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Abstract 18 

The minor element composition of calcium carbonate (CaCO3) biominerals from marine calcifying 19 

organisms leaving a sedimentary record has been used for decades to reconstruct various biogeochemical 20 

parameters. Advancing geochemical proxies and understanding their underlying mechanisms is essential 21 

for climate reconstructions, environmental research, and investigations of biomineralization processes. 22 

Despite considerable success of proxy applications, limited mechanistic understanding still restricts their 23 

full potential. The problem is often summarized by the term “vital effect”, i.e. minor element partitioning 24 

due to biological activity. The element partitioning from the calcifying fluid into the biomineral, however, 25 

is usually described in terms of inorganic precipitation of a mineral from an aqueous solution of inorganic 26 

ions. Although this assumption is central to many partitioning models it has not been tested because the 27 
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calcifying fluid of classic proxy archives such as foraminifera, molluscs, and coccolithophores has not been 28 

successfully sampled for element analysis. The calcifying fluid of fish otolith formation (endolymph), by 29 

contrast, was sampled and chemically analysed accompanied by corresponding otolith data. However, 30 

previous datasets have not been compared to inorganic partitioning coefficients to test this assumption.  In 31 

this study, we address this gap using published data from four fish species and six elements. Our results 32 

indicate that the final stage of otolith minor element incorporation is influenced by organic matter in the 33 

endolymph fluid and therefore cannot be considered purely inorganic. Our conclusion questions a central 34 

assumption of many minor element partitioning models. This does not imply that existing models are 35 

questionable, but that they share a common oversimplification. By removing this oversimplification all 36 

kinds of different models can be improved. Our study contributes broadly to the understanding of biogenic 37 

CaCO3 geochemistry, and it is relevant to the majority of existing models.  38 

1. Introduction 39 

The minor element (Me) and isotopic composition of marine calcium carbonate (CaCO3) (mostly aragonite 40 

and calcite) biominerals from the sedimentary record has been used as a proxy for the reconstruction of 41 

specific environmental parameters such as seawater temperature since the 1950s (Katz et al., 2010; Urey et 42 

al., 1951). These geochemical proxies are instrumental in e.g. detecting effects of anthropogenic climate 43 

change on marine calcifying organisms (calcifiers) (Pallacks et al., 2023). A geochemical paleo-proxy 44 

application requires a correlation of the proxy with the target environmental parameter, and this is 45 

traditionally achieved by various calibration methods (Allen et al., 2016; Elderfield & Ganssen, 2000). The 46 

calibration of a geochemical proxy alone, however, does convey little knowledge about the processes 47 

underlying proxy signals and accuracy. This knowledge is, however, essential for developing a mechanistic 48 

understanding of the proxy and eventually will enable us to predict proxy signals using conceptual 49 

biomineralization models (Nehrke & Langer, 2023). Biomineralization models, as opposed to calculations 50 

premised on precipitation of the mineral from seawater, are required because marine calcifiers used as proxy 51 

archives do not precipitate their hard parts from seawater but from a special calcification fluid thereby 52 

introducing the problem of the vital effect (Nehrke & Langer, 2023; Urey et al., 1951). This calcification 53 

fluid is localised in the so-called site of calcification (SOC). Different proxy-archive forming calcifiers 54 

have SOCs formed by different structures such as pseudopodia (foraminifera, single-celled calcifying 55 

organisms), mantle epithelium (molluscs, invertebrate animals that form a calcified shell), or intracellular 56 
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vesicles (coccolithophores, single-celled calcifying algae) (Angell, 1967; Crenshaw, 1972; Langer et al 57 

2021, Wilbur & Watabe, 1963). 58 

In all cases, however, the proxy signal will be influenced by the transport of ions from seawater into the 59 

SOC (Nehrke & Langer, 2023). This transport can introduce partitioning steps that render the overall 60 

partitioning different from what would be expected based on inorganic precipitation from seawater. A 61 

striking example is the Sr/Ca signature in diverse calcifiers (Fig. 1). The data selected for Fig. 1 from the 62 

aragonite literature illustrate that the Sr partitioning coefficient (DSr = (Sr/Ca)biomineral / (Sr/Ca)seawater) in 63 

some cases falls within the range of inorganic precipitation, in others it does not. We selected Sr 64 

incorporation in aragonitic biominerals here, but a well-known riddle is the Mg-problem, as it is often 65 

informally referred to, in calcitic biominerals (Bentov & Erez, 2006; Nehrke et al., 2013) 66 

 67 

Figure 1 Sr partitioning coefficient range (DSr = (Sr/Ca)biomineral / (Sr/Ca)seawater) in different organisms with aragonite 68 

biominerals (different colours) and the inorganic aragonite the black bar (range highlighted with dashed black line). 69 

The literature of the data is given in the caption of the figure.  70 

 An intuitive, and often used, assumption is that knowledge of the ionic composition of the calcifying fluid 71 

would solve this problem. In other words, it is expected that a partitioning coefficient calculated using the 72 

calcifying fluid minor element to Ca ratio (Me/Ca) will fall within the range of values determined in 73 

inorganic precipitation experiments (Elderfield et al., 1996; Langer et al., 2006, 2016, 2018; Stoll et al., 74 

