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Abstract. Long-term observations of atmospheric composition are essential for understanding regional and global climate

impacts. Although the Global Atmosphere Watch (GAW) programme provides a network of worldwide measurements, con-

tinuous atmospheric measurements across Africa remain scarce. This study presents multi-year in-situ measurements of trace

gases and black carbon from the Mount Kenya GAW station (MKN) from 2020 to 2024, offering a unique dataset from equa-

torial Africa. Its location exposes MKN to contrasting air masses from both hemispheres, enabling detection of emissions and5

providing insights into tropical variability such as seasonal and diurnal cycles. We present carbon dioxide (CO2), methane

(CH4), carbon monoxide (CO), ozone (O3), and black carbon (BC) measurements and compare these data with Copernicus

Atmospheric Monitoring Service (CAMS) model products. While CAMS data broadly agree with the measurements, they

underestimate diurnal variability and fail to capture O3 and BC dynamics during rainy seasons, underscoring the importance

of ground-based data for validating model performance. To identify source regions and sectoral emission contributions, we10

combined the FLEXPART particle dispersion model with satellite fire data, wetland emissions, and anthropogenic inventories.

CO and BC were mainly linked to household fuel use and industrial energy, with biomass burning contributing during dry

seasons. Methane variability was driven by agriculture and seasonal wetlands, but large uncertainties remain in all emission

estimates. Our findings confirm the value of MKN observations for evaluating atmospheric models and emission inventories,

and highlight the urgent need to expand measurement infrastructure across Africa to improve understanding of atmospheric15

processes and climate impacts.

1 Introduction

The World Meteorological Organization’s Global Atmosphere Watch (GAW) Programme is the only internationally coordi-

nated initiative dedicated to long-term, systematic observations of atmospheric composition on a global scale (World Mete-

orological Organization (WMO), 2014). Through a network of hundreds of stations, GAW delivers high-quality data from20

1

https://doi.org/10.5194/egusphere-2025-5272
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



spatially representative sites that monitor atmospheric conditions, ideally with minimal local influence. This global framework

is essential for understanding large-scale patterns and long-term trends in atmospheric composition. However, despite its wide

reach, significant observational gaps remain—particularly across tropical regions and the Global South. Africa, though one

of the most climate-vulnerable continents, is particularly under-represented in atmospheric monitoring networks, including

for greenhouse gases (GHGs), primarily due to different national priorities, limited resources and infrastructure in emerging25

economies

Continuous GHG observations are essential for verifying and reducing uncertainties in bottom-up emission estimates, as

demonstrated in Europe (Henne et al., 2016; Saboya et al., 2024) or other regions (Bukosa et al., 2025). Despite a few mon-

itoring stations (e.g. Morgan et al. (2015); Labuschagne et al. (2018); Tiemoko et al. (2023)), much of Africa still lacks the

comprehensive GHG monitoring needed for robust emission assessments. This study explores the lessons learnt from the long-30

term data measured at the remote, high-altitude GAW station on Mount Kenya. Besides an extensive data analysis to investigate

atmospheric variability, we simulate air masses with an atmospheric transport model and combine them with emissions from

bottom-up emission inventories. This integrated approach allows us to explore not only temporal variability but also the spatial

and sectoral origins of the observed species. This assessment is made with full recognition that a denser GHG observation

network across the continent is ultimately needed for robust verification and constraint of emission estimates.35

The Mount Kenya station (MKN), operational since 1999, represents a unique monitoring site in tropical Africa. The re-

current meridional migration of the Intertropical Convergence Zone (ITCZ) that oscillates between approximately 20 °N and

5–8 °S depending on boreal and austral seasons (Henne et al., 2008a; Lashkari and Jafari, 2021; Hu et al., 2007), exposes the

station to fundamentally different advection regimes throughout the year. These include continental air from the northeast dur-

ing boreal winter and marine tropical air from the southeast in boreal summer. Moreover, more local anthropogenic processes40

and biomass burning emissions also influence the station, particularly during daytime.

The continuous and comprehensive greenhouse gas and air pollution datasets at MKN are unprecedented in the tropical

African region and underline the importance of the MKN measurement site. While early carbon monoxide (CO) and surface

ozone (O3) data were reported previously (Henne et al., 2008b), the renewal of the power line has enabled largely gap-free,

continuous aerosol measurements since 2015, and measurements of carbon dioxide (CO2), methane (CH4), CO, and surface O345

since December 2019. Multiple trace gases were measured with flask samples at MKN by the Global Monitoring Lab (GML)

of the National Oceanic and Atmospheric Administration (NOAA) from 2003 to 2011 (e.g. Lan et al. (2025)), but were not

continued afterwards. Kirago et al. (2023) investigated MKN CO in-situ and flask measurements up until 2022, but more recent

years and other species have not yet been explored. Indeed, this study presents the first comprehensive analysis of the recent

continuous datasets, focussing on the period 2020 to 2024.50

Few studies have investigated similar compounds in the region. DeWitt et al. (2019) studied GHGs and air pollutants at the

Rwanda Climate Observatory (Mt. Mugogo, 2590 m a.s.l), but data were limited to 2015-2017. Earlier black carbon (BC) and

aerosol measurements in East Africa have been analysed at urban and rural sites (Kirago et al., 2022; Gatari and Boman, 2003;

Makokha et al., 2017; Khamala et al., 2018), but the recent multi-year BC data from MKN were not included. In addition to the

continental East African site MKN, the Maïdo station (2155 m a.s.l) on Réunion Island (Callewaert et al., 2022) and the Lamto55
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station (155 m a.s.l.) in Côte d’Ivoire (Tiemoko et al., 2021, 2023) provide tropical data on GHGs and air pollutants. However,

the former cover only 20 months of Maïdo data, and Lamto is strongly influenced by local sources due to its low altitude. The

continuous, remote MKN measurements therefore fill a critical gap in the tropical observation network.

In this study, we (i) analyse in-situ trace gas and aerosol measurements at MKN, (ii) evaluate the performance of Copernicus

Atmospheric Monitoring Service (CAMS) model products for several species, (iii) compare surface ozone with vertical profiles60

from ozonesondes launched in Nairobi, (iv) simulate atmospheric transport using the particle dispersion model FLEXPART,

and (v) combine transport simulations with bottom-up emission inventories for fires, wetlands, and anthropogenic sources.

This work was conducted within the Horizon Europe Coordination and Support Action "Knowledge and climate services

from an African observation and Data research Infrastructure" (KADI), which aimed to strengthen Africa’s climate knowledge

base and provided a design for a pan-African atmospheric and climate observation system. The results presented in this study65

highlight the insights that can be gained from existing long-term measurements and underscore the urgent need to expand

observational coverage across the African continent.

