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Abstract. We examine the local stable and unstable manifolds of chaotic attractors and their associated growth rates for

the quantification of (non-)hyperbolicity in low dimensional nonlinear autonomous dissipative models. This is motivated by

a desire for a deeper understanding of transversality and hyperbolicity to inform key challenges to prediction in spatially

extended chaotic systems in geophysical flows. In particular, we apply local measures of chaos to quantify the relationship

between transversality, dimension, and hyperbolicity on the subspaces of the attractors’ invariant manifolds. We consider5

unstable directions and growth rates determined over finite time intervals, specifically those predicated on information over

the past evolution i.e., finite time backwards Lyapunov vectors, and those that include information from both the past and

future i.e., finite time covariant Lyapunov vectors. Our study reveals general properties across a diverse set of chaotic attractors

at short, intermediate and extended forecast horizons associated with the emergence of distinct locally evolving regions of

instability.10

1 Introduction

Lorenz (1963) famously introduced his three-variable nonlinear autonomous dissipative model as a simplification of the Saltz-

man (1962) nonperiodic model of convection. The now famous L63 model is but one of a number of low dimensional attractors,

some also derived by Lorenz himself (Lorenz, 1993), that over the decades have transformed the mathematical study of chaotic

systems. These simple sets of coupled ordinary differential equations describing complex trajectories through phase space15

provide deep insight into many physical phenomena, and in particular the atmosphere - the primary inspiration for Lorenz’s

exploration. Motivated by the perspectives questions posed by Ginelli et al. (2007), our current investigation applies a hierar-

chical decomposition of various chaotic attractors. This approach provides a deeper understanding of predictability in nonlinear

models via knowledge of the local transversality of the invariant manifolds in combination with information on the past evolu-

tion of the unstable phase space trajectories. Specifically, we are interested in how directions of contraction and expansion in20

phase space (hyperbolicity) and the angles between them (transversality) vary according to chosen temporal window lengths,

inform on and characterize the local predictability of the flow.

Lorenz (1965) made a pioneering study of predictability in weather prediction considering the growth of small errors in a low

order atmospheric model showing how these were related to the singular values of the tangent linear propagator. Singular vec-
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tors (SVs) were subsequently employed in operational numerical forecasting centers implemented as empirically determined25

combinations of finite-time right (initial) and left (evolved) SVs (Leutbecher and Palmer, 2008). Frederiksen (1997, 2000)

had earlier proposed finite-time normal modes (FTNMs) of the propagator as norm independent ensemble perturbations in

predictability studies of atmospheric blocking. In particular, Frederiksen (2023) examines the relationships between covariant

Lyapunov vectors (CLVs), orthonormal Lyapunov vectors (OLVs), Floquet vectors, finite-time normal modes (FTNMs) and

SVs in aperiodic systems. He established asymptotic convergence demonstrating that in the long-time limit, when SVs ap-30

proach OLVs, the Oseledec theorem and the relationships between OLVs and CLVs can be used to connect CLVs to FTNMs

in this phase-space. He documents the conditions on the dynamical systems required to establish convergence to the FTNMs,

in terms of ergodicity and boundedness where the FTNM characteristic matrix and propagator is nonsingular. For additional

comprehensive reviews of that development, including applications to ensemble prediction, see Buizza et al. (1993); Molteni

et al. (1996); Kalnay (2003); Quinn et al. (2021); Frederiksen (2023).35

For dissipative chaotic systems i.e., those with at least one positive Lyapunov exponent whose trajectories are bounded

within a hyperbox, and whose attractor occupies zero volume in phase space having non-integer dimension less than the

number of independent variables of the governing system of equations, the initial evolution is governed by linear dynamics,

eλjt expanding in the direction(s) where the Lyapunov exponents λj > 0 and contracting where λj < 0 forming a hyper-

ellipsoid. Periodic rescaling can be employed to maintain this linear growth indefinitely where the singular values define the40

growth of the hyper-ellipsoid over finite time intervals. Given sufficient time, for any randomly chosen initial perturbation the

growth rate converges to the norm independent leading Lyapunov exponent. In high dimensional turbulent flows it is known

that the leading Lyapunov exponent is proportional to the Reynolds number of the flow (Ruelle, 1979a; Fouxon et al., 2021).

