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Abstract. Daily, basin-scale snow depth maps are needed for forecasting and operations, yet airborne lidar typically provides 

only episodic snapshots. We present a portable relative-depth machine-learning framework that converts a small number of 

lidar acquisitions plus a single daily driver time series (in-situ station or ERA5-Land) into temporally coherent, per-pixel daily 15 

snow depth maps. A random forest model is trained on lidar–driver differences where lidar supplies the spatial pattern of 

departures and the driver supplies temporal evolution; learning is constrained to observed conditions using a valid-pixel mask 

and synthetic zero-depth maps at season start and end. We evaluate the approach in two contrasting regimes—Mores Creek, 

Idaho, and Hubbard Brook, New Hampshire—using multi-year lidar records. Across both basins, performance is fit for purpose 

(R² 0.89–0.90; RMSE 8–28 cm; MAE 5–19 cm; near-zero bias). Mores Creek, a larger heterogeneous western basin benefits 20 

more from adding lidar-informed residual maps, than Hubbard Brook, a smaller transitional eastern basins, where the primary 

value is correcting local departures from the mean and refining melt timing. Spatial diagnostics and Shapley values show that 

residuals are organized by landscape controls including elevation, aspect/northness, microtopography, slope, and a 

redistribution proxy.  Lidar-cadence experiments indicate diminishing returns after a few acquisitions: roughly five flights in 

early season, four in mid-winter, and five in late season recover most skill at Mores Creek, while Hubbard Brook shows a 25 

similar pattern with about three flights in early-mid winter and five in mid-late winter, but with greater variability in model 

skill. The timing of lidar acquisitions also influences model transferability. Models trained on mid-season data generalize well 

to both early and late season conditions, whereas models trained on late-season data perform poorest when applied to early 

season dates. ERA5-driven runs closely track in-situ-driven results, indicating the feasibility of using reanalysis datasets where 

stations are absent. The method is intentionally interpolative and should be applied within its area of applicability, but it offers 30 

a practical route from episodic lidar snow surveys to meter-scale, daily, basin-scale products and actionable guidance on survey 

timing and frequency. 
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1 Introduction 

Seasonal snow cover provides valuable water for billions of people across the Northern Hemisphere. In the American West, 35 

snowmelt accounts for roughly 53% of annual runoff (Li et al., 2017), supplying water districts, municipalities, agriculture, 

industry, and sustaining ecosystem structure and function (Brooks et al., 2025; Callaghan et al., 2011). Unseasonably low 

spring snowpack can lead to water deficits, prompting unsustainable groundwater withdrawals and elevating wildfire risk, with 

cascading socio-economic impacts on local communities (Diffenbaugh et al., 2015). Projections indicate that mountain 

snowpacks worldwide are likely to decline under future climate scenarios (Intergovernmental Panel On Climate Change 40 

(IPCC), 2023), potentially reducing total runoff in the American West by as much as 30% (Li et al., 2017). Understanding 

snowpack dynamics is equally critical in the eastern United States, where transitional snowpacks regulate soil freeze–thaw 

cycles, groundwater recharge, and streamflow that sustains hydropower, fisheries, and cold-water habitats (Ford et al., 2021). 

These natural, social, and economic stakes underscore the importance of monitoring snow depth distribution and its seasonal 

evolution to improve water forecasting, guide resource allocation, and anticipate ecologic and hydrologic impacts. While in 45 

situ networks such as snow courses and automated stations (e.g., SNOTEL) provide accurate point-scale snow depth and snow 

water equivalent (SWE) measurements, they remain sparse, biased toward accessible locations, and poorly capture the spatial 

heterogeneity of snowpacks across diverse terrain (Dong, 2018; Meromy et al., 2013). This spatial gap has increasingly driven 

reliance on remote sensing to scale snow observations over larger domains. 

 50 

Remote sensing has transformed snow depth monitoring by providing regional to global coverage and overcoming the 

limitations of sparse ground networks. Passive microwave radiometers, including the Advanced Microwave Scanning 

Radiometer for EOS (AMSR-E), its successor AMSR2, and the Special Sensor Microwave/Imager (SSM/I), provide daily 

hemispheric snow depth estimates and multi-decadal records essential for climate monitoring (Chang et al., 1987; Kelly et al., 

2003). However, their 10–25 km resolution cannot resolve snowpack heterogeneity in complex mountain terrain. Higher-55 

resolution sensors like Sentinel-1 Synthetic Aperture Radar (SAR) enhance snow detection and wet/dry classification, yet 

robust, operational snow depth retrievals remain elusive, and 6–12 day revisit cycles limit their ability to capture rapid 

snowpack evolution (Dunmire et al., 2024; Lievens et al., 2022). Airborne lidar surveys remain the benchmark for capturing 

meter-scale snow depth distributions by differencing snow-on and snow-off surfaces (Deems et al., 2013), revealing how 

topography, vegetation, and wind redistribute snow (Kirchner et al., 2014). In practice, full-basin airborne lidar mapping of 60 

snow depth has become the operational standard for resolving spatial patterns at management-relevant scales (Painter et al., 

2016), but sustained, season-long coverage is constrained by cost and logistics and thus yields only episodic snapshots. 

Uncrewed aircraft system (UAS) lidar provides finer-scale, on-demand mapping over smaller domains and is valuable for 

validation and model training, but it does not by itself solve the cadence gap. 

 65 
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To bridge these observational gaps, researchers have increasingly turned to empirical and machine learning approaches to 

extend snow depth estimates beyond direct measurements. Terrain and climate-based regressions capture broad accumulation 

and melt patterns but often fail to represent nonlinear snowpack processes (Pflug and Lundquist, 2020). Random Forest (RF) 

models have emerged as a powerful alternative, leveraging snow surveys, terrestrial lidar scans (TLS), and physiographic 

predictors to map snow depth at high resolution (López‐Moreno et al., 2015; Meloche et al., 2022; Revuelto et al., 2020). More 70 

recently, integrating Sentinel-1 SAR with airborne lidar and applying RF-based bias corrections has reduced SAR-derived 

snow depth errors and filled temporal gaps, producing more spatially complete snow depth maps (Broxton et al., 2024). 

Complementing these advances, recent work applies statistical  approaches to identify snow-monitoring  sites whose 

observations most efficiently represent basin-wide snow process variability, showing that strategically targeted measurements 

may adequately compare to full-basin mapping for operational forecasting (Raleigh et al., 2025). Yet, these approaches rely 75 

on knowledge of the spatial distribution of SWE and continue to yield episodic rather than daily basin-wide snow depth 

estimates, restricting their utility for operational forecasting and water resource management. Moreover, it remains unclear 

how many, and which, lidar acquisitions are truly necessary to build reliable daily models, an open question that has significant 

implications for reducing costs and enabling broader adoption, particularly by water districts unable to sustain frequent 

airborne surveys. 80 

 

Although ML snow depth mapping has advanced quickly, few studies systematically test how model skill, drivers, and data 

needs vary across distinct snow–climate regimes and seasons. Most evaluations center on a single basin or winter, leaving 

open how models behave under domain shifts (e.g., varied storm types, canopy, wind redistribution, and mid-winter 

melt/refreeze cycles). To address this gap, we analyse two contrasting snowpacks across an extensive multi-year record of 85 

airborne snow depth observations including, (1) Mores Creek, Idaho, and (2) Hubbard Brook Experimental Forest, New 

Hampshire asking: (i) which terrain and land-cover factors explain spatial variability in prediction error and provide the most 

predictive value; (ii) how much lidar cadence matters via a drop-date experiment; (iii) how well models transfer across winter 

phases and, operationally, which single phase yields the most effective cross-season performance if only one acquisition is 

feasible; and (iv) whether ERA5-Land can substitute for in-situ forcing for daily prediction. Our aim is to preserve the strengths 90 

of full-basin airborne lidar mapping while reducing its operational burden by identifying the minimum flight frequency, 

optimal seasonal timing, and whether ERA5-Land forcing enables accurate daily mapping in basins lacking in-situ networks. 
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2 Study Areas 

2.1 Mores Creek, Idaho, USA 95 

The Mores Creek basin (43.96 °N,115.69 °E) is an approximately 35 km2 mountainous basin in southwestern Idaho. The site 

encompasses a range of snow climates (Sturm and Liston, 2021), including persistent montane and boreal forest snowpacks at 

high elevations and transitional snow sagelands at lower elevations. As such, a wide range of peak snow depths is represented 

from shallow snow in forested or exposed areas (<0.5 m) to deep snow up high and in drifts that often exceed 3 m in spring. 

The upper basin survey area contains approximately 600 m of topographic relief distributed across all aspects and a mean 100 

elevation of 2100 m. Topography is complex, with deeply incised ravines and no preferred orientation of valleys and ridges. 

Snow tends to be present from November to May, with peak depths occurring in late March or early April. The 30-year average 

peak snow depth at the Mores Creek Summit SNOTEL is 2.3 m (site 637; 

https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=637). The entire domain is below treeline, and is forested primarily with 

conifers (Spruce, Pine, Fir). Approximately 40% of the lidar domain was burned in the 2016 Pioneer fire (moderate severity). 105 

2.2 Hubbard Brook, New Hampshire, USA 

Hubbard Brook Experimental Forest (43.96 °N, 71.72 °E) is an approximately 32 km2 research basin situated in the White 

Mountains of New Hampshire. In this study, we focus on Watershed 3 (hereafter referred to as Hubbard Brook), a small 0.42 

km2 (~100 acres) sub-basin within Hubbard Brook. The snowpack in Hubbard Brook is part of the transitional montane forest 

snow climate (Sturm and Liston, 2021; Johnston et al., 2023) and is considered representative of many snowpacks in forested 110 

regions within the northeastern United States. Snow depths in Hubbard Brook are generally moderate to shallow (<1 m),but 

may exceed 1 m during snowy seasons. Differences in forest cover, aspect, and elevation are known to drive gradients in snow 

depth, which are generally small across Watershed 3 (<0.25 m). The basin has an elevation range of approximately 200 m 

from the outlet (520 m) to the ridgetop (718 m). There are two distinct aspects in the basin: the western side, which is south-

facing, and the eastern side, which faces southwest. The snowpack typically establishes in late November and melts out by 115 

mid-April. The 30-year average peak snow depth is 0.6 m (site STA2/SC2; 

https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-hbr.27.20). The basin is mostly deciduous forests ranging 

in height from 15 to 30 m, with shorter mixed and conifer forests (10 to 15 m) prevalent in the upper elevations of the basin. 
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Figure 1: Map of study areas. Including a map of the U.S. (top) with each site indicated and a representative photo taken from 

within each basin. To the left is Mores Creek in Idaho, U.S., and to the right is Watershed 3 in Hubbard Brook Experimental 

Forest in New Hampshire, U.S. Ground-based ‘in-situ’ meteorological observation sites are indicated. At Mores Creek, two 

sites are included at a lower (SNOTEL) and upper elevation (Freeman). For Hubbard Brook Watershed 3, nine observational 125 

locations are included within the basin and labeled based on their relative elevation, ranging from lowest (1) to highest (9). An 

additional site, SC2, marks a long-term snow course transect (1956 – present) and meteorological site. Elevation maps for each 

domain and Google Satellite imagery are used as the basemaps for both sites. 
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2.3 Snow season phases 

To align model evaluation and residual analyses with the physical progression of the snow season across domains, from 130 

accumulation to peak to melt, we identified seasonal phases for each site. The seasonal phases are delineated in Figure 2 and 

associated with each lidar flight, showing that all seasonal phases are well represented at each study area (Table A1). 

