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Abstract.  

Multi-model ensembles (MME) are key ingredients for future climate projections and the quantification of their uncertainties. 

Developing robust protocols to design balanced and complete computer experiments for MME is a matter of active research. 

In this study, we take advantage of a large-size MME produced for Greenland ice sheet contributions to future sea level by 15 

2100 to define a series of computer experiments that are closely related to practical MME design decisions: what is the added 

value of including specific set of members in the projections, i.e. either adding new models (Regional Climate Model, RCM, 

or Ice Sheet Model, ISM) or extending the range of some parameter values. By using these experiments to build a random-

forest-based emulator, we assess the changes in the emulator’s predictive performance and the emulator-based probabilistic 

predictions for given temperature scenarios compared to the reference solution based on all members. For the considered 20 

MME, several aspects are outlined: (1) the highest impact of removing the most selected RCM, i.e., MAR, due to the large 

number of simulations available; (2) the high importance of including the SSP5-8.5 scenario for high temperature scenarios 

leading to under-estimations up to 30% of the considered percentiles; (3) the importance of having diverse ISM and RCM 

models leading to percentile absolute changes ranging between 10 and 20%; (4) the lesser importance of the choice in the 

range of the Greenland tidewater glacier retreat parameter. We expect these recommendations to be informative for the design 25 

of next generations of MME, in particular for the next Ice Sheet Model Intercomparison Project ISMIP7 in preparation. 

1 Introduction 

Multi-model ensembles (MME) are key ingredients for future climate projections and the quantification of their uncertainties. 

They consist of sets of numerical experiments performed under common forcing conditions with different model designs (i.e. 

different model formulations, input parameter values, initial conditions, etc.) to generate multiple realisations known as 30 
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ensemble members. This is the approach of Model Intercomparison Projects, MIPs, which are key for the understanding of 

past, present, and future climates and contribute to assessments from the Intergovernmental Panel on Climate Change (IPCC: 

e.g. Lee et al., 2021). In this study, we are interested in projected Greenland ice sheet contributions to sea level change this 

century, which are the subject of recent MME studies (Goelzer et al., 2018; 2020) within the Ice Sheet Model Intercomparison 

Project for CMIP6 (ISMIP6: Nowicki et al., 2016; 2020). 35 

However, interpreting MME results is complicated by the choices made in their construction (e.g. Knutti et al., 2010). Ideally, 

each member of a MME should evenly span a representative and exhaustive set of plausible realisations of the combined 

sources of uncertainty, e.g. distinct climate models with different but plausible strategies for simulating the global climate 

(GCMs), equally represented by a single model run. However, members of a MME are often structurally similar, and the 

degree of their dependence is difficult to quantify (e.g. Merrifield et al., 2020). This difficulty is particularly emblematic of 40 

the Coupled Model Intercomparison Project (CMIP), coined an “ensemble of opportunity” (Tebaldi and Knutti, 2007) because 

it collects “best guesses” (Merrifield et al., 2020) from modelling groups with the capacity to participate. This capacity may 

range from substantial resources to develop climate models and perform relatively large ensembles through to the ability to 

perform only a small number of simulations with an existing version of a climate model. These disparities, combined with the 

high computational expense of climate models and the partial dependence of MME members, results in limited and unbalanced 45 

multi-model ensemble designs, in which various combinations of modelling choices and forcing conditions are either over-

represented or missing in the MME, and a full sampling of modelling uncertainties is impossible to perform or even to define. 

Section 2.1 provides in the following an illustration for the MME considered in this study. 