2 Data and Methods

2.1 The Mount Kenya station

The GAW Global station Mt. Kenya (MKN), located at 0.062 °S, 37.297 °E (WMO Integrated Global Observing System70

(WIGOS) Station Identifier (WSI) 0-20008-0-MKN), is situated on the north-western slope of Mt. Kenya at an altitude of

3678 m a.s.l. and is surrounded by alpine grassland and shrubs. As part of the Mt. Kenya National Park, the whole mountain

area is protected and there are minimal local anthropogenic emissions, making the site suitable for continuous observations

of the tropospheric background composition. Access by car is possible to the Old Moses Camp, located 300 m below and

approximately 1.9 km northwest of the station. The closest settlement is situated 17 km in north-westerly direction, the closest75

city (Nanyuki) lies 27 km westwards at 1900 m a.s.l (Henne et al., 2008a).

MKN was established under the World Meteorological Organization (WMO) / United Nations Development Programme

(UNDP) / Global Environment Facility (GEF) programme GLO/91/G32 in the mid-1990s and was officially inaugurated in

October 1999. Due to limited power supply, it has operated on an irregular basis until 2014, when the power line was completely

renewed. Nowadays, Mount Kenya is one of the very few high-altitude observatories in East-Africa (GEO Mountains, 2023)80

and is among the best-equipped mountain stations in terms of atmospheric composition in the region.

The climate in Kenya is governed by the seasonally varying position of the ITCZ. The ITCZ lies North of MKN in boreal

summer and south of MKN in boreal winter. The recurrent ITCZ displacement leads to different advection regimes in Equatorial

Africa (see Figure 2) with two rainy seasons from March to May (MAM) and October to December (OND), when the ITCZ

crosses the equator (Nying’uro et al., 2024; Palmer et al., 2023; Lashkari and Jafari, 2021; Wainwright et al., 2019; Hart85

et al., 2019; Nicholson, 2018, 2017). The months in-between are characterized by a short dry season from January to February

(JF) and a long dry season from June to August. September is a transitional month, with remaining dry conditions but higher

temperature than in previous months. In this study, we count September as part of the long dry season (JJAS). Rainfall at MKN
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is governed by the mentioned rainy seasons, with maximum precipitation in April (see Figure A1). However, precipitation

measurements at MKN reveal larger values in August and September than expected from the regional seasonal classification90

(Figure A1). This local precipitation is mainly governed by advection of Congo air masses (e.g. Hart et al. (2019)), which

converge around northern and western parts of MKN, leading to lifting air masses with showery precipitation. Nevertheless,

we use the more regional classification of JJAS as "dry season" in our study. Daily minimum and maximum temperature at

MKN vary on average between 4 and 11 °C. For more insights on the meteorological and climatological conditions and a

comprehensive overview of the station characterization, refer to Henne et al. (2008a). Statistical data analysis of early carbon95

monoxide and ozone measurements (2002-2006) and air mass trajectory clustering confirmed the large-scale representativeness

of the station and suitability of the location for background observations, specifically during the night (Henne et al., 2008b).

2.2 Observations

In-situ observations of greenhouse gases and air pollutants have been performed at the MKN station since the early 2000s,

providing a unique long-term dataset for equatorial Africa. In 2006, issues with the station’s power supply resulted in an100

interruption to the early CO and O3 measurements. In 2008, there was an attempt to implement continuous GHG measurements,

but it was unsuccessful due to severe damage to the power line caused by a wildfire in 2009. In 2010, the power supply

was completely disconnected, but a new power line was installed in 2014, and continuous gas measurements were resumed

in December 2019. In the following analysis, we therefore focus mainly on the continuous data from 2020 to 2024. The

measurements are usually level 0 data stored as 1-minute averages. Quality-controlled data are provided with 1-hourly temporal105

resolution.

For a better visualization and to obtain smooth seasonal cycles, we applied a curve fitting method provided by NOAA

(https://gml.noaa.gov/ccgg/mbl/crvfit/crvfit.html, last access: 9 September 2025). The corresponding python code is publicly

available (https://gml.noaa.gov/aftp/user/thoning/ccgcrv/, last access: 9 September 2025). The curve fitting method, also called

CCGCRV (Carbon Cycle Group, Earth System Research Laboratory (CCG/ESRL), NOAA, USA), is a slight modification of110

the filtering approach presented by Thoning et al. (1989) and has been described and used in multiple studies (e.g. Pickers and

Manning (2015), Cristofanelli et al. (2024)). The method first fits a 3rd order polynomial and 4th order harmonic function.

Afterwards, the data is smoothed with a fast Fourier transform (FFT), and filtered with a low-pass filter, for which we use a

short-term cut-off frequency of 80 days and a long-term cut-off of 667 days to remove remaining oscillations. To obtain the

unbiased seasonal variability, any linear trend was removed.115

2.2.1 In-situ CO2, CH4, CO, and O3 measurements

Since December 2019, carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) observations have been performed

with a commercially available Wavelength-Scanning Cavity Ringdown Spectrometer (Picarro Inc. G2401) coupled to a custom-

built calibration unit. Ambient air is dried prior to analysis by means of a Nafion dryer (Permapure PD-50T-24SS). An exper-

imentally determined correction function was applied to account for the interference of residual water vapour in the determi-120

nation of dry air mole fractions. Measurements are calibrated about once a week with three reference gases, purchased from
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the GAW Central Calibration Laboratory at NOAA in Boulder, Colorado. A fourth reference gas is measured every second

day to account for short-term sensitivity changes. In between these reference gas measurements, a fifth reference gas (target)

is also measured every second day for quality control, i.e. it is treated as unknown in the same way as the ambient air data. The

air inlet is approximately 10 m above ground. The air is drawn through 1/4" outer diameter Synflex 1300 tubing with a flow125

rate of approximately 4 l/min into the valve unit in the laboratory container. From there, the sample is directed through a 1/4"

outer diameter Synflex 1300 tubing, the Nafion dryer, and a sintered stainless steel filter of 7 µm pore size into the analyser.

The Nafion dryer is connected in reflux mode, using the dry sample gas that is expelled from the analyser as counterflow gas

of the dryer. A vacuum is applied to the counterflow to improve the drying efficiency. The residence time in the inlet is about

6 seconds.130

Early CO measurements (2002 to 2006) were performed with a non-dispersive infrared (NDIR) analyser (Thermo Scientific

TEI48C TL) as described in Henne et al. (2008b). The early CO data availability deteriorated in summer 2006 since the obser-

vations suffered from frequent power outages. The instrument was finally decommissioned during the power line replacement

between 2010 and 2014.

Since the beginning of the surface ozone (O3) observations in 2002, O3 has been measured with in-situ instruments based on135

the UV absorption technique (Thermo Scientific, models 49 and 49C) as described in Henne et al. (2008b). Since September

2021, two UV absorption photometers, a Thermo 49C and 49i, have been operating in parallel. The air intake for the O3

measurements is approximately 1.7 m above the roof of the container, and 4.5 m above ground. The inlet is made from glass

tubing with an inner diameter of 5 cm, which also serves as a manifold. It is flushed at a high flow rate by a blower. The

O3 instruments are connected to the manifold with approximately 2 m of 1/4" outer diameter perfluoroalkoxy (PFA) tubing.140

Polytetrafluoroethylene (PTFE) membrane filters with a pore size of 5 µm are installed upstream of the instruments to protect

the instruments from particles. The total residence time is estimated to be less than 10 seconds.

