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Abstract. Deep-learning based rainfall-runoff models, in particular long short-term memory networks (LSTM), have been

shown to outperform traditional hydrological models at various tasks, both when used as purely data-driven models and when

combined with process-based models in a hybrid setting. These tasks include predictions in ungauged basins (PUB) and regions

(PUR), tasks which have traditionally been challenging for conceptual hydrological models. While the spatial generalizability

of deep-learning based models has received a lot of attention, it is less clear how they generalize to unseen and warmer5

climate conditions, i.e. how suitable these models are for hydrological climate impact studies. To address this research gap,

we assess the ability of three types of models including (1) fully data-driven (LSTMs), (2) conceptual (Hydrologiska Byråns

Vattenbalansavdelning (HBV)), and (3) hybrid (LSTM-HBV) models to simulate streamflow under conditions warmer than

those used to train the models by running a differential split sample test. That is, we trained the models using data from the

historical period 1960-1990 and evaluated them on both data of this period as well as of the warmer period 2000-2023. We10

find that LSTMs, while being the most accurate during the 1960-1990 period, have inferior generalizability to the warm period

compared to the hybrid and conceptual models. In addition, we show that when generalizing to the warm period, hybrid models

have similar accuracy as LSTMs, independently of whether the entire streamflow distribution or extreme events such as floods

and droughts are considered. However, for snow-dominated catchments, all models suffer from similar reductions in accuracy

when simulating streamflow under unseen climate conditions and the LSTM is the most accurate model for all periods. A15

detailed look at the snowmelt simulations of the hybrid and conceptual model suggests that better process-representation might

be needed to accurately capture the dynamics of snow-melt and -accumulation processes, which are highly sensitive to changes

in temperature. We conclude that the hybrid models effectively combine the high accuracy of LSTMs when predicting in

ungauged basins with the good generalizability under changes in climate of conceptual hydrological models. This makes them

a suitable choice for hydrological climate change impact assessments, particularly in ungauged basins.20
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1 Introduction

Many hydrological applications, such as water resources management (Keller et al., 2023), hydraulic engineering (Páez Mendi-

eta et al., 2024), and flood and drought forecasting (Xing et al., 2020; Brunner et al., 2021b), build on long-term future

streamflow predictions because climate change is expected to have significant effects on the water cycle (Gudmundsson et al.,

2021). Hydrological climate impact assessments that quantify these effects heavily rely on rainfall-runoff models, which allow25

modellers to translate future climate scenarios into hydrological predictions (Van Der Wiel et al., 2019; Sauquet et al., 2021;

Lemaitre-Basset et al., 2021; Muelchi et al., 2022; Willkofer et al., 2024).

Historically, process-based conceptual hydrological models have been used to perform such climate impact assessments

(Hakala et al., 2019). They approximate the hydrology of catchments by representing water storage components such as

snowpack, soil moisture, and groundwater, as well as the fluxes between them including percolation, snowmelt and evapo-30

transpiration (Lindström et al., 1997; Clark et al., 2017). Most of these models have parameters that need to be calibrated

against observations to obtain accurate streamflow predictions (Wagener et al., 2003; Beven, 2012; Andréassian et al., 2014).

These parameters are usually calibrated on individual catchments, often using streamflow time series recorded at their outlet

(Beven, 2012). Because of their reliance on observations, calibrated hydrological models struggle to generalize in time and

space (Vaze et al., 2010; Hrachowitz et al., 2013; Fowler et al., 2018a), meaning that there are strong reductions in accuracy35

when applying them to time periods and regions unseen during calibration. This limits their reliability for climate change im-

pact assessments looking far into the future and applications in ungauged basins, i.e. basins where streamflow observations are

missing (Hrachowitz et al., 2013).

Deep learning streamflow models, in particular long short-term memory networks (LSTMs; Hochreiter and Schmidhuber

(1997)), have in the past few years been proposed as a data-driven alternative to conceptual models. LSTMs (Hochreiter and40

Schmidhuber, 1997) are a type of Recurrent Neural Network (Rumelhart and McClelland, 1987), which address the problem

of vanishing and exploding gradients and are thus able to learn long-term dependencies. This is crucial when simulating

streamflow because of the substantial memory of the hydrological system (Berghuijs et al., 2025). They have been shown to

outperform conceptual models for rainfall-runoff modelling in gauged basins, i.e. basins where streamflow observations are

available for model calibration (Kratzert et al., 2018, 2019b; Mai et al., 2022). These models have no prior process knowledge45

and are optimized to learn the relationship between streamflow data and meteorological forcing data such as precipitation

and temperature. In contrast to conceptual models, which are parametrized individually for each catchment, LSTMs perform

best when learning from large regional datasets (Kratzert et al., 2019b, 2024). These models also excel at tasks which have

historically been challenging for conceptual rainfall-runoff models, notably prediction in ungauged basins (Kratzert et al.,

2019a) or regions (Feng et al., 2021). However, it is often hypothesized that these purely data-driven models might struggle50

with extrapolation to – in particular warmer – climate conditions unseen during training (Wi and Steinschneider, 2022, 2024;

Reichert et al., 2024). This assumption is supported by general machine learning research, which has shown that data-driven

models trained with standard objective functions tend to perform poorly under distribution shifts in the input variables (Koh

et al., 2021; Liu et al., 2021; Wang et al., 2022).

2

https://doi.org/10.5194/egusphere-2025-5201
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



In an attempt to overcome this limitation while profiting from the strengths of both conceptual models (i.e. interpretability)55

and data-driven models (i.e. generalizability to ungauged basins), hybrid hydrological models have recently gained interest

as an additional modelling alternative (Frame et al., 2021; Höge et al., 2022; Kraft et al., 2022; Slater et al., 2023). Hybrid

modelling combines deep-learning with traditional hydrological modelling - a concept which has been successful in various

research fields (Karpatne et al., 2017). A hybrid approach can be as simple as using an LSTM to post-process the outputs

or internal states of a conceptual model (Frame et al., 2021; Liu et al., 2024). Other hybrid approaches replace parts of the60

structure of a conceptual or physically-based model with data-driven models (Höge et al., 2022; Kraft et al., 2022) or use

deep parameter learning to estimate the parameters of conceptual models from data (Tsai et al., 2021; Feng et al., 2022; Shen

et al., 2023). For example, LSTMs can be used to dynamically predict the parameters of an ensemble of HBV models – an

approach which has been shown to have similar accuracy as a stand-alone LSTM model for rainfall-runoff modelling (Feng

et al., 2022). Hybrid models have also been shown to rival the performance of stand-alone LSTMs when predicting streamflow65

in ungauged basins (Feng et al., 2023). For more challenging spatial extrapolation tasks, such as prediction in ungauged regions

that have been left out from the training dataset, hybrid models even outperform LSTMs (Feng et al., 2023, 2024). In addition,

some hybrid models have shown promising results in climate sensitivity analyses that tested how realistically hybrid models

represent streamflow sensitivities to changes in meteorological forcing (Wi and Steinschneider, 2022, 2024). These sensitivity

analyses suggest that hybrid models may also be a promising alternative for climate change impact assessments. However, it70

still needs to be quantitatively assessed how well they generalize to warmer climate conditions as compared to conceptual and

purely data-driven models such as LSTMs. We use the term generalizability for the change in accuracy between a reference

period with climate similar to the calibration period and a testing period with different climatic conditions. A model is thus

considered to generalize well if it experiences little change in accuracy between different climatic conditions.

Conceptual hydrological models are known to suffer from reductions in accuracy when evaluated on periods whose climate75

differs from the one in the calibration period (Vaze et al., 2010; Coron et al., 2012; Fowler et al., 2016; Dakhlaoui et al., 2017;

Guo et al., 2020; Ji et al., 2023). In contrast, there is still little research on the behaviour of LSTMs and hybrid models under

changing climate conditions. Bai et al. (2021) have generally found that LSTMs compared to conceptual hydrological models

show larger reductions in accuracy when evaluated under climate conditions drier/wetter than those of the calibration period.

Metamorphic testing (Reichert et al., 2024) and climate sensitivity analyses have been used to compare the response of LSTMs80

to the one of conceptual hydrological models (Wi and Steinschneider, 2022, 2024; Reichert et al., 2024; Martel et al., 2025).

These studies have shown that LSTMs react differently to changes in climate than conceptual hydrological models and that

their response is in some cases opposite to what would be expected based on process understanding. Notably, the sign of the

streamflow response to changes in climate can depend on the hyper-parameters and training set used for modelling (Reichert

et al., 2024), which is problematic when applying LSTMs for the purpose of hydrological climate impact assessments. To85

strengthen the generalizability of LSTMs to unseen climate conditions, (Wi and Steinschneider, 2022, 2024) have proposed to

add physical constraints to the data-driven models by enforcing mass-conservation. Furthermore, they have proposed to train

regional/national models on a larger set of catchments outside of the target domain to cover a broader range of catchment and

climate characteristics. While Reichert et al. (2024) did not find improvements in the physical realism of LSTM simulations
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when training the model on additional catchments, Wi and Steinschneider (2022, 2024) have shown that such geographically90

extended models produce more realistic simulations than regional LSTMs only trained with the catchments of the study area.

This finding suggests that these models may similarly be more suitable for extrapolating to unseen climate conditions different

from those seen during training.

