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S1. Flow reactor setup

A schematic of the flow reactor setup used in n-aldehyde OH oxidation reactions is shown in
Figure S1. All the reactant gas supply lines were connected to the reactor via PTFE tubing and
Swagelok fittings. The gas flows were controlled by Alicat mass flow controllers (MFC). The
mass spectrometer chemical ionization inlet flow (8-10 slpm) and the volume of the reactor
defines the reaction time of the gas mixture inside the reactor. A 100 cm long borosilicate flow
reactor with 4.7 cm inner diameter (i.d.) was used for long reaction time experiments while a
quartz flow reactor (length: 100 cm, and i.d.: 2.2 cm) was used for the short reaction time
experiments. Short reaction time experiments were achieved by providing the precursor VOC
flow via a movable injector tube within the reactor and adjusting the distance of the injector tip
with respect to the mass spectrometer orifice. The deuterated water (D-O) line and the NO line
were connected separately only during the hydrogen to deuterium (H/D) exchange experiment

and the oxidation experiment in presence of NO, respectively.
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Figure S1. A nitrate (NOs") based chemical ionization mass spectrometer coupled to ambient
pressure flow reactor. TME = tetramethylethylene (CsHi12). The oxidant OH radical was

produced in situ by TME + O3 reaction.
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The mass spectrometric data processing, including averaging, mass axis calibration, and peak
integration, was done using the tofTools v6.03 package for MATLAB. The signal intensities of
all the detected species were normalized using the following expression:

[X: * NO5]

S= [NO;]+[HNOsNO; ]+ [(HNO3),NO;]

where [X; * NO3] represents the intensity of an individual species corresponding to it

mass/charge.

S2. Chemicals

High purity Nitrogen gas (5.0 grade) was obtained from Woikoski and Linde Oy. The NO gas
cylinder (100 ppm in N2) was obtained from Advanced Speciality gases. Deuterium oxide (99.9
atom % D) was obtained from Sigma Aldrich and was transferred to the flow reactor by
bubbling nitrogen gas through a liquid DO reservoir. The following chemicals were used to
make individual gas cylinders diluted in N2: Tetramethylethylene (98%), hexanal (98%),
heptanal (Supelco, purity > 97.0%), and octanal (99%) all from Sigma Aldrich while pentanal
(97%) was obtained from Acros Organics. All the chemicals were used without further

purification.

S3. n-Heptanal ozonolysis background

In the OH initiated oxidation experiment of n-heptanal, we used exceptionally low precursor
concentrations compared to other studied n-aldehydes (see Table 1 in the main manuscript).
This was done to reduce the n-heptanal ozonolysis background signals originating from
unknown contaminants from the heptanal cylinder. The ozonolysis background signals with
high and low precursor conditions are shown in Figure S2. Under low precursor condition, we
avoid the interference of these background signals with the heptanal OH oxidation products.
Figure S2 clearly shows that the heptanal ozonolysis background signals are distinct from the
heptanal OH oxidation product signals, C7H1204 (m/z 222), C7H12-1405 (M/z 238-240), C7H12-
1406 (M/z 254-256), C7H12-1407 (M/z 270-272), C7H12-1408 (M/z 286-288), C14H2609 (M/z
400), C14H26010 (M/z 416), and C14H26011 (M/z 432) that are shown in Figure 2 in the main

manuscript.
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Figure S2. Heptanal + ozone background spectra measured with different reactant
concentrations: high (a), and low (b). The unidentified products likely originate from a heptanal
stabilizer added by the chemical supplier. Note: Heptanal oxidation experiment initiated by OH
radicals (see Figure 2 in the main manuscript) was conducted using the same concentrations of

heptanal and ozone as condition (b) and with the addition of TME (as the source of OH).

S4. Autoxidation an aldehyde — hexanal

The oxidation reaction of an aldehyde by OH radical is initiated predominantly by the
abstraction of the aldehydic hydrogen on C1. The H abstraction can also take place on other
carbons (e.g., C4) distant from the aldehydic moiety (see Figure S3 below adapted from Barua
et al. (2023)). Both reaction channels produce a carbon centred radical that can add molecular
oxygen atoms and form acyl (or alkyl) peroxy radicals (RC(O)O2 or RO2) which can
subsequently autoxidize to form highly oxygenated organic molecules (HOMs). Figure S3
shows that the autoxidation of hexanal along C1 and C4 channels with initial branching of 86
% and 8 %, respectively, produce the same Os RO, (A61) as the dominant reaction
intermediate. The A61 radical slowly turns over to O7 RO, (A61a) via subsequent reactions
along the autoxidation path. The other n-aldehydes (e.g., pentanal-octanal) are likely to
undergo similar autoxidation mechanism and form HOMs we observed experimentally as

