Dear Reviewer,

Thank you very much for your constructive comments and thoughtful suggestions. We
sincerely appreciate the time and effort you devoted to reviewing our manuscript. Your
feedback is extremely valuable and provides clear guidance for significantly improving our

work.

We have carefully considered all of your points. In the responses below, we address each
comment in detail, outlining our understanding and the specific changes we will make to the
manuscript to incorporate your suggestions. We are committed to thoroughly revising the
manuscript along the lines you have recommended and believe these changes will greatly

enhance its clarity, accuracy, and overall impact.

General Comment
Reviewer comment:

I have a few comments regarding clarity of certain statements/sections, but before that, I think
my biggest concern, which makes me think the work may need a major revision, is that there
are already efforts in literature that aim to port CESM (including CAM and POP) to run
efficiently on the Sunway supercomputer, including previous works by some of the authors in
2016 and 2021. From reading the paper, it seems to me that the authors do not use previous
porting as a starting point, but rather do a completely new effort. This seems like a waste, and
this choice has to be explained and justified in detail, otherwise this is just presenting a work
that is very similar to what was already done. Why not building on previous successes?
Would previous work not scale to these resolutions? Or is this in fact the same work, just
extended to the CICE and MCT components? Also, how does the speedup of this work
compares to the previous porting efforts, if those versions of CESM were to be run at these
resolutions? Hopefully, this can be cleared easily by the authors, but the importance of this

detail is why I select the “major revision” bullet.
Response:

We fully understand the reviewer’s concern regarding the relationship between this work and
earlier CESM porting efforts, as well as the necessity and differentiation of the present study.
To avoid any potential misunderstanding, we provide a clear explanation below addressing
why a new porting and optimization effort was required, why previous results could not be

directly reused, and how this work fundamentally differs from earlier studies.

First, model version differences prevent direct reuse of previous optimizations. Earlier studies

targeted CESM1.3, whereas the present work is based on CESM2.2. Between these versions,
CESM has undergone extensive refactoring and architectural evolution, resulting in
substantial changes to the implementation of many core modules. Consequently, the
previously refined and optimized code for the old version cannot be directly reused. In this
work, only a small fraction of reusable code could be inherited, while most performance-

critical components required redevelopment.

Second, the target hardware platform has significantly evolved. Previous efforts were
conducted on the first-generation Sunway system, whereas this study targets the new-
generation Sunway supercomputer, which introduces important architectural upgrades.
Optimization strategies that were tightly coupled to the execution and memory characteristics

of the older platform required careful re-evaluation and re-adaptation to the new hardware.

Third, CESM consists of millions of lines of code. Earlier manual Athread-based
optimizations focused primarily on a limited number of dominant hotspots. According to
Amdahl’s law, such partial optimization limits overall performance gains. Achieving further
improvements therefore requires expanding optimization coverage to a wider range of

computational hotspots.

Based on these considerations, the present work adopts an incremental yet substantially
extended optimization strategy. For code sections that remained largely unchanged across
versions, we retained the original optimization framework but re-tuned it for the new
hardware. For components that underwent significant modifications, we redesigned and re-
implemented the optimizations, leveraging the O2ATH tool to cover a much broader portion

of the code base.

We have added explanations in the revised manuscript. Please see line 109-117.

Comment 0
Reviewer comment:

In general, I think the paper could benefit from a grammar/syntax check, especially in the first
couple of sections. Most text editors won’t flag anything, as the words used do in fact exist
(these are not misspellings), but a few more careful reads (or some better grammar/syntax
check tool) would prob help identify areas that need fixes. Related to this, NICAM expanded

name includes “Iscosajedral”, but should be Icosahedral.
Response:

We thank the reviewer for pointing out these issues. In the revised manuscript, we have

performed thorough grammar and language check throughout the entire text to improve

clarity and readability.

Comment 1
Reviewer comment:

In the literature review, the authors mention Golaz 2022 as a model that accommodate up to
276,000 GPUs and achieves 0.97 SYPD. However, Golaz 2022 work uses E3SM v2, which is
a CPU-only model, and the performance experiments showed in that paper are performed on
the Chrysalis supercomputer, located at Argonne National Laboratory. Perhaps the authors
were thinking of the Taylor 2023 work (doi: 10.1145/3581784.3627044), which achieved 1.26
SYDP on Frontier, using however only 65,536 AMD GPUs. Also, when comparing the
current work’s performance with leading modeling efforts, it may be best to not use the
Bertagna 2020 work, as that only has the dycore ported to GPU. A better comparison within
the E3SM umbrella would be the aforementioned Taylor 2023 paper, or Donahue 2024 (doi:
10.1029/2024MS004314).