In high dimensional chaotic systems the existence of recurrent patterns, such as periodic and other invariant solutions, has

motivated methods to identify reduced representations of the attractor structure and the dynamics on it - the so-called "minimal45

cover" (Crane et al., 2025). Recently Dong et al. (2025) applied recurrence to introduce a local predictability measure in terms

of the uncertainty within the system relative to a given reference state. Local or finite time Lyapunov exponents (FTLEs)

can also be nonlinear if allowed to evolve for sufficient time under the dynamics of the nonlinear system (Ding and Li,

2007; Li and Ding, 2022; Li et al., 2023). This evolution may also be initiated from finite size initial perturbations. Toth

and Kalnay (1993) introduced a simple method for ensemble perturbation generation allowing for finite amplitude - finite time50

perturbations corresponding to stochastically and nonlinearly modified projections of the leading Lyapunov vectors via the

model dynamics - the so called "bred" vectors. This approach was implemented in the National Centers for Environmental

Prediction (NCEP) operational weather prediction system (Toth and Kalnay, 1997). Wang and Bishop (2003) showed the

correspondence between bred vectors and initial forecast perturbations generated using the ensemble transform Kalman filter

(ETKF) approach. Iterated or cyclic variants of bred vectors have proved even more effective as forecast perturbations in55

coupled ocean-atmosphere tropical cyclone prediction (Sandery and O’Kane, 2013) as they project onto the appropriately

chosen stochastically and nonlinearly modified directions of error growth.

Data assimilation (DA) methods fundamentally require information on time dependencies of the background error covari-

ances. In application of ensemble Kalman filters (ETKF variants) to examine strongly coupled DA in a 9 dimensional multiscale
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chaotic attractor, Quinn et al. (2020) applied a measure of the local attractor dimension in terms of a finite-time Kaplan–Yorke60

dimension (dimKY) to prescribe the time-dependent rank of the background covariance matrix constructed by projection onto

FTCLVs. This measure was constructed via a variable number of weighted finite time covariant Lyapunov exponents where

the alignments of the associated FTCLVs were shown to be key to understanding diverse dynamics of disparate regions of

the chaotic attractor despite having very similar and even nearly identical local dimension. They specifically investigated the

ability to track the nonlinear trajectory in each of the respective subsystems of the 9-component "ENSO coupled with an extra-65

tropical atmosphere" of Peña and Kalnay (2004). They showed that, in order to accurately track the trajectory, simply spanning

the subspaces of the respective global unstable and neutral modes is not sufficient at times where the nonlinear dynamics and

intermittent linear error growth along a stable direction combine. This is due to the fact that the unstable subspace is a func-

tion of the underlying trajectory and hence locally defined (Bocquet and Carrassi, 2017). Using observed weather variables

Fraedrich (1986) estimated a dimensional value of between three and six for synoptic atmospheric flows and predictability up70

to 14 days. This approximate range was given further support by the subsequent study of Essex et al. (1987). Using machine

learning methods, Axelsen et al. (2025) derived reduced order chaotic models of coherent synoptic atmospheric flows in the

Southern Hemisphere of similar dimensionality to those reported by Fraedrich (1986) with lifecycles of ≈ 10 days.

For context, as our motivation is to better understand geophysical dynamical systems, these are typically not hyperbolic

(i.e., stable and unstable manifolds are not everywhere transversal), but characterized by the local expanding or contracting75

directions of a set of leading physical modes. CLVs can be defined from the intersection of the subspaces spanned by tangent

linear FTBLEs and their adjoint the FT-forward-LEs (FTFLEs) (Vannitsem, 2017) hence growing in time at the rate and

directions given by the local Lyapunov vectors (Kalnay, 2003). Importantly, CLVs localized in physical space, provide an

intrinsic, hierarchical decomposition of spatiotemporal chaos (Trevisan and Pancotti, 1998; Ginelli et al., 2007) with diverse

applications from the formation and persistence of metastable synoptic weather systems (Axelsen et al., 2025) to chaos in80

semiconductor lasers (Beims and Gallas, 2016).

Based on the aforementioned explorations, we are interested here to characterize how predictability in specific regions of

phase space vary with the time widow for evolution in low dimensional chaotic attractors consisting of between 3 and 9

ODEs. The methods we are employing to calculate FTBLEs, FTCLEs and FTCLVs allow for identification of various unstable

subregions through a detailed analysis of growth rates, transversality, hyperbolicity and dimension however, at the cost of85

restricting our analysis to linear error growth (Nese, 1989; B. Eckhardt and Yao, 1993; Ziehmann et al., 2000).

