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Text S1: Detailed experimental procedures for the measurement of carbonaceous

species and water-soluble ions

Organic carbon and elemental carbon were determined by a semi-continuous OC/EC
analyzer (Dual-oven model, Sunset Laboratory Inc., USA). Before measurement, a
sucrose standard solution was used to calibrate the instrument. A portion of filter (20
cm?) of each sample was ultrasonically extracted with 20 mL deionized water for 60
min. Then, extracts were filtered using a 0.22 um PTFT filter to remove insoluble
substances. Then, the extracts were divided into two equal parts. One part was used for
WSOC quantitation using a total organic carbon (TOC) analyzer (TOC-5000, Shanghai
Metash Instruments Co., Ltd, China). Each sample was measured at least three times
until the relative standard deviation was less than 3%.

Another part was further separated into two fractions using a solid-phase extraction
(SPE) column (Oasis HLB, 6 cc, 200 mg; Waters). Briefly, the extracts were acidified
to pH 2 using HCI, then passed through the SPE column. The fraction not retained in
the SPE column was called HPWSOC and the fraction retained in the SPE column was
called HULIS. HULIS were further eluted using 3 mL methanol containing 2%
ammonia (wt). The eluent was blown to dry under nitrogen flow. The residual was then
redissolved in 10 mL water to obtain carbon content in HULIS following the same
procedure as WSOC.

For the measurement of water—soluble ions (Na*, NH4", K", Mg?*, Ca?*, CI', NO5’,

2
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SO4%), a portion (10 cm?) of the filter was ultrasonically extracted with 10 mL deionized
water for 60 min. The extracts were thereafter filtered using a 0.22 um PTFE filter and
analyzed using an ion chromatograph (Dionex ICS-600, Thermo Fisher Scientific,
USA). The calculation method for non—sea—salt (nss) ions is as follows:
nss-X=X-fXNa" eros0l

where nss — X is the concentration (ug m>) of a nss—ion in aerosols, X is the
concentration of a water—soluble ion in aerosols, f is the mass ratio of various ions in
seawater to Na®. Here, f is 0.037 for K*, 0.12 for Mg*, 0.0385 for Ca?*, 1.8059 for

CI" and 0.2516 for SO4>* (Edwards et al., 2024).

Text S2: Calculation of carbon stable isotope ratio and the Bayesian mixing model

Briefly, carbon stable isotope ratio (8'°Crc) is calculated using the following

equation (Major et al., 2021):
313Crc (%0) = [(P*Crc/*Crc)sample/ (1 Cre/ 2 C1e)standara-11% 1000

where ("*C/"C)sample and (1*Crc/"?Crc)standara are the atomic ratio of *C to '2C in the
sample and in the Vienna Pee Dee Belemnite (VPDB) standard, respectively.

The Bayesian mixing model was performed using MixSIR package inserted in the R
software. The specific principle of Bayesian mixing model can be found in a different
study (Zhang et al., 2023). In the analysis process, three files need to be inputted: the

measured 8'°C file, the source file, and the isotope fractionation file. According to the

3
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above previous study and the actual environment of the eastern marginal seas of China,
we chose four sources: biomass burning (including C3 plant and C4 plant), fossil fuel
combustion (coal and Liquid fossil fuel), dust and marine source. The endnumber of
each source is shown in Table S7. The isotope fractionation is also considered in this
study. All in all, we tested three run modes: short, normal and long. Gelman-Rubin
Diagnostic and Geweke Diagnostic were used to verify the rationality of the results.
Generally, the Gelman diagnostic should be < 1.05. In the three Markov chains Monte
Carlo simulations, we would expect 5% variables to be outside +/-1.96. The diagnostic
results are shown in Table S8. Generally, there is no significant difference of source

contribution between three run modes.

Text S3 PMF model

The basic principle of PMF model assumes that the origin dataset X is an i X j matrix.
i is the number of samples and j is the number of chemical components. X can be

decomposed into two matrices: factor contributions (G) and factor profiles (F):

p
Xi= z GikFyj tej;
k=1
where p is the number of factors, e;; is the residual for each sample/species. The final

factor contributions and profiles are derived by the PMF model minimizing the

objective function Q:
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where uj; is the uncertainty.

There are two Q values (Q (True) and Q (Robust)) and the PMF model seeks a
minimal Q. The point where Q (Robust) = Q (True) is considered the optimal solution
for the PMF model factorization.

uj; is calculated using the following two equations:

5
uiJ: g MDL

u;=V EFxC?+0.5xMDL>
where MDL is the detection limit of the method, and EF is error fraction which is
usually set as 0.1 or 0.2 (Liu et al., 2024). In this study, EF issetas0.1. C is the species
concentration.