Response:

Thank you for pointing this out. Due to a technical issue during manuscript preparation, some
references in the original literature review were incorrectly associated with the corresponding
discussions. In the revised manuscript, we have corrected these citations: the discussion
previously attributed to Golaz et al. (2022) now correctly cites Bertagna et al. (2020), and the
discussion originally associated with Bertagna et al. (2020) has been corrected to Edwards et
al. (DOI: https://doi.org/10.1016/j.jpdc.2014.07.003). We thank the reviewer for this helpful

comment.

Comment 2
Reviewer comment:

In section 2.1, it would be nice to give some more interesting details on the new Sunway
supercomputer, or provide in this section a reference to another work with such details. For
instance, the clock speed of MPEs vs CPEs, or their nominal power consumption. These
details would help putting in perspective the claim done in section 4.1 that “the highest
resolution model now performs at nearly one simulation year per day, compared to 1.7 SDPD

with the previous version that utilized MPEs only”.
Response:

We thank the reviewer for pointing out the insufficient description of the new-generation

Sunway supercomputer in Section 2.1. In the revised manuscript, we have added information

about the new supercomputer. Please see line 137-139, 143-145, 154-158 in Section 2.1.

Comment 3
Reviewer comment:

In section 2.4 the authors claim that going from 25km to Skm they would expect a drop in
efficiency by a factor 25. However, the factor 25 only accounts for the increase in spatial
resolution, while CFL constraints also impose a decrease in the maximum allowed time step.
Are the authors using the same dt for all simulations, meaning that they pick a dt that works
for the finest resolution, and use that also for coarse resolutions? If so, this should probably be

stated, to avoid CFL-related confusion.
Response:

We appreciate the reviewer’s valuable comment regarding potential confusion arising from
CFL constraints. In this work, the comparison focuses on the increase in computational cost
per iteration step due to the growth in spatial grid points when the resolution is increased from
25 km to 5 km, without considering adjustments to the time step that might be required for
higher resolutions. We have clarified this point in the revised manuscript, please see line 271-
279.

Comment 4
Reviewer comment:

In section 3, I would consider dropping the terminology master/slave, in favor of less
“controversial” ones. For instance, they could use “main thread” (or “primary thread”) and
“worker threads”. Other good suggestions can be found browsing the CS community. While

“master” is still widely used, the term “slave” is definitely falling out of favor...
Response:

We appreciate this suggestion. In the revised manuscript, we have replaced the terms
“master/slave” with more neutral and widely accepted terminology, such as “main (or

primary) thread” and “worker threads”.

Comment 5

Reviewer comment:

In section 3.4, in particular figure 5, we see the perf boost of individual CAM/POP portions
when switching from the O2ATH framework to a pure Athread one. I am not an expert of
POP, but the three atm dycore subroutines reported have a different runtime. It may be helpful
to add a table (perhaps side by side with the figure) showing the runtime of these portions of
the code (for the base case, without either O2ATH nor Athread), to help weigh the different
speedup bars.

Response:

We thank the reviewer for the suggestion. In the revised manuscript, we have added a table

alongside Figure 5 showing the runtime of these code sections under the baseline condition.

Comment 6
Reviewer comment:

In section 3.6 the authors discuss “binary consistency” across different compilers and/or
supercomputers. By this, [assume they mean the bit-wise value of the generated output, and
not the binary executable, but perhaps this should be clarified. Either way, I don’t think there
is much interest across models in retaining a bit-for-bit reproducible solution across different
compilers, let alone different machines (but [may be wrong). Usually, this can be achieved
for subsequent versions of the code on the SAME machine with the SAME compiler, but that
can also be challenging (especially if one uses solvers that do make use of random algorithms,
or iterative algorithm involving many global reductions). On the other hand, an ensemble-
based Deep Learning approach is very reasonable, and definitely more interesting for the
community. Since it seems the authors developed their own framework, I think it would be
more interesting to devote the full 3.6 section to this, maybe giving some more detail that can

be useful for other centers/models.
Response:

We appreciate the reviewer’s insightful comments on Section 3.6. First, we clarify that
“binary consistency” refers to the consistency of the model’s output data, not the executable
file itself. Our work mainly involves cross-machine and cross-compiler output data
consistency checks to ensure that the optimized model’s output remains consistent with the
original implementation, guaranteeing correctness even under different hardware and
compiler environments. We have added explanations in the revised manuscript. Please see
line 477-479.

Detailed descriptions of our self-developed ESM-DCT framework can be found in our

previous work (https://doi.org/10.1016/j.isc1.2024.111574), which has now been explicitly

cited in the revised manuscript. Therefore, we do not repeat those details here.

