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Abstract. Reproducibility is a cornerstone of the scientific method, yet it remains elusive in many domains of contemporary

research, including the geosciences. In this Perspective, we examine reproducibility in the context of computational workflows

for geospatial analyses. Building on established frameworks, we disentangle key dimensions—methodological, results, and

inferential reproducibility—and identify critical barriers, including irreproducibility arising from obscurity, obfuscation, and

uncontrollable conditions. We argue that enhancing reproducibility in geoscientific research requires both cultural transforma-5

tion and practical, domain-specific interventions. Our focus lies on methodological and computational reproducibility, with

particular attention to challenges posed by spatial data structures, diverse data sources and infrastructures, and the integration

of statistical and machine-learning methods. We outline actionable guidance across the research workflow, including data gov-

ernance, analysis design and documentation, code development, and long-term accessibility. Emphasis is placed on the use

of open-source software, script-based automation, version control, and the adoption of FAIR principles to support findability,10

accessibility, interoperability, and reusability of data and code. Our aim is to provide a structured synthesis that supports repro-

ducible and transparent geospatial research. By implementing even incremental improvements, researchers can strengthen the

robustness, transparency, and reuse potential of their scientific contributions.

1 Introduction

The reproducibility crisis in science (Ioannidis, 2005) has sparked extensive debate on the reliability of research findings, lead-15

ing to what some describe as a credibility revolution (Korbmacher et al., 2023; Angrist and Pischke, 2010). Reproducibility—

the ability to independently verify research findings using the same data and methods—is a fundamental principle of the

scientific method and a cornerstone of empirical inquiry (Nichols et al., 2021). However, scientific practice does not always

adhere to this ideal (Ioannidis, 2012; Simonsohn et al., 2014; Ivie and Thain, 2018; Marshall-Cook and Farley, 2024). Re-

searchers frequently struggle to reproduce not only the work of others but also their own findings (Baker, 2016; Schwab et al.,20
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2000), raising concerns that a substantial fraction of published results may be unreliable or merely reflect prevailing biases

(Ioannidis, 2005).

Scientific reproducibility is often framed as a technical problem requiring standardized methodologies, transparent work-

flows, and open data. However, sociology of science perspectives emphasize deeper social and institutional challenges, in-

cluding structural factors such as incentive systems that prioritize novelty over verification, lack of dedicated funding and25

infrastructure, tacit knowledge that is difficult to formalize, and barriers to data accessibility (Joelving, 2024; Van Noorden,

2023; Nichols et al., 2021; Wasserstein et al., 2019; Fanelli, 2019; Goodman et al., 2016; Gewin, 2016; Ioannidis, 2014; Nosek

et al., 2012). These challenges are particularly pronounced in data-intensive fields, where vast, heterogeneous datasets and

complex models further complicate reproducibility efforts.

The notion of ‘research reproducibility’ is a multifaceted concept with inconsistent understanding across disciplines, shaped30

by vantage point, context, and idiosyncrasies of each scientific domain (Korbmacher et al., 2023; Peng and Hicks, 2021;

National Academies of Sciences, 2019; Konkol et al., 2018; Benureau and Rougier, 2018; Plesser, 2018; Barba, 2018; Stark,

2018; Nature, 2016; Goodman et al., 2016; Leek and Peng, 2015). Goodman et al. (2016) advocated moving beyond debates

over technical terminology towards adopting concise descriptors that capture the essence of the underlying constructs. They

introduced definitions for the core dimensions of ‘methodological reproducibility’, ‘results reproducibility’ and ‘inferential35

reproducibility’ (Tab. 1).

Table 1. Conceptions of reproducibility based on descriptors of the underlying constructs after Goodman et al. (2016)

Type Definition

Methodological reproducibility Enabling the exact repetition of study procedures by providing sufficient detail about study meth-

ods, code and data. This notably comprises ‘computational reproducibility’.

Results reproducibility Obtaining corroborating results from an independent study, whose procedures closely match the

original experiment, but which uses its own data. This is often referred to as ‘replicability’ (Na-

tional Academies of Sciences, 2019).

Inferential reproducibility Drawing qualitatively similar conclusions from either an independent replication of a study or a

reanalysis of the original study.

Across these perspectives, reproducibility can be regarded as a spectrum (Peng, 2011), ranging from essentially irrepro-

ducible research to the gold standard of full replicability. In the context of computational reproducibility this spectrum com-

prises access to raw data, code and a defined execution environment as core components.

With growing awareness of open science (Nüst et al., 2018) and advances in scientific computing (Peng and Hicks, 2021),40

reproducible research has gained prominence. As early as 1992, Claerbout and Karrenbach (1992) argued that publications

merely advertise research, while the true essence lies in the underlying computer programs, input data, parameter values,

and other related components. Since then, extensive guidelines have emerged to enhance computational reproducibility: simple

rules (Sandve et al., 2013; Goodman et al., 2014; Osborne et al., 2014; List et al., 2017; Hunter-Zinck et al., 2021), best practices
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(Wilson et al., 2014) and ‘good enough’ practices (Wilson et al., 2017) for scientific computing provided recommendations45

on techniques and tools to support computing workflows in a scientific context. Principles for systematic and reproducible

workflows in academic data analysis have been outlined (Stoudt et al., 2021), experiences on open sharing and reuse examined

(Chen et al., 2019), and guidelines for data stewardship (Wilkinson et al., 2016) and open-source software proposed (Hunter-

Zinck et al., 2021).

While reproducibility has gained broad attention in the life sciences (McNutt, 2014) and psychology (Open Science Collab-50

oration, 2015), its uptake in geography and the geosciences has been more recent (Steventon et al., 2022; Nüst and Pebesma,

2020; Kedron et al., 2020). Specifically, Konkol et al. (2018) assessed computational reproducibility in geographic research,

identifying technical issues and proposing solutions. Expanding on this, Nüst and Pebesma (2020) addressed practical repro-

ducibility, emphasizing scholarly communication, literate programming (Knuth, 1984), and research compendia (Gentleman

and Temple Lang, 2007). In the qualitative geographic information systems (GIS) domain, Muenchow et al. (2019) reviewed55

380 papers, revealing a lack of transparency regarding software use and advocating for open-source GIS. Wilson et al. (2020)

proposed a five-level framework for data and code sharing in geospatial research, echoing the ‘spectrum of reproducibility’

coined by Peng (2011). Building on broader literature, Kedron et al. (2020) reviewed the adaptation of reproducibility practices

to geospatial analyses, highlighting the need for interdisciplinary collaboration to address open issues.

Geospatial data science, which increasingly relies on machine learning (ML) and artificial intelligence (AI) methods, faces60

unique reproducibility challenges. As the distributed spatial data infrastructures that are often used for geospatial data analysis

workflows evolve, ensuring that geospatial analyses remain replicable over time requires careful documentation and planning.

