
Dear Reviewer, 

 

Thank you very much for your constructive comments and thoughtful suggestions. We 

sincerely appreciate the time and effort you devoted to reviewing our manuscript. Your 

feedback is extremely valuable and provides clear guidance for significantly improving our 

work. 

We have carefully considered all of your points. In the responses below, we address each 

comment in detail, outlining our understanding and the specific changes we will make to the 

manuscript to incorporate your suggestions. We are committed to thoroughly revising the 

manuscript along the lines you have recommended and believe these changes will greatly 

enhance its clarity, accuracy, and overall impact. 

 

General Comment 

Reviewer comment: 

I have a few comments regarding clarity of certain statements/sections, but before that, I think 

my biggest concern, which makes me think the work may need a major revision, is that there 

are already efforts in literature that aim to port CESM (including CAM and POP) to run 

efficiently on the Sunway supercomputer, including previous works by some of the authors in 

2016 and 2021. From reading the paper, it seems to me that the authors do not use previous 

porting as a starting point, but rather do a completely new effort. This seems like a waste, and 

this choice has to be explained and justified in detail, otherwise this is just presenting a work 

that is very similar to what was already done. Why not building on previous successes? 

Would previous work not scale to these resolutions? Or is this in fact the same work, just 

extended to the CICE and MCT components? Also, how does the speedup of this work 

compares to the previous porting efforts, if those versions of CESM were to be run at these 

resolutions? Hopefully, this can be cleared easily by the authors, but the importance of this 

detail is why I select the “major revision” bullet. 

Response: 

We fully understand the reviewer’s concern regarding the relationship between this work and 

earlier CESM porting efforts, as well as the necessity and differentiation of the present study. 

To avoid any potential misunderstanding, we provide a clear explanation below addressing 

why a new porting and optimization effort was required, why previous results could not be 

directly reused, and how this work fundamentally differs from earlier studies. 

First, model version differences prevent direct reuse of previous optimizations. Earlier studies 



targeted CESM1.3, whereas the present work is based on CESM2.2. Between these versions, 

CESM has undergone extensive refactoring and architectural evolution, resulting in 

substantial changes to the implementation of many core modules. Consequently, the 

previously refined and optimized code for the old version cannot be directly reused. In this 

work, only a small fraction of reusable code could be inherited, while most performance-

critical components required redevelopment. 

Second, the target hardware platform has significantly evolved. Previous efforts were 

conducted on the first-generation Sunway system, whereas this study targets the new-

generation Sunway supercomputer, which introduces important architectural upgrades. 

Optimization strategies that were tightly coupled to the execution and memory characteristics 

of the older platform required careful re-evaluation and re-adaptation to the new hardware. 

Third, CESM consists of millions of lines of code. Earlier manual Athread-based 

optimizations focused primarily on a limited number of dominant hotspots. According to 

Amdahl’s law, such partial optimization limits overall performance gains. Achieving further 

improvements therefore requires expanding optimization coverage to a wider range of 

computational hotspots. 

Based on these considerations, the present work adopts an incremental yet substantially 

extended optimization strategy. For code sections that remained largely unchanged across 

versions, we retained the original optimization framework but re-tuned it for the new 

hardware. For components that underwent significant modifications, we redesigned and re-

implemented the optimizations, leveraging the O2ATH tool to cover a much broader portion 

of the code base. 

We have added explanations in the revised manuscript. Please see line 109-117. 

 

Comment 0 

Reviewer comment: 

In general, I think the paper could benefit from a grammar/syntax check, especially in the first 

couple of sections. Most text editors won’t flag anything, as the words used do in fact exist 

(these are not misspellings), but a few more careful reads (or some better grammar/syntax 

check tool) would prob help identify areas that need fixes. Related to this, NICAM expanded 

name includes “Iscosajedral”, but should be Icosahedral. 

Response: 

We thank the reviewer for pointing out these issues. In the revised manuscript, we have 

performed thorough grammar and language check throughout the entire text to improve 



clarity and readability. 