2 Method

Ruelle (1979b) first described Oseledec splitting for invertible dynamics as the local decomposition of coordinate independent

phase space into covariant directions of the Lyapunov vectors. Ginelli et al. (2007) introduced an algorithm to determine the

set of points in phase space whose directions are invariant under time reversal and covariant with the dynamics arguing that90

these CLVs are coincident with the Oseledec splitting for any invertible dynamical system. A dynamical system is said to be

hyperbolic if its phase space has no homoclinic tangencies; i.e., the stable and unstable manifolds are everywhere transversal
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to each other and that this is connected to hyperbolicity (Bochi and Viana, 2004). The determination of the angle between

any given pair of CLVs allows for testing the degree of hyperbolicity at any point on the attractor where increasingly larger

alignments indicates decreasing degrees of hyperbolicity and visa-versa. Many methods for calculating Lyapunov exponents are95

available, including recent machine learning approaches (Ayers et al., 2023). Here we use a QR decomposition to calculate the

finite time backwards Lyapunov exponents (FTBLEs) (Dieci et al., 1997; Van Vleck, 2010; Dieci et al., 2011). The computation

of FTLEs over a finite window of time allows a time-dependent measure of the local unstable, neutral, and stable exponents of

the evolving system which approach their asymptotic values as the window length increases.

Of interest here are the local dynamics of the respective chaotic attractors as measured in terms of their finite-time growth100

rates, hyperbolic splitting on the attractor tangent space (local manifold) measured in terms of alignment of the associated local

Lyapunov vectors and dimensionality via the local Kaplan-Yorke dimension. The FTBLEs represent forward evolution over the

past period defined by the chosen time window hence directly informing on how predictability varies on the attractor (Arbanel

et al., 1991; Yoden and Nomura, 1993). Applying the QR decomposition over finite time windows optimizes mixed initial and

evolved singular vectors such that they are no longer infinitesimal but are also of finite size where the chosen window enables105

exploration of the attractors multiscale nature. Of primary interest here is the application of methods for calculating covariant

Lyapunov vectors to measure the degree of hyperbolicity in the local dynamics of the chaotic system. Quinn et al. (2020)

showed that very different degrees of hyperbolicity can be manifest at times where nearly identical values of the local Kaplan-

Yorke dimension occur, and that the local dimension is insufficient to characterize the finite time dynamics of the particular

subspaces occuring on chaotic attractors for given temporal windows. Axelsen et al. (2025) introduced an average measure of110

hyperbolicity in terms of the mean alignment of FTCLVs at any given point in time however, here we are interested in local

hyperbolic subspaces on the attractor and so we calculate these metrics at each point on the phase space trajectory.

As CLVs only truly exist in the asymptotic limit, FTCLVs are more correctly described as mixed initial and evolved singular

vectors over some time window given a set of tangent linear propagators. Specifically, Oseledets (1968) theorem relates the

Lyapunov exponents λi and a non-unique set of vectors ϕ via the forward and backward mapping of the tangent dynamics115

(cocycle) A(x(t), τ) as

λi = lim
τ→∞

1
τ

log∥A(x(t), τ)ϕ∥ ⇐⇒ ϕ ∈ Φi(x(t))
Φi+1(x(t))

For the systems considered here, A(x(t), τ) = expτJ f(x(t)) where J is the Jacobian of the right-hand side of any given

systems of ODEs considered. For any given CLV pair, we define their alignment as θ(i,j)∈N = |ϕi ·ϕj |/(∥ϕi∥ · ∥ϕj∥). Corre-

spondingly, θi,j = ∥cos(Θi,j)∥ given Θi,j is the angle between the ith & jth CLV, hence alignment is bounded between [0,1].120

Correspondingly for θi,j = 0 the CLVs are orthogonal, and for θi,j = 1 completely aligned.

To calculate the CLVs we employ Algorithm 2.2 of Froyland et al. (2013) described in table 1. Following the algorithm,

matrix cocycles are constructed and a singular value decomposition performed on each, after which the left singular vectors are

sorted in descending order based on their singular values. The algorithm then performs a push forward operation over a defined

window using the cocycle matrices then reorthogonalizing and repeating until we have a complete set of FTCLVs at a given125

point in time. For simplicity, we have used a common window δt for calculating the FTBLEs (window); FTCLEs (MGR); and
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for the push forward cocyle window (M ) used for calculating the CLVs i.e., δt = window = MGR = M . For a more detailed

discussion of the numerical algorithm see Froyland et al. (2013) and Appendix B of Axelsen et al. (2025). Throughout we use

an orthogonalization step of 1.

Table 1. Algorithm 2.2 from Froyland et al. (2013) - Approximate the set of N CLVs at time tj

• Construct tangent linear propagators (matrix cocycles) A(xi+m,0) for every m ∈ [−N,. . . ,N ]

• Compute the eigenvectors ei−N
j of A(xi−N ,N)∗A(xi−N ,N) where A(xi−N ,N) =A(xi,0) · . . . · A(xi−N ,0)

∗ denotes adjoint.

• Push forward by multiplication of matrix cocycle, ϕi
j =A(xi−N ,N)ei−N

j .

• For each j, reorthogonalize ϕi
j with subspace spanned by eigenvectors ei−n

k for k = 1, . . . , j− 1 of A(xi−n,N)∗A(xi−n,N)

every n time steps.