Such extrapolation includes predicting extreme events. This modelling task is crucial within the framework of climate impact

assessments because these events have been shown to become more frequent and intense with observed (Dai, 2013; Berghuijs95

et al., 2019; Bertola et al., 2020), and future projected climate change (Madsen et al., 2014; Brunner et al., 2021c; Willkofer

et al., 2024; Gebrechorkos et al., 2025). Model evaluation studies have shown that both conceptual and data-driven models are

challenged by the task of simulating extreme events such as floods (Mizukami et al., 2019; Brunner et al., 2021a; Baste et al.,

2025; Santos et al., 2025) and droughts (Fowler et al., 2016; Bruno et al., 2024). Synthetic experiments have shown that LSTMs

tend to outperform conceptual and physically-based models (Frame et al., 2022) in simulating floods with magnitudes larger100

than those included in the training data. However, compared to hybrid models, LSTMs underestimate the most severe floods

(Acuña Espinoza et al., 2025; Baste et al., 2025). For low flows, Kratzert et al. (2019b) have shown that many conceptual

and physically-based hydrological models are more accurate than pure LSTMs in gauged catchments. In contrast, LSTMs

have been found to outperform hybrid and conceptual hydrological models in simulating low flows in ungauged basins (Feng

et al., 2023). Therefore, the simulation of extreme events under changing climate conditions with data-driven models is gaining105

attention. Feng et al. (2023) quantified the percentage bias of high and low flows for catchments from different climatic zones

than the training catchments. They have shown that hybrid models simulate high flows more accurately than LSTMs, while

LSTMs perform equally well as hybrid models for low flows. The question is how well these results obtained for current

climate conditions translate to extreme events simulated for unseen climate conditions.

Changes in extreme events can be particularly pronounced in mountain regions, where snow and glaciers play an important110

role in the water cycle (Schwarb, 2000; Beniston, 2006; Mountain Research Initiative EDW Working Group, 2015). Snowmelt

and accumulation are highly sensitive to changes in air temperature (Frei et al., 2018). As a result, warming affects the season-

ality and magnitude of streamflow regimes (Barnett et al., 2005; Daphné Freudiger et al., 2020; Uzun et al., 2021), extreme

events (Blöschl et al., 2017; Brunner et al., 2019), and their generation processes (Brunner et al., 2023) in Alpine areas. Models

thus need to accurately parametrize these processes – in particular those related to snow – in order to generalize well to unseen115

climate conditions. To represent snow, conceptual models typically use a simple degree-day factor approach, which determines

the degree of melting during a single day by considering air temperature. This simple approach generally leads to accurate

streamflow simulations in snow-dominated catchments (Braun and Renner, 1992), while leaving some room for further im-

provement (Girons Lopez et al., 2020). In contrast to conceptual models, little is known about the behaviour of LSTMs and

hybrid models in snow-dominated catchments. The few existing studies on the topic suggest that LSTMs generally perform120

well compared to conceptual hydrological models in regions with snow-dominated catchments (Arsenault et al., 2023; Kraft

et al., 2025) and have a slight advantage over hybrid models in cold and polar climates (Feng et al., 2024).

Some of the model evaluation studies mentioned above have studied some aspects of model generalizability between dif-

ferent model types, i.e. conceptual, data-driven, and hybrid. However, it is yet unclear which type of hydrological model is
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most suited for long-term predictions of streamflow and extreme events under climate change in mountain regions and how125

model accuracy and generalizability are linked. Here, we shed some new light on the accuracy-generalizability trade-off of

deep-learning hydrological models in mountain regions by addressing the following research questions:

– How do data-driven and hybrid models generalize to warmer climatic conditions compared to conceptual models?

– How does the generalizability of conceptual, data-driven, and hybrid models differ for extreme events vs. all types of

streamflow conditions?130

– How does the generalizability of these models differ for snow-dominated vs. rainfall-dominated catchments?

To address these research questions, we perform a differential split sample test (DSST; Klemeš (1986); Seibert (2003);

Coron et al. (2012)) on a dataset of 918 catchments in Central Europe for three different types of models: (a) a conceptual

model (HBV, Bergström (1976); Lindström et al. (1997); Seibert and Vis (2012)), (b) a data-driven model (LSTM), and (c) a

hybrid model (LSTM-HBV). We train the models on a ’cold’ reference period (1960-1990) and then evaluate them on a testing135

period (2000-2023) whose climate is on average warmer than the one of the training period. To be suitable for climate change

simulations, the models need to (a) be accurate and (b) generalize well to unseen warmer climate conditions. To evaluate the

models with respect to these two targets, we on the one hand use standard accuracy metrics, and on the other hand quantify the

change in those metrics between the training and extrapolation periods. In addition to testing for general model accuracy, we

also consider metrics which test the models’ ability to predict extreme events (high- and low-flows) and investigate whether140

the models generalize equally well in snow- and rainfall-dominated catchments.

Our results highlight that the model with the highest accuracy in a spatial regionalization context is not necessarily the one

with the best generalizability to warmer climate conditions than those seen during model training. Among the three model

types considered, the LSTM shows the highest accuracy - both for mean and extreme flows -, while the LSTM-HBV hybrid

model generalizes best under distribution shifts in meteorological forcing. For snow-dominated catchments, all models suffer145

from similar reductions in accuracy when simulating streamflow under unseen climate conditions and the LSTM is the most

accurate model for all periods.

2 Data and Methods

2.1 Data

For our model-intercomparison study, we assembled streamflow observations, catchment-averaged meteorological data, and150

static catchment attributes for a large sample of 918 catchments in Central Europe (Figure 1). The study domain covers the

European Alps and the lowland regions around them, specifically the four major river basins originating in the Central Alps:

the Danube, Rhine, Rhône and Po. It includes catchments in southern Germany (Bavaria and Baden-Württemberg), Austria,

Switzerland, and eastern France (Rhône and Rhine basins). Streamflow data for these regions were collected from national

agencies in Austria (Austrian Ministry of Sustainability and Tourism), Switzerland (Federal Office of the Environment, FOEN),155
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and France (Banque HYDRO). Regional offices provided the streamflow data for the German states of Bavaria (Bavarian State

Office for the Environment) and Baden-Württemberg (State Institute for the Environment Baden-Württemberg). We had to

exclude Italy from our analysis because none of the streamflow time series collected for northern Italy (Piemonte, Lombardia,

Valle d’Aosta) had data records for the cold period that were sufficiently long for model training.

We selected near-natural catchments only, as we would like to assess how well the different model types represent the160

link between climatic variables and streamflow. To identify these catchments, we used information on reservoir locations and

characteristics collected from national and regional agencies (Austria: Simmler (1962); Partl, R. (1977), Switzerland: Swiss

Federal Office for Energy, Germany: Speckhann et al. (2021), France: Le Comité Francaos des Barrages et Réservoirs (2022),

see Götte et al. (2025) for details). We limited ourselves to catchments with a degree of regulation (reservoir volume relative to

annual streamflow volume) below 10 %. Following Klotz et al. (2025), we also excluded catchments which are smaller than 50165

km2 or have anomalous streamflow signatures (mean specific discharge smaller than 0.1 mmd−1 or larger than 10 mmd−1).

We also excluded catchments with insufficient data records (fewer than 10 years of streamflow data in the 1960-1990 period),

too many missing values (more than 10 %) or with problems in the data, such as multiple observations for a single day or too

many repetitive values (more than 50 %).

We extracted a set of catchment-averaged daily meteorological variables from the E-OBS v29.0 gridded dataset at a res-170

olution of 0.1 degrees (Copernicus Climate Change Service, 2020), namely precipitation, minimum, mean, and maximum

daily temperature, potential evapotranspiration, and incoming shortwave radiation. The aggregation was performed using area-

weighted means within catchment boundaries with the Python Xagg library (Schwarzwald and Geil, 2024). Additionally, we

compiled SWE data for Switzerland and Austria as reference datasets for evaluating the snowpack simulated by the conceptual

and hybrid models. For Austria, we used the SNOWGRID-CL (Olefs et al., 2020; GeoSphere Austria, 2022) dataset, which175

represents SWE over Austria on a 1x1 km grid and covers the time period from January 1961 until 24th of April 2024. It was

created using a 2-layer energy balance model with data assimilation of snow height measurements. For Switzerland, we used

the OSHD-CLQM (Michel et al., 2024; Marty et al., 2025) dataset which is based on a simple temperature index model with

quantile mapping and is available on a 1x1 km grid from September 1961 until September 2021.

From the observed streamflow, the catchment-averaged meteorological variables, and other data sources, we derived a set of180

hydroclimatic catchment characteristics (Table A1). Catchment characteristics describing the land-use, geology, topography,

soil composition and glacier characteristics were derived from the Hydroatlas dataset (Linke et al., 2019; Lehner et al., 2022)

using the procedures proposed in the CARAVAN dataset (Kratzert et al., 2023).

2.2 Models

In this study, we considered three types of models and compared them with respect to three key metrics for hydrological climate185

impact assessments. We compared (1) their absolute accuracy, (2) their generalizability to a warmer climate (i.e. change in

accuracy between the cold training period and the warmer testing period) and (3) their ability to simulate extreme events in

ungauged basins. The three types of models are: (1) a conceptual process-based model, specifically the HBV model, (2) a

data-driven model, specifically an LSTM, and (3) a hybrid model, specifically the LSTM-HBV. When comparing accuracy and
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Figure 1. The 918 catchments used in this study, spread across different countries and river basins. The colors of the corresponding gauges

indicate the change in mean temperature between the cold (training; 1960-1990) and warm (testing; 2000-2023) period.

generalizability metrics between two hydrological models, we used the sign test (Mendenhall et al., 1990) to determine the190

statistical significance of differences between the distributions across catchments. For metrics where larger scores correspond

to better accuracy (such as the NSE and KGE), we used the one-sided sign test, for all other metrics (such as biases), we used

the two-sided sign test.