Emulators (also named surrogate models) have been proposed to address these limitations. An emulator is a fast statistical 

approximation of a computationally expensive numerical model, often building on machine learning techniques like linear-50 

regression (Levermann et al., 2020), Gaussian process regression (Edwards et al., 2021), random forest regression (Rohmer et 

al., 2022), and deep learning-based methods (Van Katwyk et al., 2025). Their key advantage is that they can be used to predict 

with low computational cost the numerical model’s response at untried input values, to explore the uncertain input space far 

more thoroughly: potentially overcoming the incompleteness of ensemble designs and being used to produce probabilistic 

projections. 55 

Some emulation studies have broadened this approach to represent entire MME at once, rather than individual models. One 

example in this field is provided by Edwards et al. (2021), who emulate ISMIP6 simulations for the Greenland and Antarctic 

ice sheets and multi-model glacier ensembles, driven by multi-model climate model ensemble simulations, to estimate land 

ice contributions to twenty-first-century sea level rise. Emulating an MME requires an assumption (and check) that the 

simulations are quasi-independent: i.e. that the differences induced by different model setups (in particular, initialisation) 60 

outweigh any similarities induced by common model structures. This was found by Edwards et al. (2021) to be the case for 

ice sheet and glacier MMEs. Another type of application is provided by Van Breedam et al. (2021) who used emulators to 

perform a large number of sensitivity tests with numerical simulations of ice sheet–climate interactions on a multi-million-

year timescale.  
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In this study, we aim to explore how the results provided by an emulator can be informative for the design of an MME. Key 65 

design questions relate to the added value of including specific sets of experiments in the projections, i.e. either adding new 

models (e.g. new Regional Climate Model, RCM, new GCM, etc.) or extending the range of some parameter values (e.g., the 

Antarctic basal melt parameter or Greenland tidewater glacier retreat parameter described by Edwards et al. (2021)). To address 

these questions, we take advantage of a large MME of Greenland ice sheet contributions to sea level this century, based on 

which we define a series of numerical experiments (referred to as emulator’s experiments) that are closely related to practical 70 

MME design decisions. The evaluation of the emulator prediction capability with each of these experiments is used to provide 

information on the added value of including specific set of experiments. 

The paper is organized as follows. We first describe the sea level numerical simulations as well as details of the statistical 

methods used to build the emulator and assess the different design questions (Section 2). In Section 3, we apply the experiments 

and assess the influence of each design question. We discuss results in Section 4, and we draw lessons and guidance related to 75 

the MME design, and discuss the implications from a stakeholder’s point of view. Finally, we conclude in Section 5. 

 

2. Data and methods 

2.1 Multi-model ensemble case study 

We focus on the sea level contribution from the Greenland ice sheet (GrIS) in 2100 based on a new MME study performed for 80 

the European Union’s Horizon 2020 project PROTECT (http://protect-slr.eu). Some modelling choices are taken from the 

protocols of the ISMIP6 initiative (Goelzer et al., 2020; in particular, the two main emissions scenarios, and the main model 

parameter explored). This MME has been designed as an extension of ISMIP6 MME through the inclusion of: 

- a wider range of CMIP6 climate model output as well as more climate change scenarios (SSP126, SSP245, SSP585); 

- the surface mass balance forcing from several RCMs, i.e. MAR, RACMO, and HIRHAM as well as a statistical 85 

downscaling approach of a given GCM; 

- retreat forcing before 2015 that is calculated from reconstructions of past runoff and ocean thermal forcing, hence 

allowing for a consistent forcing of the models in past and future and to consider historical retreat of the outlet glaciers, 

which was an important source of mass loss after 1990. 

We provide here a brief summary of the GrIS MME dataset and refer the interested reader to Goelzer et al. (2025) for further 90 

details, where appropriate. The full modelling chain for these projections combines: (1) a number of CMIP5 and CMIP6 GCMs 

that produce climate projections according to different emissions scenarios; (2) different RCMs, and their variants, that locally 

downscale the GCM forcing to the GrIS surface; (3) a range of ISM models that produce projections of ice mass changes and 

sea level contributions (initialised to reproduce the present-day state of the GrIS as best as possible, at a given initial year 

sometime before the start of emissions scenarios in 2015). The ISMs are forced by surface mass balance (SMB) changes from 95 

