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Abstract. Recent research of early instrumental measurements combined with numerical-statistical techniques has contributed 

to global atmospheric reanalysis as well as regional products that cover pre-1850 weather. The advent of machine learning 

(ML) raises the question of how well we can reconstruct weather from the distant past using both established and emerging 

approaches. Here, we evaluate nine such approaches to reproduce the daily weather during Europe's hot summer of 1807. The 

datasets examined include the Twentieth Century Reanalysis (20CR) and enhanced versions (via additional assimilation, 20 

dynamical downscaling), an analog resampling product, as well as ML reconstructions that use neural networks (along with 

video-inpainting methods or variational auto-encoders). Validation is based on early station measurements, documentary 

information, statistical diagnostics, and a semi-quantitative assessment of atmospheric flow. 

We find that the summer of 1807 can be considered a prototype, pre-industrial heatwave summer, with three extremely hot 

episodes and maximum temperatures exceeding 30 – 35 °C in Central Europe. Most approaches achieve mean correlations 25 

(anomalies form the seasonal cycle) above 0.75 for temperature and centered Root Mean Square Error values below 3 °C, 

though variability tends to be underestimated. This speaks for overall robust reconstructions given the distant past and scarce 

underlying weather information. Skill scores for almost all reconstructions indicate that they are reliable in discriminating very 

hot from cooler (high-pressure from lower-pressure) conditions. Improved spatial skill with respect to 20CR for stations in 

Central and Northeastern Europe can be attributed to the increased influence of newly ingested weather information on the 30 

atmospheric reconstructions. 

The atmospheric flow-aware approaches reproduce plausible large-scale features such as ridges of high pressure and associated 

belts of hot air, whereas data-driven ML approaches excel statistically in replicating station variability but often produce less 

realistic circulation patterns. The analog method yields balanced but less intense reconstructions, and the high-resolution 

dataset aligns best with heat intensities in the Alpine region. 35 
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Such trade-offs leave users choose between computational efficiency, statistical performance, and physically coherent 

circulation. Future developments need to address uncertainties in the early measurements. In turn, the analyses also emphasize 

the value of high-quality early weather records to produce and validate gridded reconstructions. 

Introduction 

Over the last decades, summer heatwaves across the globe have become more frequent, intense, and prolonged (e.g. Perkins-40 

Kirkpatrick and Lewis, 2020, and references therein), and the IPCC projections assume even greater changes in the future 

(IPCC, 2023). Typically, such changes or deviations are calculated with respect to a climatological baseline. The IPCC reports 

use the period of 1850 to 1900 (Schurer et al., 2017), as ‘an approximation for pre-industrial’ conditions. 

No encompassing comparisons to pre-1850 conditions have been made in the IPCC reports so far. The IPCC justifies this with 

insufficient and incomplete observations to estimate climate variables like global surface temperatures before around ‘1850 - 45 

1900’ (e.g. Hawkins et al., 2017). In recent years, however, there have been substantial efforts to research historical weather 

records. For instance, a vast number of early (here pre-1850) instrumental measurements were searched and processed in 

digitization and homogenization efforts (Allan et al., 2011; Auer et al., 2007; Brönnimann et al., 2019; Brunet and Jones, 2011; 

Cram et al., 2015; Slonosky and Sieber, 2020) and facilitated by platforms like the WMO Data Rescue initiatives (WMO, 

2020), the Copernicus C3S Data Rescue Service (Copernicus, 2025), or the Southern Weather Discovery campaign (Lorrey et 50 

al., 2022). 

Vital steps towards 'completing the information for pre-industrial periods’ have been made by producing global to regional 

reconstructions of climate variables. For instance, the HISTALP dataset (Auer et al., 2007) provides a spatially interpolated 

field of absolute monthly temperature values for the greater Alpine region. 

Another vital step has been the development of four-dimensional, gridded, numerical, and typically global weather datasets, 55 

known as reanalyses. Reanalyses use data assimilation (of weather observations) to fit numerical weather-model output to 

available observational data, considering potential errors of air pressure or temperature, among others. An example is the 

Twentieth Century Reanalysis (Compo et al., 2006, 2011; Slivinski et al., 2019), which assimilates pressure measurements 

from the International Surface Pressure Databank (Compo et al., 2019; Cram et al., 2015). The current version 3 (20CR 

hereafter) extends back to 1806. 60 

More recently, augmented 20CR versions, i.e. with new observations, temperature as an additional variable, and improved 

assimilation, have been presented and tested, such as for windstorm Ulysses on Great Britain in 1903 (Hawkins et al., 2023) 

or using temperature, pressure, geopotential height, and total ozone for the case years 1807, 1877 / 1878, and 1926 / 1927 over 

Europe in an off-line assimilation (Brönnimann, 2022). Furthermore, dynamical downscaling of global reanalyses has been 

applied to achieve higher spatial and temporal resolutions (Gómez-Navarro et al., 2018; Michaelis and Lackmann, 2013). For 65 

Central Europe, gridded daily fields (e.g., of temperature and precipitation) have been produced using the analog resampling 

method (ARM), which compares atmospheric patterns from historical station data with a pool of analogs in modern gridded 
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datasets (Flückiger et al., 2017; Rössler and Brönnimann, 2018). The same way as for global reanalyses, additional 

observations can be assimilated to improve the reconstruction (Imfeld et al., 2023; Pfister et al., 2020). 

In addition to such refinements of physics-constrained or flow-aware approaches, rapid progress has also been made in the 70 

implementation of machine-learning (ML) algorithms (e.g. Bonavita et al., 2021), where the training of ML models is done in 

recent decades and the gained knowledge applied to historical data for weather and climate reconstruction. For instance, 

Schmutz et al. (2024) presented a three-dimensional convolutional neural network inspired by the task of video inpainting for 

reconstructing gridded daily fields of temperature and pressure across Europe. Wegmann and Jaume-Santero (2023) 

investigated long short-term memory models to reconstruct global temperature anomalies on a monthly resolution for 400 75 

years, although their approach has not yet been tested for daily weather. Other deep-learning architectures have also been 

proposed for such applications, including variational auto-encoders (Brohan, 2022; Slivinski et al., 2025). 

To date, we hence have a variety of approaches, that allow us to create ‘complete’, that is four-dimensional, continuous datasets 

reaching back in time for centuries, and as a consequence, pre-industrial periods such as the turn of the 18th to the 19th century 

come into the spotlight of numerical weather analyses. This motivates us to assess the capabilities and limitations of a number 80 

of such numerical approaches in reproducing the daily weather during a pre-1850 hot summer. 

Concretely, we analyze the hot summer of 1807 in Europe, with a particular focus on the Alpine region. In HISTALP, the 

month of July in 1807 appears as the hottest in the area when compared to a pre-1850 reference period of 1806 – 1835. 

According to a more recent temperature reconstruction (Rohde and Hausfather, 2020), the summer of 1807 ranks among the 

ten warmest European summers between 1750 and 2000. Availability of documentary and instrumental sources, particularly 85 

early meteorological measurements, is relatively good for this region and period. Evidence for an extended hot summer 1807 

across Central Europe has been found in a range of proxy series and descriptive sources, e.g. from compilations such as 

EuroClimHist (Rohr, 2016) or tambora.org (Riemann et al., 2015). For Germany, the latter has 1530 entries of temperature 

indices for June, July, and August since 1500 A.D., and August 1807 was among the hottest 2 %, i.e. with the highest index. 

More anecdotal reports about the heat in summer 1807 include messages to and from Alexander von Humboldt (Erdmann and 90 

Brönnimann, 2023): There are complaints about ‘intense and long-lasting heat’ episodes from July to the end of August with 

temperatures of around 32 °C in Fulda, Germany, and ‘unbearable heat’ in August in Göttingen, Germany. Humboldt also 

noted a daily maximum temperature of around 37 °C on 14 July 1807 in Rome, and around 29 °C on 23 August 1807 in 

Göttingen. 

The article is organized as follows: In Section 2, we inform about the observations and measurements used, as well as the 95 

gridded reconstruction approaches. In Section 3, we describe the statistical diagnostics used for the evaluation. In Section 4, 

we first characterize the hot summer 1807 in Europe from weather records and 20CR. In Section 5, we use nine approaches 

for a contest of reconstructing temporal as well as spatial aspects of the hot summer. The competing approaches are the 20CR 

ensemble mean and three enhanced derivates from 20CR, a dynamical downscaling product, an analog method product, and 

three ML-based approaches. With a range of statistical diagnostics, we assess the similarity and discrimination (of classes) of 100 

reconstructed vs observed daily temperature and pressure during the summer (half year) of 1807 as well as the spatial 
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representation of temperature and pressure for three hot episodes. In a semi-quantitative approach, we also assess the quality 

of the underlying weather observations. In Section 6, we provide a summary and a conclusion. 