2012). Unfortunately, the SOCs of most classic proxy-archive forming calcifiers are too small to be sampled 75 

for element analysis (Checa, 2018; Kadan et al., 2021; Nomaki et al., 2018). Therefore, various model 76 
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approaches have been developed to calculate minor element partitioning into biominerals (D’Olivo & 77 

McCulloch, 2017; Elderfield et al., 1996; Hohn & Merico, 2015; Langer et al., 2006, 2016; Nehrke & 78 

Langer, 2023; Ziveri et al., 2003, 2012). These models have provided new insights into the relationship 79 

between conceptual biomineralization models and minor element partitioning, but they have, yet, failed to 80 

predict partitioning patterns based solely on independent constraints (Nehrke & Langer, 2023). Therefore, 81 

these models rely on assumptions, many of which do not account for the complexity of minor element 82 

partitioning during biomineral formation. It is, for example, by no means self-evident that a partitioning 83 

coefficient calculated using the calcifying fluid composition will fall within the range of inorganic values.  84 

Table 1. Summary of commonly studied geochemical elements in fish otoliths, their targeted environmental or biological variables, 85 

proxy types, specific elemental ratio, relevant ecosystems, and key references. 86 

Targeted Variable Proxy Type Specific 

elemental ratio 

Ecosystem References 

Temperature Elemental Ratios, 

Stable Isotope 

Sr/Ca, Mg/Ca, 

Li/Ca, Mn/Ca, 

Ba/Ca, Cu/Ca, 

δ¹⁸O 

Marine & 

Estuarine 

(Cavole et al., 2023; Devereux, 1967; Miller 

& Hurst, 2020; Mondal et al., 2022; Morat et 

al., 2023; Rosales et al., 2004; Tanner et al., 

2013; Willmes et al., 2019) 

Salinity Elemental Ratios, 

Stable Isotope 

Sr/Ca, Ba/Ca, 

Mn/Ca, δ¹⁸O, 

87Sr/86Sr 

Estuarine & 

Freshwater 

(Höpker et al., 2022; Kerr et al., 2007; 

Nelson & Powers, 2020; Rosales et al., 

2004) 

Oxygen, Hypoxia Elemental Ratio Mn/Ca, Mg/Mn Marine (Limburg et al., 2011, 2015; Limburg & 

Casini, 2018) 

Diet, Metabolism, 

Physiology 

Elemental Ratios, 

Stable Isotope 

δ¹³C, δ15N, 

Li/Ca, Mg/Ca 

Marine (Chung et al., 2019; Izzo et al., 2018; Lall & 

Kaushik, 2021; J. Lueders-Dumont, 2024; J. 

A. Lueders-Dumont et al., 2018; Martino et 

al., 2020, 2021; Rao et al., 2024; Shiao et al., 

2018; Sirot et al., 2017; A. Sturrock et al., 

2014) 

Ontogeny, 

Life History 

Elemental Ratios, 

Stable Isotope 

Sr/Ca, Ba/Ca, 

Mg/Ca, 

87Sr/86Sr 

Marine & 

Freshwater 

(Campana, 1999; Campana & Thorrold, 

2001; Halden & Friedrich, 2008; Kennedy et 

al., 2002; Longmore et al., 2011; Saygın et 

al., 2022; Wells et al., 2014; Zazzo et al., 

2006) 

Migration, Habitat Elemental Ratios, 

Stable Isotope 

Sr/Ca, Ba/Ca, 

Mn/Ca, δ¹⁸O, 

δ¹³C 

Marine & 

Freshwater 

(Avigliano et al., 2015; Fraile et al., 2016; 

Phillis et al., 2011; Sackett et al., 2024; 

Sturrock et al., 2012; Walther & Limburg, 

2012) 

Stock Discrimination Elemental Ratios, 

Stable Isotope 

Sr/Ca, Ba/Ca, 

Mg/Ca, 

87Sr/86Sr 

Marine (Campana & Thorrold, 2001; Longmore 

et al., 2011; Padilla et al., 2015; Vaisvil et 

al., 2023) 

In this paper, we focus on fish otoliths, mostly aragonitic biominerals in the inner ears of bony fish, that are 87 

an understudied and underappreciated model system to address element partitioning patterns (Hüssy et al., 88 
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2020; Melancon et al., 2005). Otoliths can be found as fish remains in the sedimentary record (Elder et al., 89 

1996; Mellars et al., 1980) and they have been used in many ways in fisheries research, ecology, and the 90 

reconstruction of fish stock environments (Reis-Santos et al., 2023). The minor element compositions of 91 

otoliths can serve as proxies for e.g. migration patterns, salinity, and temperature (Albertsen et al., 2021; 92 

Bath Martin & Thorrold, 2005; Shiao et al., 2006). The otolith isotopic composition is also used as a proxy, 93 

e.g. habitat/migration is inferred from Sr and C isotopes, and dietary history from N and C isotopes, while 94 