the RCMs, added to their own reference SMB assumed during initialisation. Ocean forcing is integrated based on an 

empirically derived retreat parameterization that relates changes in meltwater runoff from the RCM and ocean temperature 
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changes from the GCM to the retreat of calving front positions (Slater et al., 2020, 2019). The parameter that controls retreat 

is denoted  . It represents the sensitivity of the ocean forcing as a whole, and defines the sensitivity of the downscaling from 

global model to local ice sheet scale. Figure 1 shows the general approach used for forcing the ISMs and producing the 100 

projections. The MME design questions addressed in this study are related to the modelling choices made for each of the boxes 

outlined in Fig. 1. 

 

 

Figure 1: General forcing approach for Greenland ice sheet model projections. The questions relevant for the MME design (detailed 105 
in Table 2) are related to the modelling choices made for each of the boxes. 

In what follows, we use the generic term ‘inputs’ to designate all the choices made throughout the modelling chain, i.e. the 

choices in the models used, the choices in the scenarios and the parameter values. The inputs are described in detail in Table 

1. It should be noted that the two first inputs, i.e. the choice in the SSP-RCP scenario and in the GCM model, are not considered 

for the emulator construction described in Sect. 2.2. They are combined with a similar approach as Edwards et al. (2021), by 110 

relating each ‘SSP-RCP, GCM’ combination to the corresponding value of global annual mean surface air temperature change 

relative to 1995-2014, denoted GSAT.  

 

Table 1: Inputs considered in the GrIS MME. The inputs from the double line are those used for the building of the RF emulator 

described in Sect. 2.2. 115 

Type Name Type of variable Value range / Categories 

Future climate and 

societal conditions 

SSP-RCP Categorical 5 scenarios: three Shared Socio-economic Pathways (SSP1-2.6, SSP2-

4.5, SSP5-8.5) and two Representative Concentration Pathways 

(RCP2.6, RCP8.5). The latter, older, scenarios are grouped with the 

nearest equivalent SSPs (RCP2.6 with SSP1-2.6; RCP8.5 and SSP5-

8.5). 

General Circulation 

Model 

GCM Categorical 15 global climate models: ACCESS1.3, CESM2, CESM2-Leo*, 

CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2-1, CSIRO-Mk3.6.0, 

HadGEM2-ES, IPSL-CM5A-MR, IPSL-CM6A-LR, MIROC5, MPI-

ESM1-2-HR, NorESM1-M, NorESM2-MM, UKESM1-0-LL-r1 
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Global mean temperature 

change 2015−2100 

GSAT Continuous The joint influence of SSP-RCP and GCM is treated with a similar 

approach as Edwards et al. (2021), by relating each ‘SSP-RCP and 

GCM’ combination to the corresponding value of global annual mean 

surface air temperature change since 2015. 

Ice Sheet Model ISM Categorical 4 models: CISM, Elmer/Ice, GISM, IMAUICE 

Regional Climate Model RCM Categorical 6 model approaches: four versions of the RCM MAR (v3.9, v3.12, 

v3.13-e05, and v3.13-e55), one version of the RCM RACMO (v2.3p2), 

one version of the RCM HIRHAM (v5), and statistical downscaling 

(SDBN1). 

Retreat parameter  Continuous From -0.9705 to +0.0070 km.(m3.s-1)-0.4 °C 

Minimal spatial 

resolution 

res_min Continuous From 1 to 40 km 

Sliding friction law Sliding Categorical 5 laws: Coulomb, Linear, Schoof, Weertman, Zoet-Iverson 

Account for 

thermodynamics 

thermodin. Categorical TRUE or FALSE 

RCM used for 

initialisation 

RCM_init Categorical 4 model variants: IMAU-ITM, and MAR (v3.9, v3.11.5, and v3.12). 

Type of initialisation 

method 

Init Categorical Data assimilation based on velocities (DAv); nudging to ice mask 

(NDm); or nudging to surface elevation (NDs). 