2 Data 

2.1 Databases and collections of documentary and instrumental data 105 

Documentary and instrumental data used in this article have been found in specific sources and databases for historical 

climatology (Erdmann and Brönnimann, 2023; Hari, 2021; Riemann et al., 2015; Rohr, 2016). For Europe in the period around 

1807, weather diaries were more and more completed with records from early instrumental measurements. Single measurement 

series or small collections of such series have been made available in a range of research and digitization efforts, such as the 

series from Geneva by Auchmann et al. (2012) or the series from Vilnius, Wroclaw, and Warsaw by Rajmund Przybylak (pers. 110 

comm.), and Gdansk by Janusz Filipiak (pers. comm.). More series of daily resolved, early instrumental measurements were 

researched, processed and published by Brönnimann et al. (2019), Brugnara et al. (2015, 2016, 2020, 2022), and Pfister et al. 

(2019). All these series were used as references, or ‘ground truth’, for the reconstruction approaches (Table 1; see also Figure 

S1 in the Supplement). Note that all maps hereafter display modern national borders rather than the contemporary borders of 

1807. Here, we focus on observations of temperature and pressure on a daily to sub-daily basis. From these stations, five were 115 

set aside for validation to cover areas with different densities of stations (Basel, Zurich Feer, Bologna, Gdansk, and Vienna). 

The records of the stations Aarau, Bern, Marschlins, Delémont, Vevey and Delft are not used for assimilation and ingestion, 

but are also not treated as independent in order to reduce the weight of many neighboring stations in the area. 
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Table 1: Stations used for the assimilation experiments 1807.* 120 

Station Var Time Reference CRM CRx non-CR 
Armagh p 3x daily ISPD p  p 
Aarau ta, p daily Brugnara et al., 2020    
Barcelona ta daily Rodríguez et al., 2001  ta ta 
Basel ta, p daily Brugnara and Brönnimann, 2023 val val val 

Berlin ta, p 3x daily 
PALAEO-RA 
(Brönnimann et al., 2020) 

  ta, p 

Bern (obs. Studer) ta, p daily Brugnara et al., 2020    
Bologna ta daily Camuffo et al., 2017 val val val 
Cadiz ta daily, noon Barriendos et al., 2002  ta ta 
Central Belgium T ta daily, noon Demarée et al., 2002  ta ta 
Central England T ta daily Parker et al., 1992  ta ta 
Delémont ta, p daily Brugnara et al., 2020    

Delft ta daily 
KNMI (Royal Netherlands 
Meteorological Institute) 

   

Gdansk ta, p daily Janusz Filipiak pers.comm. val val val 
Geneva ta, p 14, daily Auchmann et al., 2012; ISPD p ta ta, p 
Haarlem ta, p daily KNMI; ISPD   ta, p 
Hohenpeissenberg ta, p daily Winkler, 2006; ISPD p ta ta, p 
Karlsruhe p daily Kunz et al., 2022  p p 
London p daily Cornes et al., 2012  p p 
Marschlins ta, p daily Brugnara et al., 2020    
Milano ta daily Maugeri et al., 2002  ta ta 
Mulhouse ta, p daily Brugnara et al., 2020 ; ISPD p ta ta, p 
Padova ta, p daily, noon Camuffo, 2002  ta, p ta, p 
Paris p daily Cornes et al., 2012b p  p 
Paris ta 12 Daniel Rousseau, pers. comm.  ta ta 
Prague ta daily Stepanek, 2005  ta ta 
Rovereto ta, p 8 or 16 Brugnara et al., 2022  ta, p ta, p 
Schaffhausen ta, p 3x daily Brugnara et al., 2020  ta, p ta, p 
St. Petersburg ta, p daily Jones and Lister, 2002  ta, p ta, p 
Stockholm ta, p daily Moberg et al., 2002; ISPD p ta ta, p 

Torino ta, p daily 
Di Napoli and Mercalli, 2008; 
ISPD 

p ta ta, p 

Uppsala ta daily Moberg et al., 2002  ta ta 
Valencia ta, p 13 Domínguez-Castro et al., 2014  ta, p ta, p 
Vevey ta, p daily Brugnara et al., 2020    
Vienna ta 3x daily Geosphere Austria val val val 
Vilnius ta daily Rajmund Przybylak pers.comm.   ta 
Warsaw ta daily Rajmund Przybylak pers.comm.   ta 
Wroclaw ta daily Rajmund Przybylak pers.comm.   ta 
Yilitornio ta, p 14, daily Klingbjer and Moberg, 2003; ISPD p ta ta, p 
Žitenice ta. p 14 Brázdil et al., 2007  ta, p ta, p 
Zwanenburg ta 3x daily KNMI  ta (ta) 
Zürich (obs. Feer) ta, p daily Brugnara et al., 2022a val val val 

 
* Abbreviations are: Var for variable, ta for air temperature, p for pressure, obs for observer, CRx relates to the three 20CR-
derived approaches (see Table 1 in Brönnimann 2022 for details on these stations), and non-CR relates to all other datasets 
according to Table 2. The CRx datasets use the values close to noon time whereas the non-CR datasets use daily values where 
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available. Note that WRF does not assimilate. Stations used for validation (val) are in italics, stations with no indicated use are only 125 
shown in the analyses but not treated as independent. Zwanenburg is used for ta by ARM only, instead of Haarlem. 

2.2 Numerical, gridded, observation-based atmospheric datasets 

A number of gridded, numerical, and typically global weather datasets have been developed by means of sophisticated 

regionalization approaches and based on series of (early) instrumental measurements similar to the ones mentioned above. 

Table 2 summarizes the approaches used for comparisons in this study. 130 

 
Table 2: Numerical, gridded datasets used for reconstructions of the summer 1807 in Europe.* 

Dataset Abbr. Additional 
obs. 

Horizontal 
resolution 

Horizontal extent for 
this study 

Temporal 
resolution 

Temporal 
extent 

Twentieth Century 
Reanalysis 20CR CRM   

1° 19.688 W – 40.078 E 
29.825 N – 69.825 N 

 3-hourly 1806 to 2015 

20CR_plus CRP  yes 

daily 1807 20CR best member CRB  no 

20CR_plus best member CPB  yes 

Weather Research and 
Forecast Model WRF  no 3 km 

0.995 E – 18.624 E 
41.799 N – 52.699 N 
(curvilinear) 

 6-hourly 1806-12-01 – 
1807-10-12 

Analog Resampling and data 
assimilation Method ARM  yes 0.25° 20 W – 40 E 

30 (ta), 35 (p) N – 70 N  daily 1807 

Three-Dimensional 
Convolutional Neural 
Network 

TNN  yes 1° 21.625 W - 41.375 E 
35.625 N - 66.625 N daily 1807 

One Dimensional 
Convolutional Neural 
Network 

ONN  yes 0.25° 22 W – 41 E 
36 N – 67 N daily 1807 (w/o 

1807-01-01) 

Variational Auto-Encoder VAE  yes 1° 22 W – 41 E 
36 N – 67 N daily 1807 

*Additional obs. stands for ingestion and assimilation of more station observations than in 20CR. 

2.2.1 Twentieth Century Reanalysis 20CR 

For synoptic analyses on a (sub-) daily scale, the NOAA / CIRES / DOE 20th Century Reanalysis version 3 (20CR) is available 135 

from the NOAA PSL (Slivinski et al., 2019; Compo et al., 2011). 20CR is also used for initial and boundary conditions for the 
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dynamical downscaling experiments. Version 3 comes with a 1° x 1° horizontal global grid (approx. 75 km over Europe), 28 

vertical pressure levels, and a 3-hourly temporal resolution going back to 1836. Only surface pressure observations are 

assimilated (see Table 1). For our study, we use the experimental extension with 80 members reaching back to 1806, available 

(at the time of writing) from the US National Energy Research Scientific Computing Center NERSC web portal at 140 

https://portal.nersc.gov/project/20C_Reanalysis/. Over the time period of our 1807 case, three stations in the greater Alpine 

region are assimilated in 20CR (Geneva, Turin, and Hohenpeissenberg). Here, we typically show the 20CR ensemble mean 

(CRM). 