 

Comment 1 

Reviewer comment: 

In the literature review, the authors mention Golaz 2022 as a model that accommodate up to 

276,000 GPUs and achieves 0.97 SYPD. However, Golaz 2022 work uses E3SM v2, which is 

a CPU-only model, and the performance experiments showed in that paper are performed on 

the Chrysalis supercomputer, located at Argonne National Laboratory. Perhaps the authors 

were thinking of the Taylor 2023 work (doi: 10.1145/3581784.3627044), which achieved 1.26 

SYDP on Frontier, using however only 65,536 AMD GPUs. Also, when comparing the 

current work’s performance with leading modeling efforts, it may be best to not use the 

Bertagna 2020 work, as that only has the dycore ported to GPU. A better comparison within 

the E3SM umbrella would be the aforementioned Taylor 2023 paper, or Donahue 2024 (doi: 

10.1029/2024MS004314). 

Response: 

Thank you for pointing this out. Due to a technical issue during manuscript preparation, some 

references in the original literature review were incorrectly associated with the corresponding 

discussions. In the revised manuscript, we have corrected these citations: the discussion 

previously attributed to Golaz et al. (2022) now correctly cites Bertagna et al. (2020), and the 

discussion originally associated with Bertagna et al. (2020) has been corrected to Edwards et 

al. (DOI: https://doi.org/10.1016/j.jpdc.2014.07.003). We thank the reviewer for this helpful 

comment. 

 

Comment 2 

Reviewer comment: 

In section 2.1, it would be nice to give some more interesting details on the new Sunway 

supercomputer, or provide in this section a reference to another work with such details. For 

instance, the clock speed of MPEs vs CPEs, or their nominal power consumption. These 

details would help putting in perspective the claim done in section 4.1 that “the highest 

resolution model now performs at nearly one simulation year per day, compared to 1.7 SDPD 

with the previous version that utilized MPEs only”. 

Response: 

We thank the reviewer for pointing out the insufficient description of the new-generation 



Sunway supercomputer in Section 2.1. In the revised manuscript, we have added information 

about the new supercomputer. Please see line 137-139, 143-145, 154-158 in Section 2.1. 

 

Comment 3 

Reviewer comment: 

In section 2.4 the authors claim that going from 25km to 5km they would expect a drop in 

efficiency by a factor 25. However, the factor 25 only accounts for the increase in spatial 

resolution, while CFL constraints also impose a decrease in the maximum allowed time step. 

Are the authors using the same dt for all simulations, meaning that they pick a dt that works 

for the finest resolution, and use that also for coarse resolutions? If so, this should probably be 

stated, to avoid CFL-related confusion. 

Response: 

We appreciate the reviewer’s valuable comment regarding potential confusion arising from 

CFL constraints. In this work, the comparison focuses on the increase in computational cost 

per iteration step due to the growth in spatial grid points when the resolution is increased from 

25 km to 5 km, without considering adjustments to the time step that might be required for 

higher resolutions. We have clarified this point in the revised manuscript, please see line 271-

279. 

 

Comment 4 

Reviewer comment: 

In section 3, I would consider dropping the terminology master/slave, in favor of less 

“controversial” ones. For instance, they could use “main thread” (or “primary thread”) and 

“worker threads”. Other good suggestions can be found browsing the CS community. While 

“master” is still widely used, the term “slave” is definitely falling out of favor... 

Response: 

We appreciate this suggestion. In the revised manuscript, we have replaced the terms 

“master/slave” with more neutral and widely accepted terminology, such as “main (or 

primary) thread” and “worker threads”. 

 

Comment 5 

Reviewer comment: 



In section 3.4, in particular figure 5, we see the perf boost of individual CAM/POP portions 

when switching from the O2ATH framework to a pure Athread one. I am not an expert of 

POP, but the three atm dycore subroutines reported have a different runtime. It may be helpful 

to add a table (perhaps side by side with the figure) showing the runtime of these portions of 

the code (for the base case, without either O2ATH nor Athread), to help weigh the different 

speedup bars. 