Comment 7
Reviewer comment:

I’m curious as to how the OMEGA kernel acceleration is achieved. Does libvnest implement
a divide-and-conquer approach? It would be nice to share a few more details, to allow other

projects to learn from this effort.
Response:

We thank the reviewer for the interest in the OMEGA kernel acceleration. Currently, the
acceleration of the OMEGA kernel primarily relies on the xfort tool to implement worker-
thread (CPE) parallelism on the Sunway platform, similar in concept to OpenMP. Specifically,
key loops within the kernel are identified, and an appropriate dimension is selected based on
data block partitioning principles, with manual task partitioning performed along this
dimension. To achieve optimal performance, we should not only consider the parallel
dimensions based on the division plan but also the implementation of the loops themselves. In
some computations, the most suitable dimension for parallelism is not explicitly present in the
loops, and directly parallelizing along the explicit dimension often fails to achieve ideal
performance. Therefore, for parts involving implicit operations such as array slicing, we first
expand the implicit loops and then apply worker-thread parallelism along that dimension,
thereby enhancing the flexibility and overall acceleration efficiency of many-core parallelism.

We have added explanations in the revised manuscript. Please see line 512-517.

Comment 8
Reviewer comment:

In section 4.1 the authors claim that “the highest resolution model now performs at nearly one
simulation year per day”. In the rest of the 4.x sections the highest number we see (for the full
model) is 222 SDPD, which is ~0.6 SYPD. I would not say that 0.6 is “nearly one SYPD”... It
is possible (though the paragraph does not suggest that) that they referred to the performance
of the ATM component only, which fig 8c shows to achieve 331 SDPD; if so, it should be
made clear. If, instead, they were referring to the full model, I would consider rephrasing the
claim, as 0.6 is not very close to 1. To be clear, I am not belittling the relevance of the 222

SDPD; I am just saying that I don’t see a need to use misleading words.

Response:

We thank the reviewer for pointing out the inaccuracy. We confirm that for the full SW-
HRESMS model simulation, the actual overall performance achieved is 222 SDPD,
approximately 0.6 SYPD, which indeed does not reach the “one year per day” level. We have

revised the relevant statement in the manuscript to avoid misleading readers.

Comment 9
Reviewer comment:

In section 4.2 the plot line shows a 1.83x improve in SDPD in the last optimization step.
However, the bar plot of the wall seconds does not seem to decrease by much (if at all).
Where does the boost from 131 to 222 SDPD come from, given that the wall seconds bar

plots seem unchanged?
Response:

We thank the reviewer for pointing out the issues in the figure. Upon checking, the
discrepancy between the SDPD improvement and the wall seconds bar plot in Section 4.2 was
indeed caused by a plotting error. We have corrected the relevant data and regenerate the

figure in the revised manuscript to ensure consistency between SDPD and wall seconds.

Comment 10.a
Reviewer comment:
In section 4.3:

a) when commenting fig 8, the authors first claim that the smallest feasible scale for NE480
was 28,800 processes (in agreement with fig 8c), but then they say that efficiency is ~47%
when scaling from 14,400 to 460,800 processes. So, did 14.400 work? Or is this a typo?

Response:

a) We thank the reviewer for pointing out this issue. This was indeed a typo. “14,400” should
be corrected to “28,800”. We have made correction in the revised manuscript to ensure

consistency with Figure 8c.

Comment 10.b
Reviewer comment:

b) the authors say that “a further decline to ~72% occurs when scaling beyond half of the full

capacity”. However, looking at fig 8a, I see an efficiency of 69% at 115,200 CPEs, that is, a
lower efficiency, and happening earlier than scaling beyond half capacity. Either this
discrepancy comes from data older/newer than the data in the plot, or it refers to different

data. Either way, this needs to be clarified/fixed.
Response:

b) We thank the reviewer for noting this potential confusion. The “72% parallel efficiency”
mentioned in the text comes from experimental results at half-machine scale (around 300,000
processes). This data point lies between the 172,800 processes (75% efficiency) and 345,600
processes (66% efficiency) points on the ATM strong scaling efficiency plot (Figure 8c) but
was not plotted. In the revised manuscript, we have corrected the statement to match the
plotted results, and the efficiency is now reported as approximately 66%, consistent with

Figure 8.

Comment 10.c
Reviewer comment:

¢) the authors say “the efficiency of POP is measured at 9.59 SDPD”. I don’t understand what
it means to measure efficiency at 9.59 SDPD. Also, none of the plots below show the 9.59
SDPD number, so it’s hard to link this number to the rest of the section and the plots. This

sentence needs to be clarified.
Response:

¢) We thank the reviewer for pointing out this issue. The “9.59 SDPD” mentioned in the text
was a typo. The correct value should be 249 SDPD. We have corrected this in the revised

manuscript to ensure consistency between the text and the figures.

Comment 10.d
Reviewer comment:

d) the authors say that the peek perf'is 50 SDPD, achieved with one fourth of the machine,
and that using the full machine it drops to 30 SDPD. They speculate that this may be due to
“incorrect setup of cases”, but it is not clear what they mean by that. Also, these numbers are
nowhere in the plots. Where this initial experiments before another round of optimizations?