Moreover, unique geospatial data structures, standards, and computing environments require special attention. The increas-

ing adoption of GeoAI, including large language models and spatially aware AI frameworks, introduces new reproducibility

challenges, particularly due to biases in training data, model uncertainty, and the inherent spatial heterogeneity of geospatial65

processes, as highlighted by Li et al. (2024).

While reproducibility is often discussed in academic research, it is equally critical in industry and government contexts,

where geospatial analyses inform high-stakes decisions in areas such as urban planning, environmental management, disaster

response, and public policy. Reproducible workflows enhance accountability, legal defensibility, and transparency, ensuring

that spatial analyses can be audited, verified, and trusted by stakeholders.70

Building on previous work, this article advocates for improving reproducibility in geospatial analyses within the geo-

sciences and related fields. We focus on methodological and results reproducibility, emphasizing the distinctive characteristics

of geospatial data: its dual nature as geometric and attribute information, its association with spatial features (e.g., points, lines,

polygons, and rasters), its dependence on location references (Pebesma and Bivand, 2023), and its frequent origination from

data collection process that differ from controlled experimental designs. Our goal is to synthesize existing deliberations, address75

emerging challenges, and provide structured guidance to make computational reproducibility in geospatial workflows more ac-

cessible to researchers with varying levels of experience in scientific programming. In doing so, we aim to raise awareness of

the critical importance of reproducibility in geospatial data science, provide actionable advice to researchers and practitioners,

and propose a practical checklist to facilitate reproducible geospatial workflows. The checklist, included as a supplement to
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this article, is designed to serve as a resource for ensuring transparency, consistency, and replicability in geospatial analyses80

across diverse applications.

2 Adversaries of practical reproducibility

Reproducibility in research is inherently challenging and requires careful navigation of several intricate aspects along the

research workflow. Albeit reproducible research is not immune to errors (Leek and Peng, 2015; Ioannidis, 2005), thorough

documentation and control enhance transparency and enable comprehensive evaluation. Despite ongoing endeavors to promote85

reproducibility, practical adherence to quality standards continues to face obstacles.

2.1 Research in general

Most of the reproducibility literature addresses fields reliant on empirical experiments, such as medicine (Pusztai et al., 2013;

Landis et al., 2012), biomedical research (Munafò et al., 2017), biology (Freedman et al., 2015), or psychology (Open Science

Collaboration, 2015; Wicherts et al., 2006). Common challenges include cognitive biases (e.g. confirmation and hindsight bias;90

Xiong et al., 2020; Munafò et al., 2017; Nuzzo, 2015; Birch and Bloom, 2007; Nickerson, 1998), incomplete documentation

of study design (Landis et al., 2012), statistical malpractices (underpowered statistics, p-hacking, HARKing; Bishop, 2019;

Munafò et al., 2017) and systemic pressures to publish (van Wesel, 2015). These factors distort data interpretation, foster

overconfidence in results, and undermine scientific rigor.

Dissemination biases, including publication bias, citation bias, gray literature bias, early extreme bias, media attention bias,95

the decline effect, and the small-study effect (Wasserstein et al., 2019; Fanelli et al., 2017; Munafò et al., 2017; Song et al.,

2010), further skew the scientific record toward positive results, distorting meta-analyses and overestimating effects (Kicin-

ski et al., 2015; Fanelli et al., 2017; Thornton, 2000; Fanelli, 2010). Additional challenges arise from limited programming

expertise and lack of standardized practices (National Academies of Sciences, 2019; Mesirov, 2010). Together, these issues

contribute to what Feynman (1974) critically termed ‘Cargo Cult Science’—the superficial adherence to scientific rigor without100

its substance.

Counteracting these cognitive and structural drivers of irreproducibility requires systemic attentiveness throughout the re-

search workflow, including study design, reporting, data sharing, and incentive structures (Munafò et al., 2017). Additionally,

integrating established software engineering practices into research workflows can enhance the reliability and transparency of

computational methods across disciplines (Connolly et al., 2023; Arvanitou et al., 2021).105

2.2 Geosciences

Despite increasing efforts to improve the availability of data and code in geoscientific research (Easterbrook, 2014), accessibil-

ity remains fragmented (Ireland et al., 2023). A survey by Baker (2016) showed that over 60 % of researchers in the Earth and

Environment domain were unable to reproduce other studies, while more than 40 % even failed to reproduce their own work.
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Reproducibility challenges in the geosciences are multifaceted (Konkol et al., 2018) and can be categorized into three key110

dimensions:

– Culture. The interdisciplinary and broad nature of geosciences leads to inconsistent standards and varying adoption of

reproducible practices across domains. Technical and sociological barriers often hinder open sharing of results (Gewin,

2016; Easterbrook, 2014; Reichman et al., 2011; Barnes, 2010). Furthermore, reproducibility is often underemphasized

in education and training (Tenopir et al., 2018).115

– Technology. Geoscientific research relies heavily on geospatial data and involves a diverse community with varying

levels of expertise in software development and computational methods (Nüst and Pebesma, 2020; Yan et al., 2020;

Muenchow et al., 2019). Many researchers and practitioners depend on desktop GIS software, which, while effective

for certain tasks, complicates documenting processing steps. Although some tasks can be transitioned to script-based

workflows, others, such as manual mapping, remain inherently difficult to automate.120

– Data complexity. Geospatial data present unique challenges due to their diversity in formats, geometry types, and

collection methods (Rolf et al., 2024). They originate from a wide range of modalities and sources, including satellite

imagery, aerial vehicles, GNSS, sensor networks, field surveys, digital field work, model outputs, administrative data

sources, historical archives, public participation GIS and citizen science contributions (Thompson, 2016).

Common difficulties pertain to data quality, heterogeneous data sources, and managing large, multidimensional datasets.125

In contrast to controlled experiments in other fields, ensuring traditional data quality metrics such as accuracy, consistency,

completeness or timeliness (Ehrlinger and Wöß, 2022) is often challenging in real-world geospatial applications. For instance,

studies in hazard research showcased that inconsistencies and inaccuracies in landslide inventory data negatively impact data

quality (Milledge et al., 2022; Pokharel et al., 2021). Variability in spatial resolution, scales, coordinate systems and map

projections often complicate data alignment and analysis, while temporal changes and high-dimensional datasets, such as130

spatiotemporal arrays or data cubes, add further complexity.

These cultural, technical and data-related challenges make reproducibility in geosciences fundamentally different from con-

trolled laboratory sciences. Overcoming these obstacles requires specialized technical skills and tools for data handling, pro-

cessing, modeling and visualization, as well as community efforts to improve training to build on and adopt suitable open

science principles.135

2.3 Aspects of reproducibility in practice

Practical reproducibility of scientific research is shaped by several interconnected dimensions that collectively influence trans-

parency, reliability, and validity of the underlying research. Building upon previous work, we postulate that the key dimensions

affecting practical reproducibility are:

– Data governance, concerning the management and publication of data in terms of, e.g., availability, data formats, li-140

censes and quality.
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– Methodological approach, defining the selection and correct application of appropriate methodologies for solving the

research questions under consideration.