2.2.2 Aerosol measurements

Aerosol measurements are performed in accordance with the GAW recommendations for aerosol sampling (World Meteoro-

logical Organization (WMO), 2016) and were implemented when the station was commissioned in 1999, and then renewed in145

March 2015. Data before 2015 are of unknown quality due to the frequent power outages and sparingly available. Since 2015,

a custom-designed total suspended particulate matter (TSP) inlet is utilized as recommended for stations that are frequently in

clouds. Given the site’s dew point conditions and the availability of a temperature-controlled laboratory at the station, sampling

is performed without additional drying. Periods during which the relative humidity (RH) exceeds 40 %, an occurrence normally

associated with issues in the station’s room temperature control system, are flagged appropriately.150

The equivalent Black Carbon (BC, hereafter) mass concentrations reported in this study were derived from two aethalometer

instruments (Magee Scientific Models AE31 (March 2015–July 2024) and AE33 (January 2024–to date)) with time resolutions

of 5 and 1 minute, respectively. The raw data processing adhered to the current GAW/ACTRIS recommendations (World

Meteorological Organization (WMO), 2016; Zanatta et al., 2016) . In a first step, the light absorption coefficient was calculated

from the 880 nm wavelength channel of both instruments. This included compensation for non-linear filter loading effects as155
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well as correction for multi-scattering effects in the AE31 instrument (Weingartner et al., 2003). The multi-scattering correction

was achieved using a constant C-value of 3.5 (Zotter et al., 2017) in the absence of simultaneous measurements using an

absorption reference method in accordance with the GAW recommendations (World Meteorological Organization (WMO),

2016). Data from the AE33 instrument were processed following the ACTRIS guidelines (Müller and Fiebig, 2021) using

a harmonization factor of 1.76 in combination with an instrument internal M8060 filter tape factor of 1.39. In a final step,160

the derived light absorption coefficients of both instruments were converted to equivalent BC concentrations using a constant

mass absorption cross-section (MAC)-value of 7.24 m2 g−1 (Zanatta et al., 2016). With this processing scheme, the BC data

of the two instruments showed a very good agreement (R2 = 0.97) in their one-year overlapping period in 2023. The AE33

instrument showed on average 10% higher BC concentrations in comparison to the AE31 instrument (Figure B1).

2.2.3 Ozonesonde measurements165

ENSI ECC ozonesondes have been launched from the Kenya Meteorological Department (KMD) Headquarters at Dagoretti

Corner in Nairobi (0-20008-0-NRB) on Wednesdays on a weekly basis since 1996. These soundings contribute to both, the

WMO Global Atmosphere Watch GAW program (woudc.org, last access: 25 August 2025) and the NASA SHADOZ program

(https://tropo.gsfc.nasa.gov/shadoz/Nairobi.html, last access: 25 August 2025). For the analysis presented here, ozone mole

fraction time series were extracted from the profile data (SHADOZ v6 data) at 700 hPa for comparison with the in situ surface170

ozone measurements, which is the level that correlated best with CAMS data (see Sect. 2.3).

2.3 Atmospheric modelling data

Due to the sparse availability of continuous measurements in the tropical region, the MKN measurements are highly valuable

for validation of atmospheric models. We compared the MKN measurements with model data from CAMS (CAMS, 2025). For

comparison of the model output with the MKN measurements, we selected for each species the CAMS grid for which CAMS175

data correlates best with the corresponding measurements over the entire time period. In the following, we describe the CAMS

products used in our analyses.

2.3.1 CO, O3 and black carbon data from CAMS reanalysis

For direct model comparison with CO, O3 and BC measurements at Mt. Kenya, we used EAC4 (ECMWF Atmospheric Com-

position Reanalysis 4) global reanalysis data in the region between 0.7 °N to 0.8 °S and 36.5 ° to 39 ° E and at pressure levels180

from 1000 to 600 hPa (CAMS (2020b), last update: 19 June 2025). The data have a temporal resolution of 3 hours and a spatial

resolution of 0.75 °. For direct comparison with MKN measurements, we chose CAMS data at 700 hPa, the level which corre-

lates best with our CO and CH4 measurements. For CAMS black carbon data, we used the sum of hydrophilic and hydrophobic

black carbon mass mixing ratio (kg kg−1). To convert it to mass concentrations (µg m−3), we scaled it with the air density,

calculated from the temperature given by CAMS for that level and grid cell and a fixed pressure of 700 hPa.185
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2.3.2 CO2 and CH4 data from CAMS invGG

CO2 and CH4 measurements were compared with data from the CAMS global inversion-optimised greenhouse gas fluxes

and concentrations (invGG) dataset (CAMS, 2020a). For CO2, we downloaded model outputs that used satellite observations

as input-data (CAMS (2020a), last update: 20 June 2025). Before July 2023, the spatial resolution was 2.5 °lon x 1.27 °lat,

afterwards it increased to 1.4 °lon x 0.7 °lat. The temporal resolution is 3 hours. For comparison with MKN measurements, we190

selected the CAMS grid with highest correlation with our measurements for the first period (until July 2023), which corresponds

on average to 658 hPa in that period (model level 26).

The CH4 invGG data uses surface air-samples and satellites as input (CAMS (2020a), last update: 9 May 2025). The as-

similated surface observations are ground-based observations from the NOAA network (Segers and Nanni, 2023). The product

is thus independent from our MKN measurements. The spatial resolution for the CH4 invGG product is 2 °lat x 3 °lon before195

2022 and 1 ° x 1 ° afterwards, the temporal resolution is 6 hours. The CAMS grid selected for MKN comparison, with highest

correlations to measurements for the first period (until 2022), was on model level 9, which corresponds on average to 614 hPa

2.4 Atmospheric transport model and emission data

To understand the origin and variability of trace gases and aerosols observed at MKN, it is essential to consider the influence

of large-scale atmospheric transport and regional emission sources. The station’s central location in equatorial Africa exposes200

it to contrasting air mass regimes from both hemispheres, resulting in a complex mixture of natural and anthropogenic signals.