Number of years of the 

initialisation period 

init_yrs Continuous From 20 to 240,000 years 

Location of the surface 

elevation feedback  

elev_feedback Categorical In the ice sheet model (with two formulations of the SMB-elevation 

gradient, X or B), or in the regional climate model 

*CESM2-Leo is a variant pre-dating the official CESM2 release for CMIP6. It can be considered as another ensemble member of CESM2. 

 

One input setting, i.e., as a particular combination of inputs, defines a member of the MME. Formally, the inputs are either 

treated as continuous variables (e.g., for , minimum resolution), or as categorical variables (e.g., RCM or ISM choice). The 

considered MME comprises n=1,343 members, which are used to estimate the sea level contribution in 2100 (denoted slc 120 

expressed in meters sea level equivalent SLE) with respect to 2014. Figure 2 shows a probability density distribution of slc 

constructed directly using the members of the MME, which has a median value of 8.7 cm SLE and 17% and 83% quantiles of 

4.1 and 18.9 cm; the latter being used to define the 66% credibility interval named “likely” following the IPCC terminology 

(Mastrandrea et al., 2010).  

 125 
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Figure 2: (a) Probability density function of the sea level contribution in 2100 (with respect to 2014) from the Greenland ice-sheet 

(in cm seal level equivalent, SLE) based on the raw MME ensemble data considered in this study. The black straight line provides 

the smoothed density function. The median value and the likely range are also indicated. 

 130 

Figures 3 and 4 show the histograms for a selection of the continuous and categorical variables described in Table 1. For sake 

of space, we focus here on the 7 of 11 variables identified to have the highest importance with respect to slc (see Sect. 3 and 

Appendix C). Both Figures 3 and 4 show that the design of experiments is unbalanced: some categories (like Elmer/Ice model 

for instance for ISM in Fig. 3, top, left) or some values (like minimum resolution at 16km, Fig. 4, centre) are more frequent 

than others. The design is also incomplete with large gaps in the continuous class. This is for instance the case for  between 135 

-0.9705 and -0.3700 km.(m3.s-1)-0.4 °C (Fig. 3, left), because this parameter was sampled for only 3 different values by most 

models (the median, the 25% and the 75% percentile), and the additional 2 values were only sampled by one ISM. 
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Figure 3: Count number of the MME members with respect to the different inputs classified as “categorical” in Table 1: ISM (ice 140 
sheet model), RCM (regional climate model used for downscaling climate projections), RCM init (regional climate model used for 

initialisation climate), and elev_feedback (approach to representing the feedback between the ice sheet surface elevation and 

climate). 

 

 145 

Figure 4: Count number of the MME members with respect to the different inputs classified as “continuous” in Table 1:  (ice sheet 

tidewater glacier retreat parameter), minimum spatial resolution of the ice sheet model, and GSAT diff (global mean surface air 

temperature change during the driving global climate model simulation). 
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2.2 Setting up the emulator 150 

The objective is to predict slc, the sea level contribution at 2100 (with respect to 2014) from any values (configurations) of the 

different inputs (described in Table 1). The mathematical relationship between the inputs and slc is only partial and based on 

the MME results computed from the chain of numerical models described in Sect. 2.1. To overcome this difficulty, we replace 

the chain of numerical models by a machine-learning-based proxy (named emulator) built using the MME results. The 

advantage of using emulators is to make some predictions for input configurations that are not present in the original MME 155 

dataset at a low computation time cost. Among the different types of emulators (see e.g., Yoo et al. (2025) for a recent overview 

of different options), we focus in this study on the Random Forest (RF) regression model, as introduced by Breiman (2001). 

The interested reader can refer to Appendix A for further technical details. RF has shown high efficiency in diverse domains 

of application (sea level science, Tadesse et al. (2020); water resources, Tyralis et al. (2019); flood assessments, Rohmer et al. 