O isotopes provide information about temperature and salinity (see Table 1 for an overview of otolith-based 95 

geochemical proxies). Otoliths serve as valuable proxy archives for several reasons: a) Unlike 96 

coccolithophores (which have coccoliths ranging from 2 to 20 µm) and require complex species-specific 97 

separation, otoliths allow monospecific analyses; b) Unlike foraminifera, otoliths are found in marine, 98 

freshwater, and estuarine environments, making them broadly applicable across aquatic systems; 99 

c) Element-to-calcium ratios in individual otoliths can be spatially mapped, offering insights into the fish 100 

life history traits and seasonal patterns. 101 

As with any other proxy archive, otolith-based proxies are subject to secondary influences. For example, 102 

Sr/Ca and Ba/Ca are influenced by their correspondent concentrations in ambient water, but also salinity 103 

and temperature (Hüssy et al., 2021).  104 

It has also been noted that, besides environmental parameters, physiology influences minor element and 105 

isotope composition (Bareille et al., 2024; Izzo et al., 2018; Sturrock et al., 2015). The value of otoliths as 106 

geochemical proxy archives has been highlighted but is also, unsurprisingly, critically discussed (Hüssy et 107 

al., 2021; Thomas & Swearer, 2019; Walther, 2019). The latter authors emphasize that future steps towards 108 

improving otolith proxy applications critically include an understanding of the processes bringing about the 109 

proxy signal. Hüssy et al., (2021) effectively summarize the fundamental processes governing elemental 110 

and isotope fractionation into otoliths. They distinguish ion transport into the endolymph from 111 

“biomineralization” by which they mean the formation of the otolith within the endolymph. Note that often 112 

the term “biomineralization” covers both ion transport and formation of the biomineral within the SOC 113 

(Nehrke and Langer 2023). As for foraminifera, there has been an increasing interest in the relationship 114 

between partitioning (usually called fractionation when referring to isotopes) patterns and biomineralization 115 

concepts in otoliths (Campana, 1999; Hüssy et al., 2021). To understand even the most straightforward and 116 

useful proxies, such as Sr/Ca in foraminifera, both biological and inorganic processes need to be considered 117 
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(Langer et al 2016). Otoliths offer the unique opportunity to study the fractionation processes within the 118 

SOC in greater detail than is possible in classic proxy archives such as foraminifera.  119 

An outstanding feature of otolith formation is the fact that the calcifying fluid, i.e. the endolymph, has such 120 

a large volume that it can be sampled for element analysis (Kalish, 1989). This offers the unique opportunity 121 

to measure minor element composition of both the biomineral and its parent solution (Allemand et al., 2007; 122 

Edeyer et al., 2000; Kalish 1989, 1991; Melancon et al., 2005, 2008, 2009a; Payan et al., 1997, 1998, 1999, 123 

2002, 2004; Thomas et al., 2017). Although some of the latter studies provide the relevant data and discuss 124 

the relationship between partitioning and biomineralization processes, no study has addressed the following 125 

question: is the minor element partitioning coefficient from endolymph into otolith (in the following called 126 

De) numerically equivalent to the one from an aqueous solution of inorganic ions into aragonite? Here we 127 

therefore use the relevant datasets in the literature to address this question. We look at six different minor 128 

elements in four different species, one marine and three freshwater ones. We compare minor element 129 

partitioning coefficient from endolymph to otolith with partitioning coefficient from inorganic aragonite 130 

precipitation. This study provides a deeper mechanistic understanding of the vital effect by identifying one, 131 

so far neglected, locus of the vital effect in the calcifying organism. The aim is to test the commonly made 132 

assumption that biogenic partitioning coefficients should be indistinguishable from inorganic ones if the 133 

Me/Ca of the actual parent solution (the calcifying fluid) of biomineral formation is used as denominator 134 

(e.g. Langer et al., 2006). Our results suggest that partitioning of minor elements from endolymph into 135 

otolith cannot be modelled solely in terms of aragonite precipitation from an aqueous solution of inorganic 136 

ions. Our conclusion not only has implications for proxy understanding but also for biomineralization 137 

concepts because the latter centrally feature ideas about the composition of the calcifying fluid and its effect 138 

on biomineral formation.   139 
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2. Material and methods 140 

Literature data on Me/Ca ratios in endolymph and otolith were used to calculate partitioning coefficient. 141 

The latter were compared to partitioning coefficient determined in inorganic precipitation experiments. The 142 

literature data used are summarized in Table 2.  143 

Table 2. Literature data used in this study.  144 
System/Organism  Elements  Reference   

Inorganic aragonite  Ba  (Gaetani & Cohen, 2006; Mavromatis et al., 2018, Dietzel et al., 2004) 

Inorganic aragonite  Mg  (Gaetani & Cohen, 2006; Mavromatis et al., 2022) 

Inorganic aragonite  Sr  (Brazier et al., 2023; Gaetani & Cohen, 2006; Zhong & Mucci, 1989; Dietzel et al., 2004) 

Inorganic aragonite  Li  (Marriott et al., 2004; Brazier et al., 2024b) 

Inorganic aragonite  Zn  (Brazier, et al., 2024a) 