While in-situ measurements offer high-resolution temporal data, they do not provide direct information about the geographic

or sectoral origin of the observed compounds. To address this, we use the Lagrangian particle dispersion model FLEXPART

to simulate air mass transport to MKN. These simulations yield residence time distributions that describe the sensitivity of

the station to air coming from different regions. By folding these residence times with spatially resolved emission inventories,205

we derive quantitative source contribution estimates to the measured concentrations. This approach enables us to disentangle

the influence of biomass burning, wetland activity, and anthropogenic processes. Although the results depend on the transport

simulations and cannot be used for quantitative verification of the emission inventories, they offer valuable insights into the

processes driving variability at MKN and allow for a broad evaluation of the quality of current emission inventories for the

African continent.210

As emission inventories, we used satellite-based fire emissions from the CAMS Global Fire Assimilation System (GFAS),

wetland methane emissions from WetCHARTs (Bloom et al., 2024), and anthropogenic emissions from the Emissions Database

for Global Atmospheric Research (EDGAR) (Crippa et al., 2024). We concentrate on the regional emissions where sensitivities

and emissions are largest and include emissions from most of Sub-Saharan Africa (0 °W to 60 °E and 20 °N to 35 °S, see

Figure 1). The global WetCHARTs and EDGAR emission data were handled and prepared to fit our study area using the215

Python package emiproc (Constantin et al., 2025). Averaged maps for CO and CH4 in 2020 emissions from those datasets are

shown in Figure 1.
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(a) CO emissions from fires (GFAS) (b) Anthropogenic CO emissions (EDGAR)

(c) CH4 from wetlands (WetCHARTs) (d) Anthropogenic CH4 emissions (EDGAR)
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Figure 1. Spatial distribution of CO emissions from fires (a) and anthropogenic processes (b), and CH4 emissions from wetlands (c) and

anthropogenic processes (d) used for folding with FLEXPART, averaged for the year 2020. Data are retrieved from GFAS, WetCHARTs and

EDGAR, see text for details.

2.4.1 Particle dispersion model FLEXPART

FLEXPART is a Lagrangian particle dispersion model that is widely used to trace atmospheric transport from the global to the

regional scale (Stohl et al., 2005; Bakels et al., 2024). In this study, we apply it in time-reversed backward mode to characterize220

the pathways of air masses arriving at MKN. Additionally, the model provides quantitative source sensitivities that can be

folded with surface mass fluxes (emissions) to obtain tracer concentrations at the release location (here, MKN), representing

regional concentration contributions.

FLEXPART was driven with input meteorology taken from the European Centre for Medium Range Weather Forecast

(ECMWF) operational high-resolution (HRES) forecast/analysis. These fields were available with a spatial resolution of 0.5 °225

x 0.5 ° every three hours. 50’000 particles were continuously released for each three-hour observation period at MKN and

traced back to their origin 20 days earlier or until they crossed the border of the output domain. We performed simulations

over two spatial domains: one covering most of Sub-Saharan Africa (0 °W to 60 °E and 20 °N to 35 °S, see Figure 1) with 0.1 °

resolution, and a second, larger domain covering the entire African continent and the adjacent Indian Ocean region (20 °W

to 110 °E and 50 °N to 40 °S, see Figure 2) with 0.5 ° resolution to obtain a larger overview of overall dynamics. The model230

particles were treated as inert compounds, hence no chemical transformation nor deposition was considered.

Due to the limited horizontal model resolution and the topography, the FLEXPART model altitude at MKN (2272 m) does

not correspond to the true station altitude (3678 m). Therefore, we used a FLEXPART release height of 2975 m, which is the

centre between the model altitude and the station altitude, as suggested by Brunner et al. (2012) and Henne et al. (2016).
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To determine the background levels of CO, CH4 and BC, we combined the FLEXPART simulations with CAMS concen-235

tration fields at the end points of FLEXPART model particles. CAMS concentrations were interpolated in space and time to

particle positions and averaged over all particles released at a given time interval, representing the background concentration.

For that, we used the same CAMS data as described above, but extended them to the large domain covering Africa and the

Indian Ocean region. For the CH4 background, we used CAMS data with surface observations only assimilated in the model,

whereas for direct measurement comparison of CH4, the satellite and surface data were assimilated in the product used, as240

described in Sect. 2.3.2. FLEXPART simulations could only be computed until the end of 2023. Therefore, the FLEXPART-

related analyses in 3.3 are limited until the end of 2023. Furthermore, FLEXPART simulations are missing in October 2023

due to some technical issues.

2.4.2 CO, BC and CH4 emissions from fires (GFAS)

Data from the CAMS Global Fire Assimilation System (GFAS) were used to investigate CO, BC and CH4 emissions from fires245

(CAMS (2022), last update: 20 January 2025). The data relies on satellite observations from NASA Terra MODIS and Aqua

MODIS fire products. Emissions of various species are estimated based on given emission factors for each species (Kaiser

et al., 2012). We use daily CO, BC and CH4 data with a spatial resolution of 0.1 °lat x 0.1 °lon.

2.4.3 Wetland emissions (WetCHARTs)

The WetCHARTs dataset provides estimates of global wetland CH4 emissions based on multiple terrestrial biosphere models250

(Bloom et al., 2017). We use WetCHARTs monthly data (v1.3.3) for 2020 to 2021 with a 0.5 °x 0.5 ° spatial resolution (Bloom

et al. (2024), last update: 3 March 2025) and average the output of 18 ensemble models. The processed FLEXPART output

(sum of all trajectory days) is then folded with a constant emission inventory for each month. For the years 2022 and 2023, we

used monthly averages from the last fully available year (2021).

2.4.4 Anthropogenic emissions (EDGAR)255

For anthropogenic emissions, we use annual sector-specific grid maps from the Emissions Database for Global Atmospheric

Research (EDGAR), v8.1 for CO and BC (EDGAR v8.1, 2025) and "EDGAR_2024_GHG" for CH4 (EDGAR, 2025) with a

spatial resolution of 0.1 °lat x 0.1 °lon. Details about the methodology of the EDGAR inventories as well as sectorial contri-

butions in different regions can be found in Janssens-Maenhout et al. (2019), Crippa et al. (2024), and European Commission

et al. (2024).260

The emission inventories are based on statistics and assumptions about human behaviour and regional distribution, and un-

certainties are large. For methane, Janssens-Maenhout et al. (2019) reported an uncertainty of 60 % for non-Annex1-countries,

which includes the whole African continent. Uncertainties about emissions of air pollutants (in our case, CO and BC) in Africa

are difficult to provide (M. Crippa, 2025, personal communication). Certain sectors related to particulate matter emissions,

combustion of biofuels in residential sectors and waste management may have particularly large uncertainties. The BC emis-265

9

https://doi.org/10.5194/egusphere-2025-5272
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



sion inventories are generally lower grade for domestic than for open burning, because activity and emission factors are largely

unknown and highly variable (Bond et al., 2013). For example, Kerosene lamps can have 20 times higher BC emissions fac-

tors than the ones currently represented in inventories (Lam et al., 2012). Furthermore, certain countries provide less robust

statistics than others.