 

For the seasonal snowpack of Mores Creek, we divided each winter into early, middle, and late phases via a simple climatology-

based approach. Using in situ SWE observations collected from 2019 to 2025 at the Mores Creek SNOTEL station, we 135 

identified the date of peak SWE as April 2nd, defined as the average day of maximum seasonal SWE accumulation. We then 

computed the midpoint of the accumulation season as the date halfway between the start of the water year (October 1) and the 

peak SWE date, which was January 16 in Mores Creek. Days before this midpoint were classified as early season (i.e., 

accumulation; the number of snow depth surveys, N, was 5), the period between the midpoint and peak SWE as middle season 

(i.e., peak storage; N = 8), and all subsequent days as late season (i.e., ablation; N = 5). Due to the transitional snowpacks at 140 

Hubbard Brook, the identification of a distinct period of stable, high SWE (e.g., middle period or peak storage) was 

challenging. As a result, we divided the winter into two phases (early-mid and mid-late) as opposed to the three (early, middle, 

late) used for Mores Creek. First, we identified the average peak SWE date as March 4th, using observations collected at SC2 

from 2023 to 2025. This was consistent with the average peak SWE date identified when using the long-term record (1955-

2025). Due to the uncertainty imposed by weekly sampling, and to classify lidar observations evenly into the two categories, 145 

we used March 1st as the date of peak SWE. Thus, the early-mid season included observations from before March 1st (i.e., 

accumulation; N = 8) and mid-late (i.e., ablation; N = 8) after March 1st.   
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Figure 2: Summary of snow water equivalent (SWE) records for Mores Creek (top, 2019-2025) and Hubbard Brook (bottom, 150 

1955-2025). Vertical lines indicate transition points between seasonal phases. Shaded area bounds +/- 1 standard deviation of 

the median SWE by date. 
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3 Data 

3.1 Lidar surveys 155 

Lidar surveys (detailed in Table A1) at each site were used to derive high spatial resolution (<1 m) snow depth maps and static 

geospatial predictors from digital terrain and canopy height models (CHM) for use in the RF modeling workflow (see the next 

section).  

3.1.1 Mores Creek Lidar surveys 

Airborne helicopter lidar surveys were conducted multiple times per year from spring 2020 to 2025 over the ~35 km² Mores 160 

Creek domain in the Boise Mountains of central Idaho to monitor headwater snow distribution. Flights were performed with a 

helicopter-mounted sensor pod consisting of Riegl VQ-580 ii Airborne Laser Scanner, an Applanix AP60 Inertial Measurement 

Unit (IMU), and an Antcom G5ANT-42AT1 GNSS Antenna. Semi-permanent GNSS base stations are used during processing 

to optimize the helicopter trajectory, and each survey includes a boresight collection over a subdivision which is used to ensure 

IMU orientation parameters are correctly calibrated due to the external and removable nature of the scanner system. Collections 165 

average 30-40 ground returns per m2 with ~10 cm accuracy. A snow-free acquisition collected by NV5 Geospatial serves as a 

reference map from which snow-on flights are differenced to isolate snow depth (Adebisi et al., 2022).  A total of 18 snow 

depth maps were acquired during this period. Snow depth for each survey was calculated by differencing processed digital 

terrain models between a snow-off baseline flight and the corresponding snow-on flight (Ciafone et al., 2024) after manual 

proprietary processing (Riegl, RiProcess) and automated batch processing using an in-house codebase 170 

(https://github.com/cryogars/ice-road-copters). This software mosaics, filters, co-registers and rasterizes (1m) point cloud data 

(Hoppinen et al., 2023). Surveyed snow depths ranged from 0 to more than 4 m, with an average depth of approximately 150 

cm and standard deviations around 50 cm (Table A1). 

3.1.2 Hubbard Brook Lidar surveys 

A series of Uncrewed Aerial System (UAS) lidar surveys was conducted throughout the 2023-2024 and 2024-2025 winter 175 

seasons at Hubbard Brook’s Watershed 3 (WS3). The flights covered the entirety of the gauged drainage basin. UAS-lidar 

observations were used to produce high-resolution snow depth estimates by subtracting bare-earth digital elevation models 

(DEMs) from snow-on elevation models, following the methodology in Jacobs et al. (2020).  The DEM workflow consisted 

of trajectory refinement, strip alignment, outlier removal, and ground classification. Bare-earth and snow-on points clouds 

were gridded at 0.5 m using only ground-classified lidar returns to produce the DEMs. Each survey was matched to the 180 

reference bare-earth grid using bilinear interpolation prior to differencing. The resulting dataset consists of four UAS lidar 

snow depth maps from the 2023-2024 winter season and 12 snow depth maps from the 2024-2025 winter season.  
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For the surveys conducted in 2023-2024, the UAS sensor package used was the LiAirV70 manufactured by Green Valley 

International. The system integrates the Livox Avia laser scanner with a Notel IMU (Attitude accuracy: 1σ  of 0.008°, Azimuth 185 

accuracy: 1σ of 0.038°). All flights were conducted at an altitude of 40 m above ground level and a flight speed of 2.5 meters 

per second. Collections using the LiAirV70 averaged approximately 30 ground returns per m2. These flight parameters were 

selected to maximize the accuracy of both the laser scanner range measurements and the positional/attitude measurements 

from the IMU. A 50% overlap was used to determine flight line spacing. For the 2024-2025 WS3 surveys, the MiniRanger3, 

manufactured by Phoenix Lidar Systems, was used to enhance UAS lidar collection efficiency. The MiniRanger3 integrates 190 

the Riegl miniVux3 lidar and the NovAtel OEM7 INS. This hardware enabled data collection at higher flight altitudes (80 m) 

and faster flight speeds (8 m/s) while maintaining high positional accuracy and sufficient lidar ground return density (averaged 

approximately 50 ground returns per m2). The flight trajectories measured by both the LiAirV70 and miniRanger3 were post-

processing kinematic (PPK) corrected. This was done using an Emlid Reach RS2+, which sampled GNSS observables at a 

frequency of 1Hz throughout the duration of each flight. A monument with known coordinates (+/- 5 cm) was established prior 195 

to each winter season, and the Emlid was placed over the monument for each flight to ensure UAS mapping products were 

correctly aligned. The precise location of the monument was established by collecting 10+ hours of GNSS observations over 

the monument location and post-processing that data through the NOAA Online Positioning User Service (OPUS) web service. 

Surveyed snow depths ranged from 0 to nearly 1 m, with an average depth of approximately 30 cm and standard deviations 

around 10 cm (Table A1). 200 

3.2 Derived static variables 

From the snow-off baseline flights from Mores Creek and Hubbard Brook, we derived static predictors from digital terrain and 

canopy height models (CHM), including elevation, aspect, northness, eastness, slope, topographic position index (TPI), and 

proximity to trees to capture terrain controls on snow accumulation and melt. CHMs were calculated by differencing digital 

surface models (surface elevations including tree top elevations) and digital elevation models (ground-classified elevations 205 

only). TPI is an index that defines the relationship of a pixel’s elevation to its neighbors (Reu et al., 2013). Positive TPI 

values indicate local points higher than their surroundings, and negative values indicate lower areas like valleys and 

depressions. TPI was calculated using the 3x3 neighborhood around each pixel (1.5 x 1.5 m). We also calculated northness 

and eastness as the cosine and sine of aspect, in radians, respectively. These two variables range from 1 to -1 and indicate how 

strongly a slope faces north to south or east to west, capturing exposure to sun and prevailing winds. 210 

 

We calculated a terrain-based snow redistribution index using a combination of upwind slope, wind factor, and accumulation 

factor (Winstral and Marks, 2002). Upwind slope was computed for each DEM cell as the maximum slope toward the upwind 

terrain within a 200 m search distance, stepping every 2.5 m for azimuth windows centered every 60 degrees with a +/- 25 

degree window. Upwind slopes were aggregated into a mean value for each pixel. This slope was linearly scaled to a wind 215 

factor ranging from 1 (sheltered) to 2.3 (exposed), and the accumulation factor was derived as the inverse of wind factor to 
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represent deposition potential. Redistribution was then calculated as the product of wind factor and accumulation factor, with 

higher values indicating drift zones and lower values representing wind-scoured areas. Forested pixels derived from the CHM 

were assigned a wind factor of 1 in Mores Creek, increasing the redistribution in sheltered forest zones to reflect enhanced 

snow deposition. This modification was not applied to Hubbard Brook wind factor maps, because it is more than 95% forested. 220 

Unlike the upwind slope alone, the redistribution index accounts for both terrain exposure and deposition potential, providing 

a more complete indicator of wind-driven snow redistribution in complex terrain. 

3.3 Meteorological and in situ snow data 

3.3.1 Mores Creek in situ observations 

Two in situ stations within the Mores Creek domain collect daily snow depth measurements (Figure 1). The Mores Creek 225 

Snow Telemetry (SNOTEL) station, situated at 1,853 m in a more accessible location, provides daily records of snow depth, 

snow water equivalent (SWE), temperature, and wind speed and direction for the full period of record. In this study, SNOTEL 

observations are used for both model training and evaluation. Freeman Station, located near the summit of Freeman Peak at 

approximately 2,393 m, provides snow depth data only for the 2024–2025 winter season. These measurements are used solely 

for model validation. 230 

3.3.2 Hubbard Brook in situ observations 

A long-term meteorological station less than 1 km from the centroid of WS3 (SC2, Figure 1) was used as the in situ source 

data to train RF models and to establish a SWE and snow depth climatology for the site. Nine meteorological sites within 

Hubbard Brook WS3 collected sub-daily snow depth measurements during the 2023-24 (4 sites) and 2024-25 (6 sites) winters. 

Site 8 was maintained during both winters, while the other sites differed between winter 2023-24 and 2024-25. Site numbering 235 

indicates the winter in which each site was operational and its relative elevation (1 – lowest, 9 – highest). Snow depths at these 

sites were retrieved from time-lapse imagery at least 3x daily using a demarcated (5 cm increments) snow stake. Stake 

coordinates were surveyed using a high-precision Emlid RS 2+ GPS system (+/- 20 cm) for validating modeled snow depth 

estimates.  