Inorganic aragonite  Na  (Kawabata et al., 2021; Brazier et al., 2024b) 

Acanthopargrus bucheri (S1)  Mg, Sr, Ba, Li   (Thomas et al., 2017) 

Lota lota (S2)  Mg,Sr,Ba,Zn,Na   (Melancon et al., 2009) 

Salvelinus namaycush (S3)  Mg,Sr,Ba,Zn,Na  (Melancon et al., 2009)  

Sander vitreus (S4)  Mg,Sr,Ba,Zn,Na  (Melancon et al., 2008) 

Patella caerulea (mollusc1)  Sr  (Langer et al., 2018) 

Mytilus edulis (mollusc2)  Sr  (Lorens & Bender, 1980)  

Lophelia pertusa (coral1)  Sr  (Cohen et al., 2006) 

Porites australiensis (coral2)  Sr  (Mitsuguchi et al., 2003)  

Sea Water Sr (Broecker, W. S., & Peng, T.-H. 1982) 

The literature on inorganic system provides many measurements of the partitioning coefficient (𝐷ூ௡) from 145 

different experimental designs. We selected the full range of values to get a realistic overall picture of the 146 

inorganic system. For the otolith-endolymph system the literature was limited. Only three papers gave us 147 

enough data to estimate the partitioning coefficient of the elements into the otolith. The first study by 148 

Thomas et al., 2017 used a marine species, Acanthopagrus butcheri (S1), and the number of individuals 149 

measured was N = 3. Otoliths were diluted and measured in the same plasmamass spectrometry (ICP-MS) 150 

as the endolymph fluid. They provide the concentration of minor elements (𝑀𝑒) normalized to the 151 

concentration calcium of (𝐶𝑎) in the otolith and the endolymph ratio, 𝑅 = [𝑀𝑒](𝑚𝑚𝑜𝑙) [𝐶𝑎](𝑚𝑜𝑙)⁄  with 152 

the ±𝑠𝑑 and the 𝑟𝑎𝑛𝑔𝑒(𝑅) = min(𝑅) − max(𝑅), as well the partitioning coefficient (𝐷 × 100). We 153 

estimate the range of the 𝐷 using a simple formula of range ratio (Eq. 1): 154 

𝑟𝑎𝑛𝑔𝑒(𝐷௘) = max(𝐷௘) − min(𝐷௘) = ൬
୫ୟ୶(ோ೚೟೚೗೔೟೓)

୫୧୬ (ோ೐೙೏೚೗೤೘೛೓)
൰ − ൬

୫୧୬(ோ೚೟೚೗೔೟೓)

୫ୟ୶ (ோ೐೙೏೚೗೤೘೛೓)
൰  (1) 155 

The second and third paper provide data of the concentration of minor elements in the otolith and in the 156 

endolymph (Melancon et al., 2008, 2009a). The species that were used in these studies were the freshwater 157 
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species burbot Lota lota (S2), lake trout Salvelinus namaycush (S3) and a walleye Sander vitreus (S4), the 158 

number of the individuals (N) that were used were Nb=18 and Nt=11 and Nw=8, respectively. In these 159 

studies, the concentrations of the elements in the otoliths were quantified by laser ablation (LA-ICP-MS) 160 

and they performed a series of ablations at the growing otolith edges that were in contact with the 161 

endolymph and represent the last 30 to 60 days of growth. They provide the average concentration of the 162 

minor elements 𝑎𝑣[𝑀𝑒]  ± 𝑠𝑑 (𝑝𝑝𝑚) in the otolith and in the endolymph, which we converted to 163 

mmol/mol. The ratio 𝑅 = [𝑀𝑒](𝑚𝑚𝑜𝑙) [𝐶𝑎](𝑚𝑜𝑙)⁄  in the otolith and in the endolymph and the 𝑎𝑣(𝐷) ±164 

𝑠𝑑(𝐷) was estimated using Eq. (2) and (3)  165 

𝑎𝑣(𝐷௘) =
௔௩(ோ೚೟೚೗೔೟೓)

௔௩(ோ೐೙೏೚೗೤೘೛ )
 (2) 166 

𝑠𝑑 (𝐷௘) = 𝑎𝑣(𝐷௘) × ቌටቀ
௦ௗ(ோ೚೟೚೗೔೟೓)

௔௩(ோ೚೟೚೗೔೟೓)
ቁ

ଶ

+ ඨ൬
௦ௗ൫ோ೐೙೏೚೗೤೘೛೓൯

௔௩൫ோ೐೙೏೚೗೤೘೛೓൯
൰

ଶ

ቍ (3) 167 

Then the ratio and the partitioning coefficient, in the different parts of the ion transport pathway that the 168 

elements need to cross to precipitate in the otolith, were estimated. Only one paper provided sufficient data 169 

for this purpose (Melancon et al., 2009). The ion transport pathway starts from the ambient water to blood, 170 

then from blood to endolymph and the final step is from endolymph to otolith (Graphical Abstract). The 171 

partitioning coefficient that describes the last step of endolymph to otolith was estimated using the equation 172 