We grouped the given emission categories in the EDGAR inventories into five overall sectors: i) industry, including the sec-270

tors "oil refineries and transformation industry" and "combustion for manufacturing", ii) transportation (only for CO and BC),

including "shipping" and "road transportation", iii) waste (only for CH4), including "waste water handling" and "solid waste

landfills" iv) agriculture (only for CH4), including "agricultural soils", "agricultural waste burning", "manure management",

and "enteric fermentation", and iv) energy, including "fuel exploitation" (only for CH4), and "energy for buildings", which

includes households and commercial activities, such as solid fuel burning for domestic energy production.275

EDGAR emission inventories were available until 2023 for CH4 and until 2022 for CO and BC, afterwards we used the

inventory of the last available year. To avoid double counting, we removed agriculture emissions from the CO and BC inventory,

because those emissions (mostly due to agriculture-related fires) are mostly already accounted for in the GFAS fire emissions.

2.4.5 Emission source sensitivities

To obtain the sensitivities of emission sources at the MKN station, the residence times simulated with FLEXPART were280

combined with the emission data. For this, FLEXPART residence times τ in a 0.1 ° x 0.1 ° grid box (given in s m3 kg−1 grid

cell−1) were multiplied with the fluxes from the emission data (in kg m−2 s−1) and summed up afterwards spatially to obtain

a single contribution at MKN per day. The FLEXPART sampling height was set to 50 m above groun, and the volume of the

grid cells and the molar weights of the gases were considered as described by Henne et al. (2016). Black carbon emissions

were scaled with an approximated air density for dry air of 1.1839 kgm−3 (at 25 °C and 1013 hPa) for each grid cell volume. A285

constant emission map was applied to each FLEXPART footprint (sum of all trajectory days) for each year (EDGAR) or each

month (WetCHARTs). For GFAS, however, we used daily averaged fluxes for each day of the trajectory.

3 Results and Discussion

3.1 Seasonal influences of air masses

Using the FLEXPART model, we simulated 3-hourly footprints for artificial particle releases at MKN for the whole study period290

(2020-2024). The residence time τ averaged for each month is shown in Figure 2. The simulations confirm the dominant role of

the ITCZ, which acts as a dynamic boundary that creates seasonally distinct hemispheric atmospheric regimes at MKN (Henne

et al., 2008b). MKN is predominantly exposed to north-easterly advection from December to March, and to south-easterly

advection from July to October, with the remaining months indicating the transition periods (Figure 2). The atmospheric

transport simulations indicate that processes above Western Africa only have an indirect impact on the observations at MKN.295
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Figure 2. Monthly averaged FLEXPART footprints (2020-2024), showing the averaged residence time τ of air from backward simulations

released at Mt. Kenya.

3.2 Time series analyses

Continuous GHG measurements at MKN have become available since 2020, as detailed in Sect. 2.2, while earlier in-situ and

flask measurements had been measured intermittently since 2002 (Figure C1).

When comparing previous measurements with the recent measurement period (Figure C1), we observe a clear increasing

trend in CO2 and CH4, which is consistent with global CO2 and CH4 increases (NOAA, Global Monitoring Laboratory, 2025).300

For CO and O3, Kirago et al. (2023) determined a slightly positive trend for MKN CO data from 2002 to 2022. Furthermore,

we observe that the seasonality does not differ substantially between previous and recent measurement periods (Figure C1e-h).

However, the February-maxima in CO2 (Figure C1e) and CO measurements (Figure C1h) were larger in the 2002-2006 period

(red and yellow lines) than in the recent period (blue line). Indeed, while Henne et al. (2008b), based on MKN measurements

from June 2002 to June 2006, and DeWitt et al. (2019), using data from Mt. Mugogo (Rwanda) from 2015 to 2017, reported305

peak CO values in February, our more recent observations (2020 to 2024) show a shift, with maximum CO levels in July

(Figure C1h).

Larger and slightly earlier CO peaks in recent dry seasons (June/July 2020 to 2022) were also observed by (Kirago et al.,

2023), who investigated MKN CO measurements from 2002 to 2006 and 2020 to 2022. This shift in maximum CO values from
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Figure 3. Measurements of CO2, CH4, O3, CO and black carbon since 2020 and their seasonal cycles, compared to CAMS products (a–e).

The dots show hourly (measurements) or 3-to-6-hourly (CAMS model) data points, the lines show the NOAA-fit using an 80 days filter. The

right panels (f–j) show the corresponding detrended seasonal cycles based on the NOAA-fits. The shaded areas show the standard deviation

over the 5-year period for each day of the year. The vertical shadings indicate the dry seasons (January-February (JF) and June-July-August-

September (JJAS)) and wet seasons (March-April-May (MAM) and October-November-December (OND)).

February to July might be linked to seasonal changes in wildfire intensity, but it may also result from dynamical atmospheric310

changes. Further investigations would be needed to confirm those possibilities.
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The temporal evolution from 2020 to 2024 and the seasonal cycles for the five analysed species at Mt. Kenya are shown in

Figure 3, both for in-situ measurements and CAMS model data. Generally, we observe a good agreement between measure-

ments and CAMS data, suggesting that the measurements are highly valuable for model validation in this region. The general

larger variability in the measurements is partly due to their hourly resolution, whereas CAMS data shows 3-hourly values (or315

6-hourly for CH4), but mainly because the model misses some local variability.

The CO2 CAMS data (Figure 3a) have an even smaller variability than the other species. We observed that CAMS invGG

generally only shows clear diurnal variations (>1 ppm) up to approximately 850 hPa. At higher altitudes (lower pressure), the

diurnal variability in the invGG product decreases and becomes negligible. At the selected CAMS level, the diurnal amplitude

is on average only 0.04 ppm, which is a factor of 100 smaller than expected from measurements (see Sect. 3.2.2). These results320

suggest that despite the overall good agreement of the CAMS invGG CO2 product with MKN measurements, the CAMS

model is unable to resolve the diurnal cycle at the given altitude. We suspect the reason for this discrepancy is due to poor

representation of the boundary layer in the CAMS model. Also for CH4, the CAMS model at the selected level underestimates

the diurnal cycle by a factor of 4 to 10 (depending on the season), but the underestimation is less pronounced than for CO2.

CAMS O3 data agree well with measurements (Figure 3c). In addition to in-situ and CAMS O3 data, we show ozonesonde325

measurements from the nearby launches in Nairobi. For each sounding profile, we chose measurements at a fixed pressure level

(700 hPa) to compare with the in-situ measurements at MKN. Generally, the ozonesonde measurements agree well with the in-

situ measurements. However, ozonesondes seem to report slightly higher values in 2024, which requires further investigation.

In 2023, the ozone in-situ measurements show smaller values than in other years, with a decrease starting approximately

in September 2023 (Figure 3 (d)). This ozone decrease, which is also observed in ozonesonde measurements and in CAMS330

data, might be related to the El Niño event in 2023/2024 (Peng et al., 2024). Earlier El Niño events occurred in 2002/2003,

2009/2010, 2014/2015, 2018/2019 (https://ds.data.jma.go.jp/tcc/tcc/products/elnino/ensoevents.html, last access: 7 July 2025).