This needs some clarification.

Response:

d) We thank the reviewer for the query. The initial peak performance mentioned (50 SDPD
with one-fourth of the machine, dropping to 30 SDPD with the full machine) comes from
records of the initial experimental testing phase. These data points are not displayed in the
figures. In these preliminary experiments, the performance at full machine scale was lower
than at one-fourth scale, contrary to theoretical expectations. Analysis revealed that the
primary reasons were related to process layout and communication strategies, which led to
efficiency decline at large scale. Subsequently, we optimized the process layout and
communication, specifically by releasing all processes to CICE and CPL after ATM
computation, which significantly improved the overall performance at full machine scale,
ultimately reaching about 222 SDPD. We have clarified this description in the revised

manuscript. Please see line 568-574.

Comment 10.e
Reviewer comment:

e) related to the above, the authors then claim that “by fine-tuning CPL and CICE at the
machine full size it is possible ot achieve significant improvement”. Does this mean that the
large scale runs contain ad-hoc optimizations that are not used at lower resolution? What kind
of fine-tuning was it needed? As stated, this bit gives no insight that could help other projects

that are experiencing similar performance drops at large scale...
Response:

e) We appreciate the reviewer’s interest in this point. The “fine-tuning of CPL and CICE”
mentioned in the text primarily refers to process layout and communication optimizations at
full machine scale. These optimizations are targeted for large-scale runs and do not affect

experiments at smaller scales or lower resolutions, as already explained in Response 10.d.

Comment 11
Reviewer comment:

In section 4.4, figure 9 claims to show both ocean surface vorticity as well as sea ice
concentration/deformation. However, I only see one colorbar, with a legend showings the
units of vorticity. How should one read the sea ice concentration? The presence of green-ish
and white-ish areas is also unclear. I suspect the white area is sea ice (but how does one
deduce concentration/deformation?), and the green-ish area is just a tight overlap of areas
with (small) positive an negative vorticity, which make blue and yellow pixel sit very near

each other, causing a green effect. Still, some clarification may help the reader.

Response:

We appreciate the reviewer's valuable feedback. Figure 9 is plotted in the following order. The
ocean surface relative vorticity is plotted first, and sea-ice variables are then overlaid. When
the sea-ice concentration (SIC) is between 1% and 15%, the sea-ice concentration itself is
displayed; in other regions where sea ice is present, the sea-ice total deformation rate is
shown. In terms of color interpretation, white-to-blue shading represents sea-ice concentration
(SIC), while red-to-white shading indicates the sea-ice total deformation rate. The greenish
appearance mentioned by the reviewer mainly results from visual color mixing caused by the
close spatial proximity of positive and negative vorticity and does not represent an additional
physical quantity. In the revised manuscript, we have added colorbars and clarified the color

interpretation in the figure legend and caption to avoid potential confusion for readers.

Comment 12
Reviewer comment:

In the “code and data availability” section at the end, the authors point to the ESCOMP org
for the CESM code, and mention that the optimized code and the raw data is available upon
request. I find this a bit underwhelming. I would prefer to see the optimized code as well as
the input/run scripts (as well as any other input data) used for the experiments publicly
available. They could easily create a zenodo (or similar) snapshot, as done in previous efforts

by several climate modeling centers (as well as in previous works of some of the authors).
Response:

Thank you for your insightful comment regarding the “Code and Data Availability” section.
We have added the relevant code and data links in the corresponding section of the revised

manuscript.

Comment 13
Reviewer comment:

Finally, one comment on the keyword “automated” featured in the title. It is not clear to me
how the optimization is “automated”. Do the authors refer to the fact that the compiler does
all the optimization work, once the proper pragma directives are inserted? If so, I find this a
poor justification of the word “automated”. Using OpenMP does not really qualify as
“automated optimization”. It is no more automated than the creation of the binary executable

when running “make”: it is just the compiler doing what it is designed to do. Moreover, the

authors explicitly say that they also needed precise fine-grain optimizations to squeeze out
performance, which does not really ring with the “automated” tune of the title. To be clear,
there is nothing wrong with having to manually modify/refactor selected areas of the code,
and there is nothing wrong with relying on the compiler for vectorization and/or threading

choices. But I would not call this an “automated optimization™.
Response:

We thank the reviewer for raising the question regarding the term “automated” in the title. We
understand the reviewer’s concern about the concept of “automated optimization” and would
like to clarify further. In this work, OpenMP directives indeed need to be manually inserted,
which is a standard compiler parallelization practice. However, what we refer to as
“automated optimization” primarily involves the ability to automatically generate worker
thread code. In the revised manuscript, we have added clarifications in the revised

manuscript. Please see line 370-373.