2.2.2 20CR_plus, 20CR best member, 20CR_plus best member 

20CR_plus (CRP) is obtained by assimilating observations into the 80-member ensemble of 20CR using an offline Ensemble 145 

Kalman Filter approach (see Brönnimann, 2022). In this approach, all ensemble members are corrected towards the 

observations each day but the model is not rerun. In contrast to 20CR, 20CR_plus also assimilates temperature observations 

(see Table 2), although not all stations from Table 1 were available at the time of production. Furthermore, if several stations 

fell within the same 20CR grid cell (e.g., stations in the Netherlands or Switzerland), only one was kept. As there might be 

systematic differences between 20CR and observations, both pressure and temperature observations are adjusted to the 150 

corresponding 20CR data for the year 1807 before assimilation. For temperature, this is done by fitting a seasonal cycle to 

each dataset based on the first two harmonics and subtracting the difference. For the pressure series, the overall mean difference 

is subtracted. The observation error is assumed to be 3^2 K and 3^2 hPa for temperature and pressure, respectively. We then 

use a sequential implementation of the Ensemble Kalman Filter, with no localization of the background error covariance 

matrix. Observations are not assimilated if their departure from 20CR is larger than 3 times the standard error, which is defined 155 

as the square root of the sum of the error variances of 20CR and observations. Leave-one out cross validation shows a 

significant improvement over 20CR (Brönnimann, 2022). 

For the “best member” products, i.e. 20CR best member (CRB) and 20CR_plus best member (CPB), we determined for each 

day the member of 20CR that fits best with all observations to be assimilated based on the Eucledian distance of the 

standardized anomalies. CRB and CPB are concatenations of this best member for every day before (CRB) and after (CPB) 160 

assimilation of the observations.  

2.2.3 Regional weather model WRF 

We use the non-hydrostatic Advanced-Research Weather Research and Forecast Model Version 4.3.3 (WRF-ARW; hereinafter 

WRF; Skamarock et al., 2021) for dynamical downscaling from the 20CR ensemble mean with two domains (15 and 3 km 

spatial resolution) and 6-hourly resolution. We use the Thompson microphysics scheme, the Yonsei University (YSU) scheme 165 

for the planetary boundary layer together with the revised MM5 surface layer scheme, the scale-aware Grell-Freitas cumulus 
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scheme and the RRTMG radiation schemes. The NoahMP model is used for the land surface. Please refer to the NCAR 

Technical Note on WRF 4.3.3 (Skamarock et al., 2021) for references to the specific schemes. Spectral nudging (corresponding 

to a wavelength of about 1000 km) is applied to temperature, wind, and geopotential fields above the planetary boundary layer 

in the outer 15-km domain. The WRF model is initialized on 1806-12-01 at 00 UTC, allowing for several weeks of model 170 

spin-up, and the model output is saved at 6-hourly resolution. WRF relies on the 20CR input only, that is, no stations from 

Table 1 are assimilated. 

2.2.4 Analog resampling and data assimilation 

The analog resampling and data assimilation method (ARM) is based on the assumption that over time, similar atmospheric 

states occur repeatedly, and thus similar surface fields of pressure and temperature, for example. Therefore, a historical target 175 

day can be reconstructed by first searching for the most similar days in a reference period and then resampling the required 

fields based on these analog days. Here, we use sea-level pressure and 2-meter temperature fields with a 0.25 ° horizontal 

resolution from the ERA-5 reanalysis (Hersbach et al., 2020)  for the period from 1950 to 2020 as reference fields. As reference 

stations, we use temperature and pressure observations from ECA&D (Klein Tank et al., 2002) and MeteoSwiss (Begert et al., 

2007). Before resampling, an offset is subtracted from the temperature data to account for the inter-centennial climate change. 180 

This offset is the difference in zonal mean land-only temperature from the EKF400 palaeo-reanalysis (Valler et al., 2021) 

between the two periods. The best 50 analog days between the historical and the reference period are determined using the 

root mean square error (RMSE) from deseasonalized, detrended, and standardized observations. The same observations are 

assimilated onto the resampled fields using an ensemble Kalman filter (EnKF; Bhend et al., 2012; Franke et al., 2017). The 

observations are debiased with the monthly mean difference between the gridded and station data in the reference period. 185 

Observation errors are calculated from a linear regression between the daily differences in variance and the spatial distance of 

every station pair (Wartenburger et al., 2013). Furthermore, a spatial localization is performed for cut-off distances of 1500 

km for temperature and 2000 km for sea-level pressure. More details can be found in Pappert et al. (2022). 

2.2.5 Three-Dimensional Convolutional Neural Network 

The Three-Dimensional Convolutional Neural Network WeRec3D (Schmutz et al., 2024; abbreviated TNN in this study) is a 190 

deep learning architecture tailored to weather reconstruction. Inspired by video inpainting, it is based on a three-dimensional 

convolutional neural network, which allows to model space and time dimensions simultaneously. In contrast to traditional 

meteorological techniques that operate on anomalies (Qian et al., 2021), TNN shows superior results when modeling 

climatology directly. It further leverages five custom techniques that enhance the algorithm specifically for weather 

reconstruction. TNN was trained and validated in a self-supervised manner using ERA5's daily sea-level pressure and 2-meter 195 

temperature fields with a 1° x 1° horizontal grid over Europe. On a hold-out set from 1950 to 1954, the validation results in an 
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MAE of 1.11 °C and 1.99 hPa. The authors further tested its reconstruction capability on the heat wave of 1807 using a leave-

one-out validation in space. Compared to the historical measurements, the reconstructed time series exhibit a correlation of at 

least 0.91, with a maximum normalized RMSE and standard deviation delta of 0.58 and 0.51, respectively. 

2.2.6 Long-short Term Memory models and One-Dimensional Convolutional Neural Networks  200 

Using the same training system as TNN and ARM, we investigate out-of-the-box Long-Short Term Memory (Hochreiter and 

Schmidhuber, 1997) and One-Dimensional Convolutional Neural Networks (ONN hereafter; Kiranyaz et al., 2021) for the 

regression task of reconstructing 2m-temperature and sea level pressure on the 0.25 ° ERA5 grid. For this task, the 2D spatial 

field was initially reshaped into a one-dimensional vector, and eventually reshaped to a 2D field. The best from a variety of 

dropout and layer architectures is used for the final reconstruction. We use the ADAM optimizer (Kingma and Ba, 2015) with 205 

a learning rate of 10-4, a batch size of 128, a hyperbolic tangent activation function and the Mean Squared Error as loss function. 

We then store the model weights with the lowest validation loss after not improving over 20 epochs. A more detailed discussion 

of this approach can be found in Wegmann and Jaume-Santero (2023). After removing February 29th entries, training sample 

size for this task is N=21900. 80% of this data is used for training, and 20% is used for validation. We find no overfitting in 

this training sample size, and as such no dropout is implemented. To account for missing data in the 1807 reconstruction, we 210 

create a mask of missing values from each individual station in 1807 and then apply that mask for each year and each individual 

station in the training period 1960 - 2020. We investigate different amounts of features in the reconstruction, from simply 

using one feature (e.g. temperature only) to using a maximum of eight features (longitude, latitude, altitude, temperature, 

pressure, pressure tendency, weather type, day of year). Here we focus on results with seven (no day-of-year information) or 

eight features. 215 

2.2.7 Variational Auto-Encoder 

We implement a novel machine learning model based on a variational autoencoder (VAE) architecture. While the use of such 

a model for reconstructing historical weather fields has previously been proposed (Brohan, 2022), to our knowledge no such 

studies have been published. The VAE comprises a pair of 2D convolutional neural networks in an encoder-decoder 

arrangement. During training, the encoder reduces the complete fields of temperature and pressure for a given day to a 220 

simplified 256-dimensional representation within the model’s latent space, from which the decoder then attempts to recreate 

the original fields. Regularizing the latent space through the inclusion of a Kullback–Leibler loss term ensures that, once 

trained, the decoder should be capable of generating realistic output fields from any latent representation that is provided. To 

apply the model, we therefore discard the trained encoder, randomly sample the latent space, and then iteratively adjust this 

sample up to 500 times using gradient descent to minimize the error between the resulting output of the decoder and any 225 

available observations from a given day of interest. The final iteration of this output then represents the reconstruction for that 
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day. To maximize the consistency with TNN, the VAE model was developed using ERA5 data for the period 1950–2020 and 

applied using the same set of input stations. Temperature is handled as normalized intra-monthly anomalies, created by 

subtracting the observed calendar-monthly means and dividing by the resulting standard deviation of the training period (1969–

2020). Pressure is handled as z-normalized anomalies purely with respect to the training period. The reconstructed values are 230 

then reconverted to absolute terms using the same training-period statistics and using ModE-RA (Valler et al., 2024) for the 

calendar monthly means of temperature. The VAE’s exact architecture and hyperparameters have been tuned to minimize 

reconstruction error assuming the observation availability of 1807. The evaluation on a test set (1950–1954) yields overall 

RMSEs of 2.52 K and 5.18 hPa. A full description of the VAE model is provided in the Supplement. 