2.2.1 HBV

The HBV model is a conceptual model widely used in hydrological research (Bergström, 1976; Seibert and Bergström, 2022). It

represents hydrological processes such as snow storage, soil moisture and groundwater as buckets connected by fluxes such as

snowmelt, surface runoff, groundwater flow and evapotranspiration, while respecting mass conservation. The empirical equa-

tions relating the different processes are based on physics and observations. The HBV implementation used in our experiments

is based on HBV-light (Seibert and Vis, 2012), with slight modifications proposed by Feng et al. (2022). It has 14 parameters,

which we calibrated for each catchment separately against streamflow observations. The meteorological inputs passed to the

model are listed in Table A2. To obtain predictions for ungauged basins, we employed the regionalization scheme outlined

in Beck et al. (2016) with slight modifications. For a given target catchment, this scheme determines 10 donor catchments

among the set of calibrated catchments (excluding the catchment being modelled) through a similarity measure based on seven
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catchment attributes describing the catchments’ climate, topography and soil type (Table B2). The similarity is computed as

Si,j =
7∑

p=1

|Zp,i−Zp,j |
IQRp

,

where i, j represents a basin index, p indexes the attributes, Z·,i ∈ R7 represents the vector of attributes for basin i, and IQRp195

represents the interquartile range for attribute p. We used the parameter sets of the 10 most similar catchments to simulate

streamflow using the meteorological forcings of the target catchment. The resulting streamflow time series are then averaged

and used as the streamflow prediction for the target catchment. This regionalization approach is simple to implement and has

been shown to perform well (Beck et al., 2016), but its accuracy decreases with decreasing density of streamflow gauges in the

regionalization domain (Oudin et al., 2008).200

2.2.2 LSTM

The LSTM is a purely data-driven model, it learns the relationship between meteorological forcings and streamflow observa-

tions through the optimization of an objective function (Kratzert et al., 2018, 2019b). It thus includes no prior process knowl-

edge and has no enforced physical constraints. We implemented a regional LSTM based on the model proposed in Kratzert

et al. (2019b). A single model is trained to predict streamflow from catchment characteristics and meteorological forcings for

a diverse set of catchments. Compared to the setup by Kratzert et al. (2019b), we replaced the linear activation function used

there by a Rectified Linear Unit (ReLU)

ReLU(x) = max(x,0).

Together with the normalization of the training data described in Section 2.3, this ensures that the model output is non-negative.

The static catchment attributes and meteorological variables used as input variables are listed in Tables A1 and A2.

2.2.3 LSTM-HBV hybrid model

We considered a hybrid model that combines the conceptual HBV model (15 parameters) with an LSTM for parameter estima-205

tion, i.e. the LSTM-HBV hybrid model. This approach has the advantage of a physically consistent treatment of meteorological

variables (such as conservation of mass) and gives access to untrained variables such as snowpack, soil moisture, and evapo-

transpiration. We restricted ourselves to the most flexible structure proposed in the original study (Feng et al., 2022), denoted

there as δ16(β,γ). This structure consists of 16 parallel HBV models that represent heterogeneity within catchments and have

a dynamic rainfall-runoff coefficient (β) and evapotranspiration factor (γ) to account for the seasonality in the underlying pro-210

cesses. These two parameters were dynamically predicted for each day of the simulation period by the LSTM. The remaining

13 parameters of the HBV model and the two parameters of the routing model were also predicted by the LSTM but were

kept constant during each evaluation period. The LSTM component of the hybrid model receives the same static catchment

attributes and meteorological inputs as the stand-alone LSTM (Table A2). The parameters predicted by the LSTM are then

used to process the meteorological variables also passed to the stand-alone HBV model to predict streamflow (Table A2).215
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2.3 Training & Calibration

All models were calibrated with data from the 1960-1990 period, which we used as a reference period representing cold

climate conditions. To ensure consistency between the three models, we used the Nash-Sutcliffe efficiency (NSE; Nash and

Sutcliffe (1970)) to calibrate all models. We chose the NSE because it is the most commonly used objective function when

training LSTMs for streamflow modelling. Specifically, we used the classical NSE on a catchment level for the HBV model220

and the smooth-joint NSE proposed by Kratzert et al. (2019b) for the LSTM and LSTM-HBV models. The HBV model was

calibrated for each catchment using 1000 iterations of the DDS Algorithm (Tolson and Shoemaker, 2007). For predictions in

ungauged basins, we used the regionalization scheme described in Section 2.2. The two deep learning models were trained

using the Adam algorithm (Kingma and Ba, 2017). It is common practice to standardize the input and output data of deep-

learning models to improve the stability of the optimization procedure (LeCun et al., 2012). We therefore standardized the225

static catchment attributes and input time series passed to the LSTMs to have zero mean and unit variance, while the inputs to

the conceptual model were left unchanged. Following Kraft et al. (2025), the specific discharge time series were divided by the

95th quantile of the streamflow across all catchments when training the stand-alone LSTM. Together with the ReLU activation

function, this ensures positive predictions.

To determine the best hyper-parameters for the optimization of the LSTM and hybrid models, we performed a small grid230

search using a validation set consisting of 128 catchments. The validation set consisted of catchments which had more than

5 years of streamflow data in the 1960-1990 period but did not meet our requirement of having at least 10 years of data in

that period. These catchments were not used for training or any further analyses. The set of hyper-parameters determined

with this approach can be found in Table B1. With these hyper-parameters, we trained an ensemble of models using spatial

cross-validation (Kratzert et al., 2019a) by randomly splitting the catchments into 5 equally sized folds. For each target fold,235

the remaining 4 folds were used to train 5 models with different random initializations. Thus, we trained 25 LSTMs and 25

LSTM-HBV hybrid models in total. We then averaged the predictions of the 5 models to obtain a single ensemble prediction

for every fold. Every catchment was thus held out exactly once from training.

2.4 Evaluation

The spatial cross-validation setup introduced above allowed us to evaluate the accuracy of the deep learning models for the240

prediction of streamflow in ungauged basins in a total of 918 catchments. Specifically, we evaluated the models on the subset

(fold) of catchments which was not used to calibrate or train the models. The HBV model was also evaluated in gauged

catchments to evaluate the effectiveness of the regionalization scheme and provide a reference model typically used for climate

change impact analyses. We refer to this model as the in-sample HBV as opposed to the regional HBV. We evaluated the

models for the cold (training) period 1960-1990, as well as the warm (testing) period 2000-2023 (Figure 2a). This allowed us245

to assess the change in accuracy when predicting streamflow in a warmer climate, for which the models were not trained. We

chose these periods based on the decadal mean temperature (Figure 2a). During the 1960-1990 period, the mean temperature

was relatively constant and lower than in later decades. Therefore, it was chosen as the training period. For testing, we used
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only decades for which the decadal mean is + 1 ◦C above the one of 1960-1990 to ensure a substantial warming effect between

the training and testing periods. To assess the effect of even stronger warming on model accuracy and generalizability, we also250

considered a second evaluation period, namely the ’warmest’ period consisting of the 5 warmest years during the warm period

for each catchment. To evaluate model accuracy, we used the following evaluation metrics (see also Table C1): the NSE and

the Kling-Gupta efficiency (KGE; Gupta et al. (2009)) as well as its components, namely bias (βKGE), variance (αKGE), and

correlation (r) (Gupta et al., 2009). Please note that we evaluated the hybrid model separately for the 1960-1990 and 2000-

2023 periods to allow the model to adapt the static parameters to the climate conditions of the different periods, resulting in255

two distinct parameter sets. For the 5 warmest years, we did not conduct a separate evaluation and the static parameters were

thus the same as those of the warm period.

The cold, warm and warmest periods are distinct in terms of their climatic conditions and streamflow responses (Figure 2).

In terms of the median across catchments, the mean temperature increased by 1.4 ◦C between the cold and the warm period

and by 2.0 ◦C between the cold and the warmest period. The largest differences between the warm and warmest periods are260

observed in the temperature, evapotranspiration, and snowfall variables.

In addition to evaluating general model accuracy, we evaluated the models with respect to how well they simulate extreme

events such as peak flows, low flows, and drought events (i.e. seasonal low flow anomalies). Specifically, we considered the

following flow metrics for each catchment: the high flow percentage bias (HFPB), the low flow percentage bias (LFPB), and the

drought volume percentage bias (DVPB). The HFPB was defined as the percentage bias for days, during which the observed

streamflow exceeded the observed 99th quantile, that is

HFPB =
∑

t(Q̂t−Qt)∑
t Qt

· 100

where the index t runs over only days with Qt larger than the 99th quantile. The LFPB was defined using the annual minimum

flow rate averaged over a 7 day window (NM7Q)

NM7Q = min
t=0,...,T−6

1
7

6∑

j=0

Qt+j .