• ϕi
j approximates the jth largest CLV at time t− ti.

We ascertain an approximation to the local attractor dimension based on either the FTBLEs or FTCLEs via the Kaplan-Yorke130

dimension (Frederickson et al., 1983; Kaplan and Yorke, 2006)

dimKY := j +
∑j

i=1 λi

|λj+1|
, (1)

where j is the largest leading eigenvector such that
∑j

i=1 λi ≥ 0 and
∑j+1

i=1 λi < 0.

3 Chaotic attractors

In the results to follow, ODEs, parameters, initial condition and integration timesteps for all chaotic attractors are described in135

tables 2 & 3. The associated FTBLEs and FTCLEs for given cocycle windows are shown in tables 4 & 5.
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Attractor ODEs parameters initial conditions timestep

L63 Lorenz (1963)

ẋ = σ(y−x)

ẏ = ρx− y−xz

ż = xy−βz

ρ = 28.0

σ = 10.0

β = 8.0/3.0

x(0) = 5.0

y(0) = 1.0

z(0) = 5.0

△t = 0.01

Dradas Ahmad et al. (2024)

ẋ = y−αx+ βyz

ẏ = γy + z(1−x)

ż = δxy− ϵz

α = 3.0

β = 2.7

γ = 1.7

δ = 2.0

ϵ = 9.0

x(0) =−5.0

y(0) =−5.0

z(0) =−15.0

△t = 0.05

Fourwing Qi et al. (2009)

ẋ = αx+ γyz

ẏ = x(β− z) + δy

ż = ϵz + ρxy

α = 0.2

β = 4.0

γ = 8.0

δ = 1.0

x(0) = 0.1

y(0) = 0.1

z(0) = 0.1

△t = 0.01

Hadley Sprott (2003)

ẋ =−y2− z2−α(x− γ)

ẏ = xy−βxz− y + δ

ż = βxy + z(x− 1)

α = 0.2

β =−0.01

γ = 1.0

δ =−0.4

ϵ =−1.0

ρ =−1.0

x(0) = 1.0

y(0) = 1.0

z(0) = 1.0

△t = 0.01

Table 2. Attractor definitions used in all subsequent figures and analyses.
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Attractor ODEs parameters initial conditions timestep

Threescroll Li (2008)

ẋ = α(y−x) + δxz

ẏ = β(x− z) + ρy

ż = γz + x(y− ϵx)

α = 32.48

β = 45.84

γ = 1.18

δ = 0.13

ϵ = 0.57

ρ = 14.7

x(0) = 0.1

y(0) = 1.0

z(0) =−0.1

△t = 0.001

Caputo Yan et al. (2022)

ẋ = αy

ẏ =−βx+ γyz

ż = ρ− δy2 + u2

ẇ = ϵy2−w

u̇ = z

α = 3.0

β = 8.0

γ = 7.0

δ = 6.0

ϵ = 2.0

ρ = 3.0

x(0) = 1.0

y(0) = 0.0

z(0) = 0.0

w(0) = 0.0

u(0) = 0.0

△t = 0.01

Penakalnay2004 Peña and Kalnay (2004)

ẋe = σ(ye−xe)− ce(Sxt− k1)

ẏe = ρxe− ye−xeze + ce(Syt + k1)

że = xeye−βze

ẋt = σ(yt−xt)− c(SX + k2)− ce(Sxe + k1)

ẏt = ρxt− yt−xtzt + c(SY + k2) + ce(Sye + k1)

żt = xtyt−βzt + czZ

Ẋ = τσ(Y −X)− c(xt + k2)

Ẏ = τ(ρX −Y −SXZ) + c(yt + k2)

Ż = τ(SXY −βZ)− czzt

ρ = 28.0

σ = 10.0

β = 8.0/3.0

S = 1.0

τ = 0.1

c = 1.0

cz = 1.0

ce = 0.08

k1 = 10.0

k2 =−11.0

xe(0) =−5.0

ye(0) =−5.0

ze(0) = 15.0

xt(0) =−5.0

yt(0) =−5.0

zt(0) = 15.0

X(0) =−5.0

Y (0) =−5.0

Z(0) = 15.0

△t = 0.005

Table 3. Attractor definitions used in all subsequent figures and analyses.
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Figure 1 shows FTBLEs and corresponding instantaneous dimKY values for the Lorenz ‘butterfly attractor’ (Lorenz (1963):

L63) for windows δt = 5,25,50,100,200. Figure 2 shows FTCLEs and corresponding dimKY and in figure 3 we depict the

alignment θi,j between the FTCLV pairs for each of the five chosen windows. The differences between FTBLEs and FTCLEs

are immediately apparent most notably in the second exponent. In general, it is noticeable that where FTBLE1 is unstable,140