3 Verification measures and scores 235 

For our purposes, we use a range of verification measures and scores. The general similarity between the numerical output and 

the observed values (e.g. 2-meter air temperature at the station and at the nearest grid point in 20CR) over a certain period (e.g. 

daily values from May to September) is assessed by the three statistics that can be visualized in Taylor diagrams (Taylor, 

2001a). These are the (Pearson) correlation coefficient 𝐶𝐶𝐶𝐶𝐶𝐶 (Eq. 1) 

𝐶𝐶𝐶𝐶𝐶𝐶 = ∑(𝑥𝑥𝑖𝑖−𝑥𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦)
�∑(𝑥𝑥𝑖𝑖−𝑥𝑥)2∑(𝑦𝑦𝑖𝑖−𝑦𝑦)2

           (1) 240 

to assess linear association (irrespective of bias) between predicted and observed values, the ratio of standard deviations 𝑆𝑆𝑆𝑆𝑆𝑆 

(Eq. 2 shows 𝑆𝑆𝑆𝑆 for observed values 𝑥𝑥) 

𝑆𝑆𝑆𝑆 = � 1
𝑛𝑛−1

∑𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2   then   𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
       (2) 

to assess the amplitude of variability in the predicted vs. the observed series, and the centered root mean squared error 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

where the relation to the root mean squared error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (Eq. 3) 245 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 1
𝑛𝑛−1

∑𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2          (3) 

is given by Eq. 4 

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 −  (𝑦𝑦 − 𝑥𝑥) 2          (4) 

(cf. Paul et al., 2023). The cRMSE cannot be equated with the RMSE, but is mathematically equal to the standard deviation of 

the model error (predicted minus observed), thus gives a hint about how strongly the ‘errors’ in the predicted series fluctuate 250 

(Elvidge et al., 2014). 

Second, we use three statistics to assess the specific ability of reconstructing more rare events, e.g. the heat-wave episodes in 

Europe during the summer of 1807. For this, we divide each series into three classes, which are ‘hot’ (>= 90th percentile), 

‘warm’ (90th > x >= 75th percentiles), and ‘cooler’ (< 75th percentile). For pressure, the classes are ‘very high’ or ‘very low’ 
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(beyond 80th or 20th percentile, respectively) versus ‘rather normal’ values in-between. The use of percentiles provides 255 

information on whether high, low or normal predictions are reflected in the observations, regardless of absolute values. It also 

means that we have ordinal categories and imbalanced classes, but their size is the same in each sample. 

The first score is the Balanced Accuracy (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵), where the sample weights 𝜔𝜔 are normalized for each class (Eq. 5; Lang et 

al., 2024) 

𝜔𝜔�𝑖𝑖 =  𝜔𝜔𝑖𝑖
∑ 1(𝑦𝑦𝑗𝑗=𝑦𝑦𝑖𝑖)𝜔𝜔𝑖𝑖𝑗𝑗

           (5) 260 

and then Eq. 6 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  1
∑ 𝜔𝜔�𝑖𝑖𝑖𝑖

 ∑ 1(𝑦𝑦,� = 𝑦𝑦𝑖𝑖)𝜔𝜔�𝑖𝑖𝑗𝑗           (6) 

computes a sample-weighted accuracy with scores between 0 for no accuracy and 1 for a perfect prediction with respect to all 

classes. 

For the second score, we consider the Multi-Class Brier Score (𝑀𝑀𝑀𝑀𝑀𝑀) in Eq. 7 (Lang et al., 2024),  265 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛

 ∑ ∑ (𝐼𝐼𝑖𝑖𝑖𝑖  −  𝑝𝑝𝑖𝑖𝑖𝑖)2𝑟𝑟
𝑗𝑗=1

𝑛𝑛
𝑖𝑖−1            (7) 

with 𝑟𝑟 labels and where 𝐼𝐼𝑖𝑖𝑖𝑖 is set to 1 if the observation 𝑖𝑖 has the true label 𝑗𝑗, and set to 0 in all other cases. The 𝑀𝑀𝑀𝑀𝑀𝑀 assesses 

predicted probabilities for each class ( [0,1] in our case) versus the actual occurrence of a multi-class event (value 0 or 1). Note 

that the 𝑀𝑀𝑀𝑀𝑀𝑀 does not account for sample weights, and that the range of the 3 x 3 𝑀𝑀𝑀𝑀𝑀𝑀 goes from 0 to 2 for best performance. 

Other than that, visual tests for our results look similar from 𝑀𝑀𝑀𝑀𝑀𝑀 and Log Loss Score (not shown). 270 

Finally, we calculate the Gerrity Skill Score (𝐺𝐺𝐺𝐺𝐺𝐺), which uses a scoring matrix 𝑠𝑠𝑖𝑖𝑖𝑖 with the values 𝑖𝑖 = 1, … ,3 depending 

whether a reward or penalty for each prediction / observation outcome will be assigned (Goncalves, 2023). Hence, Eq. 8 

𝐺𝐺𝐺𝐺𝐺𝐺 =  ∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 
3
𝑗𝑗=1

3
𝑖𝑖−1 𝑠𝑠𝑖𝑖𝑖𝑖             (8) 

assesses the skill of a simulation in discriminating the classes, that is, it assesses how accurately the reconstruction predicts the 

correct category, relative to random predictions (Joliffe and Stephenson, 2012). The underlying Gerrity Score evaluates 275 

whether a predicted category of pressure or temperature actually occurred. In particular, the Gerrity Score strongly rewards 

simulations that correctly predict the less likely class, while it does much less reward conservative predictions. Smaller errors 

(i.e. from predicting a neighboring class) are less penalized than larger errors (from predicting more distant classes). The 

measure of the Gerrity Score ranges from -1 to 1, where 0 means that the prediction has no skill. The 𝐺𝐺𝐺𝐺𝐺𝐺 is so called equitable, 

meaning that random and constant predictions yield a score of 0. A score of 1 means that all values were correctly categorized. 280 

A score of 0.5 means that the prediction is about twice as accurate as random predictions. 

https://doi.org/10.5194/egusphere-2025-5264
Preprint. Discussion started: 4 November 2025
c© Author(s) 2025. CC BY 4.0 License.



12 
 

Then, we apply the Taylor Skill Score (TSS; Taylor, 2001b). It allows to summarize the three Taylor statistics in just one score, 

with low skill near 0 and maximum skill close to 1. The score rewards high correlations as well as high agreement of variance 

between simulated and observed values, (cf. Veiga and Yuan, 2024), such as Eq. 9 

𝑇𝑇𝑇𝑇𝑇𝑇 =  4∗(1+ 𝐶𝐶𝐶𝐶𝐶𝐶)4

(𝑆𝑆𝑆𝑆𝑆𝑆+ 1
𝑆𝑆𝑆𝑆𝑆𝑆)2∗24

             (9) 285 

when considering the maximum 𝐶𝐶𝐶𝐶𝐶𝐶 == 1. 

Finally, we use the Terrain Ruggedness Index 𝑇𝑇𝑇𝑇𝑇𝑇 by Riley et al. (1999) that was originally created to quantify topographic 

heterogeneity in Eq. 10 as 

𝑇𝑇𝑇𝑇𝑇𝑇 =  Υ�∑(𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑥𝑥00)2�0.5           (10) 

where 𝑥𝑥𝑖𝑖𝑖𝑖  is the neighboring grid point to the reference g-rid point 𝑥𝑥00. For this study, it serves as a relative measure of 290 

‘ruggedness’ of the simulated pressure and temperature fields among the numerical datasets. Thus, we use the 𝑇𝑇𝑇𝑇𝑇𝑇  as 

implemented in the spatialEco R package (Evans and Murphy, 2023), and simply replace the elevation variable with 

temperature (pressure) values. To account for differences in spatial representation among the numerical datasets, we use a 

selected field of 13 x 7 grid points in 20CR (every 5th in west-east and south-north direction) covering roughly the area from 

15W to 30E and 35N to 60N, and we use the relative nearest neighbors in the other numerical datasets. Still, we compare the 295 

TRI across models with varying spatial resolutions (most at 1°, while ARM and ONN use 0.25°), so we would expect the finer-

resolution models to appear more rugged in tendency. 