3.3.3 ERA5-Land Reanalysis 240 

Daily ERA5-Land reanalysis time series were acquired for snow depth, air temperature, and the U and V wind components 

(Muñoz Sabater, 2019). ERA5-Land has a native spatial resolution of ~9 km; the Mores Creek domain encompasses four grid 

cells, and Hubbard covers a single grid cell. For Mores Creek, we averaged the four ERA5-Land pixels to produce a single 

daily value for each variable. Wind speed and direction were derived from the U and V wind components. Daily wind speed 

was computed as: 245 

wind speed = √(U² + V²)  eq. 1 
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and wind direction (in degrees from north) as: 

wind direction = arctan(U / V) × (180 / π) eq. 2 

Negative directions (−180° to 0°) were converted to the 0–360° meteorological convention by adding 360° to negative values 250 

to produce a single daily wind vector representing the average wind conditions over the domain. 

4 Methods 

4.1 Random Forest snow depth modeing framework 

The RF modeling framework was designed to test whether sparse lidar acquisitions can be extended into continuous seasonal 

snow depth maps when combined with static terrain and land cover variables and dynamic daily meteorological data. This 255 

approach enables interpolation between flight dates to generate daily snow depth time series suitable for cross-seasonal analysis 

and potential operational monitoring. RF was chosen for its ability to capture complex, nonlinear relationships between snow 

depth and physiographic or meteorological predictors, and for its robustness to overfitting in high-dimensional feature spaces 

(Breiman, 2001). All RF training, validation, and hyperparameter tuning were performed independently for each domain 

(Mores Creek and Hubbard Brook). 260 

4.1.1 RF model setup 

The target variable was lidar-derived snow depth (meters), predicted for each valid pixel and day. Valid pixels were considered 

as those with lidar snow depth observations for all dates at Mores Creek (N = 18). In Hubbard Brook, pixels with valid depth 

observations in at least 15 (of 16) flights were considered valid for model training. This was due to a one flight (February 2, 

2024) in which observations were only collected over half of the basin. For both domains, model training and evaluation were 265 

conducted strictly within a defined parameter space of valid pixels to ensure that the RF model operated under conditions 

represented in the training data. Working within parameter space is critical for RF because its decision-tree structure performs 

best when interpolating within the bounds of observed predictor values, whereas predictions outside that space risk being 

unreliable (Reichstein et al., 2019). In the Mores Creek domain, a pixel was included in the parameter space only if it appeared 

in every lidar acquisition, was located outside a two-meter buffer of Highway 21, and did not exceed the 99.99th percentile of 270 

observed snow depth across the full lidar record. Similar considerations were applied at the Hubbard Brook site, using only 

observations within the watershed boundary and outside of a two-meter buffer of a frequently traversed trail within the basin. 

 

A consistent equal-allocation stratified sampling framework was applied across sites to generate training data. Aspect was 

reclassified into four cardinal classes (north, east, south, and west), and elevation was divided into four quantile-based bins 275 

derived from a DEM, producing up to 16 strata. An equal number of pixels was sampled from each stratum within a valid-
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pixel mask, with total sample sizes scaled to basin extent (50,000 pixels at Mores Creek and 10,000 at Hubbard Brook). This 

ensured comparable sampling density and minimized the influence of domain size on model behavior. 

 

RF snow depth models are known to have limited predictive capacity for unseen conditions and struggle to properly account 280 

for meteorology-driven snow accumulation and ablation processes (Revuelto et al., 2020). Recent literature has indicated that 

predicting snow depth in terms of residuals relative to a in situ reference site (i.e., source) is more effective than direct 

predictions of snow depth (Herbert et al., 2025). During model development, we tested models directly predictive of both snow 

depth and relative snow depth, defined as:  

 285 

Relative snow depth = lidar observed snow depth - source snow depth eq. 3 

 

We found that relative snow depth models produced more cohesive and temporally realistic estimates of snow depth. Thus, 

the RF models presented herein were trained to predict relative snow depths. With this approach, areas observed to be deeper 

than the reference data (e.g., source) are assigned a positive value, while those observed to be shallower than the reference are 290 

assigned a negative value. In other words, the RF model is used to learn appropriate spatial bias corrections (as observed by 

the lidar) relative to existing snowpack observations (i.e., in situ) or model estimates (i.e., source via ERA5-Land). 

 

In total, we used nine (9) static predictors, including elevation, slope, aspect, TPI, northness, eastness, CHM, proximity to 

trees, and the terrain-based redistribution index following Winstral and Marks (2002). An additional seventeen (17) dynamic 295 

predictors were derived from daily in situ observations, including air temperature, snow depth, and wind speed and direction, 

with daily wind vectors calculated from the U and V components. Together, these predictors capture many of the physiographic 

and meteorological controls on snow accumulation and melt. Day of the water year (DOWY), starting on October 1, was also 

used. For DOWY, air temperature, and snow depth lag (3, 5 days prior) and lead (3, 5 days in the future) were added to provide 

the model with temporal context.  300 

 

To further guide the model in representing the full seasonal cycle, we introduced synthetic snow depth maps set to zero at the 

beginning (before the first snowfall) and at the end (after snowmelt) of each winter season. These synthetic maps constrained 

the model to recognize periods of no snow, providing clear lower bounds for snow accumulation and melt. By anchoring the 

seasonal ends of predictions, these synthetic observations reduced uncertainty around the start and end of the winter, helping 305 

the RF model transition smoothly between snow-covered and snow-free periods. 

 

The RF model, using the RandomForestRegressor object in Python’s Scikit-learn library, was hyper parameterized using a 

cross-validated grid search to identify the optimal combination of number of trees (100, 200, 300), maximum depth (10, 20, 

30), minimum samples for splits (2, 5, 10) and leaf nodes (1, 2, 4), and maximum features per split method (‘auto’, ‘sqrt’, 310 
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‘log2’) that minimized prediction error while limiting overfitting (Table A2). Model training and evaluation followed an 80/20 

train/test split of lidar acquisition dates, repeated over ten iterations to quantify variability in model performance. Model skill 

was assessed using R², root mean square error (RMSE), mean absolute error (MAE), and bias. Once trained, the model was 

applied to generate daily snow depth maps for all valid pixels, bridging the periods between lidar flights to form a continuous 

seasonal record. 315 

4.1.2 RF model evaluation 

Trained RF models were assessed using three different approaches. The first (‘Training evaluation’), described above, 

employed 80/20 training/test splits to evaluate the model’s ability to capture the observed patterns at each site, using only data 

from dates with lidar observations. The second comparison (‘Independent time series evaluation’) evaluated daily predictions 

from the RF with time-series observations from independent ground-based in-situ sites, using a small buffer (~1 m) around 320 

each in-situ observing location to extract corresponding RF predictions. For the RF model in Mores Creek, only one site 

(‘Freeman’) and the winter season (2024-25) were used for time-series evaluation, as SNOTEL observations were used as the 

source data to produce snow depth predictions. In Hubbard Brook, time series evaluations were conducted at each of the nine 

in situ sites. The final evaluation (‘Spatial error and bias’) was conducted using spatial error maps (RF predicted – lidar). This 

analysis was performed by comparing RF predictions produced for the full domains on each date with lidar acquisitions to the 325 

lidar observations themselves. For each comparison date, an RF was trained using the described framework, but by dropping 

observations from the prediction date from the training data. Metrics R2, RMSE, MAE, and bias were used to quantify model 

performance for each of the three model evaluation methods. 

4.1.3 Error Distribution  

To characterize model performance beyond global statistics, spatial error maps (i.e., model residuals) were evaluated across 330 

terrain and land cover gradients. To quantify the influence of these physiographic variables on error distributions, we conducted 

one-way analysis of variance (ANOVA) tests with residuals binned by Jenks natural breaks for continuous variables (e.g., 

slope, elevation, redistribution) and by cardinal classes for aspect. Results were aggregated by averaging the explained variance 

(R²) outputs for each topographic or vegetation predictor across all snow season phases. This highlighted which terrain features 

most strongly controlled model error and whether these patterns were consistent across accumulation and melt periods. 335 

4.1.4 RF model predictor importance 

Shapley Additive exPlanations, also termed Shapley values or ‘SHAP’ scores (Lundberg and Lee, 2017), were used to measure 

the explanatory value of all predictors used in the RF model and identify which inputs exert the largest influence on RF model 

predictions. The SHAP method measures the predictive influence of each input feature across a large ensemble of individual 

model predictions in the prediction units (e.g., cm). Due to the large size of the RF training dataset, input feature sets were 340 

sub-sampled by randomly selecting 10 feature sets (containing all 26 predictors) from 10 equal-interval bins of each predictor. 
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This resulted in a diverse yet equally weighted sample of input predictor feature sets, enabling the efficient calculation of 

SHAP scores. The distribution of all SHAP scores is provided along with average absolute SHAP scores for each predictor 

variable to provide a single summary measure of predictive influence. 

4.2 Experiments 345 

4.2.1 Lidar drop date analysis 

To evaluate how lidar acquisition frequency influences predictive skill, we conducted a drop-date analysis using the same 

equal-allocation stratified sampling framework drawing 50,000 pixels at Mores Creek and 10,000 pixels at Hubbard Brook 

(due to its smaller size) for model training. In each iteration, one lidar acquisition date was randomly selected as the prediction 

target and withheld from the training set. From the remaining acquisitions, an increasing number of dates were randomly 350 

dropped to simulate sparser campaigns. The model was trained on all remaining dates and used to predict the withheld date, 

with performance evaluated using R², RMSE, MAE, and bias. This process was repeated for 100 iterations per drop scenario, 

capturing variability due to random selection of prediction and drop dates and identifying the point of diminishing returns for 

lidar frequency. Drop scenarios ranged from using data from all dates except the withheld date for training (N-1, where N is 

the total number of lidar maps) to using only a single randomly selected map for training the model (N = 1, training on one 355 

date and predicting on another). Non-parametric Kendall’s tau coefficients and p-values were calculated to determine the 

significance of the relationship between the number of lidar maps used and RF prediction errors (Kendall, 1962). The target 

prediction dates were then used to bin the results into the early, middle, and late phases for Mores Creek and into early-mid 

and mid-late phases for Hubbard Brook using the methods outlined in ‘Snow season phases’. This analysis quantified whether 

models trained during accumulation could reproduce melt-season snow distributions (and vice versa). 360 

4.2.2 Cross-phase analysis 

To test seasonal transferability, we also used the seasonal phases to partition observations by phase for training and testing of 

the RF snow depth models. For each experiment, the RF model was trained on all lidar acquisitions from a source phase and 

evaluated for a single randomly chosen date within the target phase, ensuring no target-phase data were used in training. Each 

source-target combination was repeated for 10 iterations, and the results were summarized using the average R², RMSE, MAE, 365 

bias, and the observed snow depth on the target date. This was used to calculate the error relative to observed snow depths at 

a given site and period, due to the large range in conditions captured within and across sites. The same sampling procedure as 

in the drop analysis was used to identify pixels for model training and testing 

4.2.3 ERA5-Land vs. in situ evaluation 

In a separate experiment, we tested whether ERA5-Land reanalysis could supplement or replace in situ meteorological 370 

observations (air temperature, snow depth, wind) to support snow depth prediction in data-sparse basins. ERA5-Land is a 
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reanalysis dataset that provides daily meteorological variables across global land areas (Muñoz Sabater, 2019). It is widely 

considered among the most accurate, especially for snow applications (Mortimer et al., 2020), and can provide estimates of 

snow depth and SWE in the absence of local in situ data (Alonso-González et al., 2022).   