The optimal solution, or in other words, the most suitable number of factors are
evaluated by Q (True)/Q (Robust), the Displacement Error Estimation and the Bootstrap
Error Estimation. Theoretically, Q (True)/Q (Robust) will decrease when the number of
factors increases. When the number of factors exceeds a certain value, Q (True)/Q
(Robust) changes slowly, which indicates that this number of factors may be suitable.
When there are no non-zero values in the row of dQOmax = 4 in Displacement Error
Estimation while matching rate can reach 80% for all factors in the Bootstrap Error
Estimation, this indicates that the number of factors set at this time is appropriate. The

evaluation results are presented in Figure S15.
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Text S4 The minimum R squared method (MRS)

In this study, MRS calculation was performed using a plugin developed by Wu & Yu
(2016) (Wu and Yu, 2016), embedded in Igor Pro. The initial concept of MRS was
proposed by Millet et al. (Millet et al., 2005), and aims to explore the inherent
independency between pollutants from primary emissions (e.g., EC) and products of
secondary formation processes (e.g., SOC) to derive the primary ratios (e.g., (OC /
EC)pi) (Wu and Yu, 2016). Briefly, this method assumes a series of continuous (OC /
EC)pi, and SOC is independent of EC. For each (OC / EC)pri, SOC is calculated using
the following equations:

POC=(OC/EC),*EC
SOC=0C-POC

Then, the correlation coefficient between SOC and EC is calculated (R? (SOC,EC)),
and when R? is at its minimum, the corresponding (OC/EC), is used as the suitable
ratio that best represents the primary source feature. The MRS results are shown in

Figure S16.

Text S5 PARAFAC analysis

This model simplifies the EEM dataset into a set of trilinear terms and a set of

6
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residuals (Yu et al., 2020; Stedmon and Bro, 2008). Assuming there are F fluorescent
components in the sample, the fluorescence intensity of the i sample at the j'" emission
wavelength and k™ excitation wavelength is decomposed into three parts: component

score (a), emission loading (b), and excitation loading (c), as follows:

F

Xij= Z a;fbjreir Feiji
=

where g is the residual term, a, b and ¢ represent the relative concentration, the
emission and the excitation spectra of the component, respectively. The model
evaluation results are shown in Figure S17. Split Half analysis shows that 3 fluorescent
components are suitable for water—soluble organic matter, and 2 fluorescent

components are suitable for non—water soluble organic matter.
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135 comparison of chemical composition in different sea regions. (D) Comparison of average relative
136  humidity (RH) between northern and southern sea regions.
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139 Figure S3. Average daily wind speed at 10m above the sea surface in the northern sea region (A-F) and
140  southern sea region (G-N), during the sampling period.
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Table S1. Comparative summary of carbon component ratios in aerosols from different seasons and regions.

Bohai and Northern Yellow Sea 0.49 +0.03 7.32+£2.19 Summer TSP
) Southern Yellow Sea 0.56 +0.19 5.58 +£2.27 Summer )
Marginal sea This study
Bohai and Northern Yellow Sea 0.48 £0.09 12.11 +£75.22 Summer PM
southern Yellow Sea 0.58 £0.08 5.59 £2.68 Summer *
Beijing 0.555 25+£04 Summer
Beijing 0.565 41+1.6 Spring M (Tang et al.,
0
Beijing 0.516 27407 Autumn ‘ 2016)
Beijing 0.462 33+0.7 Winter
) Himalaya 0.57+0.10 5.67+1.24 Winter (Ramya et al.,
Inland city —
Himalaya 0.63+0.03 523+£25 Monsoon 2023)
. . . . (Srinivas et al.,
IGP-biomass burning night 0.5+0.1 11.3+4.6 Winter PM>s 2016)
Beijing 0.55+0.1 22+1.3 Summer M (Pathak et al.,
Lanzhou 0.4+0.1 2.540.8 Summer > 2011)
) ) (Ramya et al.,
Northwest Indian Ocean 0.72+0.15 33+1.62 Winter -
2023)
Marginal sea Bohai and Yellow Sea 0.68 £0.12 5.03+1.45 Summer TSP (Zhao et al.,
Bohai and Yellow Sea 0.35+0.08 1547+ 491 Winter 2023)
Bohai Sea 0.66 +0.13 4.34 £3.05 Summer TSP

