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Figure S1: Set of early instrumental measurements considered for this study. Half circles mark stations with measurements of 2-
meter air temperature (ta; blue) and sea level pressure (p; red). Note that not all stations have observations for each analysis in the

main text.
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Figure S2: Taylor diagrams (top area in each panel), time series (bottom left area in each panel), and climatology baseline (bottom
right area of each panel; fit from the combined first two harmonic waves for temperature, annual mean for pressure) of observed

2



(black circle or black bold line) versus predicted (colored dots or dashed lines; see image legend for abbreviations) anomalies of 2-
30 meter air temperature (ta) and pressure (p) for the locations of Basel, Bologna, Zurich, Vienna, and Gdansk (from top left to bottom
right) in the period May to September 1807.
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Figure S3: As in Figure 5 in the main text, but for pressure.
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Figure S4: As in Figure 6, but for pressure anomalies.
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Figure S5: As in Figure 6, but showing the difference in TSS (temperature anomalies) with regards to CRM.
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Figure S6: As in Figure 6, but showing the difference in TSS (pressure anomalies) with regards to CRM.
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Figure S7: As in Figure 7, but for the mean state in the period 1 to 3 August 1807.
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Figure S9: As in Figure S2 and Figure 9, but for different stations and pressure (anomalies wrt annual mean).
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S.1 Variational auto-encoder: Supplemental details

S.1.1 Model architecture

A detailed description of the VAE architecture is given in Table S1. The model takes an input of size 32 * 64 * 2 (corresponding
to: latitude * longitude * temperature/pressure) and compresses it into a 256-dimensional latent space. Convolutional layers in
the encoder extract spatial features while progressively downscaling the input. Near the end of the encoder, a fully connected
layer transforms the downscaled feature maps into two 256-dimensional vectors, representing the mean and log-variance of
the latent distribution. To enable stochastic sampling while maintaining differentiability, the ‘sampling layer’ applies the
“reparameterisation trick” of Kingma & Welling (2014), ensuring that the model remains trainable using gradient-based
optimisation. The decoder then reconstructs the input from the sampled latent vector, first mapping it to a 4 * 8 * 160 feature
projection in the ‘project and reshape layer’. Transposed convolutional layers progressively upscale the spatial dimensions,
generating coarse reconstructions of the original input, while additional convolutional layers are included to refine spatial
details, smooth feature maps, and ensure a more accurate reconstruction. The final layer of the decoder adjusts the output to a

size of 32 * 64 * 2, matching the original input.

Table S1: Architecture of the variational auto-encoder. Down and up arrows after the layer type indicate a halving and doubling of
the spatial size, respectively.

Layer type Kernel Filters Paddlhg/ Stride Additional info
cropping
Image input - - - - Input size: 32*64*2
2D convolution 3 20 same 1 Batch normalisation; ReLU activation;
Dropout rate: 0.05
. Batch normalisation; ReLU activation;
2D convolution ( | ) 5 40 same 2 Dropout rate: 0.05
- . Batch normalisation; ReLU activation;
5] 2D convolution ( | ) 5 80 same 2 -
S Dropoutrate: 0.1
2 Batch normalisation; ReLU activation;
o . ’ ’
i} 2D convolution ( | ) 7 160 same 2 Dropout rate: 0.15
2D convolution 7 160 same 1 Batch normalisation; ReLU activation;
Dropoutrate: 0.25
Fully connected i i i Output size: 512 (mean aqd log variance of
each latentvariable)
Sampling - - - - Uses “reparameterisation trick”
Feature input - - - - Input size: 256
Project and reshape - - - - Projection size: 4*8*160
2D convolution 7 160 same 1 RelLU activation
g 2D transposed convolution ( T) 7 80 same 2 RelLU activation
S 2D transposed convolution ( T ) 5 40 same 2 RelLU activation
[ . .
o 2D transposed convolution ( T) 5 20 same 2 RelLU activation
2D convolution 3 10 same 1 tanh activation
2D transposed convolution 3 2 same 1 tanh activation
Linear - - - - Output size: 32*64*2
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S.1.2 Data preparation

To maximise the comparability with TNN, the VAE is based on ERAS fields of 2-meter air temperature and MSLP for the
period 1950-2020, aggregated to mean daily values at a 1° resolution for the domain 36N-67N, 22W-41E. Here, the data are
divided into a training set (1969-2020), primary validation set (1962-1968), secondary validation set (1955-1961) and test set
(1950-1954). The training and primary validation sets relate to the set-up of the entire auto-encoder, whereas the secondary
validation and test sets relate to the application of the trained decoder for reconstructing partially observed weather fields. To
prepare the data, each grid cell is treated individually. For temperature, the observed mean value of each calendar month is
subtracted such that trends and inter-monthly seasonality are removed while intra-monthly seasonality is retained. For pressure,
any trends or seasonality are assumed to be negligible relative to the day-to-day variability, therefore the overall mean of the
training period is subtracted instead. The values of each variable are then divided by the (resulting) standard deviations of the
training period. The 1807 series are prepared similarly using the observed monthly mean temperature, and the mean pressure
and standard deviations of the corresponding aggregated grid cell. If necessary for estimating the monthly means, a provisional
gap filling of temperature is performed by fitting the first two harmonics within a 5-year moving window; any infilled values
are subsequently discarded. To facilitate the model evaluation, the secondary validation and test sets are each prepared

assuming full availability and assuming the availability of 1807.

S.1.3 Training procedure

The VAE’s overall training loss function, L, is given by:

L:a*Lrec+B*LKLa

where L is the mean squared difference between the model input and output, Lk is the Kullback-Leibler divergence, which
regularises the distribution of each latent variable to align with a standard normal distribution (Kingma & Welling, 2014), and
a and B are constants tuned to 1.5 and 0.5, respectively. Including Ly is crucial to ensure a well-structured latent space
allowing the generation of new samples. The batch size is tuned to 64, and the learning rate is tuned to Se-4, decaying by 7.5%
after each epoch. The model is trained with a patience of 10 epochs (with respect to the primary validation set), resulting here
in convergence after 42 epochs (52 epochs completed in total). The training procedure took approximately 3 hours on a

standard (CPU) laptop.

S.1.4 Application procedure

To apply the trained decoder to reconstruct the partially observed weather fields for a given day, the latent space is randomly
initialised and then iteratively adjusted up to 500 times such that the mean squared error between the output and any observed

grid cells is minimised. The adjustment is based on gradient descent with an associated learning rate tuned to 0.1. On a standard
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(CPU) laptop, reconstructing one year of daily fields in this manner took approximately 1 hour 40 minutes. After reconstructing
the entire period of interest, a simple post-processing adjustment is applied to the temperature values to remove any net
anomaly within each calendar month. For both temperature and pressure, the values are converted from normalised to absolute
anomalies by multiplying by the standard deviation of the given grid cell within the training set. The reconstructions are then
converted to fully absolute terms by adding the training-set means of pressure and the monthly re-analysis temperature values

of ModE-RA (Valler et al., 2024).

S.1.5 Tuning and evaluation

The VAE’s exact architecture and hyper-parameters have been tuned to minimise the RMSE between the secondary validation
set and the corresponding complete reconstructed fields (assuming the observation availability of 1807). The performance is
then re-evaluated on the test set, yielding overall RMSEs of 2.52 K and 5.18 hPa. We find that the model performs relatively

well over central Europe, although it exhibits more pronounced difficulties reconstructing sparsely observed regions.
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