(2018)), and more particularly for sea level projection studies (Hough & Wong, 2022; Rohmer et al., 2022; Turner et al., 2024). 160 

This emulator has the advantage of dealing, by construction, with different mixed types of input variables, categorical and 

continuous, which is a key aspect in our case (see Table 1).  

The emulator remains however a statistical approximation in the sense that it uses only a limited number of numerical results, 

i.e. inputs-slc pairs (corresponding to the training data), to perform predictions given a "yet-unseen" inputs’ configuration. 

Such an approximation introduces a new source of uncertainty referred to as “emulator uncertainty” as discussed by Storlie et 165 

al. (2009). To assess this type of uncertainty, we rely on the RF variant specifically developed by Meinshausen (2006) for 

predicting quantiles, i.e. the quantile RF model (qRF) as described in Appendix B. The advantage is that prediction intervals 

can be calculated at any level, which can be used to reflect the uncertainty of the RF emulator in emulator predictions.  

In summary, the emulator provides a ‘best estimate', corresponding to the conditional mean of the RF model, and prediction 

intervals constructed from the conditional quantiles of the qRF model. In what follows, we indifferently designate the emulator 170 

used as the “RF model”.  

2.3 Emulator experiments related to design questions 

In this study, we address a series of questions described in Table 2 that are relevant for the design of MMEs. In general, the 

central concern is to investigate what is the added value of including a specific set of experiments in the projections. This could 

be subsets in already defined value range / categories, or subsets not currently categorised. For four different categories of 175 

inputs related to specific modelling choices (choice in SSP-RCP, choice in RCM, choice in ISM, and range of  values), the 

design questions are formalised in Table 2. To assess the added value of including a specific set of experiments in the 

projections, we propose to construct RF emulators by leaving out specific results from the original MME without 

differentiating the members, i.e., by assuming that all members have the same weight in the ensemble. The last column of 

Table 2 translates the design questions into a specific emulator’s experiment. Using a RF emulator trained with the complete 180 

original MME as a reference solution, we assess changes in two types of criteria: changes in the MME characteristics, 
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performance of the RF emulator, and the probability estimates of slc in 2100 given future GSAT change scenarios, here chosen 

at 2°C (+/- 0.5°C), 3°C or 4 °C (with a tolerance of +/- 0.5°C). The details of this assessment are explained in Sect. 2.4. 

 

Table 2: Design questions and corresponding emulator’s experiments. Modelling choices are evaluated based on the RF emulator 185 

performance and the probability estimate of slc in 2100 given GSAT at 2, or 4°C (+/- 0.5°C).  

Input Question Definition of the emulator’s experiment Name of the 

experiment 

Number of 

members* 

SSP-RCP 

scenario 

 

 

 

Does including a medium 

scenario SSP2-4.5 improve the 

results or is it enough to use the 

extreme scenarios SSP1-2.6 and 

SSP5-8.5? 

A RF emulator is trained using only the 

results for SSP1-2.6 & SSP2-4.5, i.e. 

without SSP5-8.5  

Without SSP5-

8.5: ‘woSSP585’ 

418 (31%); 

SSP1-2.6 & SSP5-8.5, without SSP2-4.5;  ‘woSSP245’ 1,155 (86%) 

SSP2-4.5 & SSP5-8.5, without SSP1-2.6 ‘woSSP126’ 1,113 (83%) 

RCM choice What is the added value of 

including a new RCM, i.e. is it 

sufficient to focus on MAR 

regional climate model (Fettweis 

et al., 2017) only? 

A RF emulator is built using only the 

results for MAR (regardless of the version: 

MARv3.12, MARv3.13-e05, MARv3.13-

e55, or MARv3.9). 

‘MAR’ 1,197 (89%) 

Built using only the results for Regional 

Atmospheric Climate Model RACMO 

(Ettema et al., 2010), HIRHAM (Mottram 

et al., 2017), and the direct statistical 

downscaling of the GCM CESM2-

WACCM (SDBN1). 