21



(Ding et al.,

Yellow Sea 0.71 £ 0.13 5.63+1.99 Summer
2019)
. . (Srinivas and
Northern Indian Ocean 0.45+0.12 6.7+1.7 Winter .
Sarin, 2013)
Northern Indian Ocean 0.77 £ 0.15 1.67 +0.38 Winter PM (Panda et al.,
Eastern Indian Ocean 0.15+0.03 1.9+0.68 Winter . 2023)
) (Nayak et al.,
Bay of Bengal 0.53 £0.04 46+1.2 Winter
2022)
Coastal site-Huaniao island 0.66 +0.18 6.67 +3.40 Winter PM>s (Li et al., 2022)
. . (Zhang et al.,
Coastal site-Dongying 13.08 + 3.55 Summer PM; 5
2022)
Tianjin 0.6 +0.12 7.99 £2.08 Winter
Coastal city - - (Chen et al.,
Qingdao 0.55+0.12 6.45+1.15 Winter PM, 5 2023)
Shanghai 0.61 +£0.07 10.05 + 2.69 Winter
Shanghai 0.35+0.1 1.7+ 0.6 Summer PM (Pathak et al.,
2.
Guangzhou 0.32+0.1 1.6 £0.7 Summer ’ 2011)
0.56+0.19 411+1.19 Spring
) 0.44+0.17 19 +16.7 Summer (Boreddy et al.,
Open ocean Northwest Pacific Ocean TSP
0.45+0.19 12.2 +9.07 Autumn 2018)
0.69 +0.14 4.85+2.01 Winter
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Table S2. Proportion of sea salt and non-sea salt ions calculated based on different Na* proportion from

the ocean.
Proportion of Na* from ocean Sea salt proportion Non-Sea salt proportion
TSP 0.16+0.14 0.84+0.14
100 % Na*
PM> s 0.04+0.03 0.96+0.03
TSP 0.07+0.06 0.93+0.06
50 % Na*
PM> s 0.02+0.02 0.98+0.02
TSP 0.04+0.03 0.96+0.03
20 % Na*
PM; s 0.01+0.01 0.99+0.01

Table S3. Molecular characteristics of two main types of organic components.

O/Cv H/Cw N/Cy S/Cw  O/Nw O/Sw DBEy Alw OScw Number

TSP-HULIS-N
0.40 1.27 0.04 0.03 1.27 2.69 8.89 0.35 -0.47 1913
TSP-HULIS-S
0.41 1.37 0.04 0.03 1.58 2.65 7.30 0.33 -0.55 1401
TSP-WISOC-N
0.27 1.54 0.01 0.03 0.38 2.02 5.62 0.21 -1.01 715
TSP-WISOC-S
0.21 1.56 0.01 0.03 0.33 1.88 5.46 0.19 -1.15 323
PM, s-HULIS-N
0.33 1.38 0.04 0.02 1.60 2.74 9.06 0.46 -0.72 1663
PM,s-HULIS-S
0.35 1.34 0.03 0.03 1.11 2.70 8.96 0.31 -0.65 1117
PM, s-WISOC-N
0.18 1.40 0.02 0.02 0.50 1.28 7.93 0.30 -1.05 489
PM, s-WISOC-S
0.18 1.42 0.02 0.01 0.46 0.64 7.49 0.27 -1.05 227

N and S denote the northern and southern sea regions, respectively.
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Table S4. Major light absorption parameters of TSP and PM; 5 in two sea regions.

Abss3es MAEs3:6s Abssies MAEs3:6s
Mm?) (g Mm?)  (m’g)
WSOC
1.20£0.68 0.26+0.05 6.68+0.52 | 0.54+0.13 0.22+0.02 7.01 £0.08
North
WSOC
1.01£042 025+£0.08 6.98+0.69 | 0.75+£049 022+0.09 6.74+0.31
South
HULIS
0.79+046 0.27+0.03 7.56+0.73 | 0.46+0.12 0.28+0.02 7.40+0.17
North
HULIS
0.54+030 0.29+0.05 7.55+0.77 | 0.51+032 0.24+0.09 7.41+0.35
South
WISOC
0.73+£038 0.13+£0.03 6.34+0.79 | 0.29+0.12 0.12+£0.07 5.56+0.62
North
WISOC
South 0.52+0.18 0.20 = 0.09 6.16 £0.76 0.30+0.15 0.13£0.03 5.97+1.26
ou

Table S5. Molecular characteristics of potential light-absorbing molecules.

O/Cw H/Cw NCw S/ICw O/Nw O/Sw DBEyw Alw OScw
TSP-HULIS-N 0.25 1.01 0.01 0.05 0.38 1.74 8.94 0.48 -0.51
TSP-HULIS-S 0.33 1.01 0.03 0.05 0.42 2.15 8.95 0.59 -0.35
TSP-WISOC-N 0.64 1.02 0.03 0.02 0.26 0.73 6.72 046  0.26
TSP-WISOC-S 0.71 1.10 0.01 0.01 0.12 0.73 5.11 035 031
PM,s-HULIS-N  0.16 0.70 0.06 0.02 1.63 2.31 2032 0.69 -0.39
PM, s-HULIS-S 0.38 0.99 0.02 0.03 0.66 1.58 10.56 049 -0.24
PM,5s-WISOC-N  0.49 0.92 0.01 0.04 0.09 1.38 7.88 0.50  0.06
PM5-WISOC-S  1.01 0.88 0.06 0.10 0.72 5.24 6.29 1.30 1.13

N and S indicate the northern and southern sea regions, respectively.
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Table S6. MAE36s of WSOC in typical urban aerosols in coastal regions.