4 The summer 1807 in Europe in weather records and 20CR 

In a first analysis, we step from anecdotal, descriptive evidence of “unbearable and long-lasting heat” in (Central) Europe in 

August 1807 (e.g. Erdmann and Brönnimann, 2023; see Section 1) to observation-driven evidence of the daily weather, i.e. we 300 

analyze information that comes from single instrumental as well as observational time series. A very helpful source to look at 

the weather conditions in the Swiss midlands are eye observations by Studer in the city of Bern. Figure 1 (cf. Hari, 2021) 

visualizes these weather records for the year 1807. 
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 305 
Figure 1: Categorized daily weather records from Bern (observer Studer; data from Hari, 2021) for the year 1807. 

 

Although a substantial number of days in the study period are missing, there were episodes with hardly any cloudiness or 

precipitation reported, but permanently sunny conditions. These episodes start in May, and more episodes occur in July and 

August.  In comparison, Figure 2 represents instrumental measurements of daily temperature at three selected locations in 310 

Europe. At the Prague station (Figure 2a), a first heatwave episode with no values below the long-term 95th percentile (peaks 

of around of 27 °C ) appears in mid-July, followed by more such episodes in August, e.g. at the beginning of the month, and 

the hot summer concludes in an episode of more than 10 days towards the end of the month. At the Stockholm station (Figure 

2b), the episode around 1 August is outstanding, while July and end-of-August episodes are less prominent. Also, the Zurich 

station (Figure 2c and d) exhibits the highest mean daily temperature of 27 °C on 13 July, an early-August peak, and a 315 

heatwave of 10 consecutive days with daily mean temperature above 22 °C from 20 August, a unique feature in the series. 
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Figure 2: Daily mean temperatures at Prague, Stockholm, and Zurich from May to October 1807 (black circles), and temperature 
quartiles wrt 1806-1835 (grey lines). Red dots mark daily mean temperature above the 95th percentiles (red horizontal line) in panels 320 
a), b), and c). Dots in panel d) indicate the maximum number of consecutive days with mean temperatures >=22 °C in the Zurich 
measurements. Series of 5 days or more are labeled. 

Hence, we find three particular peak episodes of hot days in Central and Northern Europe from these series: These are the 

single hot day of 13 July 1807, three particularly hot days from 1 to 3 August 1807 as well as five days from 26 to 30 August 

1807. 325 

For these days, Figure 3 shows temperature values near 30 °C at stations just north and south of the Alps for all three episodes 

(with questionable exceptions, e.g. at Marschlins and Hohenpeissenberg; cf. Section 5.3). Lower values appear over 

Scandinavia (between 11 and 17 °C), and near the Channel (up to around 20 °C). The synoptic weather situation becomes 

more apparent when mapping the respective warmest members in 20CR (Figure 4). 

 330 

https://doi.org/10.5194/egusphere-2025-5264
Preprint. Discussion started: 4 November 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

 
Figure 3: Analyses of daily air temperature (absolute values in the top row, anomalies wrt the reference period 1806 - 1835 in the 
bottom row; °C) from early instrumental measurements across Europe for (a) and (b) 13 July 1807, (c) and (d) the mean over three 
days on 1-3 August 1807, and (e and (f) the mean over five days on 26 - 30 August 1807. Grey fills mark stations with less than 25 
years of data in the reference period. The highest and lowest three values in the region are labeled. 335 

 

For all three episodes, 20CR shows a low-pressure system over the East Atlantic / North Sea sector, and ridges of high pressure 

reaching from the western Mediterranean / Iberia into the continent. South-westerly winds prevail along the (north-) westerly 

edge of these pressure systems and are associated with large belts of hot air downstream of the ridges. These general features 

appear in a modulated form for each episode. Specifically, the 13 July episode has the high-pressure ridge in a south-west to 340 

north-east direction and it just reaches the Baltic Sea. These analyses suggest that 13 July 1807 was in fact mostly a Central-

European event with the largest positive deviations here. On 1-3 August, the more meridional wedge forms into a marked 

omega high located over the Baltic Sea, with considerably above-normal temperatures between the Czech Lands and 

Scandinavia, while the episode appears less intense over Western Europe. On 26-30 August, the wedge does not reach as far 

north and the hot air is again more confined to Western and Central Europe. 345 
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Figure 4: Analysis of the 20CR ensemble for (a) a grid point over northern Switzerland (8° E, 47.5 °N) between May and September 
1807. Grey lines show 2-meter air temperature (°C) in the realizations from the 80 members, the red line is the ensemble mean. The 
solid (dashed) black line shows member #3 (#11 ) with the highest temperature for 13 July 1807, (26 - 30 August period). The panels 350 
(b), (c), and (d) show the 20CR fields of 2-meter air temperature (°C; color shades), sea level pressure (hPa; grey solid contour lines), 
500-hPa level (decameters; grey dashed contour lines), and wind vectors (850-hPa levels; ms-1). In (b), this is for member #10 and  
in (c) for member #03 (highest temperature in Stockholm; not shown), and in (d) for member #11. 

 

Overall, we take from the above analyses that the summer of 1807 was indeed extraordinarily hot, especially in terms of three 355 

shorter and longer heat episodes. The found circulation patterns during these episodes are similar to the ones that lead to intense 

warming over the European continent in modern periods (Kautz et al., 2022; Schielicke and Pfahl, 2022; Sousa et al., 2018; 

Zschenderlein et al., 2020). The synoptic weather dynamics in 20CR are highly consistent with the collected observations and 

measurements. In all, they reflect a very hot pre-industrial summer, where the measurements may not have reached today’s 

record temperatures at all stations, but where maximum temperature easily reached 30 to 35 °C and more in the Alpine area, 360 

for instance, even when considering potential radiation biases in the measurements. 
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5 Performance of the daily reconstruction approaches 

The good representation in 20CR makes the summer of 1807 an interesting case to test how well other gridded datasets can 

represent it. In this section, we evaluate nine such approaches in four aspects of reconstructing the summer of 1807 over time 

and space. 365 

5.1 Temporal aspects: Similarity and discrimination of predicted vs observed temperature and pressure 

For the first analyses, the station measurements and the nearest-neighbor values of each dataset are converted to deseasonalized 

anomalies by subtracting the fit of the first two harmonics (R package geoTS; Tecuapetla-Gomez, 2022) in the case of 

temperature and the overall mean in the case of pressure, each calculated over the full year of 1807. These can then be compared 

to measurements from independent stations, although it is hard to derive an overall best dataset from this alone (Figure S2 in 370 

the Supplement).  For a broader view, the visualized statistics in the top rows of Figure 5 (for temperature) and Figure S3 in 

the Supplement (for pressure) extend the information to all available stations. Hence, the approaches include information 

from stations that are not independent, but provide a good context in terms of expected average performance or variability 

among the selected locations. Note here that the spatially best resolved WRF domain is substantially smaller than all other 

areas and hence the stations from Scandinavia and Iberia cannot be included. Statistics for a congruent spatial extent have also 375 

been calculated; differences are small (not shown). 

For the extended summer period (May to September 1807), we can roughly discriminate three levels of performance: 

(i) Among the nine approaches, the 20CR ensemble mean (CRM) represents a medium-performance reference point (e.g. mean 

correlation coefficient of around 0.7, with a large spread). Across all stations, CRB performs slightly better than CRM. The 

(partial) improvement with respect to CRM comes mostly from more balanced variability (𝑆𝑆𝑆𝑆𝑆𝑆). 380 

(ii) With a few exceptions, the plotting positions of the 20CR ensemble members (including the three members which produced 

the hottest temperatures for a certain heat episode, cf. Figure 4) are detached from the CRM, indicating worse overall 

performance. In fact, (relative) over-estimation of temperature and pressure in association with potentially lower correlation 

and higher 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be expected from the nature of 20CR members due to more distinct fields of temperature and pressure. 