4. Some extra variables were also estimated. The first was the D commonly used in biomineralization 173 

studies. This Dw is the partitioning coefficient using as parent solution the ambient water (Eq. 5). The other 174 

two Me/Ca were estimated based on the idea that the last step of the precipitation is purely inorganic (Eq. 175 

7) and (Eq. 8). The first of those (Eq. 7), is the ratio that the otolith would have, if the last precipitation step 176 

was completely inorganic and the parent solution was the endolymph (𝑅௢௧௢௟௜௧௛ଵ) . The second (Eq. 8) is the 177 

theoretical ratio if the parent solution was water (𝑅௢௧௢௟௜௧௛ଶ). 178 

𝐷௘ =
ோ೚೟೚೗೔೟೓

ோ೐೙೏೚೗೤೘೛೓
 (4) 179 

𝐷௪ =
ோ೚೟೚೗೔೟೓

ோೢೌ೟೐ೝ
  (5) 180 

𝐷ூ௡ =
ோ೎ೝ೤ೞ೟ೌ೗

ோ೑೗ೠ೔೏
  (6) 181 

𝑅௢௧௢௟௜௧௛ଵ = 𝑟𝑎𝑛𝑔𝑒(𝐷ூ௡) × 𝑅௘௡ௗ௢௟௬௠௣௛ (7) 182 

𝑅௢௧௢௟௜௧௛ଶ = 𝑟𝑎𝑛𝑔𝑒(𝐷ூ௡) × 𝑅௪௔௧௘௥ (8) 183 
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We address the following question. Does the numerical value of the minor element partitioning coefficient 184 

from endolymph into otolith equal that of the partitioning coefficient from an aqueous solution into pure 185 

aragonite? As mentioned in the introduction, Fig. 1 illustrates the range of the Sr partitioning coefficient 186 

(D) in different calcifying marine organisms, we used as parent solution seawater and the ratios of the 187 

elements in each organism from the literature (Broecker & Peng, 1982; Cohen et al., 2006; Langer et al., 188 

2018; Lorens & Bender, 1980; Mitsuguchi et al., 1996). 189 

3. Results  190 

Figure 2 illustrates the partitioning coefficient of different minor elements from different fish species were 191 

compared numerically with the inorganic partitioning coefficient of the same element. To elaborate more 192 

the distinct environments, affect Ba and Sr, which demonstrate different behaviour for the marine and 193 

freshwater species something that is not observed in the other elements.  For the freshwater fish were 194 

estimated both partitioning coefficient from water (Dw) and from endolymph (De) because data were 195 

available. The De of the elements Na and Sr, except for one fish (S2), fall within the inorganic range when 196 

the Dw does not. Additionally, Ba and Mg in both De and Dw yielded comparable results but with difference 197 

corresponding to the inorganic range. In the case of Ba, the coefficient is not within the inorganic range, 198 

while in the other instance Mg, it is. Finally, Zn is a unique case because it seems that Dw is in the range of 199 

the inorganic system, but De is not. From all this observation we can come to the general result that the 200 

‘vital effect’ for some elements is visible and for some invisible. In the supplementary material there is also 201 

the partitioning coefficient De of Li in the S1 fish. 202 
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 203 

 Figure 2  The partitioning coefficient (D) per element (Mg, Sr, Ba, Na,Zn), the range of the inorganic system (In) and 204 

the mean±SD of the D in three different freshwater fish burbot Lota lota (S2), lake trout Salvelinus namaycush (S3) 205 

and a walleye Sander vitreus (S4) and the range of the marine fish the Acanthopagrus butcheri (S1). The different 206 

colors of D values, red is the De (endolymph as parent solution) and blue the Dw (water as parent solution) for fish 207 

and black is the DIn of the inorganic aragonite.  208 

Figure 3 illustrates the ion transport pathways of five different elements in the burbot Lota lota 209 

otolith. We demonstrate the same idea in Fig.S2 for the Salvelinus namaycush (S3). In almost all 210 

cases the ambient water is not sufficient to describe the co-precipitation of Me into otoliths. The 211 

ratios of elements normalized to calcium (Ca) were measured in different solutions to trace their 212 

transport pathway into the otolith. We notice that the precipitation steps from each reservoir 213 

follow the same path with the largest changes in partitioning occur during transfer from water to 214 

blood and from endolymph to otolith. Although we have different outcomes in terms of the final 215 

product the otolith. What we actually see is that knowing that the vital effect is happening in some 216 

cases we observe it, difference in otolith1 with otolith (Fig. 3, (c), (e)) and in some cases it is 217 
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invisible (Fig.3, (a), (b), (d)).  As previously demonstrated in Figure 2, this phenomenon is 218 

influenced by both elemental and species-specific factor. 219 

 220 

Figure 3  Me/Ca of burbot Lota lota (S2) in different reservoirs indicated by colored areas. The white areas (otolith 221 

1 and otolith 2) do not represent measured values but are calculated according to otolith1 = DIn * (Me/Ca) endo, and 222 

otolith2 = DIn * (Me/Ca)water. For DIn we used either the minimum or the maximum value depending on which one 223 

would minimize the offset between (Me/Ca) otolith-measured and (Me/Ca) otolith-calculated. The error bar represents 224 

the range of the values that the system can reach. (a) is the pathway of Mg, (b) the pathway of Sr, (c) the pathway of 225 