– Technical or computational artifacts, consisting of software, code or models.

– Documentation, describing non- technical artifacts providing information about relevant steps, parameters and configu-145

rations.

– Organisational or cultural factors and policies, influencing types of collaborations, choice of technology or publishing

of results.

2.4 Types of irreproducibility

Recognizing that the adversaries represent root causes of reproducibility barriers, we now investigate three major types of150

irreproducibility across the aforementioned dimensions:

Irreproducibility by obscurity (unintentional)

– Data governance. Limited findability, accessibility, interoperability and reusability of data, compounded by a general

lack of open data, hinder various aspects of reproducibility.

– Methodologial shortcomings. Flawed experimental designs and inadequate research methodologies impede inferential155

reproducibility and independent validation, even when procedures are published. Re-executing code primarily verifies

portability rather than results validity.

– Code quality. Poorly written, undocumented, or unmaintainable code creates barriers to understanding and building

upon existing implementations. Bugs can be difficult to identify and hamper inferential reproducibility.

– Computing environment. Variations in software versions, libraries, and computational resources complicate workflow160

replication.

– Documentation. Inadequate reporting standards. particularly the lack of detailed methodology documentation, obstruct

understanding and reuse of published results.

Irreproducibility by obfuscation (intentional)

– Proprietary data. High-quality data often requires substantial investments in data collection and processing (e.g., field165

work, instrumentation, labeling). Due to these costs, researchers or institutions may hesitate to share such data, fearing

a loss of competitive or financial advantage (Köster et al., 2021). This recluctance can result in incomplete disclosure of

data collection methods or preprocessing steps, limiting the understanding of the research context.
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– Opaque methods. Computational or statistical models with no (black box) or limited (grey box) insight into their

internal workings obscure how inputs are transformed into outputs. This opacity hampers validation, error diagnosis,170

understanding of limitations, and further development.

– Selective reporting. Beyond selective reporting bias (Marks-Anglin and Chen, 2020), this includes the omission of code

snippets or undocumented manual processing steps, whether deliberate or accidental.

Irreproducibility due to uncontrollable conditions

– Computing hardware demands. Specialized or expensive hardware (e.g., supercomputers, proprietary configurations)175

makes reproduction costly or inaccessible. Examples include climate projections, numerical weather predictions (Bauer

et al., 2015), satellite embeddings (Brown et al., 2025) and non-deterministic model outputs from generative AI and

Monte-Carlo simulation models.

– Specialized sensing / measurement equipment. Data collection may rely on expensive and specialized tools (e.g.

earth observation satellites, ground-penetrating radar, superconducting gravimeters, aeromagnetic sensors or airborne180

laserscanning systems).

– Technological obsolescence. Hardware and software used may become outdated, difficult to access, or even unavailable

over time.

– Environmental context. In geosciences, measurements are commonly taken under variable environmental conditions

that cannot be fully controlled or replicated (Ryan, 2011). Challenges include spatial inhomogeneities (including ef-185

fects of administrative boundaries in data collection), temporal inconsistencies (e.g., breakpoints caused by relocating

measurement stations or changing equipment), and logistical difficulties of fieldwork in demanding environments (e.g.,

glaciological monitoring).

– Transient events. Singular natural phenomena (e.g. volcanic eruptions, gravitational natural hazards), occur at specific

points in time. Studies rely on observations collected around the time of event occurrence, which cannot be independently190

replicated if missed.

– Limited control over data collection. Researchers occasionally rely on datasets collected by third parties for different

purposes or even without scientific intent. Consequently, the available data may not align well with specific requirements

and constrain the research process.

– Confidentiality concerns. Privacy or security restrictions (e.g., property locations and attributes) prevent open sharing,195

as they may pose risks to individuals or communities if disclosed.
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3 Guiding principles and implementation strategies for geoscientific workflows

Promoting reproducibility often requires navigating challenges of varying complexity.

1. Low-hanging fruits. Simple, broadly applicable solutions can resolve many reproducibility issues. For instance, adopt-

ing open-source formats, programming languages, and libraries ensures accessibility and facilitates rerunning published200

code.

2. Moderate issues. Some well-known practices remain underutilized in practice. These include using open licenses for

code and data, preparing thorough documentation, and compiling relevant metadata (c.f. FAIR data principles). While

these steps reduce future hurdles for both the original investigators and others, their adoption is often inhibited by

insufficient awareness and inadequate incentives (c.f. Easterbrook, 2014; Osborne et al., 2014).205

3. Wicked challenges. Reproducibility in data analysis presents inherent complexities. Tools tailored to software engineer-

ing (e.g. version control, continuous integration) are powerful but face limitations when dealing with large datasets, long

computation times and experimental coding. In contrast to software projects, data analysis typically prioritizes answering

immediate research questions over long-term maintainability. Reproducibility exists on a spectrum, requiring practical

implementations to strike a balance between ease of implementation and potential benefits for the intended audience210

and use cases. While automating computational workflows is valuable, it does not inherently validate the correctness of

models or their alignment with research objectives. Researchers should identify whether their primary contribution lies

in sharing the methodology, results, or both, and tailor their technical artifacts accordingly. Common use cases include

reusing the code as a library, leveraging computation results, or understanding experiment design and implementation

details.215

These aspects inform the broader goals of reproducibility and reusability. With these priorities in mind, we now outline

guidelines for enhancing reproducibility in geospatial workflows, organized by task and increasing complexity.

3.1 Overarching principles & planning

The following fundamental principles hold as general recommendations throughout the entire research workflow.

Use a good folder structure and naming conventions220

A clear folder structure and meaningful filenames are essential to efficiently manage and collaborate on computational projects

(Noble, 2009; Wilson et al., 2017; Van Lissa et al., 2021). By keeping data, code and results systematically organized, locating

and managing different project components is greatly facilitated (Fig. 1). This streamlines workflows by providing a clear

layout from the outset, thus not only saving time for setup and maintenance of the project structure but also reducing errors

and confusion, especially in collaborative settings. Moreover, a scalable structure accommodates project growth, allowing new225

data, scripts, and analyses to be added without clutter.
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Figure 1. xkcd #1459: Documents. Source: https://xkcd.com/1459/. [Licensed under CC BY-NC 2.5].

To get started, create a dedicated folder for each project, using a clear and descriptive title as the folder name. Tools like

cookiecutter1 can be used to create an initial folder hierarchy and commonly needed files from templates, which can also serve

as inspiration for structuring your project (e.g., Cookicutter Data Science2).

Good naming practices involve concise, easy-to-type terms that balance specificity and generality. Create appropriate terms230

or abbreviations if necessary. Use lowercase letters and hyphens (or underscores if hyphens are not allowed, e.g., in package

names), avoiding spaces and special characters to ensure compatibility across systems. Reserved filenames such as README.md

or LICENSE, are typically in uppercase. For more on coding conventions, see Adhere to a consistent coding style.