FTBLE2 is largely stable. FTBLE3 is always stable with the largest absolute values occuring where FTBLE1 is unstable. For

cocyle windows δt = 5,25,50, FTBLE1 is largely unstable in the region of the saddle and on a restricted region of the inner

orbits of each wing of the attractor. As the window is increased to δt = 100, unstable values are compressed to regions near

the saddle and between the fast and slow orbits of the attractor wings. For windows δt > 100 FTBLE2 assumes larger unstable

values on the inner and outer loops. As window length increases the FTBLE3 values become increasingly less stable. The figure145

1 dimKY plots reflect the combined contributions of the FTBLEs to the attractor dimension. As forecast window increases the

stable subregions evident at δt = 5,25,&50 shrink where upon for δt >= 100 the attractor is essentially unstable everywhere

as expected. As δt→∞, dimKY is seen to approach its asymptotic value at all points on the attractor.

The growth rate of FTCLE1 mirrors that of FTBLE1, however the stable subregions evident for δt = 5 are considerably

reduced in comparison. Further, we see (figure 2) FTCLE2 is stable and increasingly so in the outer loops as δt→ 100.150

However, at δt = 200 the extent of the most stable regions of FTCLE2 reduces by ≈ 55%. The FTCLE-based dimKY largely

reflects the subregion structure of FTCLE1 values on the attractor. In general, the mean values of the FTBLEs do not change

appreciably however, those for the FTCLEs are highly variable. Considering θi,j (figure 3) we see the region of very low

dimension evident in dimKY for δt = 5 (figure 2) corresponds very closely to the highly localized region of alignment evident

between θ1,2, otherwise there is minimal to no alignment elsewhere on the attractor. At δt = 25 alignment near the same region155

becomes very low forming a locally hyperbolic subregion in addition to one near the saddle. As the window δt > 25 increases,

θ1,2 alignment becomes ubiquitous in all regions away from the saddle. For δt = 5, θ1,3 and θ2,3 exhibit values > 0.5 only

on the same two subregions of the outer orbits of the attractor. For δt = 100,200, θ1,3 and θ2,3 values <= 0.5 correspond to

subregions on the attractor where dimKY > 2.0 (figure 2). Hence at δt = 200 it appears that regions with large FTCLE1 values

i.e., > 0.7, are permissible due to the correspondingly low alignments θ1,3 and θ2,3 compensating the high alignments θ1,2.160

Next we consider the three wing Dradas attractor. Dradas FTBLEs & FTCLEs are shown in figures 4 & 5 for δt = 5,50,&400

respectively. Both FTBLEs & FTCLE growth rates show very similar subregions for each of the considered values of δt.

For δt = 5 FTBLE1 & FTCLE1 two distinct unstable subregions are visible on two of the attractor wings while the third

is everywhere stable. FTBLE2 & FTCLE2 have similar corresponding regional structures although the unstable FTCLE2

subregions are more restricted relative to FTBLE2. FTBLE3 & FTCLE3 are stable everywhere on the attractor with mean165

values many times larger than that of the leading exponent signifying a highly extended system. At δt = 50 the values of the

leading exponent becomes unstable on the inner orbits of the attractor as those of the second exponent become stable. As

δ→∞ all FTBLE & FTCLE values at any given point on the attractor approach their mean asymptotic value. While the mean

FTBLE values are relatively unchanged as δt→∞, the absolute values of FTCLEs2 & 3 reduce as they become increasingly

less stable and the system less extended. Despite this the dimKY values (figure 5) on the attractor are very similar regardless170

of being calculated using FTBLEs or FTCLEs. The Dradas alignments (figure 6) are substantially more complicated and
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Figure 1. L63: FTBLEs 1, 2, & 3 values at each point on the attractor in x-y-z orientation for windows δt = 5,25,50,100,200. The far right

column displays corresponding dimKY values based on the instantaneous FTBLE values.
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Figure 2. L63: As for figure 1 but for FTCLEs.
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Figure 3. L63: θi,j pairs in x-y-z orientation. Values of 1 and 0 respectively indicate complete alignment or exact orthogonality.
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Figure 4. Dradas: FTBLEs 1, 2, & 3 values at each point on the attractor in x-y-z orientation for windows δt = 5,50,400. The far right

column displays corresponding dimKY values based on the instantaneous FTBLE values.

less easily interpreted with respect to those observed for L63. However, for δt = 5 we can recognize regions where all three

FTCLVs are aligned such as the lower wing of the attractor, corresponding to stable subregions on the attractor with dimKY

values approaching zero. At δt = 50 we see these subregions contract to distinct bands on the lobes after which the alignments