 375 

To assess the feasibility of using ERA5-Land as an alternative forcing source, we repeated the RF training workflow using 

ERA5-Land variables for air temperature, wind speed and direction, and snow depth. We then re-applied the time series 

evaluation procedure. Specifically, the ERA5-Land–driven RF model was used to generate daily snow depth time series for 

each year, from which modeled values were extracted at in situ station locations and compared against observed measurements. 

Further evaluation involved producing modeled snow depth for 10,000 randomly selected pixels within the Mores Creek basin 380 

using both the SNOTEL- and ERA5-Land–driven models. The same procedure was applied at Hubbard Brook, except across 

the full domain. The resulting aggregated time series from each model were compared, and performance metrics including the 

R², RMSE, MAE, and bias were calculated. 

5 Results 

5.1 RF snow depth model performance 385 

5.1.1 Training evaluation 

The RF model trained on all dates and evaluated using an 80/20 train/test split repeated over 10 iterations showed consistently 

high predictive skill for daily snow depth mapping in both study domains. The 80/20 split results provide comparisons between 

model predictions and lidar-derived snow depth at the pixel scale, representing spatial prediction accuracy summarized across 

the full study spatial domain and time period. On average across the 10 iterations, the RF model at the Mores Creek site 390 

explained 89% of the variance in observed snow depth, with low bias and MAE of 18 cm (12% of mean snow depth). RMSE 

averaged 28 cm (18%), indicating strong agreement between predicted and lidar-observed snow depth across diverse terrain 

and snow conditions. Performance at the Hubbard Brook site was similarly high, with the model explaining 90% of the variance 

in observed depth and RMSE and MAE values of 7 cm (23%) and 5 cm (19%), respectively. This demonstrates the RF 

modeling framework's ability to reproduce daily snow depth patterns using individual models trained across contrasting 395 

western and eastern snowpack regimes.  

5.1.2 Independent time series evaluation 

We also evaluated the model against independent in situ snow depth observations from Freeman Station in the Mores Creek 

domain and from the nine stations in the Hubbard Brook model domain, providing a temporally focused point-scale 

assessment. Daily time series predictions compared to Freeman station observations produced a bias of -16 cm, an RMSE of 400 

22 cm, and an MAE of 19 cm (Figure 3). This was a sizeable improvement relative to assuming observed conditions at the 
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SNOTEL (source) alone were representative of snow depth conditions at Freeman (bias: -60 cm, RMSE: 64 cm, and MAE: 60 

cm), demonstrating the ability of the RF to integrate both temporal (SNOTEL) and spatial (lidar) information for improved 

daily depth estimates. The in situ record for this site is limited to a single season (2024-25) and ends on April 8, 2025, when 

the station stopped reporting data. Despite this truncated record, results indicate the model maintained low bias and strong 405 

agreement with an independent point-scale measurement 

 

 

Figure 3: Point-scale time-series comparison between the RF model (Modeled) and independent snow depth observations 

(Observed). Evaluation uses observations from the Mores Creek Freeman site (top) and the Hubbard Brook site 9 (bottom). 410 

Source refers to the source snow depth data used in the relative depth calculation for Mores Creek (SNOTEL) and Hubbard 

Brook (SC2). Performance statistics are summarized in Table 1.  
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For Hubbard Brook, model performance was validated across two separate winters of time-series snow depth observations 

(2023-24 and 2024-25, Table 1), achieving strong average performance across all sites (R2: 0.87, RMSE: 8 cm, MAE: 7 cm, 

bias: -4 cm). In 2023-24, for four sites, RMSE ranged from 5 cm to 11 cm, and bias was slightly positive (+4 cm to +9 cm). In 415 

winter 2024-25, performance across six independent sites was similarly high, with equivalent RMSE to 2023-24 (5 cm to 11 

cm) and bias ranging from -4 cm to +9 cm. As shown for site 9 in Figure 3, there was a noted model high bias when snow 

depth was observed to be 0 cm in the early season. We hypothesize that because the source data came from a location where 

the snow was shallower and melted out earlier than at site 9 (site SC2), a positive snow depth bias persists in the model. This 

effect occurred to varying degrees, +5 to +15 cm at sites with deeper or more persistent snow than SC2 (sites 3-9) and was 420 

negligible at sites shallower than SC2 (sites 1and 2). Averaged across sites and years, the RF model provided no improvement 

over using nearby in situ snow depth observations (SC2) to predict snow depth. While at most locations, mean absolute errors 

using SC2 were within 5 cm, the value of the RF model was apparent in the deepest snow (site 9), where the RF approach 

improved RMSE and MAE by more than 10 cm and reduced bias from -19 cm to -4 cm.  

 425 

Table 1: Performance statistics using RF models driven by in situ data (RF) versus direct application of independent in situ 

observations (source only).  For Hubbard Brook, the average is the weighted average of all sites based on the number of 

observations collected at each site.  

Location Station Winter 

RF Source only (SC2 or SNOTEL) 

R2  
RMSE 

[cm] 

MAE 

[cm] 

Bias 

[cm] 
R2  

RMSE 

[cm] 

MAE 

[cm] 

Bias 

[cm] 

Mores Creek Freeman 2024-25 0.95 22 19 16 0.97 64 60 60 

           

 

2 2023-24 0.92 5 4 4 0.91 4 3 2 

H
u
b
b
ar

d
 B

ro
o
k
 

4 2023-24 0.70 11 9 8 0.65 9 5 4 

5 2023-24 0.85 7 6 5 0.88 6 5 -4 

8 2023-25 0.84 11 10 9 0.91 7 5 -4 

1 2024-25 0.86 9 8 6 0.94 5 4 -3 

3 2024-25 0.92 5 4 0 0.92 6 4 -3 

6 2024-25 0.97 5 4 -2 0.97 8 6 -6 

7 2024-25 0.89 9 7 6 0.88 7 5 2 

9 2024-25 0.89 10 8 -4 0.87 22 19 -19 

 Average 0.87 8 7 4 0.88 8 6 -3.5   

 

5.1.3 Evaluation of model spatial error, and bias 430 

To evaluate accuracy in space, snow depth maps were predicted for each day having lidar snow depth observations using the 

RF model trained on lidar acquisitions from all other dates. The average snow depth residuals (RF prediction minus lidar 
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observation) were mapped to show the spatial distribution of model errors (Figure 4). Over most of both domains, there are 

relatively small prediction errors (< 25 cm), with only a small fraction of pixels showing larger deviations. At Mores Creek, 

there is a low overall spatial bias of 1.6 cm, with 44.0% of pixels within ±10 cm, 81.8% within ±25 cm, and 97.8% within ±50 435 

cm of observed values. At Hubbard Brook, the model spatial bias was -0.5 cm, and 90.0% of pixels fell within ±10 cm of the 

actual value. Nearly all predictions (99.8%) at Hubbard Brook were within ±25 cm. 

 

Figure 4: Spatial distribution of averaged model residuals (RF prediction – lidar observation) for a) Mores Creek and b) 

Hubbard Brook. Histograms of RF model errors across the basin (light grey) are compared to error histograms produced using 440 

only observations from a nearby in situ site (in situ, dark grey) in panel c) Mores Creek and d) Hubbard Brook. Arrows and 

circled areas indicate noted areas of model overprediction (red) and underprediction (blue). 

At Mores Creek, a localized area of higher error values occurred along a prominent cornice feature in the upper basin, where 

wind redistribution frequently alters snow depth patterns in ways that are not fully captured by the model predictors (red arrow, 

Figure 4a). In Hubbard Brook, overpredictions were common within areas of coniferous forest cover (indicated by red circles). 445 

Snow tended to be underpredicted in higher elevation areas (blue circle) and in steep, sheltered terrain features (blue arrow).  

The model also overpredicted snow depths for a packed access trail (red arrow, Figure 4b) and in streambeds. 
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The distribution of the mean errors from the RF model (light grey) was compared to those calculated when using snow depth 

at the local in situ sites (dark grey) to predict snow depth for all pixels in the basin (Figure 4c and 4d). At Mores Creek, the in 450 

situ approach (using SNOTEL daily snow depth) results in a basin-wide bias of -13.2 cm with regular underestimation in deep 

snow areas by more than 50 cm (Figure 4c). At the Hubbard Brook basin, in-situ observations (using SC2 daily snow depth) 

had a basin-wide bias of -9.4 cm, underestimating snow depth in 91% of pixels. In comparison, RF models were generally 

unbiased (bias within +/- 2 cm) with an even distribution of positive and negative average residuals (Figure 4d). 

5.1.4 Model predictor importances 455 

The SHAP analysis for the Mores Creek and Hubbard Brook RF snow depth models quantified the contribution and direction 

of influence for all model predictors across sites. At both sites, static spatial predictors (e.g., elevation) were notably more 

crucial to model predictions than dynamic point predictors derived from meteorological observations, including snow depth 

(Figure 5). At both sites, the SHAP analysis agreed with the expected physical relationships between predictors and snow 

depth finding that increasing TPI, slope, and canopy height generally decreased snow depth. Conversely, increasing elevation, 460 

northness, and redistribution indices resulted in increased snow depth. This likely reflects a confounding relationship between 

elevation and forest canopy heights in both study areas, in which forests are taller and more common at lower elevations 

relative to high elevations, but may provide insights as to the influence of forests on snow accumulation. While dynamic 

predictors provided minimal predictive value, higher relative DOWY values generally increased predicted snow depth at Mores 

Creek. Whereas high forward-looking air temperatures (‘Tair fwd5’) generally decreased in modeled snow depth, and deeper 465 

backward-looking snow depths (‘snowdepth lag5’) slightly increased modeled snow depths, at Hubbard Brook.  

 

In Mores Creek, elevation was the single most important predictor (mean absolute SHAP value: 24.7 cm), with increasing 

elevation generally increasing the magnitude of snow depth predictions in the RF model, as shown by the blue (low elevation 

values, down to -100 cm) to yellow (high elevation values, up to +50 cm) gradient in Figure 5. Northness (9.1 cm) and aspect 470 

(6.4 cm), as well as forest proximity (6.4 cm), had the next highest influence on model predictions. Reinforcing that terrain 

orientation and wind redistribution processes are linked to spatial error patterns.  