Adopt open standards and technologies

Using open standards and technologies enhances transparency and reproducibility throughout the research workflow. This235

includes open data formats (c.f. Use common open data formats), free and open-source software (c.f. Use free and open-source

software), and open-access publishing (c.f. Publish under a permissive or copyleft license). Open standards enable sharing and

verification of data and methods, while open-source software enables others to inspect, modify, and build upon the published

output. Open-access publishing greatly facilitates access to scientific findings, broadening their reach and impact. Together,

1https://github.com/cookiecutter/cookiecutter
2https://cookiecutter-data-science.drivendata.org
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these practices improve knowledge dissemination, simplify collaboration, reduce entry barriers, and support the validation and240

reuse of research outputs.

Develop (and implement) an actionable data management plan (DMP)

Effective implementation of best practices in reproducibility requires strategic planning and resource allocation. A DMP helps

structuring this process by identifying key milestones where data and code should be archived, shared, or released, either

internally or publicly. It summarizes key aspects such as data types, storage, security, sharing and quality. Many funding245

agencies now mandate DMPs to ensure compliance with ethical, legal, and institutional frameworks (Miksa et al., 2019), yet

their actual implementation is rarely monitored. Institutional research data management units can provide valuable support in

developing DMPs and training research staff, ensuring that data stewardship is not only planned but also effectively executed.

Document both high-level and low-level provenance

Provenance refers to information about the origins, processes, and contributors involved in producing data or results, which250

helps to assess their quality, reliability or trustworthiness (Belhajjame et al., 2013). This includes method parameters, input and

output data, software versions, and the computational environment (Khan et al., 2019).

To support reproducibility, both high-level provenance (i.e., ‘What steps were followed in this analysis?’) and low-level

provenance (i.e., ‘How was this specific result computed?’) should be documented. This information is valuable for debugging,

monitoring, and reproducing results.255

Isolate and document irreproducible workflow components

Some workflow components, such as expert decisions, external web services, non-deterministic AI inferences, or continuously

updated data streams, are inherently irreproducible (c.f. section 2). To mitigate their impact, strategically isolate these com-

ponents and document them thoroughly. One approach is to save intermediate results of the irreproducible steps to ensure

conditional downstream reproducibility. For workflows dependent on external APIs or databases, caching responses or stor-260

ing queried datasets locally prevents inconsistencies caused by data updates or service outages. Submitted queries or prompts

should be stored along with the responses especially in the case of AI models and dynamic web contents. When expert de-

cisions are involved, maintaining detailed records—such as meeting protocols, internal memos, issue comments, or email

correspondence—enhances transparency and enables future researchers to assess their influence.

Automate repetitive tasks265

Automation ensures consistency, reduces human error and saves time (c.f. Use script-based workflows). By automating repet-

itive tasks, workflow steps are implicitly documented, fostering a more efficient and reliable research environment. Steps that

cannot be automated may require more thorough documentation, as there is no code for reference (c.f. Isolate and document

irreproducible workflow components).
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Use tidy data270

Data cleaning and preparation are often tedious, especially when data do not adhere to a defined structure (c.f. database

normalization). The concept of tidy data, introduced by Wickham (2014), describes a standardized way of organizing (tabular)

data to simplify analysis and visualization by mapping the meaning of a dataset to its structure. Tidy data adheres to three

principles: (1) each observation forms a row, each row represents an observation, (2) each variable forms a column, each

column contains a variable, and (3) each type of observational unit forms a table, with each value being a cell and each cell275

being a single value.

In geospatial research, tidy data principles can easily be applied to vector datasets, which are essentially dataframes with a

geometry column. Packages such as sf in R and geopandas in Python integrate well within their respective ecosystems and

thus facilitate preparing data in a tidy format.

Having established these overarching principles, the following sections delve into specific aspects of geospatial research280

workflows.

3.2 Data collection & governance

Geospatial analyses, whether using big data or small samples, require high-quality, well documented, and interoperable data to

achieve reliable and reproducible results. The objective is to ensure that data can be interpreted and reused reliably by both the

original researcher over time and by external stakeholders.285

3.2.1 Description & assessment of data

Identify and describe your data

Begin each research endeavor by identifying and evaluating available data sources to ensure they are sufficient and suitable for

addressing your research question.

For geospatial data, use appropriate file formats with clearly defined coordinate reference systems (CRS), specified using290

standardized formats like EPSG-codes3, OGC WKT strings4 or PROJ-strings5. Pay attention to practical challenges, such as

custom definitions of well-defined standard CRS, discrepancies between documented CRS and those stored in file metadata,

or handling uncommon projections (e.g., the equidistant rotated pole projection used in EURO-CORDEX). For spatiotemporal

data, document the meaning of timestamps (including interval labeling on the left, center or right), time zones, calendar types

(e.g., leap years or 360-day years), and aggregation functions.295

3https://epsg.org
4https://www.ogc.org/standard/wkt-crs
5https://proj.org
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Consider the spatial / spatiotemporal nature of data

Inferential reproducibility in geospatial data science requires modeling strategies that explicitly address the unique character-

istics of spatial data, specifically spatial and spatiotemporal autocorrelation (Wikle, 2014). Such approaches include spatial

interpolation using Kriging (Li and Heap, 2011), geographically and temporally weighted regression (Fotheringham et al.,

2015) or spatiotemporal clustering (Birant and Kut, 2007). Whether or not such explicitly spatial models are used, it is cru-300

cial that performance estimation takes into account the predictive setting in which the models will be applied, thus requiring

the consideration of concepts such as spatial or temporal prediction distance and autocorrelation through the use of suitable

cross-validation techniques (Brenning, 2023; Schratz et al., 2024). In this context there is a risk of information leakage from

validation data into the training process unless hyperparameters are tuned in a nested cross-validation (Schratz et al., 2019).

Model performance metrics should focus on the user’s perspective rather than the producer’s, as standard metrics like overall305

classification accuracy fail to account for the varying costs of different types of misclassification. Additionally, extrapolation in

geographic space should be flagged by identifying a model’s area of applicability (Meyer and Pebesma, 2021), and trade-offs

between statistical model performance versus process-based plausibility should be considered (Reichstein et al., 2019; Steger

et al., 2016).