θ1,3 and θ2,3 respectively break down becoming diffuse and unstructured at δt = 400.175

The fourwing (Qi et al., 2009; Wang et al., 2010) and Hadley (Sprott, 2003) attractors for δt = 5 are both hyperbolic at all

points on the attractor with no stable subregions evident i.e., dimKY > 0 everywhere (figures 7 & 8). Both attractors show

distinct FTCLE2 subregions of either growth or decay whereas those of the leading FTCLE1 are everywhere unstable and for

the FTCLE3 everywhere stable. At δt = 100 fourwing θ1,3 amd θ2,3 alignments occur in the same localized outer regions of

the attractor wings with the largest alignment values for θ1,2 (figure 7). Fourwing dimKY values resemble those of FTCLE2180

being largest where FTCLE1&2 are coincidentally unstable and smallest where FTCLE2&3 are stable. Similar relationships
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Figure 5. Dradas: As for figure 4 but for FTCLEs.

between the growth rates and vector alignments occur for the Hadley attractor (figure 8) with one noticeable difference. For

δt = 100 we see the leading FTCLE1 indicate distinct regions of contraction and θi,j values correspondingly indicative of

significant alignment between all vectors. In this case dimKY > 0.5 occur over a very restricted region where FTCLE1 growth

rates are >= 0.75. FTCLE2 becomes everywhere stable with mean value approaching that of FTCLE3 hence determining the185

generally low dimKY values.

The threescroll attractor (figure 9) exhibits similar characteristics to those of Hadley and fourwing. At δt = 5 the system

exhibits low alignment values everywhere with nearly uniform growth rates at points on the attractor. FTCLEs1 & 2 are every-

where unstable and FTCLE3 stable. This is reflected in dimKY at points on the attractor are close to the average dimKY ≈ 2.5.

At δt = 50 mean values indicate contraction on most of the attractor as the ratio of FTCLE1/FTCLE3≈ 0.74 at δt = 5190

changes significantly to FTCLE1/FTCLE3≈ 0.34 as δt→ 50. Hence the system becomes more extended with regions of
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Figure 6. Dradas: θi,j pair values in x-y-z orientation with elevation angle 30◦ and azimuthal angle 0◦. Values of 1 and 0 respectively

indicate complete alignment or exact orthogonality.
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Table 4. Attractor FTBLEs and growth rates

L63 Dradas Fourwing Hadley

δt FTBLE FTCLE FTBLE FTCLE FTBLE FTCLE FTBLE FTCLE

5

0.9024

−0.0032

−0.1457

4.0870

−2.2811

−15.6224

0.5532

−1.4719

−10.5044

1.2021

−1.9427

−8.6167

0.0680

−0.0014

−1.2694

0.2985

−0.0872

−1.4005

0.0016

−0.0225

−0.0227

2.2922

0.0556

−2.4052

25

0.9022

−0.0023

−0.1457

2.7985

−2.4165

−14.8132

50

0.9015

−0.0022

−0.1457

1.7964

−2.3656

−14.5736

0.5532

−1.4721

−10.5044

0.9469

−1.3270

−7.9628

0.0013

−0.0225

−0.0273

1.1120

−0.7318

−2.0670

100

0.8998

−0.0013

−0.1465

0.8028

−1.7310

−14.3193

0.0676

0.0014

−1.2689

0.2226

−0.1270

−1.3837

0.0010

−0.0230

−0.0267

0.0269

−1.2879

−1.6414

200

0.8964

−0.0050

−0.1456

0.8870

−0.9483

−14.1702

400

0.5538

−1.4718

−10.5047

0.9456

−0.7541

−0.7756

high dimKY occurring where alignments θ1,2, and to a lesser extent θ1,3, are < 0.5. The FTBLEs do not display this behavior

with relatively small variations in mean values as δt is increased.

The five variable Caputo and nine variable PenaKalnay2004 attractors display very complicated relationships between align-

ment, growth rates and dimKY . The Caputo attractor is hardest to visualize as, unlike PenaKalnay2004 which is comprised195

of three 3-component attractors coupled, it cannot be reduced to smaller coupled sub-models. As in the case for figure 9, in

figure 10 we have chosen to visualize alignment and dimKY in 2D on particular axes. At δt = 5 the attractor alignments are

approaching zero everywhere except for highly localized regions where θ1,2 (x-y axis); θ3,4 (w-z axes); and θ4,5 (u-w axes)

all approach 1.0. The relationship between alignment and dimKY is less obvious than was observed in the case of the three-

component systems, although we can recognize the attractor dimension is higher where dimKY is large and the sum over the200

alignments small. In that sense, the relationship between transversality, hyperbolicity and local attractor dimension appears to

hold as the dimension of the ODE system is increased.