 

In Hubbard Brook, lower snow depths and less diverse snow depth conditions resulted in a smaller relative SHAP importance 

for all spatial metrics. Still, TPI (mean absolute SHAP: 3.7 cm), slope (1.4 cm), elevation (1.3 cm), and wind redistribution 475 

(1.1 cm) had the largest relative influence on model predictions. High TPI decreased snow depth by as much as -12.5 cm. High 

TPI areas typically represent locally prominent or relatively exposed locations, such as a small ridge or mound, which resulted 

in shallower snow. Alternatively, lower TPI locations, which correspond to small depressions in the ground surface, increased 

modeled snow depth by as much as +13 cm. The range of SHAP values for elevation (-5 to 15 cm), slope (-10 to 6 cm), and 

redistribution (-5 to 5 cm) indicate that these variables also had sizable influences on RF model predictions, especially when 480 

these variables were locally high (99th percentile) or low (1st percentile).  
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Figure 5: SHAP RF model feature importance by study site. Bolded numbers are the average absolute SHAP score; all units 

are cm. The left-most variables include geospatially derived predictive features, and the right-most are those derived from 

meteorological observations collected at a single in situ site near each study area. Note the different y-axis ranges due to 485 

different snow depth variability values observed at each site (Table A1). 

5.1.5 Terrain influence on model error across seasonal phases 

The relationship of land cover and terrain metrics to the model residuals was further assessed at each study site using ANOVA 

statistical tests (Figure 6). At Mores Creek, ANOVA revealed that explanatory power differed throughout the snow season 

and that several topographic and land cover predictors explained meaningful portions of the snow depth prediction error. 490 

Explanatory power was highest in the early season (total variance explained: 57%), followed by the late season (39%), the all-

phase dataset (34%), and lowest in the middle season (15%), likely reflecting the more stable and predictable snowpack 

conditions during mid‐winter. In the early season, aspect and northness, redistribution index, and elevation were the top 

predictors of model errors, each achieving high R² values relative to other phases and collectively accounting for a large share 

of the explained variance. Elevation effects persisted across all phases, though their relative importance decreased in the middle 495 

season before increasing again in late season, suggesting that snow depth error patterns are partly tied to elevation‐dependent 

snow accumulation and melt timing. The late and all-phase datasets also showed aspect and redistribution as useful predictors 
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of model error, though with reduced explanatory strength. In contrast, the middle season exhibited weaker terrain‐driven 

patterns, suggesting that snow depth errors were less tied to landscape features during this period. 

 500 

Figure 6: ANOVA analysis of explained variance in spatial RF modeled snow depth errors by select spatial predictors. 

At the Hubbard Brook site, ANOVA revealed weak explanatory power of spatial predictors and the RF model residuals across 

all seasonal phases (early-mid: 9.1%, mid-late: 9.8%, all: 10.0%), suggesting that errors are likely driven by predictive features 

omitted from the RF model. Of all features, TPI explained the highest variance in error overall (~3%). In the mid-late season 

slope, aspect, and northness showed slightly stronger relationships to the spatial error structure than in the early-mid season. 505 

For the early-mid season, TPI and the redistribution index were more closely related to the spatial error structure than later in 

the season. This suggests increased redistribution-driven errors earlier in the season (before March 1st) when snow is generally 

drier, colder, and more prone to redistribution. 

5.2 Model performance across phases with varied data inputs 

5.2.1 Sensitivity of model performance to Lidar acquisition frequency 510 

Reduction in the number of lidar acquisitions increases errors in modeled snow depths, with impacts differing by snow 

accumulation phase (Figure 7). For the Mores Creek, RMSE increased monotonically as fewer lidar acquisitions were used, 

with seasonal variations. Kendall’s tau was positive and significant in all phases: early tau = +0.62 (p < 0.001), middle tau = 

+0.53 (p < 0.001), and late tau = +0.80 (p < 0.001), indicating reductions in RMSE with additional maps. Adding lidar dates 

(right to left) at the end of the season yields the largest decreases in RMSE, with early and mid-winter showing smaller but 515 
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still generally monotonic model improvements. For Hubbard Brook, both phases also had positive and significant Kendall’s 

tau  values with +0.60 (p < 0.001) for early-mid and +0.58 (p < 0.001) for mid-late. The RMSE increases as the number of 

lidar maps decreases are more definitive in the mid-late period. Still, there is high variability across acquisitions, showing less 

clear relationships between increasing lidar acquisitions and performance during the mid-late seasonal phase. Examination of 

RMSE normalized as a percent of snow depth suggests that model error reductions may be more influenced by the range of 520 

observed variability (e.g., deeper late-season snow depths) than the model’s predictive capacity.   

 

Figure 7: Drop analysis partitioned by seasonal phase for Mores Creek (top) and Hubbard Brook (bottom). For each iteration, 

the number of lidar maps indicates the number of maps used to train an RF model, which is then used to predict snow depths 

for a held-out random date. RMSE values are normalized by the average observed snow depths for the predicted date. One 525 

hundred iterations of each random drop scenario were performed, and markers represent the average of each error metric when 

predicting snow depths with the specified number of maps for a date in the specified seasonal phase. 

 

5.2.2 Cross phase model transferability 
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Cross-phase transfer analyses, training the RF model in one phase of the winter and tested in another phase, were conducted. 530 

At Mores Creek, training on all phases has an RMSE of 27 to 36 cm (15–23%). Figure 8 shows that the strongest pairing is 

middle to late (R² of 0.90; RMSE of 37 cm, 18%), which has similar performance. Training using datasets from early in the 

winter is a viable single-phase approach for both middle and late, with identical R² values (0.78 in both cases), but smaller 

RSME values during the middle phase as compared to the late phase (early to middle: 59 cm, 29%; early to late: 83 cm, 42%). 

Early season snow depth predictions are mixed: middle to early is reasonable (0.70; 33 cm, 22%), whereas late to early is poor 535 

(0.64; 103 cm, 86%). Using late-season observations to train models generally results in weaker performance than early or 

middle (e.g., late to middle: 61 cm, 34%). At Hubbard Brook, the models trained with a single phase had somewhat reduced 

performance relative to the model trained using data from all phases (0.81-0.83; 5-6 cm, 16-19%). There was a negligible 

difference between training the RF to predict the early-mid phase snow depths using the mid-late phase (R2 of 0.62; RMSE of 

7 cm, 23%) and predicting the mid-late phase snow using the early-mid phase (0.63; 11 cm, 29%).  540 

 

In short, at Mores Creek, collecting lidar snow depth observations during the middle of the season, if late season is the 

prediction target, provides the lowest prediction errors. Data collected in the early season can also be used to estimate snow 

depth during the latter two phases. However, the poor predictive performance of late-season observations in training predictive 

models for the other phases suggests avoiding data collections in the late-season period as the sole source. In Hubbard Brook, 545 

model performance was reduced when training on a single individual phase, but neither was worse than the other. Collecting 

observations during both phases at this site remains valuable, reducing snow depth errors by approximately 10% and increasing 

the correlation between predictions and observations by around 0.20. 
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 550 

Figure 8: Cross-phase model performance heatmaps. Rows indicate the source phase used to train the RF; columns indicate 

the target phase used for prediction. Top row: RMSE expressed as a percent of observed snow depth (cell values annotated; 

shared colorbar at right). Bottom row: R² (annotated; shared colorbar at right). Left panels: Mores Creek. Right panels: 

Hubbard Brook. Metrics are means across iterations. Models were trained independently for each basin. See appendix for 

model statistics for each phase when trained on all data. 555 

5.3 ERA5-Land and in situ forcing comparison 

ERA5-Land was evaluated as an alternative to in situ forcing, by repeating the RF training workflow using meteorological 

forcing variables from ERA5-Land. At Mores Creek, ERA5 forced predictions aligned closely with observations and with the 

in-situ forced model. Figure 9 shows the RF model is a considerable improvement over ERA5-Land’s snow depth estimates. 

For the winter of 2023–2024 the ERA5-Land forced predictions were unbiased and closely matched station snow depth 560 

observations at the withheld SNOTEL site, with an RMSE of 9 cm and MAE 7 cm (Figure 9). The example time series for 

the same winter shows that ERA5-Land forced and in–situ forced snow depths track together through accumulation and melt, 

with post storm increases and seasonal peaks coinciding. Coinciding mean lidar values on acquisition dates fall on (or between) 
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the two curves, reinforcing the temporal fidelity (Figure 10). Considering the full period between 2020–2025, ERA5- vs. in-

situ–driven predictions over the same 10,000 pixels also showed high agreement in each individual winter season (mean R² of 565 

0.98; range 0.96–0.99) with small differences (mean RMSE of 17 cm; range of 12–28 cm). Biases were consistently negative 

(mean −9 cm), indicating a slight ERA5-Land RF model underprediction relative to the in-situ model, with the largest departure 

in winter 2024-25 (R² of 0.97; RMSE of 28 cm; bias of -19 cm). At Hubbard Brook, across both modeled winters (2023-2025), 

the ERA-Land forced snow depth predictions were similar to the in situ forced model (mean R2 of 0.90; range 0.84-0.96; 

RMSE below 7 cm; mean bias -3 cm). Performance across all nine in-situ sites was comparable between ERA5 and in situ 570 

models (Table A3), if not slightly improved, using the ERA5 forced model (R2 mean 0.83; range 0.59-0.95; RMSE mean 8 

cm; range 6-10 cm; bias mean +3 cm; range -6 to 7 cm). Overall, ERA5-Land appears to be a reliable substitute where in-situ 

forcing data is unavailable; the modest, directionally consistent offset suggests that a simple bias correction could be applied. 
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 575 

 

Figure 9: Point-scale time-series comparison between the ERA5-Land forced RF model (Modeled) and independent snow 

depth observations (Observed). Evaluation uses observations from the Mores Creek SNOTEL site (top) and the Hubbard Brook 

site 5 (bottom). Source refers to the source snow depth data used in the relative depth calculation for Mores Creek (ERA5-

Land) and Hubbard Brook (ERA5-Land). Performance statistics are summarized in Table A3. 580 
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Figure 10: Basin average snow depth time series for RF models forced using ERA5-Land model reanalysis (ERA5) and in 

situ meteorological data (in situ) for winter 2023-24 by study site. Basin average snow depths from lidar observations (Lidar) 

are also shown. 