Assess the quality of your data310

Data quality is highly contextual, depending on the domain and task. In geospatial research, standard quality metrics often

require adaptation to address domain-specific needs. For example, in geospatial ML models, the intended use cases and the

scope of training data are crucial for evaluating their suitability for future applications. Established methodologies (Batini et al.,

2009) and metrics such as accuracy, consistency, completeness and timeliness (Ehrlinger and Wöß, 2022) guide assessments

and improvements.315

High-quality metadata is essential for geospatial data. This includes information on dataset provenance, completeness, logi-

cal consistency and accuracy across positional, temporal and attribute dimensions (Lush et al., 2012). However, collecting such

metadata is resource-intensive and requires expertise and effort beyond standard data collection processes. Additionally, infor-

mation on licensing, the reputation of the data provider, and ‘soft knowledge’ about uncertainties when quantitative estimates

are unavailable enhances data reusability.320

3.2.2 Standards & common formats

Use common open data formats

Using open, standardized data formats enhances accessibility and reusability (Fig. 2). The choice of format should balance

accessibility and performance based on the requirements of the use case. Human-readable formats like CSV and (Geo)JSON

are easier to inspect and arguably more stable over time, while binary formats (like GeoParquet, Arrow/Feather, FlatGeobuf)325
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offer better performance in terms of I/O speed, size and resource efficiency, particularly for large-scale data processing. Use a

common character encoding, preferably UTF-8, to ensure compatibility across systems.

Figure 2. xkcd #1459: .NORM Normal File Format. Source: https://xkcd.com/2116/. [Licensed under CC BY-NC 2.5].

Use geodata formats supported by GDAL/OGR raster and vector drivers (GDAL/OGR contributors, 2024; Warmerdam,

2008) and OGC standards6. For vector data, GeoPackage is preferred over the widely used shapefile format, which has notable

technical and practical limitations. For raster data, GeoTIFF is a feasible standard format, with COG (for efficient streaming)330

and NetCDF, HDF5 or Zarr (for multi-dimensional arrays) being also viable for specific needs. Note that advanced features

like compression or chunking require some familiarity with the underlying data engineering concepts.

Adopt taxonomies, controlled vocabularies and ontologies

Taxonomies and controlled vocabularies provide knowledge management tools for organizing structured information for both

data and metadata. While geoscience-specific resources exist (e.g., landslide type classifications, (Hungr et al., 2014)), they are335

often not formalized in machine-readable formats. Ontologies provide such a formal representation format and support both

knowledge sharing and interoperability. They are well established in certain scientific domains such as medicine (Ivanović and

Budimac, 2014) or computer science (Salatino et al., 2018). Large open knowledge graphs, for instance, based on Wikipedia

6https://www.ogc.org/standards/
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data, have been created collaboratively and can be used for various use cases (e.g. DBpedia7, Wikidata8). However, adoption

of ontologies in geosciences faces challenges: a steep learning curve of the underlying technologies, the need for extensions in340

complex modeling (e.g., spatiotemporal data), and limited adaptation due to knowledge transfer and integration issues from do-

main experts (Claramunt, 2020). Suitable ontologies for reuse in geospatial applications include W3C Basic Geo Vocabulary9,

Dublin Core10 (including the spatial extension), SSN/SOSA11 for sensor and observation data and GeoSPARQL12 for query-

ing purposes. The KnowWhere Graph integrates geospatial data on various natural hazards, climate variables, topographical

information and other relevant information for reuse (Shimizu et al., 2025).345

Use established location reference systems

Relying on standardized spatial reference systems is crucial for long-term reproducibility in geospatial analyses (c.f. ISO

19111). Specify coordinate reference systems by their EPSG code13 to ensure unambiguous interpretation. The unprojected

WGS84 (EPSG:4326) is generally preferred for global applications due to its widespread adoption. For analyses requiring

equal-area projections, selecting an appropriate standardized CRS (e.g., EPSG:6933 for global equal-area mapping) is crucial350

to avoid distortions in spatial measurements. For multi-scale or hierarchical data, standardized Discrete Global Grid Systems

(DGGS) or equal-area hexagonal grids (e.g., ISEA3H) provide robust spatial partitioning. While newer systems such as the H3

grid have gained popularity, they lack standardization and may still evolve, potentially introducing reproducibility challenges.

When working with toponyms (place names), following established semantic ontologies ensures interoperability. The GeoN-

ames gazetteer14 provides a well-structured ontology linking place names to Uniform Resource Identifiers (URIs) in the Se-355

mantic Web, facilitating precise spatial referencing. Advances in AI and natural language processing (e.g. named entity recog-

nition), enable the automated extraction of location references from text (Hu et al., 2023). Incorporating such tools can enhance

reproducibility by establishing explicit, machine-readable geographic references within the GeoNames framework.

Use templates and checklists

A shared understanding of data and models is crucial for reproducibility. Clear documentation of their purpose, performance,360

and limitations improves transparency and accountability. Using templates, checklists and adhering to standards facilitates the

process of documenting important information on models and datasets. For example, model cards (Mitchell et al., 2019) and

datasheets (Gebru et al., 2021) offer structured frameworks to capture metadata, including intended use and potential biases,

and are widely adopted on platforms like Huggingface15. In the geospatial domain, standards like ISO 19115, which addresses

7https://www.dbpedia.org
8https://www.wikidata.org
9https://www.w3.org/2003/01/geo/

10e.g. http://purl.org/dc/terms/
11https://www.w3.org/TR/vocab-ssn/
12https://www.ogc.org/publications/standard/geosparql/
13https://epsg.io
14https://www.geonames.org/
15c.f. https://huggingface.co/docs/hub/en/model-cards
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geographic information metadata (e.g., update frequency, spatial resolution and reference system), provide a foundation which365

could be adapted to include domain-specific parameters and ethical considerations, such as those relevant to satellite imagery

(Rolf et al., 2024).

3.3 Analysis design & automation

Major data manipulation activities (e.g., cleaning, pre-processing, modeling, and analysis), along with their inputs and out-

puts, should be described and tracked to ensure reproducibility and traceability. The goal is to make these steps transparent,370

repeatable and automated.

3.3.1 Provenance

Track model development

Machine Learning Operations (MLOps) tools help streamline the development, improvement, deployment, and maintenance

of ML models (Kreuzberger et al., 2023). Experiment tracking and model registry tools, such as MLflow (Chen et al., 2020;375

Zaharia et al., 2018), ClearML (ClearML, 2024) or Weights & Biases (Biewald, 2020), support the documentation of the entire

system lifecycle for ML models, notably including automated recording of hyperparameters and performance metrics (c.f.

Explore dataflow programming and pipeline tools). While open-source tools (including MLflow and ClearML) can be self-

hosted, proprietary platforms may require licensing for larger teams. Geospatial projects come with specific requirements in

terms of tasks and data size, calling also for the development of domain-specific support tools and higher scalability.380

Document provenance and workflow rationale

Provenance tracking ensures transparency in data processing and workflow design. Tools like noWorkflow for Python (Murta

et al., 2015), E2ETools (Lerner et al., 2023, 2018) and dtrackr (Challen, 2022) for R, and more comprehensive workflow

engines such as VisTrails (Callahan et al., 2006), Taverna (Hull et al., 2006) or Kepler (Altintas et al., 2006) support (script-

based) collection of provenance traces (Pérez et al., 2018; Pimentel et al., 2019a). For custom workflows, generic provenance385

data models (Prov-DM; Lebo et al., 2013) and P-Plan Ontology (Garijo and Gil, 2012) can be adapted and extended.