Ba, (d) the pathway of Na and (e) the pathway of Zn. 226 
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4.  Discussion 227 

Here we challenge the assumption that biomineral formation from the calcifying fluid is fully describable 228 

in terms of the formation of synthetic monocrystals from an aqueous solution of inorganic ions. Although 229 

intuitive, this idea might underestimate the complexity of biomineral formation for, inter alia, the following 230 

reasons. Firstly, biominerals are not monocrystals but organo-mineral composite structures, implying the 231 

possibility that minor elements reside in the organic material (Cuif et al., 2010; Hüssy et al., 2021; Miller 232 

et al., 2006; Walker & Langer, 2021) Secondly, the calcifying fluid usually contains organic molecules, 233 

which could interact with inorganic ions thereby decreasing their activity ratios in solution and hence in the 234 

biomineral since mostly free ions are incorporated in the crystal (e.g. Borelli et al., 2001; Hüssy et al., 2021; 235 

Meyer et al., 2020; Moura et al., 2000; Thomas & Swearer, 2019). In the following we show that both 236 

processes do indeed influence minor element distribution into otoliths which is, therefore, not reducible to 237 

inorganic aragonite co-precipitation.  238 

4.1  Minor element partitioning from endolymph to otolith cannot be modelled in terms of 239 

inorganic aragonite precipitation 240 

We looked at the partitioning coefficient of six elements (Sr, Ba, Mg, Na, Zn, and Li) in four different 241 

species, S1-S4 (Fig 2, Fig S1). For our question, it is helpful to consider several elements, as opposed to 242 

just one, because results from a single element might be misleading (Langer et al., 2018). A species 243 

comparison will further strengthen the conclusions because the question concerns the endolymph-otolith 244 

system in general. The partitioning coefficients De of Na, Mg (mostly), Sr and Ba (in S1) fall within the 245 

range of inorganic values (Fig 2, Fig. S1). For all other elements, Zn and Li, otoliths show a partitioning 246 

behaviour different from inorganic aragonite. Taken together these results clearly show that the endolymph-247 

otolith system produces minor element partitioning coefficients different from the ones determined in 248 

synthetic aragonite precipitation. Therefore, we conclude that minor element partitioning during otolith 249 

formation in the endolymph involves processes that do not occur during inorganic aragonite precipitation. 250 

An obvious further question is why the partitioning behaviour is both element and species specific. In 251 

general, the answer will likely involve specific organic material both in the endolymph and the otolith. In 252 

the following we will concretize this somewhat vague hypothesis.  253 
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4.2.  Element and species specificity of partitioning behaviour  254 

Otolith partitioning coefficient De of Ba and Zn (and Sr in S2 and partly S3) in freshwater species are lower 255 

than those in the inorganic system (Fig 2). In the case of Sr and Ba incorporation into the organic part of 256 

the otolith seems negligible, ruling out a significant influence of otolith organics on partitioning (Izzo et 257 

al., 2016). This strongly suggests that endolymph organic material (Borelli et al., 2001; Thomas et al., 2019) 258 

forms complexes with divalent cations, fractionating for Sr and Ba. The remaining free ions in solution are 259 

incorporated into the growing otolith aragonite, with minor element partitioning depending on crystal 260 

growth rate, in turn depending on various factors such as supersaturation, stoichiometry, and surface 261 

topography (Nehrke et al., 2007; Wolthers et al., 2013). 262 

An example of organic material fractionating for Sr and Ba are polysaccharides such as alginates (Yuryev 263 

et al., 1979).  The situation might be different for Mg which is fractionated against when forming complexes 264 

with organics thereby weakening fractionation against Mg into calcite (Mavromatis et al., 2017; Takeuchi 265 

et al., 2008). Complexation of minor elements with inorganic ligands can also affect partitioning into 266 

calcium carbonate. In the case of Mg, sulfate complexes lead to an apparently harder fractionation against 267 

Mg into calcite (Goetschl et al., 2019; Mucci et al., 1989). Since for Mg, organic and inorganic complexes 268 

influence partitioning behaviour differently the overall change in the partitioning coefficient will partly 269 

depend on the relative concentrations of these different ligands. Inorganic ligands such as sulfate, 270 

phosphate, and carbonate might play a considerable role in modifying partitioning behaviour in calcifying 271 

fluids. The modification of the partitioning behaviour will be minor element specific too. While alkali metal 272 

(e.g. Na and Li) complexes are of minor importance, Zn for example has a high affinity to form inorganic 273 

complexes with e.g. sulfate and carbonate (Krężel & Maret, 2016; Lewis & Randall, 1921; Olsher et al., 274 

1991; Stanley & Byrne, 1990).  However, Li partitioning into calcite is pH dependent (Füger et al., 2019). 275 