  585 
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6 Discussion 

6.1 Effectiveness and limitations of RF for daily snow depth mapping 

To generate spatially and temporally continuous snow depth estimates from sparse airborne lidar observations, we developed 

a machine learning workflow that reconstructs daily snow depth fields. We cast daily snow depth mapping as a relative-depth 

problem, training a RF on lidar-derived residuals (lidar − source time series) to encode the gridded residual map, while a daily 590 

driver (in-situ or ERA5-Land) provides temporal evolution. To keep learning within observed conditions, we enforce a valid-

pixel/parameter-space mask and insert synthetic zero-depth maps at season start and end, which anchor accumulation and 

ablation and suppress spurious persistence between flights. Within these guardrails, RF functions as a robust non-parametric 

interpolator over high-dimensional static terrain/canopy features with modest influence from dynamic meteorological forcings, 

converting a handful of flights into temporally coherent daily snow depth maps without requiring a full energy-balance model 595 

(Liston and Elder, 2006; Marks et al., 1999). The workflow is portable, relying on a compact, reproducible feature set and 

versioned artifacts (masks, scalers), and can operate on ERA5-Land forcing where stations are absent. Across both basins, 

performance is promising, explaining about 90% of the variance with RMSE of 8–28 cm (20–25% of mean depth), MAE  5–

19 cm, and near-zero bias. Despite the strong performance metrics, our approach is interpolative because RF performs well 

within the joint parameter space but degrades under distribution shifts (Reichstein et al., 2019; Yang et al., 2020), so we did 600 

not test for cross-basin transferability of a single RF model between Mores Creek and Hubbard Brook.   

 

RF performance is strongest under typical snowpack conditions, because the model builds relationships between snow depth 

at a given pixel on a given date and temporal driver. Because drivers change daily, the RF tends to reproduce proportional 

daily changes at each pixel. However, the modeled relationship can deteriorate during anomalous snow conditions that alter 605 

typical snow patterns (Pflug and Lundquist, 2020). Specifically, large precipitation events associated with atmospheric rivers, 

can negate elevation gradients or introduce rapid warming and rain-on-snow conditions, resulting in snow distributions that 

deviate from patterns learned by the RF (Goldenson et al., 2018; Hu and Nolin, 2019). 

 

Another limitation arises from the model’s reliance on the temporal snow depth forcing from in situ stations used as an input 610 

driver. Because the RF effectively predicts relative changes in snow depth through time, its accuracy depends on the fidelity 

of this forcing. If the forcing time series is biased relative to parts of a basin (biased low or returns to zero too early), then 

modeled pixels that historically retain deeper or more persistent snow may lose their dynamic characteristics or be forced 

towards zero values, despite physically retaining snow. This limitation underscores that the approach relies on representative, 

unbiased temporal snow depth inputs to capture the full spatial and temporal variability of the snowpack. ERA5-Land may 615 

provide a more spatially representative depiction of basin-scale snow and meteorological conditions compared to in situ 

stations, which reflect only local variability at a single point (Pulwicki et al., 2018). 

 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

6.2 Spatial errors and landscape features 

Spatial patterns in RF residuals align closely with topography and canopy structure, and the strength of these controls varies 620 

by seasonal and regime. At Mores Creek, ANOVA indicates high explanatory power from terrain in the early season (57% 

variance explained), moderate in late (39%) and all-phase (34%), and lowest in mid-winter (15%), consistent with transition 

periods amplifying terrain-linked errors. The highest model residuals are co-located with wind redistribution features (e.g., 

cornices/lee zones) and aspect-driven insolation differences. Elevation, aspect/northness, TPI, and the redistribution index 

consistently emerge as the strongest landscape correlates of error. The SHAP analysis corroborates these relationships by 625 

ranking these predictors among the most influential for the RF estimates, with higher elevation and northness generally 

increasing predicted depth, and positive TPI (micro-ridges) and steep slopes suppressing it. 

 

At Hubbard Brook, terrain explains a smaller share of residual variance overall (9–10% across phases), reflecting the basin’s 

smaller size and greater homogeneity. Model errors approaching 5 cm, around the limit of snow depth measurement 630 

uncertainty, suggest that much of the unexplained residual variance may be due to random error. Even so, microtopography 

(TPI), slope, and elevation lead both the ANOVA and SHAP diagnostics, mirroring map-scale residual patterns. Depressions 

(negative TPI) align with deeper conditions and reduced underbias, while micro-ridges (positive TPI) align with shallower 

conditions and overbias. High residual clusters along trails, streambeds, and within conifer patches suggest that local processes 

are not fully represented by current predictors (e.g., wind redistribution, compaction, canopy interception/unloading, cold-air 635 

drainage). Relative to static spatial terrain and vegetation features, dynamic forcings have smaller but seasonally meaningful 

SHAP contributions in both study basins (e.g., forward-looking temperature decreasing late-season depth; short lags in depth 

modestly increasing early-season estimates). 

 

These diagnostics suggest that there is an opportunity for targeted refinements, including incorporating event-scale wind 640 

exposure (storm-wise upwind slope), radiation/shading metrics (clear-sky shortwave, horizon obstruction), canopy 

closure/density, trail/stream masks, and other remotely sensed variables to serve as wetness and compaction proxies for 

ablation. Because several terrain variables are correlated, SHAP magnitudes should be interpreted as directional influence and 

relative contribution rather than causal isolation; pairing SHAP with residual maps and ANOVA provides a more reliable 

picture of how landscape features structure model errors across seasons. 645 

6.3 Considerations for Lidar cadence and seasonal timing of acquisitions 

The drop-date experiments demonstrate a decrease in error as more flights are included, with clear diminishing returns after a 

small number of acquisitions. At Mores Creek, Kendall’s tau is positive and significant across seasons, and the breakpoint 

behavior suggests that about five flights in early season, about four in mid-winter, and about five in late season recover most 

of the attainable skill.  This aligns with findings from Herbert et al. (2025) in mountainous Colorado basins, which found 650 
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diminishing improvements in RF model skill beyond four site-specific lidar surveys. Hubbard Brook exhibits the same 

qualitative pattern, though the errors’ response to training surveys is more linear, which is consistent with its smaller, more 

homogeneous domain. Cross-phase tests indicate that models trained on the middle season transfer best to the late melt season; 

training using early season surveys can serve as a single-phase source for both middle and late seasons, but with larger errors 

for the late season. Training exclusively using late season surveys performs worst when predicting early season conditions. 655 

Although the ability to use late season acquisitions for early seasons predictions is not useful for snow forecasting, it provides 

value for reconstructing retrospective snow maps that can serve to validate moderate-resolution snow cover products (Gascoin 

et al., 2019; Stillinger et al., 2023). Similar performance of cross-phase models at Hubbard Brook may be due to the inclusion 

of observations near the seasonal peak in both seasonal phases (early-mid and mid-late). 

 660 

Taken together, these results offer practical survey choices. If only one flight is possible, scheduling it during the middle season 

provides the best downstream performance for melt. With two flights, pairing early and middle offers broad seasonal coverage, 

whereas middle and late emphasizes melt accuracy. With three flights, early, middle, and late capture most of the gains at 

Mores Creek; in transitional basins like Hubbard Brook with milder temperatures and shallower snowpacks, fewer flights may 

suffice for basin-mean performance, while additional acquisitions primarily reduce local biases unless surveys are targeted to 665 

capture event-specific depth patterns (e.g., following large isolated snowfall events). Retaining the synthetic zero-depth 

anchors at the start and end of winter remains useful even as cadence increases; extra early or late flights mainly refine 

transition timing rather than mid-winter spatial structure. While we do not explicitly assess spatiotemporal snow depth 

prediction performance using the drop-date framework, future efforts could evaluate the coherence of daily snow depth 

products produced from a limited number of snow depth surveys. Collectively, these findings translate episodic lidar 670 

campaigns into daily, end-user ready products using a budget-aware cadence and seasonally informed timing. 

6.4 Regime-dependent performance across western and eastern snowpacks 

Model behavior differs systematically between the complex, wind-affected Mores Creek basin and the smaller, more 

homogeneous, forested Hubbard Brook watershed. At Mores Creek, large elevation and redistribution gradients create a strong 

spatial structure that the RF captures well, yielding clear gains over using a single in-situ site as a proxy for basin conditions; 675 

the biggest improvements occur in deep-snow zones where site-only approaches underpredict. At Hubbard Brook, basin-mean 

performance from the RF is similar to using the nearby reference site because the snow’s spatial variability is smaller. Here, 

the model still reduces local biases in wind-sheltered areas and the basin upper elevations, where redistribution, compaction, 

and canopy effects deviate from the basin average. These contrasts are consistent with the diagnostics: terrain and redistribution 

metrics explain a larger share of residual variance at Mores Creek and have higher SHAP values, while microtopography 680 

dominates the modest landscape signal at Hubbard Brook. Although the two basins differ in spatial extent, each model was 

developed using the same sampling framework, scaled to basin size (50,000 samples at Mores Creek and 10,000 at Hubbard 

Brook). This consistent sampling approach minimizes the influence of domain size on model behavior, suggesting that 
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observed differences primarily reflect contrasts in snowpack complexity and heterogeneity rather than sampling artifacts. 

Operationally, regime differences imply that larger heterogeneous western basins benefit most from adding lidar-informed 685 

residual maps, whereas in smaller transitional eastern basins, the primary value is correcting local departures from the mean 

and refining melt timing, with fewer flights often sufficient for acceptable basin-mean accuracy. 

 

6.5 Monitoring strategies: targeted measurements, wall-to-wall mapping, and informed sampling 

Recent work outlines a few strategies for expanding snow observations for water-supply forecasting: targeted measurements 690 

at locations with high predictive leverage (Raleigh et al., 2025) and wall-to-wall basin mapping from airborne (Painter et al., 

2016) or proposed satellite observations (National Academies of Sciences and Medicine, 2018). Each approach offers distinct 

advantages; for example, targeted monitoring is efficient and cost-effective, while wall-to-wall mapping provides complete 

spatial context. 

 695 

Our results suggest a complementary third path of informed sampling. Because the relative-depth RF learns a per-pixel snow 

depth map from a limited number of flights and propagates daily evolution from a single driver, future campaigns may not 

need to be strictly wall-to-wall. Flight lines can instead be designed to cover the landscape units that concentrate model skill 

and error (e.g., elevation and aspect bands, wind-redistribution zones, canopy classes) identified by our residual and SHAP 

analyses, and scheduled according to the cadence results. This informed design preserves daily mapping capability while 700 

reducing cost and latency, bridging elements of targeted measurements and wall-to-wall approaches to support operational 

snow monitoring. As a future direction, we propose testing selected, information-rich flight lines focused on these key 

landscape units to evaluate how well they preserve daily mapping performance while improving efficiency. 

 

6.6 Portability, data requirements, and path to operations 705 

The workflow is portable because it depends on a compact set of inputs that are common to many basins: a snow-off baseline 

to derive static terrain and canopy layers; a handful of snow-on lidar maps to learn a per-pixel adjustment map; a single daily 

driver time series (from a local station where available or ERA5-Land where it is not); and a valid-pixel mask with synthetic 

zero-depth anchors at the seasonal endpoints. These components produce versioned artifacts like masks, scalers, and trained 

models, that can be transferred and retrained in new basins with modest effort. In data-sparse settings, ERA5-driven operation 710 

is feasible; the results here indicate that a reanalysis time series can supply the temporal evolution while lidar defines the spatial 

adjustment, enabling daily mapping where in-situ networks are limited. 