In line with this hypothesis, previous ozone measurements (Figure C1 (d)) show decreased values towards the end of the years

2003, 2015 and 2019 (though less pronounced in 2019), which corresponds to the autumn/early winter following those El Niño

events. Unfortunately, no measurements were available during the other El Niño events and further analyses would be required335

to better understand the underlying dynamical processes.

In the CO and BC time series, we observe that a nearby wildfire event in March 2022 led to a strong peak of up to 1205 ppb

and 5 µgm−3, respectively. To avoid distortion of the figure, we cut the scale of the axis in Figure 3d,e. Figure 3e shows BC

measurements from two different instruments (AE31 and AE33). CAMS CO data agree well with CO measurements, whereas

the agreement is slightly worse for BC, especially in 2024. In June/July 2024, CO and BC show increased values that are not340

reproduced by CAMS. We could not identify a single dominant local wildfire event in that period, but wildfire activity from

July to September that was not detected by CAMS could possibly explain the differences.
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3.2.1 Seasonality

The seasonal cycles (Figure 3f-j) generally show two minima in April/May and November. This pattern can be explained by

the seasonal variation of air masses and the displacement of the ITCZ (see subsection 2.1), which has important implications345

for atmospheric composition measurements.

The first minimum in April/May corresponds to the end of the long rainy season, when the ITCZ moves northward across

Kenya, bringing clean air from the Indian Ocean (Figure 2). This air mass is characterized by low amount fractions of CH4

and CO, and low BC concentrations (Henne et al., 2008b). Despite this advection of clean air, ozone levels at MKN remain

moderate during this period of the year (Figure 3h), consistent with previous results by Henne et al. (2008b). Interestingly,350

CAMS fails to reproduce these moderate O3 values in April, suggesting that the model may miss some ozone formation

processes occurring during the transport in the rainy season. Another possibility is that CAMS underestimate vertical mixing

during the ITCZ crossing. To investigate this seasonal underestimation, further analyses are needed, such as comparing CAMS

ozone profiles with ozonesonde profiles.

A second minimum occurs in November, when the ITCZ shifts southward over Kenya, again resulting in dominant advec-355

tion from the Indian Ocean (Figure 2). CAMS overestimates BC concentrations during both April and November minima. This

discrepancy could be attributed to a site- and potentially region-specific under-representation of BC scavenging and associated

wet deposition processes in the model. It is known that deposition heavily depends on underlying aerosol particle size distri-

butions, mixing state and precipitation intensity, etc., which are related to transport but also local site specific aspects (Ogren

and Charlson, 1983; Bond et al., 2013; Vignati et al., 2010).360

The annual maximum of CO and BC occurs during the dry season in July/August, which corresponds to the biomass burning

season in the Southern Hemisphere. Ozone peaks earlier, in June, and again in September. These peaks are likely driven

indirectly by biomass burning, which affects tropospheric O3 through emissions of volatile organic compounds (VOCs) and

nitrogen oxides (NOx, DeWitt et al. (2019)). The timing of O3 maxima are not directly correlated with the CO and BC peaks,

which may be explained by the complex tropospheric O3 chemistry. Tropospheric ozone formation depends on the availability365

of VOCs, NOx, and solar radiation, and is therefore not linearly related to emissions.

Unlike CO, BC and O3, which all peak during the long dry season (JJAS), CH4 amount fractions reach their maximum in

December/January. During this time, northern continental air masses dominate MKN (Figure 2). This correspondence suggests

that CH4 amount fractions at MKN are primarily influenced by northern continental air masses and associated emissions (in

December/January), whereas highest levels of O3, CO and black carbon originate from Southern Hemisphere biomass burning370

emissions (in July/August).

In contrast to the other species, CO2 does not follow the same seasonal pattern (Figure 3f). CO2 values peak in March,

and decline until November, before increasing again in early December. The lowest values occur between September and

November, which mostly corresponds to the short rain period. This seasonal behaviour likely results from a combination

of atmospheric transport and vegetation dynamics. Compared to the other species, CO2 is strongly affected by vegetation375

activity, in addition to dynamical and anthropogenic influences. The pronounced increase in CO2 starting in December and
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continuing through the dry months of January and February, reaching a maximum in March, is most likely driven by reduced

photosynthetic uptake and increased plant respiration. During the long rains (March to June) the peak vegetation productivity

leads to CO2 uptake and decreasing CO2 amount fractions. In the subsequent dry season, CO2 briefly increases again in July,

but decreases afterwards. This is surprising, as reduced vegetation activity during dry periods would typically lead to more380

respiration and hence higher CO2 levels. However, air masses during this time predominantly originate from the southern

Indian Ocean (Figure 2), which suggests that vegetation is not the dominating factor. During the short rains from October to

December, CO2 remains rather constant, with a slight increase in November. This is again unexpected, as enhanced vegetation

activity during rainy periods should reduce CO2 levels. This is probably again related to changing air mass origins: in October,

MKN receives air from the southern Indian Ocean, with increasing influence from the northern Indian Ocean and the Arabian385

Peninsula in November and December. These dynamical factors appear to outweigh local photosynthetic uptake during the

rainy season. Finally, the CAMS CO2 seasonality agrees well with the observations, but CAMS overestimates CO2 in May and

June (end of long rains) and underestimates CO2 in November (short rains).

3.2.2 Diurnal cycles

The diurnal variability of all measured species and temperature at MKN is shown in Figure 4. All species exhibit pronounced390

diurnal variability, with important differences during day and night. This variability is largely driven by meteorological moun-

tain dynamics, as described by Henne et al. (2008a), who observed the development of thermally induced winds at Mt. Kenya,

characterized by upslope winds during the day and downslope winds at night. This leads to transport of planetary boundary

layer (PBL) air towards MKN during daytime. Henne et al. (2008b) concluded, based on detailed analyses of meteorological,

CO and O3 measurements, that MKN measurements represent free tropospheric conditions only at night (21–04 UTC, 00-07395

local time), and a mixture of boundary layer and free tropospheric air during the day.