Capturing domain-specific annotations is particularly valuable for encoding relevant design steps (Khan et al., 2019; Garijo

et al., 2014). General examples include data preparation steps, e.g. format transformation or data grouping. Relevant specialized

motifs in geospatial data processing include reprojection of input data sources into a common coordinate reference system,

spatial alignment of data via coregistration, homogenization of observational datasets, atmospheric correction in remote sensing390

data, specification of spatial relationships (c.f. DE-9IM, Clementini et al., 1994) when combining/joining datasets, or numerical

simulation parameters.
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3.3.2 Scripted & automated workflows

Use script-based workflows

We advocate prioritizing script-based workflows over GUI-based or manual processes wherever possible. Scripts automate395

processing steps, ensuring consistent and repeatable results while minimizing the risk of human error. They also serve as self-

documenting records, enabling reconstruction and verification of analytical processes. When combined with version control

systems like Git (c.f. Use a version control system (VCS)), scripts provide precise and transparent tracking of modifications

over time. They also facilitate error-handling to detect exceptions and ensure robustness and reliability across different datasets,

environments, and scales of operation.400

Additionally, script-based workflows offer modularity for structured development, support collaborative research environ-

ments, and enable scalable and parallelizable analyses of big data in distributed and high-performance environments. This

improves efficiency and allows for optimization of runtime and memory requirements.

Explore tools for literate programming

Literate programming, introduced by Knuth (1984), integrates code and documentation into a cohesive, executable narrative,405

producing dynamic reports where source code is embedded within explanatory text (Stodden et al., 2018). Tools like Quarto,

knitr (Xie, 2015), R Markdown (Xie et al., 2018), and Jupyter Notebooks (Pimentel et al., 2019b) enhance clarity, accessibility,

and practical reproducibility by combining code with narrative (Vassilev et al., 2016). This approach is used in software de-

velopment, such as R package ‘vignettes’ for long-form documentation, and in practical geospatial analyses, where executable

notebooks facilitate the presentation of workflows and results. Literate programming also underpins frameworks like workflowr410

in R (Blischak et al., 2019), which support the creation and sharing reproducible research code.

Explore dataflow programming and pipeline tools

Workflow management systems and pipeline tools enhance reproducibility, scalability, and modularity by structuring processes

as Directed Acyclic Graphs (DAGs), which represent data flow and task dependencies. These tools formalize workflows,

automate task execution, and ensure traceability of data transformations.415

For low to moderate complexity workflows, tools such as make (Feldman, 1979), Snakemake16 (Koster and Rahmann,

2012; Mölder et al., 2021), doit17, pytask18 or targets19 (Landau, 2021) provide lightweight solutions for task automation. ML

16https://snakemake.readthedocs.io/en/stable/
17https://pydoit.org/
18https://pytask-dev.readthedocs.io/en/stable/
19https://books.ropensci.org/targets/
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pipeline frameworks such as scikit-learn20, Pythonflow21, mlr3pipelines22 or recipes23 help streamline preprocessing, modeling

and evaluation.

For complex workflows requiring scheduling, monitoring and deployment, platforms like Apache Airflow24, Luigi25, MLflow26,420

Kubeflow27 (Bisong, 2019) or Dagster28 offer robust orchestration capabilities. CI/CD tools further support executing pipelines

and deploying models in suitable environments (c.f. Perform automatic testing).

When transitioning research code into operational services, early consideration of task allocation—separating code develop-

ment (scientists) from execution and deployment (DevOps)—is essential for scalability and reproducibility (c.f. Consider code

life cycle and maintenance). Infrastructure as Code complements workflow management systems by enabling the automated425

provisioning and configuration of computational environments. This approach ensures consistency across development, test-

ing, and production stages, reduces manual errors, and enhances reproducibility by version-controlling infrastructure alongside

code and workflows.

3.4 Code & scientific computing

This section covers a broad range of aspects commonly encountered during the main development phase of geospatial data430

science projects. The aim is to obtain maintainable, shareable and reproducible computational code.

3.4.1 Tool & environment selection

Use free and open-source software

Using common free and open-source software increases the accessibility and practical reproducibility of results (Fortunato and

Galassi, 2021; Pebesma et al., 2012). The growing popularity of open-source programming languages and GIS reflects a shift435

from proprietary tools, lowering barriers to entry and promote transparency in geoscientific workflows (Lovelace, 2021).

In geocomputation, languages like Python (Dorman et al., 2024), R (Lovelace et al., 2019; Pebesma and Bivand, 2023) and

Julia (Hoffimann, 2023), along with command line utilities like gdal29, cdo30 and nco31, enable efficient geodata processing.

Open-source GIS software such as QGIS, GRASS GIS and SAGA provides viable alternatives to proprietary desktop GIS tools

like ArcGIS, and integrates seamlessly into script-based workflows.440

20https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
21https://pythonflow.readthedocs.io/en/latest/
22https://mlr3pipelines.mlr-org.com/
23https://recipes.tidymodels.org
24https://airflow.apache.org/docs/
25https://luigi.readthedocs.io/en/stable
26https://mlflow.org/docs/latest
27https://www.kubeflow.org/docs/
28https://docs.dagster.io/
29https://gdal.org/
30https://code.mpimet.mpg.de/projects/cdo
31https://nco.sourceforge.net/
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Use defined environments

Reproducibility depends not only on code but also on the computing environment, which influences results and should be

documented for transparency. The hardware layer includes processing units (CPU, GPU), storage (RAM and disk), and network

access. While exact requirements may be difficult to determine, specifying the system used helps others replicate analyses.

The logical or software layer includes the operating system, dependencies (applications and libraries), and project-specific445

code. These components and their versions can affect computations, making isolated environments or containers essential for

reproducibility. Dependency versions should be exported to a text file and shared with the code.

Language-specific environments (e.g., venv32, poetry33, uv34 or renv35) manage dependencies within a single programming

language, while cross-language environments ((mini)conda36, (micro)mamba37, pixi38) provide broader dependency manage-

ment and better isolation. Containers like docker39 or podman40 encapsulate operating system-level dependencies but may add450

unnecessary complexity for most data analysis applications (c.f. Moreau et al., 2023; Choi et al., 2023).

Leverage collaborative development platforms

Platforms like GitLab or GitHub provide valuable support for managing scientific projects beyond software development.

Features such as issue tracking and merge requests facilitate collaboration, improve code quality through peer reviews, and

document discussions and decisions. Issue boards can serve as Kanban-style project management tools, aiding both organi-455

zational and technical workflows. While designed for teams, these platforms are equally beneficial for individual researchers,

helping structure tasks and maintain clear documentation. Following an issue → branch → merge request workflow is best

practice for improving organization, documentation and reproducibility, even in solo projects.