Since calcifying fluids are likely to feature high pH, Li partitioning into calcitic biominerals, and maybe 276 

aragonitic ones too, might display a “high pH signal”. Additionally, organic complexes with Zn can 277 

comprise the majority of total Zn, for example in surface seawater down to 500m (Bruland, 1989). These 278 

naturally occurring organic ligands in seawater will be important in calcifiers using seawater as substrate 279 

supply for calcification, e.g. foraminifera (Elderfield et al., 1996). The influence of organic material in the 280 

calcifying fluid on minor element partitioning shows that the localization of the minor element in the 281 

mineral part of the biomineral does not justify the conclusion that the partitioning process is inorganic. This 282 

reasoning has nevertheless been applied to Mg partitioning into foraminiferal calcite (Branson et al., 2013). 283 
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The latter authors show that Mg resides in foraminiferal calcite and from this observation conclude that the 284 

partitioning behaviour of Mg is inorganic. Since Mg is an important temperature proxy (Elderfield & 285 

Ganssen, 2000), this example illustrates the usefulness of the endolymph-otolith system for the 286 

development of a process-based understanding of proxy signal formation more generally.  287 

Why does Ba partitioning in the marine species S1 differ so strikingly from the one in the freshwater species 288 

(Fig 2)? Rather than being a species effect, this might be a methodological effect. Otoliths from the 289 

freshwater species were analyzed by LA-ICP-MS, where only the edge of the otolith was targeted to achieve 290 

a better match with the endolymph analysis (see Material and Methods). Otoliths from the marine species 291 

were dissolved whole for solution analysis by ICP-MS. The Ba/Ca of otoliths can vary substantially within 292 

single otoliths, often with high values near the otolith core (Hermann et al., 2016). This could explain both 293 

the higher De in the marine species and the larger range reaching both below and above the inorganic range 294 

(Fig 2).  295 

The situation for Zn is different from the one for Sr and Ba because 40-60% of the Zn reside in otolith 296 

organics (McFadden et al., 2016; Miller et al., 2006). Although an effect of endolymph organics cannot be 297 

ruled out for Zn, it is equally possible that partitioning into otolith organics is different from partitioning 298 

into otolith aragonite. Differential partitioning between the organic and the mineral part of mollusc shells 299 

has been reported, supporting this possibility (Schöne et al., 2010).  300 

To sum up, minor elements might reside either in the mineral (e.g. aragonite in otoliths) or the organic part 301 

of the biomineral. Partitioning of minor elements into the organic part is most likely different from 302 

partitioning into the mineral part. Hence partitioning is not homogeneous across a biomineral. The 303 

calcifying fluid often contains organic and, potentially, inorganic ligands that form complexes with minor 304 

elements thereby influencing partitioning into the biomineral. 305 

4.3. Biogenic and inorganic partitioning coefficient indistinguishable: Mg, Na and Zn 306 

The partitioning behaviour of Mg and Na seems to suggest that these elements are coprecipitated into 307 

aragonite in a manner akin to synthetic aragonite formation (Fig 2). If this was indeed so this would 308 

nevertheless not contradict our conclusion (see above), namely minor element partitioning into otoliths 309 

involves processes other than aragonite precipitation from an aqueous solution of inorganic ions. The latter 310 

conclusion rests on the behaviour of the other elements as discussed above and is not invalidated by a 311 

putatively different behaviour of Mg and Na. However, the behaviour of Mg and Na might as well merely 312 

https://doi.org/10.5194/egusphere-2025-5251
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

appear inorganic numerically (in terms of De) but the processes underlying De might involve organic 313 

material, i.e. the overall process of partitioning might be very different from inorganic precipitation. This 314 

phenomenon has been described for different calcifiers and is known by the term “invisible vital effect” 315 

(Nehrke & Langer, 2023 and references therein).  316 

The likelihood of an invisible vital effect in De is nevertheless much smaller than in the D calculated 317 

traditionally, i.e. using the external water Me/Ca (seawater or freshwater) as denominator. We added the 318 

traditional partitioning coefficient (Dw) to our dataset (Fig 2). For Mg and Zn, Dw falls within the range of 319 

inorganic values, but from this we cannot conclude that Mg and Zn partitioning proceeds via inorganic 320 

precipitation from external water. We know that for ions to enter the endolymph they need to be transported 321 

via the blood (Hüssy et al., 2021; Mccormick & Ac Kinlay, 2000; Sturrock et al., 2015) so that there are at 322 

least two partitioning steps operative before the endolymph-otolith step. We look at these partitioning steps 323 

in the following section. 324 

4.4. The pathway of minor elements from water to otolith 325 

In the freshwater species S2 (Fig. 3) and S3 (Fig. S2) were the only dataset that allows us to trace the 326 

pathway of minor elements from external water into the otolith. In Fig 3 we use Me/Ca (R) in different 327 

reservoirs along the ion transport pathway as given in the literature, and we additionally calculate two 328 

further values: 1) the Rotolith2 that results from multiplying Rw by DIn; 2) the Rotolith1 that results from 329 

multiplying Re by DIn. The DIn that are used are selected to minimize the offset between otolith (measured) 330 

and otolith (calculated). The aim of the figures is to illustrate the resulting (R) of different partitioning steps 331 