We computed the NM7Q for each hydrological year for the observed and simulated streamflow time series. To obtain a

catchment-level metric, we considered the percentage bias of the yearly NM7Qs defined as

LFPB =

∑
y(N̂M7Qy −NM7Qy)∑

y NM7Qy

· 100

with N̂M7Qy,NM7Qy the NM7Q of the simulated and observed time series for the hydrological year y. Finally, we considered

the DVFP metric based on drought events defined using a seasonally varying threshold approach (Brunner et al., 2023). The

observed streamflow data is smoothed by taking running averages and a seasonally varying threshold is determined for each

day of the year as the 20th percentile for a 30-day window around that day. This threshold was used to detect drought events

as periods during which the observed streamflow lies below the threshold for at least 30 consecutive days. The DVPB for a
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Figure 2. The evolution of temperature and other climate variables over the data record (1960-2023). (a) Evolution of the yearly mean

temperature relative to the 1960-1990 mean for each catchment, with the line indicating the mean over catchments and the shaded area

representing the standard deviation in each direction. The colors indicate the cold and warm period. The dashed lines indicate the decadal

mean temperature relative to the 1960-1990 mean averaged over all catchments. (b)-(f) Climatic conditions during the warm and warmest

evaluation period compared to the cold training period. The warmest period is defined as the 5 warmest years for each basin. For each

variable, the catchment average of the cold period is subtracted from the catchment average of the evaluation periods. The boxes show the

interquartile range, with the horizontal line indicating the median. The whiskers indicate the data points furthest away from the first and third

quartile but still within 1.5 times the interquartile range from those quartiles. Outliers are not shown for improved readability.

catchment was then defined as the percentage bias between simulated and observed flow volumes during drought events

DVPB =
∑

e∈E(V̂e−Ve)∑
e∈E Ve

· 100

where E is the set of drought events detected for that catchment, e is an individual event and Ve, V̂e are the observed and

modelled flow volumes for that event.

Next, we compared model accuracy and generalizability for snow- vs. rainfall-dominated catchments across the different

model types to assess whether these two aspects depend on the fraction of snowfall. We defined snow-dominated catchments265

as catchments where snowfall makes up more than 30% of precipitation (during the cold period) and compared model accuracy

11

https://doi.org/10.5194/egusphere-2025-5201
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



in these catchments to the one of rainfall-dominated catchments (less than 30% snow fraction). Snowfall was defined as

precipitation falling on days with air temperatures below 0 ◦C. We excluded catchments with significant glacier area (larger

than 2% of the total catchment area according to RGI v2.0 (RGI Consortium, 2012)) from this model evaluation since the

HBV and hybrid models do not explicitly model glaciers. In order to understand potential model differences in terms of model270

accuracy and generalizability in snow-dominated catchments, we looked at how the HBV and hybrid models represent snow.

As the LSTM does not explicitly model SWE, we disregarded it for this analysis. We compared the snow-water equivalent

(SWE) modelled by the HBV and hybrid models to observed SWE values derived from gridded SWE datasets for Austria

and Switzerland. We focused on these two countries because there are no gridded observational SWE datasets of comparable

quality for France and Germany.275

3 Results

3.1 Model accuracy during the ’cold’ calibration period

For a general comparison of model performance across the three model types, we first focus on model accuracy in ungauged

basins during the cold (training) period (Figure 3, Table C2). Out of the three models, the LSTM has the highest accuracy, with

a median KGE (NSE) of 0.76 (0.79). The hybrid and conceptual regional HBV models with 0.72 (0.71) and 0.60 (0.56) show280

a lower accuracy. The regionalization of the parameters of the HBV model results in a reduction in accuracy as compared to

the in-sample HBV from a median KGE (NSE) of 0.75 (0.66) to 0.60 (0.56), which represents a reduction of 0.15 (0.10) in the

KGE (NSE) value.

3.2 Model generalizability to periods with warmer climate conditions

To assess how well the different models represent streamflow under warmer conditions, we compare general model accuracy285

across the three model types in terms of KGE when applying the model under warmer climatic conditions than those observed

during training. Model accuracy varies for all models depending on the period considered and decreases more strongly with

the degree of extrapolation (Figure 4a). During the cold period, the LSTM performs significantly better than the hybrid model

(p-value < 0.05 for a one-sided sign test). It also performs significantly better than the HBV model during all periods. For

the extrapolation periods (warm and warmest), the difference in accuracies between the LSTM and hybrid model are statisti-290

cally insignificant (p-value > 0.05 for both alternatives of the one-sided sign test). At the same time, the hybrid model has a

significantly higher accuracy than the HBV model in all periods.

To compare the generalizability of the three models, we now investigate the per catchment change in accuracy between the

cold period and the two extrapolation periods (warm and warmest; Figure 4b). The LSTM shows a large median change in

KGE (NSE) -0.05 (-0.03) when evaluating it on the warm instead of the cold period, while the hybrid and HBV models show295

a smaller and similar change of -0.02 (0.00) and -0.02 (0.00). This results in median KGE (NSE) scores of 0.71 (0.75) for

the warm period for the LSTM, 0.70 (0.71) for the hybrid model, and 0.58 (0.54) for the conceptual HBV model evaluated
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Figure 3. Model accuracy comparison during the cold training period for the three model types: (1) data-driven (LSTM), (2) hybrid (LSTM-

HBV), and (3) conceptual (HBV), using the empirical cumulative distribution of the KGE metric. KGE values below 0 are not shown. Solid

lines represent models evaluated on catchments not used during training, while the dashed line represents the conceptual model evaluated on

catchments in the calibration set. The vertical lines indicate the medians of the KGE distributions per model.

in ungauged basins. Considering only the 5 warmest years in each catchment leads to even stronger accuracy reductions with

respect to the cold period. These are again strongest for the LSTM as compared to the other models, with changes of -0.06 (-

0.04) in the KGE (NSE) for the LSTM and of -0.03 (-0.02) and -0.02 (-0.01) for the hybrid and conceptual models, respectively.300

For this warmest period, the median KGE score of the hybrid model approaches that of the LSTM (0.69 for both), indicating

that they both perform equally well under strong extrapolation in terms of absolute accuracy. While the change in accuracy of

the regional HBV model is similar to that of the hybrid model, its absolute accuracy (KGE of 0.56) still lies clearly below the

one of the LSTM (KGE of 0.69). Even though it generalizes well, the HBV model still has a lower absolute accuracy during

extrapolation to very warm conditions than both types of deep learning models. The change in accuracy is not significantly305

different between the HBV and hybrid models (p-value > 0.05 for a two-sided sign test) for both periods, while there is a

significant difference between the change in accuracy of the LSTM and that of the other two models (p-value < 0.05 for a two-

sided sign test). The accuracy of the in-sample HBV model is comparable to that of the LSTM and hybrid models for the warm

and warmest periods with a median KGE (NSE) score of 0.69 (0.63) and 0.68 (0.61), respectively. In terms of generalizability,

the in-sample HBV shows a larger reduction in accuracy between the cold period and the extrapolation periods than the HBV310

and hybrid models, with a median change in KGE (NSE) of -0.05 (-0.02) and -0.05 (-0.03) for the warm and warmest period

respectively. This is comparable to the change in KGE (NSE) of the LSTM model.
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Figure 4. Model accuracy during periods with different climate conditions for the three model types: (1) data-driven (LSTM), (2) hybrid

(HBV-LSTM), and (3) conceptual (HBV). (a) KGE for the cold, warm, and warmest periods across catchments and (b) change in KGE

between the warm and warmest periods and the cold period across catchments. For the conceptual HBV model only the evaluation in

ungauged basins is shown. The boxes show the interquartile range, with the horizontal line indicating the median. The whiskers indicate the

data points furthest from the first and third quartile but still within 1.5 times the interquartile range from those quartiles. Outliers are not

shown for improved readability. Above the boxplots, we show the results of a one-sided sign test for the absolute KGE values (panel a) and

a two-sided sign test for the change in KGE values (panel b). The model pairs where the p-value is above 0.05 are indicated by ’ns’. For all

other pairs, significant differences are found.

Looking at the different components of the KGE (Table C2), we find that the change in KGE of the LSTM is largely

explained by reductions in the bias and variability terms. The simulations derived with the LSTM and hybrid models most

closely match the observed mean flow in the training period, with bias terms βKGE of 0.99 and 1.01 respectively (values315

above and below 1 indicate an overestimation and underestimation of the mean flow, respectively; see Table C2, Fig. C1 in the

Supporting Information). In the warm period, the bias of the LSTM more strongly increases (βKGE of 0.94), than the one of

the hybrid and HBV models (βKGE = 0.97). In the warmest period, the hybrid and HBV models but not the LSTM match the

observed mean flow even better than in the warm period (bias terms of 0.99, 1.00, 0.95). Considering the median bias across

all catchments, the LSTM underestimates the mean flow during the warm and warmest periods by 6 % and 5 %, respectively.320

Overall, the LSTM experiences the strongest accuracy reduction between the cold period and the two extrapolation periods

among the three model types considered. In absolute terms, the LSTM is more accurate than the regional HBV during extrapo-

lation in all metrics but the bias term (βKGE), while it is on par with the hybrid model with respect to most evaluation metrics.

In terms of the NSE metric, the LSTM is the most accurate model in all periods. The three model types do not generalize

equally well to warmer climate conditions in all catchments. We find that particularly the hybrid and HBV models generalize325
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less well in catchments with higher mean specific discharge than in catchments with smaller specific discharge (Section C1 and

Figure C2a). Such high mean specific discharge is associated with higher elevation catchments with larger snowfall fractions

(Section C1).