3.4.2 Coding & development practices

Adhere to a consistent coding style460

Clean, consistent code facilitates effective scientific communication (Filazzola and Lortie, 2022), and improves accessibility.

Using meaningful filenames without special characters, and prepending script filenames with numbers to indicate execution

order helps to navigate and locate files and grasp their meaning. Adhering to coding style guides41 ensures uniformity, facili-

32https://docs.python.org/3/library/venv.html
33https://python-poetry.org
34https://docs.astral.sh/uv
35https://rstudio.github.io/renv
36https://docs.anaconda.com
37https://mamba.readthedocs.io
38https://pixi.sh/dev/
39https://docs.docker.com
40https://podman.io
41e.g., https://peps.python.org/pep-0008 for Python or https://style.tidyverse.org/index.html for R
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tating readability, collaboration, and maintenance. Tools like linters and autoformatters42 can automate style enforcement (c.f.

Perform automatic testing).465

Don’t repeat yourself (DRY)

Minimizing code duplication is a best practice, as repeated code increases maintenance efforts and the risk of inconsistencies.

Modularizing code with functions and packages improves reusability, maintainability, and coding efficiency. However, deeply

nested code increases complexity and complicates debugging, especially with complex geospatial data. For ill-defined prob-

lems, a flat, interactive workflow is often better suited for exploration and rapid prototyping. While deviating from the DRY470

principle can be pragmatic during early development, transitioning prototypes into maintainable software requires substantial

effort, even without adding new features. Recognizing this challenge early helps balance exploratory coding with long-term

maintainability.

Consider code life cycle and maintenance

The purpose and lifespan of scientific code influence how it should be written and maintained (Adorf et al., 2019). For one-475

time analyses, prioritizing human readability is key, as future users may need to understand the methodology rather than re-run

or modify the code. Conversely, code intended for long-term operational use requires careful planning for maintainability.

Research prototypes often evolve into operational services; but without dedicated resources for refactoring, optimization, au-

tomation, and testing, transitioning them into sustainable systems can be difficult. Early planning, ideally in collaboration with

software developers, helps address funding and technical challenges.480

Provide logging information

Logging43 captures key information during script execution, including system details, parameters, configuration, and progress

(List et al., 2017). Log messages, including warnings, errors, and executed steps, are typically printed on-screen or saved with

timestamps in a file or database. This facilitates process monitoring, error tracing, and provenance documentation. To enhance

transparency, we recommend publishing log files of the final computation alongside the results to document when and how the485

analysis was performed.

3.4.3 Validation & versioning

Perform automatic testing

Testing is crucial for ensuring code correctness. Different techniques serve specific purposes: unit tests validate individual

components or functions with various inputs, helping to isolate errors efficiently. Functional tests or integration tests verify490

that all components work together as expected. Plausibility tests check whether results fall within reasonable bounds (e.g., non-

42e.g., Black (Łukasz and contributors to Black, 2024) for Python or styler (Müller and Walthert, 2024) for R
43e.g. https://docs.python.org/3/howto/logging.html for Python or logger (Daróczi and Wickham, 2024) for R
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negative values). Regression tests ensure code changes do not unintentionally alter results (c.f. Use a version control system

(VCS)). Performance tests monitor runtime and memory usage help prevent efficiency regressions.

In the geosciences, where data often originate from heterogeneous sources, input validation is essential to assess data cor-

rectness and meaningfulness by combining technical and plausibility checks. Automating tests with code snippets (test cases)495

ensures consistent execution after changes, helping detect bugs early, saving development time and increasing confidence in

results.

Code linters44 can automatically identify syntax errors, flag potential issues, and enforce coding standards (c.f. Adhere to a

consistent coding style).

For further automation, Git pre-commit hooks and continuous integration (CI)45 can enforce successful test runs after each500

commit or pull/merge request.

The impact of undetected errors is often underestimated. While testing adds complexity, it reduces time lost to debuggig.

Automated tests are a valuable investment but should complement, not replace, expert judgment in addressing unexpected

errors or implausible results.

Use a version control system (VCS)505

VCS such as Git, Mercurial or Subversion facilitate collaboration, tracking, and management of code and data projects. They

provide key features such as lineage (tracking changes and provenance over time), time travel (navigating or restoring previous

states) and auditability (providing a detailed change log). Features like branching (creating separate development lines) and

merging (integrating changes) enable parallel development and efficient maintenance.

Git stands out as a free, open-source, and widely supported tool, with integration into most editors and IDEs. Its web-based510

platforms for collaborative development and code management further enhance accessibility.

Although VCS tools have a learning curve (Fig. 3), mastering basic commands already provides long-term benefits beyond

collaboration. Even for individual researchers, regular snapshots not only improve reproducibility and safeguard progress and

allow safe experimentation without the risk of losing previous work.

Version-control data as well515

While version control for source code is well established, data versioning—particularly for large binary files—remains chal-

lenging. Data often requires additional capabilities, such as deleting old versions to free storage space or partially cloning

repositories. Standard VCS operations like merging or cherry-picking are typically unsuitable for binary data. Additionally, the

exploratory nature of data analysis does not always align with traditional branching workflows.

44e.g. https://flake8.pycqa.org/ or https://docs.astral.sh/ruff for Python or https://lintr.r-lib.org for R
45e.g., GitLab CI/CD, GitHub Actions or Jenkins
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Figure 3. xkcd #1597: Git. Source: https://xkcd.com/1597/. [Licensed under CC BY-NC 2.5].

Despite these challenges, automating the addition of generated data and results to a VCS repository enhances traceability by520

linking output files to the code and parameters that created them. Tools like Git LFS46, DVC47, lakeFS48, Dolt49, Nessie50, and

Pachyderm51 address data versioning but can be complex and may not fit all research workflows. A simpler approach is to store

analysis outputs in a dedicated folder and associate them with the corresponding Git commit hash, ideally through automation.

3.5 Publishing and reuse of results

Code and data availability statements are commonly required in renowned scientific journals, including Nature52, Science53,525

as well as the journals of the American Geophysical Union54 and the European Geophysical Union55. While open-access

publishing is increasing (Piwowar et al., 2018; Munroe, 2013), data is not always provided, even when required by journals

(Alsheikh-Ali et al., 2011; Savage and Vickers, 2009). While willingness to share research data has been linked to the strength

46https://git-lfs.com
47https://dvc.org
48https://lakefs.io
49https://www.dolthub.com
50https://projectnessie.org
51https://www.pachyderm.com
52https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards
53https://www.science.org/content/page/science-journals-editorial-policies#data-and-materials-after-publication
54https://www.agu.org/publish-with-agu/publish/author-resources/data-and-software-for-authors
55https://publications.copernicus.org/services/data_policy.html

21

https://doi.org/10.5194/egusphere-2025-5210
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.



of evidence and quality of statistical reporting (Wicherts et al., 2011), concerns about data misuse and lack of proper acknowl-

edgment remain barriers to sharing in the geoscience community (Tenopir et al., 2018).530

Best practices are increasingly promoted through specific conference tracks, for instance NeurIPs for datasets and bench-

marks56 or semantic web resource tracks 57, requiring well-documented and reusable artifacts, such as datasets or code.