Response: 

We thank the reviewer for the suggestion. In the revised manuscript, we have added a table 

alongside Figure 5 showing the runtime of these code sections under the baseline condition.  

 

Comment 6 

Reviewer comment: 

In section 3.6 the authors discuss “binary consistency” across different compilers and/or 

supercomputers. By this, I assume they mean the bit-wise value of the generated output, and 

not the binary executable, but perhaps this should be clarified. Either way, I don’t think there 

is much interest across models in retaining a bit-for-bit reproducible solution across different 

compilers, let alone different machines (but I may be wrong). Usually, this can be achieved 

for subsequent versions of the code on the SAME machine with the SAME compiler, but that 

can also be challenging (especially if one uses solvers that do make use of random algorithms, 

or iterative algorithm involving many global reductions). On the other hand, an ensemble-

based Deep Learning approach is very reasonable, and definitely more interesting for the 

community. Since it seems the authors developed their own framework, I think it would be 

more interesting to devote the full 3.6 section to this, maybe giving some more detail that can 

be useful for other centers/models. 

Response: 

We appreciate the reviewer’s insightful comments on Section 3.6. First, we clarify that 

“binary consistency” refers to the consistency of the model’s output data, not the executable 

file itself. Our work mainly involves cross-machine and cross-compiler output data 

consistency checks to ensure that the optimized model’s output remains consistent with the 

original implementation, guaranteeing correctness even under different hardware and 

compiler environments. We have added explanations in the revised manuscript. Please see 

line 477-479. 

Detailed descriptions of our self-developed ESM-DCT framework can be found in our 

previous work (https://doi.org/10.1016/j.isci.2024.111574), which has now been explicitly 



cited in the revised manuscript. Therefore, we do not repeat those details here. 

 

Comment 7 

Reviewer comment: 

I’m curious as to how the OMEGA kernel acceleration is achieved. Does libvnest implement 

a divide-and-conquer approach? It would be nice to share a few more details, to allow other 

projects to learn from this effort. 

Response: 

We thank the reviewer for the interest in the OMEGA kernel acceleration. Currently, the 

acceleration of the OMEGA kernel primarily relies on the xfort tool to implement worker-

thread (CPE) parallelism on the Sunway platform, similar in concept to OpenMP. Specifically, 

key loops within the kernel are identified, and an appropriate dimension is selected based on 

data block partitioning principles, with manual task partitioning performed along this 

dimension. To achieve optimal performance, we should not only consider the parallel 

dimensions based on the division plan but also the implementation of the loops themselves. In 

some computations, the most suitable dimension for parallelism is not explicitly present in the 

loops, and directly parallelizing along the explicit dimension often fails to achieve ideal 

performance. Therefore, for parts involving implicit operations such as array slicing, we first 

expand the implicit loops and then apply worker-thread parallelism along that dimension, 

thereby enhancing the flexibility and overall acceleration efficiency of many-core parallelism. 

We have added explanations in the revised manuscript. Please see line 512-517. 

 

Comment 8 

Reviewer comment: 

In section 4.1 the authors claim that “the highest resolution model now performs at nearly one 

simulation year per day”. In the rest of the 4.x sections the highest number we see (for the full 

model) is 222 SDPD, which is ~0.6 SYPD. I would not say that 0.6 is “nearly one SYPD”... It 

is possible (though the paragraph does not suggest that) that they referred to the performance 

of the ATM component only, which fig 8c shows to achieve 331 SDPD; if so, it should be 

made clear. If, instead, they were referring to the full model, I would consider rephrasing the 

claim, as 0.6 is not very close to 1. To be clear, I am not belittling the relevance of the 222 

SDPD; I am just saying that I don’t see a need to use misleading words. 

Response: 



We thank the reviewer for pointing out the inaccuracy. We confirm that for the full SW-

HRESMS model simulation, the actual overall performance achieved is 222 SDPD, 

approximately 0.6 SYPD, which indeed does not reach the “one year per day” level. We have 

revised the relevant statement in the manuscript to avoid misleading readers. 