3.3 Model accuracy and generalizability for extreme events

To assess how model accuracy and generalizability for the three model types compare for extreme events, we investigate the330

ability of the models to represent high and low flows across the three climate periods (Figure 5, Table C2). In general, all

models tend to underestimate flood peaks during the cold training period (Figure 5a). During this period, the LSTM is more

accurate in representing flood peaks than the hybrid model (HFPB of -8.2 and -11.8 %, respectively). The hybrid model in

turn is more accurate than the regional HBV model (-17.7 %) and the in-sample HBV (-13.5 %, not shown in Figure). While

the LSTM and hybrid model show similar accuracies in the warm period (-13.7 and -13.3 %), the hybrid model (-10.7 %) has335

a notably higher accuracy than the LSTM (-13.8 %) in the 5 warmest years. While having a lower accuracy than the hybrid

model when extrapolating strongly, the LSTM still has a higher accuracy than the regional HBV during both testing periods,

which has percentage biases of -18.5 and -16.4 % for the warm period and the 5 warmest years, respectively. Similarly, the

LSTM has a higher accuracy during extrapolation than the in-sample HBV, which has percentage biases of -15.9 and -16.6 %

for the warm period and the 5 warmest years.340

To compare model accuracy and generalizability for low flows, we on the one hand focus on absolute low flows and on the

other hand consider drought events representing seasonal flow anomalies. While some model types tend to overestimate low

flows, others underestimate them (Figure 5b-c). The LSTM mostly overestimates absolute low flows with median LFPB of 9.9,

8.6 and 11.8 % for the cold, warm and warmest periods (Figure 5b). In contrast, both the hybrid and HBV model underestimate

low flows with LFPBs for the cold, warm, and warmest period of -12.1, -10.9 and -10.3 % for the hybrid model and -10.0,345

-5.6, -5.0 % for the HBV. While the HBV model has a median across catchments closest to zero for the warm and warmest

periods, it also has the largest interquartile range of all models for all periods. Considering the median across all catchments,

the hybrid and HBV models are thus more accurate at modelling absolute low flows during the warm and warmest period than

during the cold period. Similarly, the LSTM also models low flows more accurately in the warm period than in the cold period.

For drought events defined as seasonal low flow anomalies, the three model types behave in a more consistent way than for350

absolute low flows as all of them tend to overestimate streamflow during drought events (Figure 5c). Among the three model

types, the hybrid model has the highest accuracy in all periods with median percentage biases of 9.5, 4.9, 8.8 % for the cold,

warm, and warmest periods. The HBV model can compete with the hybrid model in the cold period, but has considerably

lower accuracy in the warm and warmest periods with median DFPB of 8.8, 10.9 and 15.5 %. The LSTM is the least accurate

model in the cold period, but performs better than the HBV model in the warm and warmest periods with percentage biases355

of 10.4, 9.1, and 9.7 %. Similarly to when considering absolute low flows, the HBV model again shows the largest accuracy

spread across catchments among the three models. For droughts, only the regional HBV model shows decreasing accuracy in

the extrapolation periods compared to the cold period. The LSTM has similar percentage biases in all periods, while the hybrid

model is better at representing droughts in the warm period than in the cold period.
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Figure 5. Model accuracy comparison for the three model types: (1) data-driven (LSTM), (2) hybrid (HBV-LSTM), and (3) conceptual

(HBV) for different types of hydrological extreme events including (a) high flows (percentage bias for days where streamflow exceeds the

observed 99th quantile), (b) absolute low flows (percentage bias in the yearly NM7Q), and (c) seasonal low flow anomalies, i.e. droughts

(volume percentage bias for detected drought events). For the conceptual HBV model only the evaluation in ungauged basins is shown. The

boxes show the interquartile range, with the horizontal line indicating the median. The whiskers indicate the data points furthest from the

first and third quartile but still within 1.5 times the interquartile range from those quartiles. Outliers are not shown for improved readability.

Above the boxplots, we show the results of a two-sided sign test. The model pairs where the p-value is above 0.05 are indicated by ’ns’. For

all other pairs, significant differences are found.

3.4 Model generalizability in snow- vs. rainfall-dominated catchments360

As previously mentioned, the hybrid and HBV models generalize worse in catchments with large mean specific flows than in

catchments with lower specific flows (Section C1 and Figure C2). The catchments with large specific flows are often located

at high elevations and strongly snow influenced. Since both types of models explicitly parametrize snow, the question arises

how such models generalize to warmer climatic conditions in snow-influenced catchments compared to the purely data-driven

LSTM model, which does not explicitly represent snow. To address this question, we compare the model simulations of the365

three model types for snow-dominated and rainfall-dominated catchments in terms of general model accuracy described by

KGE (Figure 6a-b). During the cold period, the accuracy of all three model types does not differ between the two groups of

catchments. That is, model accuracy is as good for snow-dominated catchments as it is for the rainfall-dominated ones. Across

both types of catchments, the LSTM performs best out of all models, followed by the hybrid and the HBV model. Notable is

the larger spread in the interquartile range of the hybrid model across snow-dominated vs. rainfall-dominated catchments. For370

snow-dominated catchments, the pattern persists for the two extrapolation periods, i.e. the LSTM keeps showing significantly

higher accuracy than the hybrid and regional HBV models (p-value < 0.05 for the one-sided sign test). For rainfall-dominated
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catchments, the hybrid model is on par with the LSTM similarly to the previous observations for all catchments combined

(p-value < 0.05 for the cold period and p-value > 0.05 for the warm period and 5 warmest years) (Figure 6). The LSTM is still

significantly more accurate than the HBV for all periods in rainfall-dominated catchments (p-value < 0.05).375

In contrast to absolute accuracy, the per catchment change in accuracy between the cold period and the two extrapolation

periods shows clear differences between snow- and rainfall-dominated catchments. For snow-dominated catchments, all models

exhibit a similar reduction in accuracy when extrapolating to warmer climate conditions (Figure 6c, p-value > 0.05 for all

combinations in the two-sided sign test). In contrast, the accuracy reduction during extrapolation depends on the model for

rainfall-dominated catchments. There, the hybrid and the HBV model have a smaller and similar (p-value < 0.05) reduction in380

accuracy, while the reduction in KGE of the LSTM is larger and significantly different (p-value < 0.05) from that of the two

other models.

To assess the seasonality of the observed and modelled streamflow regimes in snow-dominated catchments, we consider the

discharge averaged by day of the year. We find that the model bias has a distinct seasonal pattern with both the HBV and hybrid

model underestimating streamflow during the snowmelt season (April-July) in all periods (Figure 7). The LSTM accurately385

models the annual streamflow curves during the cold and warm periods, but it underestimates summer flow during the 5 warmest

years (Figure 7c). This is also reflected in the bias metrics. The hybrid and HBV models underestimate mean streamflow by

14 and 24 % in snow-dominated catchments during the warm period, while the LSTM only shows an underestimation of 7 %

(Table C3), with similar bias values for the warmest periods.

To further assess the issue of the hybrid and HBV model in terms of flow estimation during the melt season, we look at the390

internal snowpack variable of these models. Specifically, we compare the SWE simulated with these two models to catchment

averages derived from gridded SWE benchmark datasets (OSHD-CLQM in Switzerland and SNOWGRID in Austria). Both

models simulate similar SWE estimates and underestimate snowpack throughout the year, both in Swiss and Austrian catch-

ments (Figure 8). To quantify this SWE underestimation effect, we compute the same metrics also used to evaluate streamflow

for simulated SWE (Table C5) and find that the hybrid and HBV models underestimate the mean SWE by 24 and 22 % re-395

spectively in the cold period. The degree of underestimation increases during extrapolation from the cold to the warm periods,

with the hybrid model underestimating the mean by 26 % and 33 % for the warm and warmest periods and the HBV model

underestimating it by 27 and 37 %. Both regional models have lower bias than the in-sample HBV model in all periods.

4 Discussion

4.1 Hybrid models effectively balance the accuracy-generalizability trade-off400

Our results show that the LSTM is clearly the most accurate model in terms of modelling streamflow in ungauged basins,

i.e. basins lacking streamflow observations for model training (Figure 3). However, it suffers from poor generalizability under

changes in climate (Figure 4). This finding is consistent with prior studies which have also found larger accuracy reductions for

LSTMs than for conceptual models when evaluating them under climate conditions different from those used during training

(Bai et al., 2021). In contrast, the hybrid model shows better generalizability, which comes at the cost of slightly reduced405
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Figure 6. Comparison of model accuracy in terms of KGE in (a) snow- vs. (b) rainfall-dominated catchments for the three model types: (1)

data-driven (LSTM), (2) hybrid (LSTM-HBV), and (3) conceptual (HBV). Change in KGE between the warm and warmest periods and the

cold period for (c) snow-dominated and (d) rainfall-dominated catchments. For the conceptual HBV model, only the evaluation in ungauged

basins is shown. The boxes show the interquartile range, with the horizontal line indicating the median. The whiskers indicate the data points

furthest from the first and third quartile but still within 1.5 times the interquartile range from those quartiles. Outliers are not shown for

improved readability. The results of a sign test comparing the models within the same periods are shown above the boxplots. Only the model

pairs where the results were insignificant (p-value > 0.05) are shown. All other pairs show significant differences in distributions.

accuracy when evaluating it under climate conditions more similar to those of the training period. These results align with

previous research showing that hybrid models are better at generalizing to climatic zones not used in training compared to a

stand-alone LSTM (Feng et al., 2023, 2024). The regionalized conceptual model is significantly less accurate than the other

two models (Figure 4a). However, it generalizes equally well to warmer climate conditions as the hybrid model (Figure 4b).