Our recommendations draw inspiration from Goodman et al.’s short guide on the care and feeding of scientific data (Good-

man et al., 2014).

3.5.1 Sharing of artifacts & results535

Publish all data, code, and results

All methodological and technical artifacts used to derive scientific conclusions should be made available and properly refer-

enced (Chen et al., 2019; Stodden et al., 2016, 2018). This includes input data, computational workflows (code and environ-

ment), output data and metadata (Konkol et al., 2020; Barba, 2012). Computational models should also be published as digital

research objects alongside other results.540

Providing full access to data, methods, and results supports precise replication, fostering transparency, accountability, and

longevity of research contributions. When data cannot be shared (e.g. due to confidentiality, legal or proprietary constraints),

synthetic datasets can be used as alternatives (Endres et al., 2022; Wimmer and Finger, 2022). However, care must be taken to

avoid biases or misrepresentations of real-world characteristics (Chen et al., 2021).

Publish under a permissive or copyleft license545

Choosing an appropriate open license is essential to enable reuse, modification, and redistribution of scientific outputs. Permis-

sive licenses (e.g., MIT, Apache, BSD) impose minimal restrictions, allowing for broad adoption and integration. In contrast,

copyleft licenses (e.g. GNU GPL, CC BY-SA) require derivative works to maintain the same licensing, preventing proprietiza-

tion.

Ideally, all relevant output (code, data, publications) should be published under explicit open licenses, as default copyright550

laws restrict reuse. For software (c.f. Morin et al., 2012), permissive licenses are generally preferred for interoparability, as

they allow integration with open and proprietary projects.

For data, the Creative Commons licenses like CC0 (public domain dedication) or CC BY (attribution required) are the

most compatible, whereas CC BY-SA (share-alike) enforces copyleft principles that may limit integration with datasets under

different licenses. Managing and tracking licenses throughout a project is thus critical.555

Open-access publishing remains a priority, despite ongoing debates over publishing models (Frank et al., 2023), costs

(Van Noorden, 2013) and predatory publishers (Beall, 2012). Many publishers and journals permit preprint sharing (c.f. Bourne

et al., 2017), although policies vary and may be unclear (Klebel et al., 2020; Massey et al., 2020).

56https://neurips.cc/Conferences/2024/CallForDatasetsBenchmarks
57https://2024.eswc-conferences.org/call-for-contributions-eswc-2024/
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Publish in a machine-readable, well-documented, common and stable format

Choosing widely supported, stable, and future-proof formats is important for reliable data storage (c.f. Use common open data560

formats). Machine-readable formats (i.e., structured data) are crucial to ensure that data can be readily processed by computers

(Fig. 2). Caution is advised with certain file types, including (i) proprietary formats that require specific software (which may

become obsolete or no longer supported), (ii) niche binary formats with limited support, and (iii) compressed formats, which

may risk corruption during decompression. For instance, while the Feather format (version 2) is now stable and suitable for

interoperable, language-agnostic data storage (c.f. Apache Arrow IPC), its legacy version 1 was explicitly not designed for565

long-term use.

3.5.2 Long-term access

Publish in long-preserving manner with a persistent identifier

Data should be published in open repositories with strong institutional support for long preservation58, such as Zenodo59 or

PANGAEA60. These provide persistent digital object identifiers (DOIs) to ensure long-term accessibility, unlike generic URLs.570

Computational code and workflows can be shared via platforms like Code Ocean61, which not only assign DOIs but also ensure

reproducibility by preserving the execution environment (Nature Physics Editorial, 2025).

Adhere to data stewardship & management best practices

Guiding standards like the FAIR (Findability, Accessibility, Interoperability, Reusability) principles (Wilkinson et al., 2016)

and 5-Star Open Data62 provide best practices for (meta)data management and sharing. While these principles outline ideal575

conditions, limited funding and resources in research projects often necessitate prioritization frameworks, such as the FAIR

maturity model (Bahim et al., 2020).

58https://www.re3data.org/
59https://zenodo.org
60https://www.pangaea.de/
61https://codeocean.com
62https://5stardata.info/en/
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4 Conclusions

Reproducibility is a cornerstone of the scientific method, yet upholding it in geoscientific research practice remains challenging.

Geoscientific data analysis thrives on a dynamic balance between creativity and rigor, embodied in the interplay between580

divergent and convergent thinking. Divergent thinking drives exploratory phases, enabling researchers to uncover patterns

and generate innovative insights from complex datasets. Convergent thinking ensures that these insights are distilled into

reproducible workflows and well-documented outputs. Together, these approaches bridge the gap between exploration and

reproducibility, fostering transparency, reliability, and long-term impact.

This work identified adversaries of practical reproducibility and outlined a set of implementation strategies for geoscientific585

workflows to address them. While certain challenges can be tackled directly (e.g., using open-source software and adhering

to guidelines), other aspects require broader community efforts (e.g. domain-specific support and higher scalability for geo-

scientific data). By following these guidelines, even partially, researchers can strengthen the integrity, reliability, robustness of

geoscientific research.

Code and data availability. The code and data used for supplementary analyses are publicly available on GitLab at590

https://gitlab.com/Rexthor/reproducibility-in-geosciences. Additionally, the supplementary material is hosted via GitLab Pages and can be

accessed at https://rexthor.gitlab.io/reproducibility-in-geosciences/.
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Appendix A: Guiding principles and implementation strategies for reproducible geoscientific data analysis

Available at https:// rexthor.gitlab.io/reproducibility-in-geosciences/checklist.html.

This checklist provides a structured framework to support reproducibility in geoscientific data analysis throughout the re-600

search workflow. It offers actionable guidance for scientists at all career stages.

To improve accessibility and usability, action items are prioritized using the MoSCoW method. This suggested prioritization

offers a practical starting point to help researchers identify and focus on critical tasks. However, it is important to note that

these priorities are flexible and may need to be adjusted based on the specific requirements and goals of individual projects.

Designed specifically for projects in the earth and environmental sciences that involve geoscientific data analysis, this check-605

list aims to serve as a practical reference to promote transparency, ensure reliability, and support the long-term usability of

geoscientific research outputs.

Appendix B: Exploratory analysis of data and code availability statements in Copernicus journals

Available at https:// rexthor.gitlab.io/reproducibility-in-geosciences/copernicus_report.html.

This supplement examines reproducibility practices in geosciences, with a focus on data and code availability in scientific610

publications. It provides a short exploratory analysis of data and code availability statements from 25 European Geosciences

Union journals, covering the period from 2016 to 2024.
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