For this reason, we refrain from including the 20CR ensemble members in the following analyses. WRF and ONN are often 385 

inferior to the competitors in terms of correlation and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, although WRF (ONN) has a more balanced variability than 

CRM regarding temperature and pressure (pressure only). 

(iii) Rather high-performance statistics come from the remaining approaches CRP, CPB, ARM, TNN, and VAE. We find high 

correlations (between 0.75 and 0.9), and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 statistics mostly below 3 °C (even near 2 °C for Zurich; similar range for 

pressure [hPa]). Overall, VAE and TNN may be the best performing approach from visual examination of the plotting 390 

positions. 
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Given the distant past and the scarcity of available measurements of temperature and pressure, we argue that the obtained 

average values speak for the quality of most reconstructions. However, most approaches also show a number of outlier stations 

with low or very low performance, e.g. at Marschlins. 

 395 
Figure 5: Beanplots of performance measures and statistics (see Section 3 for abbreviations; arrows mark direction of increasing 
performance) for temperature (anomalies wrt fit from the combined 1st and 2nd harmonic waves) and nine gridded datasets (color 
shades; x-axis) and for the period May to September 1807. Black horizontal bars in the beans mark all available values. Values for 
independent stations are marked with symbols (top-left panel). Black horizontal bars across each bean show mean values, the dotted 
black horizontal line the mean over all datasets. The stations named at the bottom of each panel most frequently (number after 400 
station name) have the highest (left) and lowest (right) statistics across the nine models (min and max absolute distance to 1 for panel 
sdr); the first example is shown for ties. For graphical reasons, some beans exceed the mathematical limits for some measures and 
statistics. 

 

To assess the discrimination potential, the bottom panels of Figure 5 and Figure S3 in the Supplement quantify the ability 405 

of each approach to accurately predict very hot, warm and cooler air masses and very high, intermediate, or very low pressure 

for each station (cf. Section 3). For both independent and dependent temperature stations, the relative plotting positions of the 

approaches look very similar across all three scores. This is true regarding the width of the beans (bulk and average 

performance) and the length of the beans (i.e., spread of scores across stations), and it is true regarding both temperature and 
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pressure. On average, all three scores are at least 0.5 or better (in both directions of increased performance, e.g., up to 0.75 or 410 

more for BACC and GSS, or 0.25 for MBR for temperature). This indicates that, in general, the reconstructions are consistent 

with observed patterns and would be sufficiently reliable and accurate to be practically useful. Also, the relative ranking of the 

approaches wrt CRM remains similar to the first analyses: CRM is a reference, medium performing approach regarding our 

statistics (together with CRB), whereas the ONN and WRF approaches perform less well on average, even if a couple of 

independent stations may be equally well or better represented than in CRM. On average, the TNN approach performs best 415 

here, followed by VAE, and then CRP and ARM. CRP and VAE may be superior when emphasizing the bulk performance 

(i.e., if larger width and shorter extent of the beans are preferred). 

 

In all, the two temporal assessments reveal that CRM is a good reference and that with modulations, CRP, CPB, and CRB 

meet the expectation of being enhanced derivates of 20CR. CRP is even in the group with very good statistics, together with 420 

the ARM, TNN, and VAE approaches. On the other side, WRF and ONN perform less well. The larger deviations from the 

station measurements may be explained by the lack of nudging in WRF, and obviously ONN does not incorporate information 

about the spatial patterns in its reconstruction approach. 

5.2 Spatial aspects: Regional representation of temperature and pressure 

We go back to the Taylor statistics for a more spatial view on performance. This time, we use the Taylor skill score 𝑇𝑇𝑇𝑇𝑇𝑇 to 425 

assess the similarity of the nine approaches to station observations of pressure and temperature for a confined summer period 

in 1807, i.e. the months of July and August (Figure 6 and Figures S4, S5, and S6 in the Supplement). The confined period 

was chosen to avoid a signal of the annual cycle for temperature; hence, the 𝑇𝑇𝑇𝑇𝑇𝑇 is calculated for anomalies wrt the mean of 

the confined period. Also, the 𝑇𝑇𝑇𝑇𝑇𝑇 has the advantage of summarizing the Taylor statistics in one number (in terms of 𝐶𝐶𝐶𝐶𝐶𝐶 and 

𝑆𝑆𝑆𝑆𝑆𝑆; see Section 3), which makes spatial comparisons easier. In general, most approaches show an improvement over CRM 430 

on average, in particular at independent stations. Overall, TNN, VAE and CRP are in front of CPB, ARM (less for pressure) 

and WRF (for pressure), CRM and CRB are almost equal, and ONN and WRF (for temperature) fall behind. 

The largest improvements (𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 0.5) are found around the Baltic Sea, and partly in Northern Italy. No improvements are 

seen over (North-) Western Europe (France, BeNeLux) and almost all approaches perform less well (𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 0.3) over Iberia 

for both temperature and pressure, although VAE (and partly TNN and ARM, less CRP) produce increased skill compared to 435 

CRM for stations like Valencia or Cadiz, for instance. It appears that for both 20CR-based and ML approaches, substantial 

enhancements come from ingestion of additional information in some areas where CRM has poor station coverage, and some 

ML-approaches (especially VAE) seem to nudge the spatial patterns more towards ingested measurements than most 20CR-

approaches. While the diverging performances of WRF regarding pressure and temperature remain hard to explain, the larger 

problems of ONN in representing the summer temperature variability can be attributed to the 𝑆𝑆𝑆𝑆𝑆𝑆 that is clearly lower (around 440 

0.6) than for all other approaches (0.85 to 1.2; not shown). In all, the analysis indicates a shift in the influence towards newly 
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ingested stations (wrt CRM) and hence some modulations in the reconstructed atmospheric patterns. In turn, the analysis points 

also to potential quality issues of the measurements at some stations (see Section 5.3 for this topic). 

 

 445 
Figure 6: Taylor skill scores (color shades) for July-August temperature anomalies in nine approaches. Independent stations are 
marked with a purple circle. Circles with no available model or station values are empty. The inset shows beanplots of the Taylor 
skill scores similar to Figure 5, mean skill values are added and drawn (red horizontal bar). 

 

Finally, we visually inspect the atmospheric circulation patterns for the 13 July 1807 episode (Figure 7, cf. Figure 4) and 450 

relate them to the 𝑇𝑇𝑇𝑇𝑇𝑇 (and 𝑆𝑆𝑆𝑆) values calculated for the temperature and pressure fields. 

The 20CR (-based) approaches indicate an Azores High that is connected to a second high over Eastern Europe. This bridge 

pattern is accompanied by rather weak lows near Iceland and over Iberia, and is associated with considerable temperature and 

temperature gradients over much of Continental Europe and the Mediterranean. Consistent with written reports (Erdmann and 

Brönnimann, 2023), CRM shows temperatures of >30 °C in Rome, for instance, but fails to reflect > 30 °C temperatures as 455 
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measured and reported north of the Alps. In comparison, the pressure centers are (substantially) more pronounced in CRP and 

CPB, which is in line with more heat reaching from the Maghreb and Spain towards France, Germany and even into 

Scandinavia (cf. Figure 4). CPB nearly matches the observed values in Paris, Berlin, and Zitenice, for instance. The gradual 

increase in the pressure dipoles, and the more distinct hot areas may be explained by stepping from arguably smoothed fields 

by averaging the ensemble in the CRM, to adding more observed information in CRP, to selecting a representative member 460 

with CRB and CPB. In line with this, increased 𝑇𝑇𝑇𝑇𝑇𝑇 values (and field 𝑆𝑆𝑆𝑆) wrt CRM (approx. 3 for temperature and 1.5 for 

pressure) appear to be more plausible. 