The hybrid model thus effectively combines the strong performance of the LSTM when predicting in ungauged basins with the410
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Figure 7. Seasonal streamflow regimes in snow-dominated catchments (more than 30% snowfall fraction) with little glacier influence (less

than 2% glacier cover) predicted by the three model types: (1) data-driven (LSTM), (2) hybrid (LSTM-HBV), and (3) conceptual (HBV) for

periods with different climate conditions: (a) cold, (b) warm and (c) warmest 5 years. For the conceptual HBV model only the evaluation in

ungauged basins is shown.

generalizability of the conceptual HBV model. In years that are +1.4◦C warmer than the cold period average temperature, the

hybrid model has an accuracy that is indistinguishable from the one of the LSTM. The LSTM, while not generalizing as well

as the hybrid and HBV model, still has a significantly higher accuracy than the latter even in the warmest period (+2◦C).

The finding that the LSTM is the most accurate model during the training period, while the hybrid model generalizes best to

warmer conditions than those used in training, also holds for extreme events. Our results show that the LSTM most accurately415

models floods and absolute annual low flows during the training period (Figure 5a-b), whereas for drought volumes all models

have similar accuracy, with the HBV being the most accurate of the regional models (Figure 5c). The finding that the LSTM is

more accurate in ungauged basins than the LSTM-HBV hybrid model when considering extreme events is in line with previous

research (Feng et al., 2023). When generalizing to warmer climate conditions, however, the hybrid model most accurately
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Figure 8. Snow-Water-Equivalent simulations by the (1) hybrid (LSTM-HBV) and (2) conceptual (HBV) model over the three climatic

periods: (a) cold, (b) warm, and (c) warmest. SWE was averaged by day of the year for snow-dominated catchments (more than 30%

snowfall fraction) with little glacier influence (less than 2% glacier cover) in Switzerland (12) and Austria (49). For the conceptual HBV

model only the evaluation in ungauged basins is shown. Please note that the LSTM is not shown because it does not produce any explicit

SWE simulations.

models floods and drought volumes, while the regional HBV model most accurately models annual low flows. Under these420

warmer conditions, the hybrid model not only equals the absolute accuracy of the LSTM in extrapolation but even surpasses it.

The LSTM in turn models floods more accurately than both the in-sample and the regional HBV model and has lower drought

volume bias than the regional HBV. The regional HBV model does not just show lower accuracy than the other two models in

terms of most metrics, it also shows a large spread in the distribution of the extreme event metrics, indicating large accuracy

differences between different catchments. This is in line with findings from Feng et al. (2023), who show that hybrid models425

have a smaller percentage bias when simulating peak flows in climatic regions withheld from the training set.

While model generalizability varies across model types when considering all catchments (Figure 4), the models show similar

generalizability in snow-dominated catchments (Figure 6c). In these catchments, the LSTM has the highest absolute accuracy

during the cold period and is also the most accurate model in all periods. Similarly, Feng et al. (2024) have found LSTMs

to outperform hybrid models in cold and polar climates. This contrasts with rainfall-dominated catchments, where the HBV430

and hybrid model generalize significantly better than the LSTM to periods with warmer climate conditions (Figure 6). These

findings suggest that an explicit parametrization of snow and other processes does not always improve generalizability and that

process-based approaches can have their own problems under distribution shifts of input variables. Our investigation of simu-

lated SWE for the hybrid and HBV models revealed that both types of models systematically underestimate the water content

of the snowpack (Figure 8). This indicates that there are biases in the forcing data and/or that the models are parametrising435

snow in a suboptimal way. Precipitation undercatch is one form of bias which is particularly prevalent in snow-dominated

catchments (Goodison, B. E. et al., 1998). While the LSTM can correct for such biases (Figure 7, Frame et al. (2023)), the
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hybrid and HBV models cannot (Figure 7, 8). This could be an explanation for the underestimation of SWE and summer

streamflow in snow-dominated catchments observed in the hybrid and HBV models (Figure 7, 8). HBV models calibrated for

a specific site often have a snowfall correction factor to account for this type of bias, but such a factor is difficult to regionalize440

(Beck et al., 2016) and was therefore not included in the conceptual models used in this study. To still account for undercatch,

one could directly correct observational precipitation data before feeding it into the hydrological model (Meyer et al., 2019).

4.2 Implications for climate change impact studies

Our findings show that both types of deep learning models (purely data-driven LSTM and hybrid LSTM-HBV model) achieve

the same accuracy in ungauged basins as the in-sample HBV model, even when extrapolating to warmer climatic conditions.445

Together with their strong ability to extrapolate to ungauged regions, these findings highlight the potential of hybrid models for

climate change impact assessments in data-scarce regions. The promise of deep-learning streamflow models extends to gauged

basins because LSTMs and hybrid models have even higher absolute accuracy when evaluated in the catchments they were

calibrated in Feng et al. (2023, 2024). The strengths of LSTMs and hybrid models extend from general streamflow simulations

to extreme events, i.e. high flows and annual low flows (Figure 5). This is crucial for climate change impact assessments since450

hydrological extreme events such as floods are among the most prevalent natural disasters (Hum, 2020), particularly affect low-

and middle-income countries (Rentschler et al., 2022), and are already changing in response to increasing temperatures (Dai,

2013; Berghuijs et al., 2019; Bertola et al., 2020). Our results thus suggest that deep-learning based models, in particular hybrid

models, should be considered as an alternative to conceptual models for climate change impact assessments. In snow-dominated

catchments, the stand-alone LSTM can also be considered due to its higher absolute accuracy (Figure 6). It is important to note,455

that in contrast to conceptual and hybrid models the LSTM does not directly provide insights into the processes generating its

predictions. This would be needed though to attribute changes in streamflow simulations to changes in underlying processes.

For this purpose, hybrid models have an advantage because they directly provide access to variables the model has not been

trained on such as snowpack, with comparable quality as conceptual models (Figure 8, Feng et al. (2022, 2023, 2024)).

Improving the generalizability of data-driven models is an area of active research, and different techniques have been pro-460

posed to achieve this (Liu et al., 2023). Hybrid modelling is one possible approach (Vasudevan et al., 2021), which is con-

firmed by our results. Further, model generalizability could be improved by including catchments from regions whose climate

is warmer than that of the region of interest as additional training catchments for deep learning based models (Martel et al.,

2025). This allows these models to learn from a more diverse set of climates, which could help improve generalizability. Studies

testing this approach on LSTMs have found that such geographically extended models can provide more realistic projections465

under climate sensitivity analyses than regional LSTMs (Wi and Steinschneider, 2022, 2024). Testing this approach with real-

istic climate scenarios in the DSST framework could be an interesting avenue of further research. Other studies have also found

improved generalizability when adding conservation of mass requirements to LSTMs (Wi and Steinschneider, 2022, 2024).

Further ideas include modifying the training procedure to optimize for worst-case accuracy across different domains (Krueger

et al., 2021; Kuhn et al., 2024) and modifying the loss function to optimize for time invariant residuals, a concept derived from470

causal inference (Peters et al., 2016). It has been demonstrated that the use of such a loss function can improve the generaliz-
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ability of a conceptual hydrological model under certain circumstances, but comes at the cost of reduced accuracy (Astagneau

et al., 2025).

4.3 Limitations

As other model comparison studies, our study faced some challenges and limitations including limited observational data475

availability and the need to make some modelling choices. Modelling choices e.g. included the choice of an objective function

for model training and evaluation. We chose NSE for model training, meaning that we put more emphasis on high flow rather

than low flow accuracy (Thirel et al., 2024). To improve the model simulations for low flows, streamflow transformations

(Thirel et al., 2024) or modified objective functions (Fowler et al., 2018b) could be used. Another important model choice

was the choice of the conceptual model used both for stand-alone modelling and integration into the hybrid framework. We480

used a model with a snow module relying on a relatively simple degree-day factor, which may not be the optimal choice

for simulating streamflow under climate change in snow-dominated catchments (Carletti et al., 2022). Wi and Steinschneider

(2024) have also shown that using temperature-based PET methods in conceptual models can result in unrealistic water losses

under temperature perturbations of +4 ◦C, compared to when using a more realistic energy-budget-based PET method. This

suggests that the parametrizations of hydrological processes in conceptual models can lead to inaccurate extrapolation when485

these models are included in a hybrid modelling framework. How exactly the choice of hydrological model and the complexity

of the snow module affects the generalizability of the hybrid model remains to be investigated in future studies. For example,

one could investigate whether the snow module modifications proposed by Girons Lopez et al. (2020), switching to an energy-

based snow module (Warscher et al., 2013; Willkofer et al., 2020) or calibration against snow observations (Finger et al., 2015;

Janzing et al., 2024) can further improve the generalizability of hybrid and conceptual models in snow-dominated catchments.490

Testing the ability of hydrological models to predict streamflow under changing climatic conditions is challenging due to the

lack of ground truth observations and benchmark models. To address this challenge, we used the differential split sample test

(DSST; Klemeš (1986); Seibert (2003); Coron et al. (2012)). While providing insights into model generalizability, this approach

limits the assessment of model generalizability to historically observed climate change. Therefore, other approaches to assess

the suitability of hydrological models for climate change impact studies have been proposed. The robustness assessment test495

(Nicolle et al., 2021; Santos et al., 2024) can be used to check whether biases in the model depend on the properties of

the climate input data used for the simulations. Metamorphic testing Reichert et al. (2024)) defines the expected qualitative

response of a system to changes in the input data and tests the model’s ability to replicate theses responses. This allows for the

assessment of the responses of hydrological models to arbitrary changes in the input data, but is limited by current scientific

understanding of the hydrological response to changes in climatic variables and can only make qualitative statements about the500

predictions (Reichert et al., 2024). Both methods - the robustness assessment test and metamorphic testing - could be used to

further explore the generalizability of data-driven and hybrid models to warmer climate conditions.
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5 Conclusions