‘woMAR’ 146 (11%) 

ISM choice 

 

What is the added value of 

accounting for all ISM except for 

one? 

A RF emulator is trained using only the 

results for the most selected ISM, namely 

the Community Ice Sheet Model (CISM; 

Lipscomb et al., 2019) 

‘CISM’ 894 (66.5%) 

 

Built without the results of CISM 

(experiment ‘woCISM’). 

‘woCISM’ 449 (33.5%) 

 

Range of  

values 

 

Should the design cover a large 

range of values, i.e. is it 

sufficient to focus on extreme 

values? 

A RF emulator is built using the central 

value of -0.1700 and the endpoints, of -

0.9705 and 0.007 km.(m3.s-1)-0.4 °C only, 

i.e. without intermediate values. 

‘Med. & Extr.’ 615 (46%) 

 

Built only with central and medium 

values, from -0.37 to 0 km.(m3.s-1)-0.4°C. 

‘Narrow’ 1.087 (81%) 

*% of the total number of members 
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2.4 Criteria for measuring the impact of the design questions 

Changes in MME characteristics 190 

The first set of criteria aims to measure the extent to which the new subset of the MME differs from the original MME, with 

two indicators: (1) the percentage decrease in size (DS); (2) the changes in the histograms of the new MME subsets with respect 

to the original ones (as depicted in Fig. 2 and 3) for each inputs used to build the RF emulator (see Supplementary materials 

S1 for an illustration). The latter is defined as the average difference in the count numbers between the two histograms 

(normalised by the total number of members). 195 

2.4.1 Emulator performance 

The first criterion measures the decrease in the predictive performance of the emulator, using a metric of relative error. It is 

assessed through a validation test exercise that consists in randomly selecting ntest test samples from the original MME, 

conducting the experiments described in Table 2, and estimating the slc error, i.e. 𝑒(i) = 𝑠𝑙𝑐(i) − 𝑠𝑙𝑐̂(i) by comparing the true 

and the RF emulator’s predicted value for each test sample i=1,…,ntest. In this study, we are more particularly interested in the 200 

ability of the emulator to perform well over a wide range of GSAT values. This is important in our case, because constraining 

the predictions to temperature constraints can help end-users to interpret the projections as illustrated by recent projections for 

France by Le Cozannet et al. (2025), although it should be noted that our GSAT definition does not strictly correspond to the 

global warming level (GWL) defined in AR6. 

Therefore, instead of relying on the widely used cross validation procedure (Hastie et al., 2009), we propose an alternative 205 

validation procedure adapted to our objective as follows: (1) the GSATs are classified into a finite number of intervals, the 

ends of which are defined by the GSAT percentiles, with levels ranging from 0 to 100% with a fixed increase of 25%. This 

results in the following GSAT intervals, [0.705, 2.14°C], [2.14, 3.34°C], [3.34, 3.83°C], and [3.83, 5.00°C]; (2) for each 

interval, 50 samples are randomly selected. For one iteration of the procedure, a total of ntest=200 test samples are randomly 

selected. The procedure is repeated 25 times. We then compute three performance criteria (formally described in Appendix 210 

D), namely: 

- the mean relative error, RAE and the coefficient of determination, Q² that both measures whether the RF emulator can 

predict slc with high accuracy given yet-unseen instances of the inputs. A high predictive capability is achieved for a 

RAE value close to zero and for a Q² value close to one; 

- the continuous ranked probability score, denoted CRPS, as used for validating probabilistic weather forecast (Gneiting 215 

et al., 2005), that jointly quantifies the calibration of qRF probability distribution, i.e. the reliability of the estimation, 

and its sharpness (i.e. the concentration/dispersion of the probability distribution). The lower CRPS, the higher the 

quality of the qRF probabilistic predictions, with a lower limit of zero.  
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2.4.2 Emulator-based probabilistic predictions for a GSAT scenario 