as they actually occur (coloured reservoirs), as opposed to the ones that would theoretically occur if DIn 332 

were applied.  333 

Several things can be gleaned from this figure. The first concerns the match / mismatch of otolith and 334 

otolith1. A match indicates that partitioning from endolymph to otolith could be inorganic. This is the case 335 

for Sr, Mg, and Na. Note that the same conclusion can be drawn from Fig. 2 with the exception of DSr which 336 

does not fall within the inorganic range but is close to it. The reason for this discrepancy is that in Fig 2 a 337 

mean and standard deviation is given whereas in Fig. 3 the minimum value of DIn is used. The latter choice 338 

represents a conservative approach aiming at a match between otolith and otolith1. The case of Sr is 339 

therefore borderline, but its behaviour could still be considered inorganic. In stark contrast, the behaviour 340 

of Ba and Zn is clearly not inorganic.  341 
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The traditional way of calculating partitioning coefficients is from the water media where the organism 342 

lives to the biomineral because the composition of the calcifying fluid is unknown (e.g. Langer et al., 2006). 343 

This poses the central problem of the vital effect. The main question we are asking here is: can the problem 344 

of the vital effect be solved by knowledge of the composition of the calcifying fluid. The answer is yes for 345 

Sr and Na, and no for Ba, Zn, and Mg. Note that Dw of Zn and Mg show an invisible vital effect, so that 346 

using the correct parent solution can confer no numerical advantage. There is nevertheless knowledge to be 347 

gained. Knowing the values of otolith2 (Zn and Mg) merely tells us that there will be partitioning steps 348 

along the way from water into otolith, but the localization of partitioning along this pathway remains the 349 

classic “black box” (Nehrke & Langer, 2023). Here we can take a look into the black box in unprecedented 350 

detail. The step from water into blood fractionates weakly for Mg but strongly for Zn, while the following 351 

step into the endolymph fractionates weakly against both Mg and Zn. The last step from endolymph to 352 

otolith fractionates strongly against both Zn and Mg. While this step could be inorganic for Mg, it is more 353 

complex for Zn, i.e. the interaction of Zn with organics (as discussed above) contributes to this partitioning 354 

step. Biological partitioning steps are hard to predict in general, and in particular if the minor element and 355 

Ca are transported by separate transport systems.  356 

4.5.  Essential versus non-essential elements  357 

While Ca, Na, Mg, and Zn are essential elements, i.e. needed in physiological processes, there is no known 358 

physiological role for Sr and Ba, which are therefore considered non-essential (Lall & Kaushik, 2021; 359 

Marshall, 2002; Nielsen, 2004; Salisbury& Ross, 1992). When considering minor element partitioning into 360 

biominerals the distinction between essential and non-essential elements is of great importance because 361 

essential elements have their own transport systems while non-essential elements are thought to pass 362 

through the transport systems of essential elements (Langer et al., 2006, 2009). This means that partitioning 363 

from one reservoir into another (e.g. from water into blood) can be conceptualized easier for non-essential 364 

elements, because only the partitioning of individual transport systems has to be known. If one transport 365 

system transports the minor element and another transports Ca the situation is more complicated because 366 

the two systems can be regulated independently. In the case of the non-essential elements Sr and Ba it is 367 

usually expected that they partition similarly if not with identical partitioning coefficient (Allen & Sanders, 368 

1994; Langer et al., 2006, 2009; Nachshen & Blaustein, 1982). It is therefore surprising that the step from 369 

water to blood fractionates for Ba but against Sr, whereas the step from blood to endolymph does not 370 

fractionate at all (or only minimally) for both elements (Fig 3). The partitioning from endolymph to otolith 371 
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is against both Sr and Ba, i.e. according to expectation. The fact that Ba fractionation is harder than Sr 372 

fractionation could be explained by differential Sr and Ba partitioning of cellular transporters as well as 373 

organic polymers (e.g. Nachshen & Blaustein, 1982; Yuryev et al., 1979). 374 

5. Conclusion  375 

In this study we used literature data on minor element composition of the endolymph- otolith system to 376 

calculate partitioning coefficient and analyse the partitioning behaviour of six elements in four species of 377 

fish. The endolymph-otolith system is outstanding because the parent solution (endolymph) of biomineral 378 

(otolith) formation can be sampled, and its elemental composition be determined. Our approach is novel 379 

since up to now the focus on traditional geochemical proxy archives (foraminifers, molluscs, and 380 

coccolithophores) has precluded such an analysis. Our data suggests that:  381 

1) Otolith mineralization in the endolymph shows a vital effect. Partitioning from endolymph into 382 

otolith is influenced by organic material present in both endolymph and otolith and therefore cannot 383 

be reduced to aragonite precipitation from an aqueous solution of inorganic ions.  384 

2) Differential partitioning patterns are more complex than generally assumed, as illustrated by the easy-385 

to-conceptualize “model elements” Sr and Ba, which behave counter to expectation.  386 

3) Future research should be specifically designed to address elemental partitioning within the 387 

endolymph, as clearly warranted by the findings of this study. 388 

Data Availability 389 
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