In this study, we used the differential split sample test to assess the accuracy and generalizability of hybrid rainfall-runoff

models, fully data-driven, and conceptual models under changing climate conditions. Our results highlight that the model with505

the highest accuracy in a spatial regionalization context is not necessarily the one with the best generalizability to warmer cli-

mate conditions than those seen during model training. Among the three model types considered, the LSTM shows the highest

accuracy, while the LSTM-HBV hybrid model generalizes best (i.e. shows the lowest performance drop) under distribution

shifts in meteorological forcing. Although the LSTM model does not generalize as well as the hybrid and HBV models, it

still performs well in absolute terms even during periods with climate conditions up to 2°C warmer than those considered for510

training. The main finding that hybrid models combine high accuracy with satisfactory generalizability - thereby best address-

ing the accuracy-generalizability trade-off - holds for both streamflow in general (i.e. in terms of KGE) as well as for extreme

events including high flows, absolute lows flows, and seasonal low flow anomalies. However, this finding is not universally

applicable as snow-dominated catchments (>30% snow fraction) show a slightly different behaviour in terms of model gen-

eralizability than rainfall-dominated catchments. In contrast to rainfall-dominated catchments, where hybrid and HBV models515

generalize best, all models show equally large accuracy reductions when extrapolating to warmer climate conditions for snow-

dominated catchments. We conclude that hybrid modelling is an approach that balances the accuracy-generalizability trade-off

by leveraging the strengths of both conceptual (generalization in time) and deep learning models (generalization in space).

Therefore, they are a powerful tool for hydrological climate change impact assessments, particularly in ungauged basins where

no streamflow observations are available for model calibration.520

23

https://doi.org/10.5194/egusphere-2025-5201
Preprint. Discussion started: 7 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Code and data availability. The deep learning based hydrological models were trained and evaluated using the NeuralHydrology Python

library. We specifically used the version provided by (Acuña Espinoza et al., 2025), since it includes an implementation of the LSTM-HBV

hybrid model. Small modifications were made to the code to account for our changes in the scaling of the target data for the stand-alone

LSTM. To calibrate the conceptual models, we used the Python implementation of the HBV model in the Hy2DL library also provided by

(Acuña Espinoza et al., 2025). The code to compute catchment averages from E-OBS, compute climatic static catchment attributes, and525

assemble the dataset into the format required by Neuralhydrology will be provided through HydroShare upon acceptance of this manuscript.

The code used to compute the static catchment attributes from the HydroAtlas dataset is available through the Caravan project (https://github.

com/kratzert/Caravan/tree/main/code). The E-OBS meteorological data is freely available from (Copernicus Climate Change Service, 2020)

and the SWE datasets are also freely available (GeoSphere Austria, 2022; Marty et al., 2025). See Table A3, for the sources of the streamflow

data, catchment shapefiles and reservoir information.530
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Appendix A: Data

Variables Description Source

Area (km2) Surface area of the catchment Section 2.1

DOR (%) Degree of regulation Section 2.1

Elevation mean (m) Mean catchment elevation EarthEnv-DEM90 (Robinson et al., 2014)

Elevation min (m) Minimmum catchment elevation EarthEnv-DEM90 (Robinson et al., 2014)

Elevation max (m) Maximum catchment elevation EarthEnv-DEM90 (Robinson et al., 2014)

Slope (◦) Mean slope in the catchment EarthEnv-DEM90 (Robinson et al., 2014)

Stream gradient (dmkm−1) Mean gradient of the stream EarthEnv-DEM90 (Robinson et al., 2014)

Forest (%) Fraction of forest cover GLC2000 (Bartholomé and Belward, 2005)

Lake (%) Lake area percentage of catchment GLC2000 (Bartholomé and Belward, 2005)

Wetland (%) Wetland area percentage of catchment (excluding

lakes, rivers, reservoirs)

GLC2000 (Bartholomé and Belward, 2005)

Crop (%) Fraction of cropland GLC2000 (Bartholomé and Belward, 2005)

Pasture (%) Fraction of pastures GLC2000 (Bartholomé and Belward, 2005)

Urban area (%) Fraction of urban area GLC2000 (Bartholomé and Belward, 2005)

Glacier (%) Fraction of area covered by glaciers RGI 2.0 (RGI Consortium, 2012)

SWC (%) Soil water content SoilGrids1km(Hengl et al., 2014)

Sand (%) Fraction of sand in the soil SoilGrids1km (Hengl et al., 2014)

Silt (%) Fraction of silt in the soil SoilGrids1km (Hengl et al., 2014)

Clay (%) Fraction of clay in the soil SoilGrids1km (Hengl et al., 2014)

Karst (%) Fraction of catchment are with karst geology Rock Outcrops v3.0 (Williams and Ford, 2006)

SOC (%) Soil organic carbon content SoilGrids1km (Hengl et al., 2014)

P (mmd−1) Mean precipitation E-OBS (Copernicus Climate Change Service, 2020)

PET (mmd−1) Mean potential evapotranspiration E-OBS (Copernicus Climate Change Service, 2020)

T (mmd−1) Mean air temperature E-OBS (Copernicus Climate Change Service, 2020)

High P frequency Frequency of days with high precipitation E-OBS (Copernicus Climate Change Service, 2020)

Low P frequency Frequency of days with low precipitation E-OBS (Copernicus Climate Change Service, 2020)

fS Fraction of precipitation falling as snow (defined

as precipitation falling while T < 0)

E-OBS (Copernicus Climate Change Service, 2020)

Table A1. Static catchment attributes passed to the LSTMs both in the stand-alone LSTM as well as in the LSTM-HBV hybrid model.
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Variables Description

Mean T∗ Daily mean temperature

Max T Daily max temperature

Min T Daily min temperature

P∗ Daily cumulative precipitation

PET∗ Daily potential evapotranspiration

SSR Incoming short-wave radiation

Table A2. Meteorological variables passed to the hydrological models. The variables marked with a ∗ are passed to the conceptual HBV

model as well as the HBV components of the hybrid model, while the stand-alone LSTM and the LSTM component of the hybrid models

also receive the other variables as inputs.
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Country/Region Data Type Sources Link

Austria Streamflow Austrian Ministry of Agriculture, Forestry,

Regions and Water Management

https://ehyd.gv.at/

Catchment Shapes Large-Sample Data for Hydrology and En-

vironmental Sciences for Central Europe

(Klingler et al., 2021)

Reservoirs Austrian Ministry of Agriculture, Forestry,

Regions and Water Management; Simmler

(1962); Partl, R. (1977)

https://www.bml.gv.at/

France Streamflow Ministry of the Environment, Sustainable

Development and Energy (Banque HY-

DRO)

http://www.hydro.eaufrance.fr/

Catchment shapes delineated from Copernicus DEM (Euro-

pean Space Agency and Airbus, 2022)

Reservoirs Comité Français des Barrages et Réservoirs http://www.barrages-cfbr.eu/

Baden-Württemberg Streamflow State Institute for the Environment Baden-

Württemberg

https://www.lubw.baden-wuerttemberg.de

Catchment shapes State Institute for the Environment Baden-

Württemberg

https://www.lubw.baden-wuerttemberg.de

Reservoirs Speckhann et al. (2021)

Bavaria Streamflow Bavarian State Office for the Environment https://www.lfu.bayern.de/

Catchment shapes delineated from Copernicus DEM (Euro-

pean Space Agency and Airbus, 2022)

Reservoirs Speckhann et al. (2021)

Switzerland Streamflow Federal Office for the Environment https://www.bafu.admin.ch/

Catchment shapes Federal Office for the Environment https://www.bafu.admin.ch/

Reservoirs Federal Office for the Environment https://www.bafu.admin.ch/

Table A3. Sources for the streamflow data, catchment shapes and reservoir data for the different countries.
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Appendix B: Model details

B1 LSTM

For an input timeseries (xt)t=1,...,n with xt ∈ Rk the model structure of the LSTM is given for all t = 1, ...,n by

it = σ(Wi ·ht−1 + Ui ·xt + bi)535

ft = σ(Wf ·ht−1 + Uf ·xt + bf )

gt = tanh(Wg ·ht−1 + Ug ·xt + bg)

ot = σ(Wo ·ht−1 + Uo ·xt + bo)

ct = ft⊙ ct−1 + it⊙ gt

ht = ot⊙ tanh(ct)540

with it ∈ Rl the input gate, ft ∈ Rl the forget gate, gt ∈ Rl the potential update vector, ot ∈ Rl the output gate, ct ∈ Rl the cell

state and ht ∈ Rl the hidden state. The learnable parameters are the weights Wi,Wf ,Wg,Wo ∈ Rl×l and Ui,Uf ,Ug,Uo ∈ Rl×k

as well as the biases bi, bf , bg, bo ∈ Rl. Here, l is the hidden size of the network and describes the dimension of the latent space,

σ is the sigmoid activation function and ⊙ the element-wise multiplication of vectors. For t = 0, the cell and hidden states c0

and h0 are usually initialized 0 ∈ Rl. The crucial step is the update state step of the cell-state ct where the forget gate, which545

takes values between 0 and 1 is multiplied with the previous cell state ct−1. This rescales the previous cell state and can remove

information from previous time steps which is no longer relevant. To this, the element-wise multiplication of the input gate

vector with the potential update vector is added. This can similarly be interpreted as choosing the relevant information from

the update vector and storing it in the cell state.

B2 HBV parameters and internal states550

When analysing the parameters and internal states of the HBV component of the hybrid model, we averaged the quantities over

the 16 parallel components and the 5 runs of the ensemble to obtain a single parameter value or state time series per catchments.