shown in the main manuscript.
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Figure S3. Autoxidation mechanism of hexanal + OH reaction initiated by H atom abstraction
from the aldehydic carbon (a) and from a non-aldehydic carbon (b) forming O7 HOM shown
by Barua et al. (2023). Along the dominant aldehydic H abstraction channel (branching ratio
86 %), the formation of Os product (A61) is very fast and the subsequent H-shift reaction is
relatively slower. The non-aldehydic H abstraction channel (branching ratio 8 %) shows a
slower production of Os product (D52) compared to A61, which subsequently undergoes a fast

H-shift reaction.
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S5. Autoxidation forming Og HOM in n-aldehydes

With the increase of carbon chain length in the studied n-aldehyde oxidation experiments, we
observed the formation of more oxygenated products with up to a Og monomeric HOM in the
case of octanal. In Figure S4, the autoxidation mechanism originated from hexanal work (see
Figure S3 above) is extended to HOM up to 9 oxygen atoms. The autoxidation generated radical
intermediates (CnH2n-107,9) can also undergo chain termination reactions forming closed-shell
products via OH loss, via Russell mechanism forming an alcohol and a carbonyl species (red
arrows in Figure S4), and H abstraction from HO> radicals (RO2 + HO2 — ROOH + O>).
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Figure S4. Autoxidation mechanism of n-aldehyde + OH reaction extended from Figure S3
showing the formation of HOM up to Og (green arrow) along with reaction chain termination
products (red arrows). RM = Russell mechanism (RO2 + R'O2 — ROH + R_4C=0 + O).

S6. Bimolecular reaction products

This section describes potential reaction mechanisms leading to the identified products which
involve one ROz bimolecular reaction step forming alkoxy radical (RO) intermediates (RO +
RO, — 2 RO + O2). While considering H-shift reactions in the alkoxy radicals (CnH2n-104),
progressively longer H-shift span (from 1,4 H-shift in CsHeO4 to 1,6 H-shift in CgH1504, see
Figures S5-S8) becomes more relevant (Vereecken and Peeters, 2010) as the carbon chain
length of the precursor aldehyde increases. The alkoxy radical can also undergo H-scrambling
reaction with the peroxy acid group (Yang et al., 2024) forming hydroxyl acylperoxy radical
(see Figure S9 below). These mechanisms show the most probable formation paths of dominant

5



102  Oe alkyl peroxy radicals (CnH2n-106) we observed in the studied Cs—Cg n-aldehyde oxidation
103  during short reaction time experiments (see Figure 1 in the main manuscript). In the case of
104  heptanal and octanal in Figures S7-S8, we show the reaction chain propagation forming CnHan.
105 10g radicals (green arrows) that we observed experimentally (see Figure 2 in the main
106  manuscript). Besides, the likely formation of the closed-shell Os and Os products originating
107  from CnH2n-106 radicals are also shown in Figures S5-S9. In the molecular structures, the labile
108  hydrogen containing groups are marked in light-brown shapes. The structures associated with
109 the proposed mechanisms are in agreement with the hydrogen to deuterium (H to D) exchange