The second set of criteria measures the changes in the emulator-based probabilistic predictions, which are assessed through a 220 

Monte-Carlo random sampling procedure. For fixed GSAT change values (here chosen at 2°C and 4°C, with a tolerance of +/-

0.5°C), the input variables are randomly sampled by assuming a uniform discrete probability distribution for the categorical 

variables, and a uniform probability distribution for the continuous variables except for  which is sampled as in (Edwards et 

al. 2021) from the smoothed version of the empirical density function by Slater et al. (2019). In addition, the emulator 

uncertainty is propagated by following the procedure based on the quantile RF emulator (Appendix B).  225 

The emulator-based probabilistic results thus jointly reflect the impact of the uncertainty of the input variables and of the 

emulator uncertainty. The probabilistic predictions should however not be interpreted as calibrated uncertainty accounting for 

model-observation misfits (e.g., Aschwanden and Brinkerhoff, 2022), and neither do they represent the slc probability 

distribution from the MME, because the uniform distribution over the input space is not representative of the MME itself. 

To measure the impact of the different design decisions on these probabilistic predictions, the second  set of criteria corresponds 230 

to the changes in the median and to the endpoints of the 66% credibility interval, named ‘likely range’ following the IPCC 

terminology, defined here by the percentile at 17 and 83%, denoted Q17% and Q83%. 

 

 

Figure 5: Boxplot of the RAE (a), Q² (b) and CRPS (c) performance indicator for different ranges of GSAT (indicated on the x-axis). 235 
The lower RAE and the closer Q² to one, the higher the emulator predictive capability. The lower CRPS, the higher quality of the 

emulator predictive probabilistic distribution. The horizontal red dashed line indicates the median value calculated over all 

validation tests defined through the repeated validation procedure described in Sect. 2.4.1 considering the whole range of GSAT. 

3. Results 

3.1 Emulator reference solution 240 

We train a RF emulator to predict slc in 2100 using the results of the GrIS MME (see implementation details in Appendix A). 

A preliminary screening analysis was conducted (detailed in Appendix C), and showed that four predictor variables have no 
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significant influence: the choice to account for thermodynamics, the choice in sliding law, the type of initialisation and the 

number of years for the initialisation phase. We therefore build the RF emulator using only 7 out of 11 possible input variables 

described in Sect. 2.  245 

To select values for the two main RF parameters, node size (ns) and the number of variables to randomly sample as candidates 

at each split (mtry), we use a 10-fold cross validation exercise (Hastie et al., 2009) varying ns from 1 to 10, and mtry from 1 to 

7, and selecting the most optimal combination with respect to cross-validation predictive error. The number of random trees is 

fixed at 1,000; preliminary tests having showed that this latter parameter has little influence provided that it is large enough.  

On this basis, we compute the reference solution for the criteria used to investigate the influence of the design questions. First, 250 

the changes in the MME size and distributions of the members resulted from random validation tests are assessed (see details 

in Sect. 3.2). Then, t 

First, the RF model’s predictive performance is tested by applying the repeated validation procedure described in Sect. 2.4.1. 

The performance of the RF emulator shows satisfactory levels of predictability, with a median RAE value (calculated over all 

the validation tests defined by the repeated validation procedure) of no more than 8%, a median Q² value close to 90% and a 255 

median CRPS value close to zero as indicated by the dashed red horizontal line in Fig. 5. The examination of the performance 

depending on the GSAT interval of the test samples (coloured boxplots in Fig. 5) further shows that the highest performance 

is achieved for low GSAT below 2.14°C (dark blue boxplots in Fig. 5), and the worst performance is achieved for GSAT 

between 3.34 and 3.83°C (green boxplot in Fig. 5). The performance of the other GSAT intervals, and in particular for the 

highest GSAT values above 3.83°C, can be considered satisfactory with a median RAE not larger than 9%, a median Q² value 260 

close to 90% and a median CRPS relatively low.  