For the regionalized HBV model, we also averaged both parameters and internal states over the 10 donor catchments.
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Parameter LSTM Hybrid

Epochs 10 20

Learning rate

Epoch 0: 5 · 10−4 1 · 10−3

Epoch 10: 1 · 10−4 5 · 10−4

Epoch 20: 1 · 10−4

Hidden size 256 256

Batch size 256 128

Table B1. Hyperparameters used for the deep learning streamflow models.

Variables Description Source

AI Aridity index PET/P E-OBS (Copernicus Climate Change Service, 2020)

P (mmd−1) Mean precipitation E-OBS (Copernicus Climate Change Service, 2020)

PET (mmd−1) Mean potential evapotranspiration E-OBS (Copernicus Climate Change Service, 2020)

T (mmd−1) Mean air temperature E-OBS (Copernicus Climate Change Service, 2020)

Forest (%) Fraction of forest cover GLC2000 (Bartholomé and Belward, 2005)

fS Fraction of precipitation falling as snow (defined as precipita-

tion falling while T < 0)

E-OBS (Copernicus Climate Change Service, 2020)

Slope (◦) Surface slope EarthEnv-DEM90 (Robinson et al., 2014)

Clay (%) Soil clay content SoilGrids1km (Hengl et al., 2014)

Table B2. Variables used to compute catchment similarity for conceptual model parameter regionalization. For each variable, a short de-

scription is provided together with the source dataset.
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Appendix C: Model accuracy and generalizability

Metric Reference Definition

NSE Nash and Sutcliffe (1970) 1−
∑

t(Qt−Q̂t)
2

σ

αKGE Gupta et al. (2009) σ̂/σ

βKGE Gupta et al. (2009) µ̂/µ

KGE Gupta et al. (2009) 1−
√

(1− r)2 +(1−αKGE)2 +(1−βKGE)2

Table C1. Evaluation metrics for streamflow and SWE, with µ,µ̂ representing the observed and simulated mean, σ, σ̂ representing the

observed and simulated variance, and r representing the Pearson-correlation.

Period Model NSE KGE αKGE βKGE r HFPB (%) LFPB (%) DVPB (%)

Cold (train)

LSTM 0.79 0.76 0.92 0.99 0.92 -8.18 9.85 10.4

Hybrid 0.71 0.72 0.90 1.01 0.88 -11.75 -12.08 9.5

HBV (regional) 0.56 0.60 0.83 0.96 0.82 -17.66 -9.96 8.8

HBV (in-sample) 0.67 0.75 0.87 0.98 0.84 -13.47 -26.72 0.3

Warm

LSTM 0.75 0.71 0.85 0.94 0.91 -13.79 8.56 9.1

Hybrid 0.71 0.70 0.87 0.97 0.88 -13.28 -10.94 4.9

HBV (regional) 0.54 0.58 0.80 0.97 0.82 - 18.48 -5.64 10.9

HBV (in-sample) 0.63 0.69 0.84 0.96 0.82 -15.91 -20.54 0.6

5 Warmest

LSTM 0.74 0.69 0.85 0.95 0.92 -13.32 11.79 9.7

Hybrid 0.68 0.69 0.90 0.99 0.88 -10.69 -10.34 8.8

HBV (regional) 0.53 0.56 0.83 1.00 0.83 -16.42 -4.96 15.5

HBV (in-sample) 0.61 0.68 0.84 0.99 0.83 -16.63 -22.16 6.4

Table C2. Streamflow metrics for for the three model types: (1) data-driven (LSTM), (2) hybrid (HBV-LSTM), and (3) conceptual (HBV)

for the cold and warm period as well as the 5 warmest years from the warm period in each catchment. The reported value represents the

median over all catchments. For each period and metric, the value for the best performing regional model is reported in bold text.
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Figure C1. Model bias during periods with different climate conditions for the three model types: (1) data-driven (LSTM), (2) hybrid (HBV-

LSTM), and (3) conceptual (HBV). For the conceptual HBV model only the evaluation in ungauged catchments is shown. The boxes show

the interquartile range, with the horizontal line indicating the median. The whiskers indicate the data points furthest from the first and third

quartile but still within 1.5 times the interquartile range from those quartiles. Outliers are not shown for improved readability.
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C1 Feature importance analysis555

To determine which static catchment attributes influence the generalizability (defined as the change in KGE between the

cold and the warm period) of the models, we trained a random forest regressor for each of the hydrological models. The

random forest model received the same static catchment attributes also used to compute the catchment similarity for the HBV

regionalization scheme as input, with mean specific discharge and the change in temperature between the cold and warm

periods as additional inputs. We then computed the feature importance using the permutation method (Breiman, 2001). The560

mean specific discharge is clearly the most important feature for predicting generalizability for all hydrological models (Figure

C2a). This feature is positively associated with other features such as elevation (Kendall-τ correlation of 0.54 with p-value <

0.05) and fraction of snowfall (Kendall-τ correlation of 0.48 with p-value < 0.05).
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Figure C2. Relationship between static catchment attributes and model generalizability for the three model types: (1) data-driven (LSTM),

(2) hybrid (HBV-LSTM), and (3) conceptual (HBV). To determine the relationship between the attributes and generalizability we consider (a)

the feature importance of random forest models which learn the relationship between catchment attributes and the generalizability (defined as

the change in KGE between the warm and cold period), (b) the Kendall-τ correlation between static catchment attributes and generalization

(difference in KGE between warm and cold period). For the conceptual HBV model only the results from ungauged catchments are shown.

For panel (a), a larger value indicates that the attribute is a more important predictor. For panel (b), a positive value indicates that as the

static attribute increases, the generalizability improves, while negative values indicate the opposite. Only pairs with significant associations

(p-value < 0.05) are shown. The static attributes used for both (a) and (b) are listed in Table B2, with the addition of the mean specific

discharge and the difference between the mean temperature during the warm and the cold period.
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C2 Model accuracy and generalizability in snow- and rainfall-dominated catchments

Period Model NSE KGE αKGE βKGE r

Cold (train)

LSTM 0.82 0.76 0.93 0.99 0.94

Hybrid 0.73 0.72 0.91 0.92 0.91

HBV (regional) 0.60 0.61 0.85 0.75 0.86

HBV (in-sample) 0.64 0.69 0.88 0.78 0.85

Warm

LSTM 0.75 0.70 0.94 0.93 0.92

Hybrid 0.69 0.68 0.90 0.86 0.89

HBV (regional) 0.52 0.56 0.80 0.76 0.84

HBV (in-sample) 0.49 0.62 0.88 0.74 0.80

5 Warmest

LSTM 0.73 0.70 0.91 0.94 0.92

Hybrid 0.66 0.65 0.86 0.89 0.88

HBV (regional) 0.47 0.49 0.76 0.78 0.85

HBV (in-sample) 0.48 0.58 0.82 0.79 0.81

Table C3. Streamflow metrics during periods with different climate conditions for the three model types: (1) data-driven (LSTM), (2) hybrid

(HBV-LSTM), and (3) conceptual (HBV) in snow-dominated catchments (more than 30% snowfall fraction) with little glacier influence (less

than 2% glacier cover). For each period and metric, the value for the best performing regional model is reported in bold text.
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Period Model NSE KGE αKGE βKGE r

Cold (train)

LSTM 0.78 0.76 0.91 0.99 0.92

Hybrid 0.70 0.71 0.89 1.02 0.87

HBV (regional) 0.56 0.60 0.83 0.99 0.81

HBV (in-sample) 0.67 0.76 0.87 0.99 0.83

Warm

LSTM 0.75 0.71 0.84 0.95 0.91

Hybrid 0.71 0.71 0.87 0.98 0.88

HBV (regional) 0.55 0.59 0.81 0.99 0.82

HBV (in-sample) 0.64 0.71 0.84 0.97 0.83

5 Warmest

LSTM 0.74 0.69 0.84 0.96 0.91

Hybrid 0.69 0.69 0.91 1.00 0.88

HBV (regional) 0.55 0.57 0.85 1.02 0.83

HBV (in-sample) 0.63 0.69 0.85 1.00 0.84

Table C4. Streamflow metrics during periods with different climate conditions for the three model types: (1) data-driven (LSTM), (2) hybrid

(HBV-LSTM), and (3) conceptual (HBV) in rainfall-dominated catchments (less than 30% snowfall fraction). For each period and metric,

the value for the best performing regional model is reported in bold text.
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Period Model KGE NSE αKGE βKGE r

Cold

Hybrid 0.62 0.69 0.92 0.76 0.93

HBV (regional) 0.65 0.62 1.06 0.78 0.91

HBV (in-sample) 0.60 0.59 1.01 0.75 0.90

Warm

Hybrid 0.65 0.76 0.85 0.74 0.94

HBV (regional) 0.68 0.72 0.93 0.73 0.92

HBV (in-sample) 0.59 0.60 0.97 0.69 0.87

Warmest

Hybrid 0.54 0.72 0.74 0.67 0.95

HBV (regional) 0.52 0.63 0.81 0.63 0.92

HBV (in-sample) 0.49 0.51 0.82 0.58 0.88

Table C5. SWE metrics during periods with different climate conditions for two model types: (1) hybrid (HBV-LSTM), and (2) conceptual

(HBV) in snow-dominated catchments (more than 30% snowfall fraction) with little glacier influence (less than 2% glacier cover). Note that

the LSTM does not give direct access to simulated snowpack and was thus excluded from this analysis. For each period and metric, the value

for the best performing regional model is reported in bold text.
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