In turn, this means that lower 𝑇𝑇𝑇𝑇𝑇𝑇 values may be less plausible. This is the case for ONN and ARM, even though we would 

expect increased ruggedness from their finer spatial resolution. The ONN fields resemble more a climatological than a weather-

scale pattern: ONN shows one prominent blob of high pressure over Europe, centered over the Alps, and a smooth temperature 465 

gradient from north to south. The reason for this is that the ONN algorithms attempt to reduce the mean error of the entire 

spatial field. An area of high pressure over the Alps is also present in ARM, but ARM includes a second high-pressure core 

over Eastern Europe, and it features a distinct Iceland low. Both ONN and ARM temperature fields lack spatial variability and 

they hardly match the spatial structure of observed values, particularly in hotter areas. This smooth atmospheric pattern may 

also explain the regional bias of ONN found in the 𝑇𝑇𝑇𝑇𝑇𝑇 analyses (cf. Figure 6). 470 

In comparison, the atmospheric pressure fields in TNN and VAE are much more pronounced, with a distinct low-pressure 

system over the western Mediterranean. Concurrently, they show hot areas (>28 °C) reaching from the Mediterranean (VAE) 

to Central Europe (VAE and TNN), and relatively warm areas into Scandinavia. In contrast, their areas over southwestern 

Europe are relatively cool. All approaches (maybe except for ONN) feature a prominent hot spot over Central Europe, but only 

CPB and (partly) CRP and VAE seem to reflect the hottest locations according to measurements and reports. 475 

With modulations, the two hot episodes on 1- 3 August and on 26 - 30 August 1807 show similar atmospheric patterns (Figures 

S7 and S8 in the Supplement). Building up on TRI values in pressure and temperature from CRM, CPB (and CRB) propose 

deep Iceland lows, and areas of >30 °C in Scandinavia for the first episode, which aligns with observations in this region. They 

show very hot areas (>30 °C) in much of the southern European sector for the second episode, and areas of still high 

temperature towards the Baltic Sea. The pressure fields in TNN, VAE and ARM are similar, but none of these produce hot 480 

spots on larger scales such as the 20CR-derived reconstructions. 
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Figure 7: Maps of air temperature (°C; color shade) and sea level pressure (hPa; contour lines) for 13 July 1807 according to nine 
reconstructions. Reported measurements of temperature are given in colored half circles (left side). Locations of maximum and 485 
minimum pressure are marked with purple dots, 1016-hPa (28-°C) contours are highlighted in blue (red). Relative TRI (boxplots) 
and field SD (red and blue horizontal bars) of air temperature (ta) and sea level pressure (p) are given in bottom left panels. 

 

Some of the atmospheric features may only become evident on a smaller scale, in particular for WRF. Figure 8 encompasses 

the area of the WRF domain 02 for July 13, 1807, arguably the hottest summer day in the domain with maximum temperatures 490 

of well over 30 °C, for example in Aarau (36.2 °C), Schaffhausen (34.6 °C) or Delémont (33.8 °C). Clearly, only WRF 

reproduces such heat intensity, not only on the northern side of the Alps, but also for regions such as Paris, Berlin or Prague. 

The spatial structures also reflect the refinement of the original information from CRM to WRF, and CRB and CPB also look 

similar. Qualitatively, TNN and VAE and ARM show higher temperatures north of the Alps, and all of them seemingly aim 
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to capture the measured temperatures in space, most strongly with TNN. Rudimentarily, the pressure fields may even suggest 495 

a south foehn situation from a slight pressure gradient over the Alps, which may offer an explanation for the heat that is 

somewhat different from the circulation suggested by the 20CR-based approaches. The spatial pattern of the WRF refinement 

with plausible heat intensity and the arguably increased nudging towards station measurements of the non-20CR approaches 

(except ONN) is also evident in the other two episodes (not shown). 

 500 

In all, the analyses add to the plausibility of the 20CR (-based) output of atmospheric temperature and pressure fields. The 

20CR-based approaches appear to have a clear benefit from the flow awareness – the atmospheric circulation can easily be 

explained from the produced fields. Specifically, the assimilation of additional measurements, as well as the selection of a best 

ensemble member, enhance the local representation of the fields and is reflected in the generally increasing ‘ruggedness’ 

towards CRP and CPB compared to CRM. This enhancement in spatial patterns, however, comes at the cost of lower 𝑇𝑇𝑇𝑇𝑇𝑇 505 

scores at other locations. This again points to increased influence of the additionally ingested station measurements. Also, the 

fact that WRF only refines information from CRM, not from additional stations, explains the rather large discrepancies in 

temperature values at some places, and hence the low statistical performance in the previous sections. 

VAE, and partly TNN, propose different atmospheric patterns that may be plausible for the core areas of the study. However, 

they do not show extremely hot conditions over Western Europe, in particular the Iberian Peninsula, which points to a differing 510 

handling of the available measurements, i.e. to a potential over-confidence in erroneous measurements. The TNN, and 

particularly the ONN approaches appear to have problems in plausibly representing regional-scale atmospheric variability 

during the hot episodes. ARM takes a position between these two groups of approaches: Qualitatively, the ARM fields tend to 

remain quite close to the (well-represented) stations. It maintains plausible atmospheric patterns, although at the cost of 

intensity at some instances. 515 
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Figure 8: As in Figure 7, but for the WRF domain 02 only, and using every 2nd CRM grid point (blue crosses in top-left panel) for 
calculating the terrain ruggedness index and the standard deviation over the field (colored horizontal bars in the boxplots). 520 

5.3 Quality of the station measurements 

All available stations (our ‘ground truth’) have been included in the above analyses, irrespective of the arguably varying quality 

of the measurements. Clearly, some stations are notoriously among the best or worst performing in the applied measures and 

statistics (Figure 5, Figure 6, Figure S3, and Figure S4 in the Supplement). In fact, we know from station records such as 

Marschlins that it contains suspicious values, e.g. some strong changes from one measurement to the other, or implausibly 525 
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high temperature values at some instances. In contrast, the stations of Barcelona, Valencia and Cadiz have many values that 

only differ minimally over time. Still, we refrained from excluding these stations from the analyses. One reason is that 

including them lets us see how the approaches deal with potentially erroneous measurements. Another reason is that we do not 

have the means to objectively check all observations with regards to modern data, to an enlarged set of climatological data, or 

even to neighboring stations. In turn, we assume that systematically strong differences in statistical performance wrt other 530 

stations point to lower quality.  

For illustration, Figure 9 and Figure S9 in the Supplement show a selection of arguably high-quality versus low-quality 

stations. The discrimination comes from a semi-subjective assessment, where acceptable to good values in the Taylor diagrams 

are defined as bulk 𝐶𝐶𝐶𝐶𝐶𝐶 values for temperature of 0.4 to 0.6 (0.5 and 0.7 for pressure) or above, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of 3° C or 2° C or 

below for temperature (5 hPa and 3 hPa for pressure). For 𝑆𝑆𝑆𝑆𝑆𝑆, factors between approximately 0.5 and 2 are acceptable, and 535 

factors between 0.75 and 1.5 are good. Note that only mid- to high-performing approaches are considered here (i.e. all except 

for WRF and ONN). The shown low-quality stations hardly fulfill any of the criteria, whereas the high-quality stations mostly 

fulfill the more rigorous criteria. Such high-quality stations, among others, are Milan, Prague, Delémont for temperature, or 

Rovereto, Karlsruhe, and Schaffhausen for pressure. Note also that in this context, our independent stations appear to be of 

rather high quality. 540 

Specific features of low quality are very low correlations and variability (𝐶𝐶𝐶𝐶𝐶𝐶; 𝑆𝑆𝑆𝑆𝑆𝑆; e.g., Valencia), implausible deflections 

in the anomalies (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; Marschlins or Valencia), or phases shifted on the time axis in the simulations versus observations 

(Valencia, Marschlins). Not surprisingly, these are also the stations with the lowest 𝑇𝑇𝑇𝑇𝑇𝑇 in Figure 6 and Figure  S4 in the 

Supplement. However, too low variability could also be a problem of the reconstruction approaches, especially 20CR. 

Stockholm (possibly also St. Petersburg) is such an example, where the anomalies are not a priori implausible. Rather, it seems 545 

that the 20CR-based approaches in particular have problems here. 20CR has little station data available for assimilation in this 

region, and as a consequence, the results become clearly better with additional assimilation (St. Petersburg, Stockholm in 

parts). 

In all, the 20CR (-enhanced) approaches may suffer in areas with no or hardly any stations, in addition to the fact that the 

assimilation algorithms exclude measurements that are far off expectations (cf. Section 2.2.2). In turn, the more data-driven 550 

approaches like TNN and ONN (and partly ARM) are not able to exclude or downweigh low-quality measurements. For 

instance, they simulate much lower temperature over Iberia compared to 20CR, or produce very pronounced low pressure over 

the same region (TNN in particular), which are harder to explain in the context of a heatwave than the 20CR-based fields (cf. 