110  experiments (see Figure 6 in the main manuscript).
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112 Figure S5. Formation of CsHs-1006 products in pentanal + OH reaction likely involve Cs-A61
113  (CsHqOs) peroxy radical undergoing bimolecular reactions with other peroxy radicals (RO2).
114 The CsHyOs (nominal mass 227) radical likely undergo Russell mechanism (RM: ROz + R'O;
115 — ROH + R_4C=0 + Oy) forming closed-shell Os products.
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117  Figure S6. Formation of CeH10-1206 products in hexanal + OH reaction likely involve A61
118  (CeH110s) peroxy radical undergoing bimolecular reactions with other peroxy radicals (RO2).
119  The CsH1106 (nominal mass 241) radical likely undergo Russell mechanism (RM: RO, + R'O2
120 — ROH + R_H4C=0 + O) forming closed-shell Os products.
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Figure S7. Formation of C7H12-1406 products in heptanal + OH reaction likely involve C7-A61
(C7H130s) peroxy radical undergoing bimolecular reactions with other peroxy radicals (RO>).
The C7H1306 (nominal mass 255) radical can propagate autoxidation forming C;H130s
(nominal mass 287) radical (green arrow). It can also undergo Russell mechanism (RM: RO-
+ R'O2 — ROH + R"_4C=0 + O) forming closed-shell Os products.
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Figure S8. Formation of CgH14-160s products in octanal + OH reaction likely involve Cg-A61
(CeH1505) peroxy radical undergoing bimolecular reactions with other peroxy radicals (RO>).
The CgHi506 (nominal mass 269) radical can propagate autoxidation forming CgHisOs
(nominal mass 301) radical (green arrow). It can also undergo Russell mechanism (RM: RO;
+ R'O2 —» ROH + R"_4C=0 + O) forming closed-shell Os products.
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Figure S9. Formation of CnH2n-106 peroxy radical in n-aldehyde + OH reaction involving H-
scrambling reaction of an alkoxy radical intermediate CnH2n-104 originating from Cn-A61
(CnH2n-10s) peroxy radical via bimolecular reactions with other peroxy radicals (RO2). The Og
RO: radical can propagate autoxidation via isomerization channel (green arrow). It can also
react with HO2 and undergo Russell mechanism (RM: RO; + R'O2 — ROH + R'_4C=0 + Oy)

forming closed-shell Os and Os products, respectively.

S7. HOM accretion products (C2nHan-209-11)

In the OH initiated n-aldehyde oxidation experiments, we observed the formation of HOM
accretion products according to a general reaction ROz + R'O2, — ROOR' + O, (Hasan et al.,
2020; Valiev et al., 2019; Bianchi et al., 2019). The reactions forming the accretion products
(C16H3009.11) in octanal oxidation are shown in Figure S10 which involve self and cross
reactions of alkyl peroxy radicals (CsH1505-7). Note that the molecular structures shown here
do not represent their exact spatial orientation but provide the number of available functional
groups. In the studied Cs—Cg n-aldehyde systems, the reactant RO- radicals (CnH2n-10s5-7) with
same number of O atoms have identical number(s) of OH, OOH, and C(O)OOH groups
according to Figures S4-S9. The corresponding accretion products (C2nHan-20¢-11) Will have

an equivalent number of OH, OOH, and C(O)OOH groups as shown here for octanal, marked

9
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in light-brown shapes (see Figure S10). These are in agreement with the DO mediated H to D

shifts (see Figure 6 in the main manuscript).
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Figure S10. Formation of HOM accretion products (C1sH3009-11) in octanal + OH reaction via
alkyl peroxy self and cross reactions (RO; + R'O2 — ROOR' + O2). Similar reactions apply for
other n-aldehyde systems involving CnH2n-10s7 RO: radicals to produce corresponding
accretion products (CanHan209-11) with equivalent number of OH, OOH, and C(O)OOH

groups.

S8. TME-derived accretion products

In our n-aldehyde oxidation experiments, the oxidant OH radicals were produced in situ by the
ozonolysis reaction of tetramethylethylene (TME) (see Figure S11). The reaction leads to the
formation of a keto peroxy radical (C3sHs03) and acetone (CH3COCH:3) along with OH radicals.
The TME-derived peroxy radical C3HsO3 can react with aldehyde-derived peroxy radicals
CnH2n-106-g and form different accretion products (Cn+3H2n+407-9) as shown in Figure 2 in the
main manuscript. One example of such reactions involving hexanal-derived peroxy radical

CeH1106 is shown in Figure S11.
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Figure S11. Production of oxidant OH in tetramethylethylene (TME) ozonolysis. The keto
peroxy radical CsHsOs is a biproduct and reacts with aldehyde-derived peroxy radicals Cn RO>
yielding accretion products with Cn+3 atoms; a pathway producing C9H1607 accretion product

in hexanal oxidation is shown as an example.

S9. D20 experiments

During the n-aldehyde OH oxidation experiments in presence of DO, a near complete H/D
exchange was achieved which is most conveniently monitored from the reagent ions, from the
shift of HNO3NOs™ and (HNOz3)NOs7signals by one and two mass unit, respectively on the
mass spectrum (see Figure S12).
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179  Figure S12. H/D exchange in the reagent ions HNO3NO3™ and (HNO3).NO3™ converting them
180 into DNOsNOz™ and (DNO3)2NOs~, respectively, during different n-aldehyde OH oxidation
181  reaction in presence of D2O.
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