 

Comment 9 

Reviewer comment: 

In section 4.2 the plot line shows a 1.83x improve in SDPD in the last optimization step. 

However, the bar plot of the wall seconds does not seem to decrease by much (if at all). 

Where does the boost from 131 to 222 SDPD come from, given that the wall seconds bar 

plots seem unchanged? 

Response: 

We thank the reviewer for pointing out the issues in the figure. Upon checking, the 

discrepancy between the SDPD improvement and the wall seconds bar plot in Section 4.2 was 

indeed caused by a plotting error. We have corrected the relevant data and regenerate the 

figure in the revised manuscript to ensure consistency between SDPD and wall seconds. 

 

Comment 10.a 

Reviewer comment: 

In section 4.3: 

a) when commenting fig 8, the authors first claim that the smallest feasible scale for NE480 

was 28,800 processes (in agreement with fig 8c), but then they say that efficiency is ~47% 

when scaling from 14,400 to 460,800 processes. So, did 14.400 work? Or is this a typo? 

Response: 

a) We thank the reviewer for pointing out this issue. This was indeed a typo. “14,400” should 

be corrected to “28,800”. We have made correction in the revised manuscript to ensure 

consistency with Figure 8c. 

 

Comment 10.b 

Reviewer comment: 

b) the authors say that “a further decline to ~72% occurs when scaling beyond half of the full 



capacity”. However, looking at fig 8a, I see an efficiency of 69% at 115,200 CPEs, that is, a 

lower efficiency, and happening earlier than scaling beyond half capacity. Either this 

discrepancy comes from data older/newer than the data in the plot, or it refers to different 

data. Either way, this needs to be clarified/fixed. 

Response: 

b) We thank the reviewer for noting this potential confusion. The “72% parallel efficiency” 

mentioned in the text comes from experimental results at half-machine scale (around 300,000 

processes). This data point lies between the 172,800 processes (75% efficiency) and 345,600 

processes (66% efficiency) points on the ATM strong scaling efficiency plot (Figure 8c) but 

was not plotted. In the revised manuscript, we have corrected the statement to match the 

plotted results, and the efficiency is now reported as approximately 66%, consistent with 

Figure 8. 

 

Comment 10.c 

Reviewer comment: 

c) the authors say “the efficiency of POP is measured at 9.59 SDPD”. I don’t understand what 

it means to measure efficiency at 9.59 SDPD. Also, none of the plots below show the 9.59 

SDPD number, so it’s hard to link this number to the rest of the section and the plots. This 

sentence needs to be clarified. 

Response: 

c) We thank the reviewer for pointing out this issue. The “9.59 SDPD” mentioned in the text 

was a typo. The correct value should be 249 SDPD. We have corrected this in the revised 

manuscript to ensure consistency between the text and the figures. 

 

Comment 10.d 

Reviewer comment: 

d) the authors say that the peek perf is 50 SDPD, achieved with one fourth of the machine, 

and that using the full machine it drops to 30 SDPD. They speculate that this may be due to 

“incorrect setup of cases”, but it is not clear what they mean by that. Also, these numbers are 

nowhere in the plots. Where this initial experiments before another round of optimizations? 

This needs some clarification. 

Response: 



d) We thank the reviewer for the query. The initial peak performance mentioned (50 SDPD 

with one-fourth of the machine, dropping to 30 SDPD with the full machine) comes from 

records of the initial experimental testing phase. These data points are not displayed in the 

figures. In these preliminary experiments, the performance at full machine scale was lower 

than at one-fourth scale, contrary to theoretical expectations. Analysis revealed that the 

primary reasons were related to process layout and communication strategies, which led to 

efficiency decline at large scale. Subsequently, we optimized the process layout and 

communication, specifically by releasing all processes to CICE and CPL after ATM 

computation, which significantly improved the overall performance at full machine scale, 

ultimately reaching about 222 SDPD. We have clarified this description in the revised 

manuscript. Please see line 568-574. 