Section 4). This means that adding even a small number of high-quality measurement series, ideally from less-covered regions, 

leads to valuable improvements for any considered approach. 555 
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Figure 9: Taylor diagrams (top area in each panel), time series (bottom left area in each panel), and climatology baseline (bottom 
right area of each panel; fit from the combined first two harmonic waves for temperature) of observed (black circle or black bold 
line) versus predicted (color dots or dashed lines; see image legend for abbreviations) anomalies of 2-meter air temperature (ta) for 
a selection of three high-quality (top row) and low-quality stations (bottom row) and the period May to September 1807. 560 

 

https://doi.org/10.5194/egusphere-2025-5264
Preprint. Discussion started: 4 November 2025
c© Author(s) 2025. CC BY 4.0 License.



27 
 

 

6 Summary and conclusions 

Recent advances in producing gridded datasets have addressed the lack of comprehensive weather information before around 

1850. Efforts to recover and integrate early instrumental pressure measurements have supported the development of global 565 

atmospheric reanalyses such as the 20CR. More recent approaches can also be used to generate daily weather fields from early 

weather records in (Central) Europe and the greater Alpine region, encompassing (i) 20CR-derived approaches, (ii) analog 

resampling methods, and (iii) ML algorithms. This study aims to assess nine such approaches in reproducing the daily weather 

during the extremely hot, pre-industrial summer of 1807 in Europe. The datasets include the 20CR ensemble mean (CRM) and 

enhanced versions from 20CR by using assimilation of so far unused station measurements of temperature and pressure (CRP), 570 

the best raw analog member (CRB), and the best analog member after assimilation (CPB). The WRF dataset is built by 

dynamical downscaling from CRM using nested weather model domains. The analog reconstruction method (ARM) searches 

for similar weather patterns in a modern reanalysis product. Three numerical datasets are based on machine-learning 

approaches, such as one-dimensional neural networks (ONN), a three-dimensional completion method as in video inpainting 

(TNN), and a variational auto-encoder (VAE) to isolate the essential features. 575 

 

The collected evidence from eye observations, early instrumental measurements, and from CRM confirms that the summer of 

1807 in Europe was indeed extremely hot and can be considered a prototype heatwave summer within a pre-industrial context. 

We find specifically hot episodes on 13 July (with local temperature measurements north of the Alps of around 35 °C), on 1 – 

3 August (in Scandinavia / North-Eastern Europe), and on 26 – 30 August (in Central and Western Europe). 580 

 

We use the Taylor diagram measures (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑆𝑆𝑆𝑆𝑆𝑆 , and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) to assess the similarity of predicted to observed 

temperature and pressure values. We find very good correlations for most data sets (> 0.75 for temperature and > 0.5 for 

pressure anomalies), cRMSE of less than 3 °C for temperature (similar range in hPa for pressure), and a tendency to 

underestimate variability. These numbers speak for the quality of most reconstructions, especially given the distant past and 585 

the scarcity of underlying weather information. We find that the 20CR mean (CRM) represents a mid-performance reference 

point, whereas most 20CR ensemble members as well as the WRF and ONN approaches do not perform as well. On the other 
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end, TNN, VAE, CRP, and ARM are often among the best performers; see also Figure 10 for a (semi-subjective) visual 

summary of the relative performances. 

 590 

 
Figure 10: Summary ranking (y-axis, top is best) for the four aspects of performance (grey shades) and for the nine considered 
datasets, assessed with regards to CRM as a reference. Darkest grey are the averaged ranking points for the Taylor measures, i.e. 
in the aspect of similarity to (independent) station measurements of temperature and pressure (anomalies wrt station means), dark 
grey are the averaged ranking points for the discrimination statistics (extreme versus more normal conditions), light grey are the 595 
ranks for spatial improvement using the Taylor Skill Score and subjective assessments, and lightest grey are the spatial circulation 
patterns, assessed for TRI and (subjective) dynamical plausibility of temperature and pressure fields. 

 

Next, we use the 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑀𝑀𝑀𝑀𝑀𝑀, and 𝐺𝐺𝐺𝐺𝐺𝐺 scores to see how well the approaches can discriminate between hot, warm, and cooler 

conditions (very high, intermediate, and very low pressure). On average, all three scores are at least 0.5 or better (e.g. up to 600 

0.75 or more; extreme scores are near 0 and 1) for almost all approaches, which means that the reconstructions are consistent 

with observed patterns. Again, CRM (and CRB) can be seen as good reference datasets. Most data-driven ML datasets perform 

very well here. The TNN approach is generally best, followed closely by the VAE, ARM and CRP approaches. 

Then, we us the 𝑇𝑇𝑇𝑇𝑇𝑇 to assess the spatio-temporal skill. No approach performs well in all regions. Improvements (𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 0.5) 

primarily occur over Central / Northeastern Europe, while Western Europe shows equal to lower skill compared to CRM 605 

(𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 0.3). We conclude that the atmospheric patterns in the reconstructions are influenced by this shift in weight towards 

regions with substantial (new) information; best scores come from reconstructions that are nudged towards (additional) 

observations, such as the ML approaches (TNN, VAE), and ARM, but also CRP in parts. 
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In a final analysis of the heat episodes, the 20CR-based approaches feature modulated forms of an Azores High and a ridge 

across the Continent, and they (almost) reproduce measurements of up to 30 °C or more, e.g. at places like Paris, Berlin, or 610 

Zitenice. This aligns with known atmospheric patterns of hot air reaching from South-Western towards Central Europe and 

Scandinavia. Uniquely, the WRF refinements capture regional temperature maxima north of the Alps. In contrast to the 20CR-

based datasets, ARM, TNN and VAE feature a (distinct) low-pressure system and lower temperature over Iberia. However, 

the generated atmospheric patterns seem less consistent with known large-scale heatwaves. 

 615 

We conclude from the analyses that the atmospheric flow-aware datasets clearly benefit from a physics-constraint approach, 

providing easily explainable atmospheric circulation patterns. Enhancements are linked to stepping from potential smoothing 

effects in CRM to more assimilations in CRP and more distinct realizations (CRB, CPB) and to spatial refinements in WRF. 

However, the latter reconstructions also tend to run (too) freely from original constraints at places, and are therefore often 

penalized in statistical scores. 620 

The data-driven ML approaches, on the other hand, excel in the statistics. TNN seems the most powerful approach for 

predicting local station values, closely followed by VAE. However, both struggle with plausibly representing regional-scale 

atmospheric circulation. Partly, this may be explained by over-confidence regarding potentially erroneous, inconsistent or 

uncertain observations. In particular, ONN strives to reduce the mean spatial field error, which results in loss of regional 

variance and skill, but its strengths lie in the extremely rapid, low-resource assessment of the atmospheric situation. 625 

The ARM approach stands in a middle-ground, it seeks not to be too far to station measurements, which is reflected in good 

statistics. In turn, the conservative approach leads to low-intensity weather patterns. 

 

Overall, no single approach appears on top of all others; most have excellent scores in one field at the cost of poorer scores in 

another. This means that future users and developers may select and weight the properties that are important to them from 630 

various dimensions; e.g., cost-effective versus sophisticated configurations, atmospheric flow-aware versus data-driven 

approaches, more local versus more large-scale performance. There is potential in many dimensions. It is apparent that 

ingestion of additional records helps, but further developments need to address the uncertainties and potential errors in the 

early measurements. In turn, this also means that the quality of input weather records remains crucial, and emphasizes the 

value of metadata, quality checks, unit conversions or homogenization, where applicable. 635 

********************* 

Plain language summary 

We test nine reconstructions of Europe’s hot summer of 1807, using weather records, reanalyses, machine-learning 

(ML), and data assimilation. Most approaches match observed temperature and pressure well. Approaches with 
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explicit information about atmospheric flow capture weather patterns well, while ML approaches better reflect 640 

local measurements. Ingestion of accurate records from new regions improves the reconstructions markedly. In all, 

the approaches provide new insights to pre-industrial extreme weather. 

Data and code availability 

Pressure measurements from the International Surface Pressure Databank Version 4.7 (ISPD) are available at 
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https://doi.org/10.1594/PANGAEA.961277 (Brugnara et al., 2023). The 20th Century Reanalysis version 3 (Slivinski et al., 

2019) ensemble members back to 1836 can be downloaded from NERSC at https://portal.nersc.gov/project/20C_Reanalysis/ 

(National Energy Research Scientific Computing Center, 2019). The experimental extension of 20CR back to 1806 is 

obtainable from NOAA upon request (psl.data@noaa.gov). Wrapper scripts and other tools used for running WRF and 650 
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