 

Operational use benefits from a few safeguards. Because the method is intentionally interpolative, predictions should be limited 

to the observed parameter space and accompanied by routine checks for distribution shift and representativeness of the dynamic 715 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



32 

 

snow depth forcing. When a shift caused by, new storm types, unusual warmth, or evolving canopy, additional flights can be 

scheduled during the phases shown to add the most value, using the cadence results to target timing. Uncertainty should be 

reported alongside depth maps, using techniques that rank the overall accuracy agreement (Kim et al., 2017; Pan et al., 2025), 

so that managers see both expected conditions and plausible ranges. Finally, when depth must be translated to SWE for 

allocation decisions, the added uncertainty from density assumptions should be made explicit. With these practices, the 720 

approach provides a practical route from episodic airborne surveys to daily, basin-scale products that support melt-season 

operations, road and access planning, and short-term water management. 

7 Conclusion 

This study demonstrates that a relative-depth RF model can convert a small number of lidar acquisitions and a single-point 

daily source time series of snow depth into temporally coherent daily snow depth maps in contrasting snow regimes. The 725 

model learns from lidar–driver differences on flight days how much deeper or shallower each location tends to be than the 

driver between flights. It predicts the gridded difference from terrain and canopy and adds it to the driver to yield daily maps. 

The framework delivers reasonable accuracy while remaining simple to deploy, though it is intentionally interpolative and 

should be applied within the observed parameter space.  

 730 

Residual structure and feature attributions indicate that landscape controls organize both predictions and errors. Elevation, 

aspect/northness, microtopography, and wind-redistribution proxies exert the strongest influence, with signals most 

pronounced during seasonal transitions. Regime differences are clear, in Mores Creek, a heterogeneous, wind-affected western 

basin, the approach yields large gains over the use of in situ stations alone, especially in deep-snow zones. In Hubbard Brook, 

a smaller, more homogeneous eastern basin, the principal value is correcting local departures from the mean and refining melt 735 

timing. 

 

The cadence experiments translate directly into survey design. Errors decline as additional flights are added, with diminishing 

returns after only a few acquisitions. Middle-season training transfers best to modeling late-season conditions, whereas late-

to-early transfer performs worst. These results inform budget-aware flight planning. If only one flight is feasible, schedule it 740 

in the middle season; with additional resources, early, middle, and late flights capture most of the attainable skill. The practical 

value of these findings depends on the intended application. For snow forecasting, using late season data to train early season 

models has little benefit. However, for reconstructing historical snow cover maps, that late season data can provide useful 

insights across-season.  

 745 

The workflow is portable and operationally feasible with at-hand datasets including a snow-off baseline DEM for static layers, 

a handful of snow-on lidar maps to learn per-pixel differences relative to the source time series; a daily driver (insitu or ERA5-
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Land) for temporal evolution, and a valid-pixel mask with seasonal zero-depth anchors. Responsible use in operations benefits 

from safeguards for constraining predictions to the area of applicability, monitoring for distribution shifts, reporting uncertainty 

alongside SWE estimates, and making explicit the added uncertainty when translating depth to SWE. Together, these practices 750 

outline a practical route from episodic airborne surveys to daily, basin-scale products that support melt-season operations, road 

access and hazard planning, and short-term water management. 
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8 Appendix A. 

 755 

Table A1: Summary statistics for all snow-on lidar flights included in this study. 

location 
flight 

date 
winter 

seasonal 

phase 

Lidar snow depth summary statistics (cm) 

N mean median st. dev. 1st pct 99th pct 

H
u
b
b
ar

d
 B

ro
o
k
 

2/2/2024 2023-24 early-mid 764,037 36 36 8 14 56 

2/20/2024 2023-24 early-mid 1,433,535 29 28 8 7 53 

3/1/2024 2023-24 mid-late 1,410,562 14 14 9 0 39 

3/26/2024 2023-24 mid-late 1,457,267 39 38 10 13 73 

1/3/2025 2024-25 early-mid 1,499,898 11 10 7 0 28 

1/16/2025 2024-25 early-mid 1,508,261 17 17 8 0 37 

1/24/2025 2024-25 early-mid 1,506,401 23 22 9 2 44 

1/30/2025 2024-25 early-mid 1,507,611 33 33 9 9 56 

2/5/2025 2024-25 early-mid 1,512,852 42 42 10 16 66 

2/24/2025 2024-25 early-mid 1,514,092 59 59 11 33 86 

3/3/2025 2024-25 mid-late 1,514,140 63 63 11 36 91 

3/11/2025 2024-25 mid-late 1,520,411 43 43 11 14 71 

3/14/2025 2024-25 mid-late 1,511,415 38 38 11 9 67 

3/27/2025 2024-25 mid-late 1,519,113 7 3 9 0 38 

4/1/2025 2024-25 mid-late 1,505,671 12 9 10 0 45 

4/10/2025 2024-25 mid-late 1,518,612 6 2 9 0 39 

 2023-25 all 
MEAN 30 cm 29 cm 9 cm 10 cm 56 cm 

[min max] [6 63] [2 63] [7 11] [0 36] [28 91] 

 2023-25 early-mid 

 31 cm 31 cm 9 cm 10 cm 53 cm 

 [11 59] [10 59] [7 11] [0 33] [28 86] 

 2023-25 mid-late 

 28 cm 26 cm 10 cm 9 cm 58 cm 

 [6 63] [2 63] [9 11] [0 36] [38 91] 

          

M
o
re

s 
C

re
ek

 

2/9/2020 2019-20 middle 131,807,086 181 186 42 66 264 

3/15/2021 2020-21 middle 131,390,835 162 170 52 20 258 

2/17/2022 2021-22 middle 99,106,383 132 132 45 25 227 

3/17/2022 2021-22 middle 112,822,851 119 119 50 10 224 

4/7/2022 2021-22 late 94,939,897 98 96 60 2 226 

12/8/2022 2022-23 early 130,293,252 94 97 30 22 156 

2/9/2023 2022-23 middle 128,539,152 164 168 49 40 259 

3/16/2023 2022-23 middle 127,885,280 248 257 73 67 379 

4/5/2023 2022-23 late 112,129,450 273 280 77 95 409 
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11/13/2023 2023-24 early 104,646,538 28 27 16 1 78 

12/28/2023 2023-24 early 120,787,491 64 66 31 4 126 

1/15/2024 2023-24 early 116,763,870 112 115 34 24 180 

3/15/2024 2023-24 middle 110,018,689 184 190 56 42 289 

4/18/2024 2023-24 late 100,948,054 125 132 67 3 250 

1/13/2025 2024-25 early 115,889,964 168 173 56 33 266 

1/29/2025 2024-25 middle 107,821,125 134 139 44 24 221 

4/4/2025 2024-25 late 105,756,488 232 242 83 25 378 

5/1/2025 2024-25 late 106,658,800 130 133 82 2 292 

 2020-25 all 
MEAN 147 cm 151 cm 53 cm 28 cm 249 cm 

[min max] [28 273] [27 280] [16 83] [1 95] [78 409] 

 
 early 

MEAN 93 cm 96 cm 33 cm 17 cm 161 cm 

 
 

[min max] [28, 168] [27, 173] [16, 56] [1,33] [78, 266] 

  middle 
MEAN 166 cm 170 cm 51 cm 37 cm 265 cm 

  
[min max] [119, 248] [119, 257] [42, 73] [10, 67] [221, 289] 

  late 
MEAN 172 cm 177 cm 74 cm 25 cm 311 cm 

  
[min max] [98, 273] [96, 280] [60, 83] [2, 95] [226, 409] 

          

Table A2: Hyperparameters used in the RF models for Scikit-learn. 

parameters values Mores Creek Hubbard Brook 

n_estimators 100, 200, 300 300 200 

max_features auto, sqrt, log2 sqrt sqrt 

max_depth 10, 20, 30 30 20 

min_samples_split 2, 5, 10 2 10 

min_samples_leaf 1, 2, 4 1 1 
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Table A3: Basin scale ERA5-Land driven RF model evaluation. This table compares the model-predicted mean basin 760 

snow depths when using a local in-situ site to ERA5-Land data to drive the model. Bias is calculated considering ERA5-

Land model minus local in-situ model. In parentheses show the statistics if comparing the ERA5-Land (predicted) and 

lidar snow depths (observed) using the basin averages. 

Winter  R2  

RMSE 

[cm] 

MAE 

[cm] Bias [cm] 

Mores Creek 

2019-20 0.98 14 11 -7 

2020-21 0.98 14 1 -2 

2021-22 0.96 18 14 -12 

2022-23 0.99 15 11 -9 

2023-24 0.98 12 8 -3 

2024-25 0.97 28 22 -19 

Mean 0.98 17 13 -9 

Hubbard Brook 

2023-24 0.84 7 5 -4 

2024-25 0.96 5 4 -2 

Mean 0.9 6 4 -3 

 

     

Code and Data Availability: Code and datasets produced in this study are available upon request. 

 765 

Author Contributions: CGP and JJ wrote the manuscript along with JMJ and SO. CGP and JJ processed data and anlayzed the 

results. CGP, JJ, JMJ, SO contributed to the design and conceptualization. All coauthors contributed to writing and editing the 

manuscript. All coauthors have read and agreed to the published version of this manuscript. 

 

Acknowledgements: This research was funded by the U.S. Army Corps of Engineers, Engineer Research and Development 770 

Center (ERDC) under the Broad Agency Announcement Program and the Cold Regions Research Engineering Laboratory 

(ERDC-CRREL) under contract No. W913E523C0004. 

9 References 

Adebisi, N., Marshall, H.-P., Vuyovich, C., Elder, K., Hiemstra, C., and Durand, M.: SnowEx20-21 QSI Lidar Snow Depth 

0.5m UTM Grid, Version 1, , https://doi.org/10.5067/VBUN16K365DG, 2022. 775 

Alonso-González, E., López-Moreno, J. I., Ertaş, M. C., Şensoy, A., and Şorman, A. A.: A performance assessment of gridded 

snow products in the Upper Euphrates, CIG, 49, 55–68, https://doi.org/10.18172/cig.5275, 2022. 

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



37 

 

Brooks, P. D., Solomon, D. K., Kampf, S., Warix, S., Bern, C., Barnard, D., Barnard, H. R., Carling, G. T., Carroll, R. W. H., 

Chorover, J., Harpold, A., Lohse, K., Meza, F., McIntosh, J., Neilson, B., Sears, M., and Wolf, M.: Groundwater dominates 780 

snowmelt runoff and controls streamflow efficiency in the western United States, Commun Earth Environ, 6, 

https://doi.org/10.1038/s43247-025-02303-3, 2025. 