The measurements are generally in line with the expected dynamical mechanisms. At night, CO2 values are around 417 ppm

and decreases rapidly by approximately 4 ppm after sunrise (Figure 4a). This daytime decrease can be explained by lower CO2

levels in the PBL due to ecosystem uptake. Similar daytime CO2 reductions have been observed at the high-altitude station

Maïdo on Réunion Island in the southern Indian Ocean (Callewaert et al., 2022), where diurnal variability is primarily driven by400

surrounding vegetation uptake during the day and respiration at night. The 4 ppm nighttime decrease at MKN is also comparable

to the boreal summer decline observed at the high-altitude station Mt. Cimone (5 ppm) in Italy (Cristofanelli et al., 2024). In

contrast, lower-altitude African sites report substantially larger diurnal amplitudes, such as Saint-Denis on Réunion Island

(~ 10 ppm, Callewaert et al. (2022)) and Lamto in Côte d’Ivoire (~ 38 ppm, Tiemoko et al. (2021)). These larger variations are

likely due to higher absolute CO2 amount fractions and more intense biospheric activity at lower elevations.405

While CO2 shows consistent diurnal patterns across all seasons, CH4 is the only species that shows clear seasonal differences

(Figure 4b). From October to February, CH4 amount fractions increase during the day, with peak enhancements of around

10 ppb in the afternoon. This period also shows the strongest diurnal variability, coinciding with the dominance of northern

air masses. In contrast, during the dry season (June to September), the CH4 cycle reverses, with slightly smaller afternoon

values compared to nighttime. This reversal may result from elevated CH4 values in the nighttime free troposphere - due to410
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Figure 4. Diurnal cycles of measurements at Mt. Kenya for five measured species ((a) to (e)) as well as temperature (f) for dry seasons

(January–February (JF, purple line) and June–September (JJAS, red line)) and wet seasons (March–May (MAM, blue line) and October–

December (OND, green line)). The shaded area indicates the average daytime (from sunrise to sunset). All figures show the averaged diurnal

cycle for 2020 to 2024, except for temperature, for which we use only data from 2022 to 2024.

increased local emissions or a larger background - or from reduced daytime CH4 amount fractions coming from the planetary

boundary layer during the dry season. During these months, MKN is mainly influenced by south-eastern air masses from the

Indian Ocean (see Figure 2), a region with generally low CH4 emissions. However, it remains unclear why daytime values are

even slightly lower than the nighttime values, which are typically influenced by free-tropospheric air. Tiemoko et al. (2021)

observed similar patterns at the Lamto station (155 m a.s.l.) in Côte d’Ivoire, attributing them to PBL development that dilutes415

CH4 during the day. Further analyses would be required to investigate whether dynamical processes can fully explain the

observed diurnal CH4 variability at MKN.

Ozone shows a distinct diurnal cycle at MKN, with a minimum at sunset and a maximum at night. This pattern is consistent

with the described mountain dynamics: O3 amount fractions rise at night due to the influence of O3-rich free-tropospheric air,

and decline during the day as PBL-influence increases. Similar diurnal patterns have been reported for earlier MKN measure-420

ments (Henne et al., 2008b) and at other remote mountain sites (DeWitt et al., 2019; Zhang et al., 2015).

CO and BC also follow the expected mountain-driven diurnal patterns, with elevated daytime values under polluted PBL

influence and lower nighttime values reflecting free-tropospheric air. The largest amplitudes occur during the JJAS dry season,

when southern biomass burning dominates. The seasonality of CO and BC diurnal cycles is similar to those observed by

DeWitt et al. (2019) in Rwanda, who also reported largest values and amplitudes in the JJAS dry season and lowest values and425

amplitudes during the long rains (MAM). However, they observed a distinct evening peak in BC measurements linked to local
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sources such as cooking and generator use. At MKN, such a peak is only slightly visible during the long dry season (JJAS),

suggesting that local CO contributions are minimal.

3.3 Effect of African emissions on Mt. Kenya measurements

To assess the influence of natural and anthropogenic African emissions on concentrations measured at Mt. Kenya, we combine430

FLEXPART footprints with emission inventories as described in Sect. 2.4.5. We then add the resulting time series to the

estimated background (see Sect. 2.4.1) to obtain the total simulated concentrations or amount fractions at MKN. Figure 5

shows the total simulated time series, including various emission contributions for CO, BC, and CH4 alongside the measured

time series and the simulated background. The simulated time series are shown for both domains, the African domain (in red)

and the full domain, including the Indian Ocean region (black line).435
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Figure 5. CO, BC and CH4 measurements at Mt. Kenya and total simulated contributions accounting for fire, wetland, and anthropogenic

emissions in the African domain (red) and the full domain (black). The background is derived from CAMS background data folded with

FLEXPART footprints. Thin lines show daily averages, bold lines show data smoothed with a 15-days rolling mean.

We observe good overall agreement between measured and simulated data for all three species, when transport and emissions

are only accounted for the African domain (red line). However, when considering the full domain (black line), the simulated
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Figure 6. Scatter plots of measured (corresponding to the blue line in Figure 5) versus simulated concentrations or amount fractions of the

full domain (black line in Figure 5) at MKN for CO, BC and CH4 for all seasons. The grey dotted line shows the 1:1 fit, the thin coloured

lines represent an orthogonal regression fit for each season. Values in the legend indicate the coefficients of determination R2 for each season.

time series are mostly larger than observations. We saw that the largest contribution to this overestimation comes from anthro-

pogenic EDGAR emissions, suggesting that the inventory overestimates emissions, not only in Africa but also from the larger

domain. Figure 6 illustrates this overestimation of the simulated data, especially for CO and BC. Nevertheless, the correlation440

between observed and simulated BC and CO is weak in all months and the ODR model performs poorly for CO and BC,

probably related to the large number of outliers (Figure 6a,b). Furthermore, BC is treated in FLEXPART as an inert species

neglecting scavenging, which likely explains why the model-observation agreement is worse for BC compared to CO, espe-

cially during the rainy seasons. Standard deviations of the measurements were considered for CO and CH4 in the ODR fit, but

were not available for BC, which might further explain the larger spread of the ODR fits for BC (Figure 6b). Simulated CH4445

correlates better with the measurements (Figure 6c) than CO and BC, but still slightly overestimates amount fractions in most

months (Figure 5c), for the full domain especially from December to March. This bias most likely results from overestimated

emissions in the inventories or from an overestimated background. Indeed, the background (grey line in Figure 5c) sometimes

exceeds the measurements, indicating that simulated background values are too high.

As expected, we observe larger simulated contributions during the day (not shown), when the influence of PBL is largest,450

which is consistent with the results at Maïdo by Callewaert et al. (2022). However, comparing only day- or nighttime measure-

ments with simulations hardly affects the overall correlation between modelled and simulated time series, suggesting that there

is no major improvement when looking only at free-tropospheric or PBL contributions respectively.

The sectoral contributions from natural and anthropogenic emissions to the simulated time series are shown in Figure 7, and

their relative contributions for different seasons are shown in Figure 8. Both figures concentrate on the African domain only,455

to investigate the effect of African emissions on MKN measurements. We observe that for CO and BC, the energy sector is

the dominant contributor (around 46 %, see Figure 8a,b), with contributions from the "energy for buildings"-group only. This

represents solid fuel combustion for domestic and commercial energy production. The second largest contributing sector is

industry (38%), followed by uncontrolled fire (13 % for CO, 10 % for BC), with largest fire contributions around the dry season
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Figure 8. Relative sectorial contributions of simulated anthropogenic and natural emission to MKN measurements above background and

for various emission sectors for different seasons and the whole time period (2020 to 2023).

from June to October, and transportation. The fire sector here stands for uncontrolled burning detected by GFAS, in contrast460

to solid fuel burning for domestic energy production, which is part of the energy sector. As expected, CO and BC show very
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similar patterns, but the contribution from the transportation sector is slightly larger for BC (6% for BC compared to 3% for

CO), due to larger shipping BC emissions.