The PenaKalnay2004 attractor (Peña and Kalnay, 2004) has been employed previously in data assimilation studies by

Yoshida and Kalnay (2018) and Quinn et al. (2020). The later study approximated the asymptotic Backwards Lyapunov expo-

nents as averages over 400 time units with a timestep of 0.01 and orthogonalization step of 0.25, here shown as the bracketed205

values in table 5. Quinn et al. (2020) and the earlier study of Vannitsem and Lucarini (2016), both found higher variability in the

FTCLEs corresponding to the asymptotic neutral or near-zero valued modes. We find that increased variability of the FTCLEs
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Figure 7. Fourwing: θi,j values in x-y-z orientation with elevation angle 30◦ and azimuthal angle 0◦. FTCLEs 1, 2, & 3 and dimKY for

δt = 5,100.

16

https://doi.org/10.5194/egusphere-2025-5208
Preprint. Discussion started: 30 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 8. Hadley: FTCLEs, θi,j and dimKY on the three dimensional projection of the attractor shown at δt = 5,100.
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Figure 9. Threescroll: FTCLEs and dimKY on the three dimensional projection of the attractor; θi,j pairs on chosen axes; shown at δt =

5,50.
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Figure 10. Caputo: dimKY for given θi,j pairs on chosen axes.
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Table 5. Attractor FTBLEs and growth rates. Bracketed values indicate approximate asymptotic backwards Lyaponov Exponent (LE) values

(δt = 400) previously reported by Quinn et al. (2020)

Threescroll Caputo Penakalnay2004

δt FTBLE FTCLE FTBLE FTCLE FTBLE FTCLE

5

0.0607

−0.0014

−0.5065

34.0406

5.7347

−45.9772

0.01876

0.0022

−0.0033

−0.0564

−0.9607

3.7769

0.1727

−0.4129

−0.9096

−4.1289

0.9059

0.2848

−0.0001

−0.0093

−0.3861

−0.7855

−1.7706

−12.3690

−14.5700

5.0825

2.2879

0.7411

−0.4965

−1.8623

−2.4140

−3.3905

−12.6146

−15.7245

50

0.0568

−0.0021

−0.4931

5.2889

−7.6030

−15.5595

0.1741

0.0013

−0.0036

−0.0564

−0.9609

0.1297

−0.6292

−1.4028

−1.6979

−2.3770

0.9075

0.2861

0.0006

−0.0088

−0.3856

−0.7836

−1.7719

−12.3722

−14.7200

1.1619

−0.3507

−0.7403

−1.0320

−1.9801

−2.7733

−3.5542

−13.2860

−15.1305

100

0.9077 (0.9071)

0.2881 (0.2670)

0.0029 (−0.0056)

−0.0081 (−0.0060)

−0.3843 (−0.4326)

−0.7826 (−0.7706)

−1.7734 (−1.8263)

−12.3753 (−12.2691)

−14.5751 (−14.5640)

0.3869

−0.7620

−0.6998

−0.9757

−1.5272

−2.3517

−3.3014

−12.7425

−14.5800

relative to the FTBLEs is a general property of all exponents as evident from the values in tables 4 & 5. While choosing to use

the FTCLEs rather than the FTBLEs does lead to differences in the structure of the local Kaplan–Yorke dimension stable and

unstable subregions, these differences are most evident in the relative magnitudes of the leading unstable and most stable expo-210

nents, and tend to diminish as δt→∞ as in the limit they approach the asymptotic LV values. Shown in the upper three rows

of figure 11 dimKY values calculated from FTCLEs are projected onto each of the three subsystems of the PenaKalnay2004

model. Here we see regions of high dimension contracting to the region of the saddle node (xe,ye,ze) and associated regions

where alignments are generally small. The corresponding dimKY values based on the FTBLEs at δt = 100 are shown in last
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row in figure 11. Differences between FTBLE and FTCLE dimKY values at δt = 100 are largely in terms of the magnitude of215

the dimension with the most unstable regions occuring in co-located subregions i.e., differences correspond to a constant scale

factor.

4 Discussion and conclusions

Takeuchi et al. (2011) provide a framework for understanding hyperbolic decoupling of the tangent space into subspaces in

high dimensional spatially extended dissipative systems in which the entangled “physical” modes are separated from the rapidly220

decaying stable modes. For prediction studies one is typically most concerned with the trajectory of the entangled modes on

the associated finite-dimensional tangent space of the phase-space dynamics. This slow manifold is often identified in terms

of the spectral gap in the eigenvalues. From the geometrical viewpoint, where the system is reducible to the evolution of a

few degrees of freedom, it follows that the flow exists in a low-dimensional region of phase space, parametrized by a finite

number of degrees of freedom. For geophysical fluids such as the atmosphere, one of the greatest challenges is to identify the225

emergence of a low-dimensional manifold in the local spatio-temporal dynamics of high dimensional flows. Such slow-fast

hydrodynamic systems are paradigmatic examples with deep roots in statistical physics (Kogelbauer and Karlin, 2024).

