. Kinetics of the aqueous-phase reaction between guaiacol and Na;SO3 under 370 nm
irradiation. (A) Time evolution of SOs* and total inorganic sulfur. (B) Concentrations of
guaiacol and estimated organosulfates (OSs) over time. [OSs] = 0.5 mM — [total inorganic
sulfur], where 0.5 mM is the initial concentration of SO3>". Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [guaiacol] = 0.1
mM, [Na2SOs3]o = 0.5 mM, pH =4.0 + 0.1, zero-air bubbling, 370 nm light irradiation, room

temperature. Solution acidity was controlled using a phosphoric acid / phosphate buffer system.
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Fig. S13. Pseudo-first-order rate constant for the photooxidation of Na;SOs3 in the presence of
GUA. Error bars represent the standard deviation from at least two independent experiments.
Experimental conditions: [GUA]= 0.1 mM, [Na2SO3]=0.5 mM, pH=4.0+ 0.1, zero-air bubbling,
370 nm irradiation, room temperature. Solution acidity was controlled using a phosphoric acid /
phosphate buffer system.
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Fig. S14. Kinetics of the aqueous-phase reaction between guaiacol and Na;SO; under 370 nm
irradiation in the presence of different radical quenchers. Error bars represent the standard
deviation from at least two independent experiments. Experimental conditions: [guaiacol] = 0.1
mM, [Na,SOs] = 2.0 mM, [EtOH] = 0.5 M, [tBuOH] = 0.5 M, pH =4.0 £ 0.1, zero-air bubbling,
370 nm irradiation, room temperature.
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Fig. S15. (A) Relative rate determination of GUA vs. phenol (PhOH) under two conditions: Model
1 -0.1 mM GUA, 0.1 mM PhOH, and 3.0 mM Na,SO3; Model 2 — 0.1 mM GUA, 0.1 mM PhOH,
and 3.0 mM NaxS>0sg. (B) Steady-state concentration of SO4~ as a function of Na>SO3
concentration. Error bars represent the standard deviation from at least two independent
experiments. Experimental conditions: zero-air bubbling, 370 nm irradiation, room temperature.
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Fig. S16. Speciation of S(IV) inorganic compounds based on their pKa values.
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Fig. S17. Vertical excitation spectra. A [SO3* + O] complex and B [HSOs" + O] complex,
calculated using TDDFT at the M06-2X/ma-TZVP/SMD(water) level.
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Fig. S18. High-resolution aerosol mass spectrum (HR-ToF-AMS) of low-volatility organics in the
sample solution following 50% guaiacol depletion, obtained from the experiment with 0.5 mM
guaiacol, 0.5 mM Na;S03, 0.48 mM H>SOs. Peaks corresponding to the GUA dimer, its fragment
ions, and trimer ions are indicated. The broken line is added to guide the eye
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1. Hydrogen extraction reaction
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Fig. S19. The possible reaction mechanism between GUA and SO4".
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2. Addition reaction
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Fig. S20. The possible reaction mechanism between GUA and SO4".
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Fig. S21. Classical molecular dynamics simulation uses the Weighted Histogram Analysis Method
(WHAM) to calculate the potential of mean force (PMF). GUA was positioned at coordinates (1.8,
1.8, 9.5 nm), while water clusters were centered in the simulation box at (3.6, 3.6, 10 nm) with a
thickness of 2.35 nm. The white, red and dark cyan balls symbolize H, O, and C atoms, respectively.
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Fig. S22. FIDI-MS setup used to investigate the photodegradation of GUA and Na>SOs under 370
nm irradiation.
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Fig. S23. FIDI-MS analysis of the photodegradation of GUA and Na,SOs under 370 nm irradiation.
(A) Mass spectrum of 0.1 mM GUA solution droplets after exposure to air for 2 minutes without
irradiation. (B) Mass spectrum of 0.1 mM GUA solution droplets exposed to air for 1 minute
followed by 1 minute for 370 nm irradiation. (C) Mass spectrum of 0.1 mM GUA and 3.0 mM
Na>SOs3 solution droplets exposed to air for 1 minute and then irradiated at 370 nm for 1 minute.
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Fig. S24. Seasonal variations of global gas-phase SOz concentrations in 2023 from GEOS-Chem

simulations. Top four panels: SO concentrations at the surface level. Bottom four panels: SO2
concentrations at 1.29 km altitude.
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Fig. S25. The global cloud pH value in 2023 for different seasons at surface and 1.29 km altitude.
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Fig. S26. The global aqueous-phase S(IV) concentration in 2023 for different seasons at surface
and 1.29 km altitude.
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Fig. S27. The liquid water content in 2023 for different seasons at surface and 1.29 km altitude.
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Fig. S28. The global UV A direct irradiation intensity in 2023 for different seasons at surface and

1.29 km altitude.
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Fig. S29. The rate of SO4* formation from the photolysis of S(IV) in aqueous phase in 2023 for
different seasons at surface and 1.29 km altitude.
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Table S1. The S(IV) oxidation reaction with H,O2 and its rate constant 2.

Reaction kM!'gh
0" +H" — HO;e 3.56 x 10'°
HOz* + HO2* — H202 + O2 8.6 x 10°
S(IV) + 02" + H20 — S(VI) + OH+ + OH" 1.0 x 10°
S(IV) + HO2* — S(VI) + OHe 1.0 x 10°
S(IV) + OHs — S(VI) + OHe 4.5 x 10°
SAV) + H,02 — S(VI) + H20 7.5 x 107
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