As mentioned in Sect. 2.4.4, we use annual EDGAR inventories for anthropogenic emissions without seasonal variation.

Our observed seasonal variability in anthropogenic emissions is thus only due to variations in atmospheric transport. For fire465

emissions, however, seasonal variations in atmospheric transport and emissions are considered.

For methane (Figure 7c and Figure 8c), the largest contribution comes from agriculture (64%), which is mainly due to enteric

fermentation, followed by industry (13%), energy (due to fuel exploitation, 8%), natural wetland emissions (8%), waste (7%),

and uncontrolled fire (1%). Wetland contributions, however, show a clear seasonal cycle, with contributions that exceed the

ones from industry and energy during the wet seasons. In contrast to the anthropogenic emissions, the wetland seasonality is a470

combination of seasonal patterns in transport and emissions, because we use monthly resolved wetland inventory data.

Similar results for CH4 were reported by Callewaert et al. (2022) at Réunion island, with dominating anthropogenic CH4

contributions compared to wetland and fire. However, Dong et al. (2024) showed that emissions from one of the worldwide

largest floodplain wetlands, the Sudd wetland in South Sudan, are highly underestimated, especially by the WetCHARTs

product, due to the poor representation of wetland extent and dynamics. Even though the Sudd area is no major origin of air475

for MKN, their study indicates that wetland emissions may also be underestimated in our results.

In an ideal scenario, if the dispersion model and the inventories were perfect, the resulting simulated time series in Fig-

ure 7 would perfectly match the measured concentrations at MKN. However, as discussed previously, inventories carry large

uncertainties. Furthermore, like for any other dispersion model, tracer transport uncertainties in FLEXPART result from im-

perfect knowledge of the flow field (input fields) and approximations in the model formulation itself. Both uncertainties lead480

to differences between the observed and simulated time series.

Similar results have been reported by Callewaert et al. (2022), who modelled emission contributions to measured CO2, CH4

and CO at Réunion island. They found that EDGAR likely overestimates anthropogenic emissions.

Our overall agreement between measured and simulated time series suggests that the inventories for the African continent

are broadly reliable in capturing underlying temporal patterns, which is an important insight for validation of regional emis-485

sion inventories. However, in terms of absolute accuracy, the inventories are at the current state not good enough for accurate

chemical modelling of the atmosphere (CO) or assessing the radiative forcing (BC). The underlying issues are well known,

mainly related to the inaccurate and highly variable BC and CO emission factors for domestic energy production (cooking,

lighting). More regional observations and a complete inversion analysis would be required to verify the quality of the invento-

ries quantitatively. Due to the lack of continuous observations across the continent, this is not possible at the moment. Finally,490

it is important to note that the sectorial and seasonal variations are not representative for regional or African emissions, because

they depend on the origin of air that is transported to MKN as considered by the FLEXPART dispersion model.
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4 Conclusions

This study presents one of the most comprehensive multi-year datasets of in-situ trace gases and aerosol time series from

equatorial Africa, measured at the high-altitude Global Atmosphere Watch (GAW) station Mt. Kenya (MKN). The results495

demonstrate the station’s critical role in monitoring tropical atmospheric variability and trends, and for validating global models

and emission inventories.

The observed seasonal cycles are strongly governed by the meridional migration of the Intertropical Convergence Zone

(ITCZ), which modulates the origin of air masses and the associated trace gas and aerosol concentrations. Concentrations are

generally lowest during the rainy seasons, when the ITCZ crosses the station in April/May and in November. CO, O3 and500

BC peak during the southern biomass burning season from June to September, whereas CH4 amount fractions show largest

values in December/January, when northern continental air masses are dominant at MKN. Diurnal variability at the site is

mainly driven by mountain dynamics, with upslope winds during the day transporting boundary layer air and downslope winds

at night bringing free-tropospheric air to the station. This leads to distinct day–night differences in trace gas and aerosol

particle concentrations, with nighttime measurements generally reflecting background conditions. The observed diurnal cycles505

are consistent across species, although CH4 shows seasonally dependent patterns in the long dry season that require further

investigation.

CAMS model data generally agree well with the measurements, but also reveal systematic underestimation of diurnal vari-

ability and seasonal dynamics, especially for ozone and black carbon during the rainy seasons. These discrepancies highlight

the limitations of current model resolution and the importance of ground-based observations for improving atmospheric mod-510

els.

The integration of FLEXPART dispersion modelling with bottom-up emission inventories allowed us to attribute observed

variability to specific source sectors. CO amount fractions and BC concentrations are predominantly influenced by solid fuel

burning emissions from the domestic energy and industrial sectors, and uncontrolled open biomass burning contributes to

these species during the long dry season. Methane amount fractions beyond the hemispheric background are largely driven by515

agricultural emissions, with seasonal wetland contributions that are likely underestimated due to limitations in current wetland

emission datasets. It is important to note that our results reflect the influence of air masses transported to the station and do

not directly represent regional emissions. Systematic overestimation of the simulated concentrations highlight uncertainties

and biases in both emission inventories and, to a lesser extent, transport modelling. Overall, our findings confirm the need for

improved regional emission data and more comprehensive observational networks across Africa.520

This study was conducted within the framework of the Horizon Europe KADI project, which aimed to strengthen Africa’s

climate knowledge base and support the development of a pan-African atmospheric observation system. It would not have

been possible without prior persistent Kenyan and Swiss support of the station already 25 years ago, shortly after the official

inauguration of the station. Sustained partnerships among national and international institutions, together with continuous

capacity development and knowledge transfer, were key to successfully collecting the data and enabling the present analysis.525
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The long-term measurements at MKN provide critical insights into tropical atmospheric variability and demonstrate the

value of sustained observations for model validation and emission inventory assessment. Furthermore, such long-term obser-

vations are indispensable to assess regional changes in greenhouse gas concentrations and to understand their variability in the

context of a changing climate. In conclusion, the MKN station offers a unique and valuable perspective on tropical atmospheric

variability, and its long-term measurements are essential for improving our understanding of regional variability and emissions,530

validating global models, and guiding future observational strategies.

Code and data availability. The Mt. Kenya trace gas measurements are available via the World Data Center for Greenhouse gases (WDCGG)

for CO2, CO, CH4 and meteorological data (https://gaw.kishou.go.jp/) and the World Data Center for Reactive Gases WDCRG (https:

//www.gaw-wdcrg.org/ for O3). Black carbon data are currently available upon request until submission to the World Data Center for Aerosols

WDCA (https://www.gaw-wdca.org/).535
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Figure A1. Measured temperature and precipitation data at the Mt. Kenya station for the period 2022 to 2024. The first panel shows daily

temperature means and daily precipitation sums, for days with at least 18 hourly measurements available. The second panel shows monthly

temperature means and monthly precipitation sums over the whole period.
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