City Species MAEs3es Note Reference
] 0.54 +£0.37 Day (Zhan et al.,
Qingdao WSOC -
0.51+0.22 Night 2022)
. (Xie et al.,
Nanjing WSOC 0.67 +£0.20
2020)
) 0.55+0.20 Pudong (Zhou et al.,
Shanghai WSOC
0.51+0.13 Qingpu 2022)
L (Deng et al.,
Tianjin WSOC 0.84 +0.22
2022)
Shanghai WSOC 0.55 (Mo et al.,
Guangzhou WSOC 0.68 2021)

Table S7. Total carbon isotopes and isotope fractionation information of each source input in the

Bayesian mixture model.

Source information

Isotope fractionation

Source Mean 613Crc SD 813Crc Mean 613Crc SD 813Crc
C3 Plant -26.1 0.5 0 0.5
C4 Plant -12.8 0.6 -3.85 3.35
Coal -23.4 1.3 -0.3 0.9
Liquid fossil fuel -25.5 1.3 4.2 3.7
Dust -10.5 4 0 0
Marine emission -21 1.9 -2.6 0.9
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Table S8. Diagnostic results of three run modes in Bayesian mixing model.

Diagnostic results-TSP-isotope fractionation

Short Normal Long
Gel Gel Gel
© m.an Geweke © m,an Geweke © m.an Geweke
Rubin ) . Rubin . . Rubin . )
. . Diagnostic . . Diagnostic . . Diagnostic
Diagnostic Diagnostic Diagnostic
0>1.01 1 0>1.01 0 1>1.01 4
0>1.05 0 0>1.05 0 0>1.05 0
0>1.1 3 0>1.1 0 0>1.1 0
Diagnostic results-TSP-Non isotope fractionation
Short Normal Long
Gelman Gelman Gelman
) Geweke ) Geweke _ Geweke
Rubin . ) Rubin ) ) Rubin ] )
. . Diagnostic . . Diagnostic . ) Diagnostic
Diagnostic Diagnostic Diagnostic
0>1.01 0 0>1.01 0 0>1.01 4
0>1.05 0 0>1.05 1 0>1.05 0
0>1.1 0 0>1.1 0 0>1.1 3
Diagnostic results-PM, s-isotope fractionation
Short Normal Long
Gelman Gelman Gelman
) Geweke ) Geweke , Geweke
Rubin . . Rubin . . Rubin . .
. . Diagnostic . . Diagnostic . . Diagnostic
Diagnostic Diagnostic Diagnostic
1>1.01 0 0>1.01 0 0 3
0>1.05 0 0>1.05 4 0
0>1.1 2 0>1.1 2 0 0
Diagnostic results-PM, s-Non isotope fractionation
Short Normal Long
Gel Gel Gel
© m.an Geweke © m,an Geweke © m.an Geweke
Rubin ) . Rubin . . Rubin . )
. . Diagnostic . . Diagnostic . . Diagnostic
Diagnostic Diagnostic Diagnostic
0>1.01 2 0>1.01 1 0>1.01 3
0>1.05 0 0>1.05 2 0>1.05 0
0>1.1 0 0>1.1 2 0>1.1 0
Diagnostic results-combine TSP and PM; s-isotope fractionation
Short Normal Long
Gelman Gelman Gelman
) Geweke ) Geweke . Geweke
Rubin ) i Rubin ) i Rubin ) )
. . Diagnostic . . Diagnostic . . Diagnostic
Diagnostic Diagnostic Diagnostic
0>1.01 0 1>1.01 9 1>1.01 0
0>1.05 2 0>1.05 0 0>1.05 0
0>1.1 0 0>1.1 1 0>1.1 1

26



Diagnostic results-combine TSP and PM, s-Non isotope fractionation

Short Normal Long
Gelman Gelman Gelman
, Geweke . Geweke , Geweke
Rubin ) ) Rubin ) ) Rubin ) i
. . Diagnostic . . Diagnostic . . Diagnostic
Diagnostic Diagnostic Diagnostic
0>1.01 0 0>1.01 0 1>1.01 0
0>1.05 1 0>1.05 2 0>1.05 2
0>1.1 0 0>1.1 3 0>1.1 5

Gelman Rubin Diagnostic column indicates the number of variables greater than these three values. Geweke

Diagnostic column indicates the number of variables outside +/-1.96 in three chains.
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