Motivated by the work of Lorenz (1993) and Fraedrich (1986), as well as the questions posed by Ginelli et al. (2007),

we have investigated hyperbolicity via the relationship between fluctuations of the Lyapunov exponents, transversality of their

associated dynamical vectors, and dimensionality. We are further motivated by the recent study of mid-latitude persistent events230

in the Southern Hemisphere mid-troposphere by Axelsen et al. (2025). They employed an aggregated measure of alignment

to indicate hyperbolic splitting of reduced local tangent space dynamics occurring at geographic locations where atmospheric

blocking is known to preferentially occur (O’Kane et al., 2016). Here we undertook a more detailed examination of the local

dynamics of a diverse set of chaotic attractors, some with characteristics broadly applicable to geophysical flows, to ascertain

if commonalities exist.235

Our general findings are:

– over short widows δt <= 5 large hyperbolic subregions are present - sometimes over the entire attractor - where align-

ment between the leading dynamical vectors is very weak indicating a globally nearly hyperbolic system. In such cases

the value of the leading exponent often solely determines the unstable subspaces indicated by the local attractor dimen-

sion. Additional highly unstable subspace regions distinct from those determined by the leading exponent, are generally240

associated with subregions where the near neutral exponents i.e., exponents whose asymptotic average values are near to

zero, become locally unstable. The ratio of the absolute mean value of the leading unstable and the most stable FTCLEs

is typically minimized i.e., min{ FTCLE1st

FTCLElast } for these short windows, an indication the system is at its most extended.

– over intermediate widows 5 < δt < 100 the aforementioned unstable regions are observed to contract - often to those

associated with a saddle however, absolute finite time exponent values in these reduced subspaces increase. The mean245

growth rates associated with the most stable exponents vary across the respective cases with some, like L63, remaining
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Figure 11. PenaKalnay2004: dimKY at δt = 5,50,100 on each of the three component subsystems (extratropical: xe,ye,ze); (tropical:

xt,yt,zt); & (ocean: X,Y,Z).

22

https://doi.org/10.5194/egusphere-2025-5208
Preprint. Discussion started: 30 October 2025
c© Author(s) 2025. CC BY 4.0 License.



largely unchanged whereas others, like threescroll, becoming inceasingly less stable as δt increases. That said, the

ratio of the absolute mean values of the most unstable to most stable exponents is most often observed to increase

with window length. For the higher dimensional attractors Caputo and Penakalnay2004, very complex alignments are

manifest such that transversality between various vectors and exponent growth rates are complicated. In such cases the250

attractor dimension, which is an aggregated value of the exponents, is a more readily interpretable indicator of regions

of (non)-hyperbolicity. The most complicated dynamics are observed to occur over these intermediate time windows.

– over extended widows δt >= 100 the unstable subregion of the near neutral exponents evident at intermediate and

shorter times tend to become stable on most of the attractor such that only the leading exponent determines regions

where the unstable subspaces occur. As δt→∞ the values of a given exponent approach the mean asymptotic value at255

all points on the attractor and the subspace regions evident over shorter finite time windows merge and disappear. This

is most easily seen for Dradas, the attractor with the most rapid convergence of the FTBLEs and FTCLEs to their mean

asymptotic LE value.

Ginelli et al. (2007) proposed that access to the local directions of stable and unstable manifolds and the ready characteriza-

tion and quantification of (non-)hyperbolicity affords a means to better model the spatial structure of the dynamics in extended260

systems. In particular, they note the key challenges to quantification of local measures of chaos and hierarchical modal de-

compositions of spatiotemporal chaos as well as the potential applications to prediction in nonlinear models. In recent years

these ideas, including knowledge of the local transversality of invariant manifolds, have indeed been combined with linear

and nonlinear generalizations of dynamical vectors using information on the past evolution e.g., SVs, FTBLVs, BVs, etc., to

initialize optimal forecast perturbations along the relevant unstable directions determining error growth. Our study reveals that,265

even given the complexities of the local dynamics of low dimensional chaotic attractors associated with the manifestation of

diverse unstable subspaces, there are general properties identifiable in terms of the relationship between transversality and local

measures of chaos. We also note that the changing local hyperbolic structure can provide additional information about "nearby"

(in parameter space) bifurcations potentially providing "early warning" indicators for tipping points, and that this is an area for

further investigation.270

Code and data availability. https://github.com/oka005/attractor/archive/refs/tags/v1.0.0.tar.gz
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