Broxton, P., Ehsani, M. R., and Behrangi, A.: Improving Mountain Snowpack Estimation Using Machine Learning With 

Sentinel‐1, the Airborne Snow Observatory, and University of Arizona Snowpack Data, Earth and Space Science, 11, 

https://doi.org/10.1029/2023ea002964, 2024. 785 

Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Ya., Labba, N., Radionov, V., Bradley, R. S., Blangy, S., 

Bulygina, O. N., Christensen, T. R., Colman, J. E., Essery, R. L. H., Forbes, B. C., Forchhammer, M. C., Golubev, V. N., 

Honrath, R. E., Juday, G. P., Meshcherskaya, A. V., Phoenix, G. K., Pomeroy, J., Rautio, A., Robinson, D. A., Schmidt, N. 

M., Serreze, M. C., Shevchenko, V. P., Shiklomanov, A. I., Shmakin, A. B., Sköld, P., Sturm, M., Woo, M., and Wood, E. F.: 

Multiple Effects of Changes in Arctic Snow Cover, AMBIO, 40, 32–45, https://doi.org/10.1007/s13280-011-0213-x, 2011. 790 

Chang, A. T., Foster, J. L., and Hall, D. K.: Nimbus-7 SMMR derived global snow cover parameters, Annals of glaciology, 9, 

39–44, 1987. 

Ciafone, S., ONeel, S., Adebisi, N., Zikan, K., Enterkine, J., van der Weide, T., Wilder, B., Hoppinen, Z., Filiano, D., and 

Marshall, H. P.: SnowEx Mores Creek Summit (MCS) Airborne LiDAR Survey Raw, Version 1, , 

https://doi.org/10.5067/OYF98UGSOUQY, 2024. 795 

Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow depth: a review, J. Glaciol., 59, 467–479, 

https://doi.org/10.3189/2013jog12j154, 2013. 

Diffenbaugh, N. S., Swain, D. L., and Touma, D.: Anthropogenic warming has increased drought risk in California, Proc. Natl. 

Acad. Sci. U.S.A., 112, 3931–3936, https://doi.org/10.1073/pnas.1422385112, 2015. 

Dong, C.: Remote sensing, hydrological modeling and in situ observations in snow cover research: A review, Journal of 800 

Hydrology, 561, 573–583, https://doi.org/10.1016/j.jhydrol.2018.04.027, 2018. 

Dunmire, D., Lievens, H., Boeykens, L., and De Lannoy, G. J. M.: A machine learning approach for estimating snow depth 

across the European Alps from Sentinel-1 imagery, Remote Sensing of Environment, 314, 114369, 

https://doi.org/10.1016/j.rse.2024.114369, 2024. 

Ford, C. M., Kendall, A. D., and Hyndman, D. W.: Snowpacks decrease and streamflows shift across the eastern US as winters 805 

warm, Science of The Total Environment, 793, 148483, https://doi.org/10.1016/j.scitotenv.2021.148483, 2021. 

Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O.: Theia Snow collection: high-resolution operational 

snow cover maps from Sentinel-2 and Landsat-8 data, 2019. 

Goldenson, N., Leung, L. R., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Influence of Atmospheric Rivers on Mountain 

Snowpack in the Western United States, Journal of Climate, 31, 9921–9940, https://doi.org/10.1175/JCLI-D-18-0268.1, 2018. 810 

Herbert, J., Raleigh, M. S., and Small, E. E.: Using a random forest model to combine airborne lidar and Snotel data for daily 

estimates of snow depth across mountain drainage basins of Colorado, 

https://doi.org/10.22541/essoar.173655460.06498107/v1, 11 January 2025. 

Hoppinen, Z., Wilder, B., O’Neel, S., and Adebisi, N.: ice-road-copters: v1.0.0, , https://doi.org/10.5281/zenodo.8184592, 

2023. 815 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



38 

 

Hu, J. M. and Nolin, A. W.: Snowpack Contributions and Temperature Characterization of Landfalling Atmospheric Rivers 

in the Western Cordillera of the United States, Geophysical Research Letters, 46, 6663–6672, 

https://doi.org/10.1029/2019GL083564, 2019. 

Intergovernmental Panel On Climate Change (Ipcc): Climate Change 2021 – The Physical Science Basis: Working Group I 

Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed., Cambridge University 820 

Press, https://doi.org/10.1017/9781009157896, 2023. 

Kelly, R. E., Chang, A. T., Tsang, L., and Foster, J. L.: A prototype AMSR-E global snow area and snow depth algorithm, 

IEEE Trans. Geosci. Remote Sensing, 41, 230–242, https://doi.org/10.1109/tgrs.2003.809118, 2003. 

Kendall, M. G.: Rank Correlation Methods, Hafner Publishing Company, 1962. 

Kim, Y., Kimball, J. S., Glassy, J., and Du, J.: An extended global Earth system data record on daily landscape freeze–thaw 825 

status determined from satellite passive microwave remote sensing, https://doi.org/10.5194/essd-9-133-2017, 2017. 

Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J., and Guo, Q.: LiDAR measurement of seasonal snow accumulation 

along an elevation gradient in the southern Sierra Nevada, California, Hydrol. Earth Syst. Sci., 18, 4261–4275, 

https://doi.org/10.5194/hess-18-4261-2014, 2014. 

Li, D., Wrzesien, M. L., Durand, M., Adam, J., and Lettenmaier, D. P.: How much runoff originates as snow in the western 830 

United States, and how will that change in the future?, Geophysical Research Letters, 44, 6163–6172, 

https://doi.org/10.1002/2017gl073551, 2017. 

Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 snow depth retrieval at sub-

kilometer  resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022. 

Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System (SnowModel), Journal of Hydrometeorology, 7, 835 

1259–1276, https://doi.org/10.1175/JHM548.1, 2006. 

López‐Moreno, J. I., Revuelto, J., Fassnacht, S. R., Azorín‐Molina, C., Vicente‐Serrano, S. M., Morán‐Tejeda, E., and 

Sexstone, G. A.: Snowpack variability across various spatio‐temporal resolutions, Hydrological Processes, 29, 1213–1224, 

https://doi.org/10.1002/hyp.10245, 2015. 

Lundberg, S. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, 840 

https://doi.org/10.48550/arXiv.1705.07874, 25 November 2017. 

Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A spatially distributed energy balance snowmelt model for 

application in mountain basins, Hydrol. Process., 13, 1935–1959, https://doi.org/10.1002/(SICI)1099-

1085(199909)13:12/13%253C1935::AID-HYP868%253E3.0.CO;2-C, 1999. 

Meloche, J., Langlois, A., Rutter, N., McLennan, D., Royer, A., Billecocq, P., and Ponomarenko, S.: High‐resolution snow 845 

depth prediction using Random Forest algorithm with topographic parameters: A case study in the Greiner watershed, Nunavut, 

Hydrological Processes, 36, e14546, https://doi.org/10.1002/hyp.14546, 2022. 

Meromy, L., Molotch, N. P., Link, T. E., Fassnacht, S. R., and Rice, R.: Subgrid variability of snow water equivalent at 

operational snow stations in the western USA, Hydrological Processes, 27, 2383–2400, https://doi.org/10.1002/hyp.9355, 

2013. 850 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



39 

 

Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., and Tedesco, M.: Evaluation of long-term Northern 

Hemisphere snow water equivalent products, The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, 2020. 

Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, in: Copernicus Climate Change Service (C3S) Climate Data 

Store (CDS), edited by: Hersbach, H. and C3S/ECMWF Team, Hourly data, 0.1° ( 9 km), 

https://doi.org/10.24381/cds.e2161bac, 2019. 855 

National Academies of Sciences, Engineering and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth 

Observation from Space, The National Academies Press, Washington, DC, https://doi.org/10.17226/24938, 2018. 

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, 

R., Marks, D., Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C., and Winstral, A.: The 

Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping 860 

snow water equivalent and snow albedo, Remote Sensing of Environment, 184, 139–152, 

https://doi.org/10.1016/j.rse.2016.06.018, 2016. 

Pan, C. G., Lasko, K., Kimball, J. S., Du, J., Meehan, T. G., Kirchner, P. B., and Griffin, S. P.: A random forest derived 35-

year snow phenology record reveals climate trends in the Yukon River Basin, https://doi.org/10.5194/egusphere-2024-3608, 

16 January 2025. 865 

Pflug, J. M. and Lundquist, J. D.: Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation 

Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California, Water Resources Research, 56, 

https://doi.org/10.1029/2020wr027243, 2020. 

Pulwicki, A., Flowers, G. E., Radić, V., and Bingham, D.: Estimating winter balance and its uncertainty from direct 

measurements of snow depth and density on alpine glaciers, J. Glaciol., 64, 781–795, https://doi.org/10.1017/jog.2018.68, 870 

2018. 

Raleigh, M. S., Small, E. E., Bair, E. H., Wobus, C., and Rittger, K.: Snow monitoring at strategic locations improves water 

supply forecasting more than basin-wide mapping, Commun Earth Environ, 6, 665, https://doi.org/10.1038/s43247-025-

02660-z, 2025. 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process 875 

understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019. 

Reu, J. D., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., Smedt, P. D., Chu, W., Antrop, M., Maeyer, P. D., Finke, 

P., Meirvenne, M. V., Verniers, J., and Crombé, P.: Application of the topographic position index to heterogeneous landscapes, 

Geomorphology, 186, 39–49, https://doi.org/10.1016/j.geomorph.2012.12.015, 2013. 

Revuelto, J., Billecocq, P., Tuzet, F., Cluzet, B., Lamare, M., Larue, F., and Dumont, M.: Random forests as a tool to 880 

understand the snow depth distribution and its evolution in mountain areas, Hydrological Processes, 34, 5384–5401, 

https://doi.org/10.1002/hyp.13951, 2020. 

Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., and Bair, E. H.: Landsat, MODIS, and VIIRS snow cover 

mapping algorithm performance as validated by airborne lidar datasets, The Cryosphere, 17, 567–590, 

https://doi.org/10.5194/tc-17-567-2023, 2023. 885 

Sturm, M. and Liston, G. E.: Revisiting the Global Seasonal Snow Classification: An Updated Dataset for Earth System 

Applications, Journal of Hydrometeorology, https://doi.org/10.1175/JHM-D-21-0070.1, 2021. 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



40 

 

Winstral, A. and Marks, D.: Simulating wind fields and snow redistribution using terrain‐based parameters to model snow 

accumulation and melt over a semi‐arid mountain catchment, Hydrological Processes, 16, 3585–3603, 

https://doi.org/10.1002/hyp.1238, 2002. 890 

Yang, J., Jiang, L., Luojus, K., Pan, J., Lemmetyinen, J., Takala, M., and Wu, S.: Snow depth estimation and historical data 

reconstruction over China based on a random forest machine learning approach, The Cryosphere, 14, 1763–1778, 

https://doi.org/10.5194/tc-14-1763-2020, 2020. 

 

https://doi.org/10.5194/egusphere-2025-5281
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.