 

Comment 10.e 

Reviewer comment: 

e) related to the above, the authors then claim that “by fine-tuning CPL and CICE at the 

machine full size it is possible ot achieve significant improvement”. Does this mean that the 

large scale runs contain ad-hoc optimizations that are not used at lower resolution? What kind 

of fine-tuning was it needed? As stated, this bit gives no insight that could help other projects 

that are experiencing similar performance drops at large scale... 

Response: 

e) We appreciate the reviewer’s interest in this point. The “fine-tuning of CPL and CICE” 

mentioned in the text primarily refers to process layout and communication optimizations at 

full machine scale. These optimizations are targeted for large-scale runs and do not affect 

experiments at smaller scales or lower resolutions, as already explained in Response 10.d. 

 

Comment 11 

Reviewer comment: 

In section 4.4, figure 9 claims to show both ocean surface vorticity as well as sea ice 

concentration/deformation. However, I only see one colorbar, with a legend showings the 

units of vorticity. How should one read the sea ice concentration? The presence of green-ish 

and white-ish areas is also unclear. I suspect the white area is sea ice (but how does one 

deduce concentration/deformation?), and the green-ish area is just a tight overlap of areas 

with (small) positive an negative vorticity, which make blue and yellow pixel sit very near 

each other, causing a green effect. Still, some clarification may help the reader. 



Response: 

We appreciate the reviewer's valuable feedback. Figure 9 is plotted in the following order. The 

ocean surface relative vorticity is plotted first, and sea-ice variables are then overlaid. When 

the sea-ice concentration (SIC) is between 1% and 15%, the sea-ice concentration itself is 

displayed; in other regions where sea ice is present, the sea-ice total deformation rate is 

shown. In terms of color interpretation, white-to-blue shading represents sea-ice concentration 

(SIC), while red-to-white shading indicates the sea-ice total deformation rate. The greenish 

appearance mentioned by the reviewer mainly results from visual color mixing caused by the 

close spatial proximity of positive and negative vorticity and does not represent an additional 

physical quantity. In the revised manuscript, we have added colorbars and clarified the color 

interpretation in the figure legend and caption to avoid potential confusion for readers. 

 

Comment 12 

Reviewer comment: 

In the “code and data availability” section at the end, the authors point to the ESCOMP org 

for the CESM code, and mention that the optimized code and the raw data is available upon 

request. I find this a bit underwhelming. I would prefer to see the optimized code as well as 

the input/run scripts (as well as any other input data) used for the experiments publicly 

available. They could easily create a zenodo (or similar) snapshot, as done in previous efforts 

by several climate modeling centers (as well as in previous works of some of the authors). 

Response: 

Thank you for your insightful comment regarding the “Code and Data Availability” section. 

We have added the relevant code and data links in the corresponding section of the revised 

manuscript. 

 

Comment 13 

Reviewer comment: 

Finally, one comment on the keyword “automated” featured in the title. It is not clear to me 

how the optimization is “automated”. Do the authors refer to the fact that the compiler does 

all the optimization work, once the proper pragma directives are inserted? If so, I find this a 

poor justification of the word “automated”. Using OpenMP does not really qualify as 

“automated optimization”. It is no more automated than the creation of the binary executable 

when running “make”: it is just the compiler doing what it is designed to do. Moreover, the 



authors explicitly say that they also needed precise fine-grain optimizations to squeeze out 

performance, which does not really ring with the “automated” tune of the title. To be clear, 

there is nothing wrong with having to manually modify/refactor selected areas of the code, 

and there is nothing wrong with relying on the compiler for vectorization and/or threading 

choices. But I would not call this an “automated optimization”. 

Response: 

We thank the reviewer for raising the question regarding the term “automated” in the title. We 

understand the reviewer’s concern about the concept of “automated optimization” and would 

like to clarify further. In this work, OpenMP directives indeed need to be manually inserted, 

which is a standard compiler parallelization practice. However, what we refer to as 

“automated optimization” primarily involves the ability to automatically generate worker 

thread code. In the revised manuscript, we have added clarifications in the revised 

manuscript. Please see line 370-373. 