Second, the probability distribution of slc in 2100 relative to 2014 (Figure 6) is constructed using the Monte-Carlo-based 

procedure (with 10,000 random samples) described in Sect. 2.4.2 given GSAT change values fixed at 2°C and 4°C (+/-0.5°C). 

The choice of GSAT scenarios used here is supported by the afore-described analysis, which points out that the RF emulator 

should be used cautiously over the range of GSAT values around 3°C. The emulator-based probabilistic prediction results in 265 

a median value of respectively 6.1cm, and 13.5cm for slc with a likely range of [4.6; 7.4cm], and [10.4; 17.0cm].  
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Figure 6: Emulator-based probabilistic predictions in the form of probability density function of slc in 2100 (with respect to 2014) 

constructed the Monte-Carlo-based procedure (with 10,000 random samples, see Sect. 2.4) for two GSAT change values of 2°C+/-

0.5°C (green), and 4°C+/-0.5°C (orange). This results in a median value of respectively 6.7cm, and 13.5cm with a likely range of [4.6; 270 
7.4cm], and [10.5; 17cm]. The straight line corresponds to the smoothed density function. The number and interval indicate the 

median value and the likely range. Note these probability density functions are derived using the conditional mean of the RF 

emulator (Appendix A) and do not include uncertainty arising from the emulator itself. 

3.2 Impact of design decisions on the emulator performance 

We analyse in Figure 7 the impact of design decisions with respect to the decrease of the RF predictive capability (measured 275 

by decrease of the relative differences of RAE and CRPS and the increase of the relative differences of Q²).  

 

 

Figure 7: Relative difference (in %) of the performance criteria for RAE (a), Q² (b), and CRPS (c) calculated by applying the 

validation procedure described in Sect. 2.4.1 repeated 25 times. 280 
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Figure 7 shows that excluding MAR (experiment ‘woMAR’) has the largest impact whatever the performance criteria. This is 

also shown when considering a given GSAT interval in the validation procedure (Fig. 8 and Supplementary Materials S1). 

This means that excluding MAR impacts both facets of the predictive capability of the emulator, i.e., the explained variance 

of the emulator Q² and the relative errors RAE. We also show that the quality of the prediction intervals, measured by the CRPS 

criterion, is also impacted over the whole range of GSAT values considered in this study. This result was expected due to the 285 

large decrease by almost 90% of the MME size (Table 1). Interestingly, restricting the analysis to one RCM model, here MAR, 

has a non-negligible impact. This suggests that integrating different RCMs in the MME is beneficial for the emulator 

performance although it should be recognised that the influence is by far of lower magnitude than that of the ‘woMAR’ 

experiment. The second most important driver of the emulator performance is the exclusion of extreme SSP scenario SSP5-

8.5, i.e., experiment ’woSSP585’ (red boxplot in Fig. 7) which induces a performance reduction of around half that of 290 

‘woMAR’ and twice that of the third most important contributor, i.e., ‘woCISM’.  

 

Figure 8: Relative difference (in %) of the performance criteria considering the lowest GSAT values below 2.14°C (top) and the 

highest GSAT values above 3.83°C (bottom) for RAE (a, d), Q² (b, e), and CRPS (c, f). 

 295 

The analysis of Fig. 8 shows however that this high influence depends on the range of GSAT considered. On the one hand, for 

the highest GSAT values (Fig. 8, bottom), excluding the extreme SSP scenario SSP5-8.5 (experiment ’woSSP585’) or 

excluding CISM (experiment ‘woCISM’) has the largest impact almost at the same level than that of ‘woMAR’ experiment; 

in particular in terms of Q² (Fig. 8e) and CRPS (Fig. 8f) relative differences. The almost similar decrease in the MME size of 

almost 70% explains this result (Table 1). On the other hand, for the lowest GSAT values (Fig. 8, top), excluding CISM has 300 
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here the second largest impact on the performance. Again, it is interesting to note that restricting the analysis to a unique ISM 

model, here CISM, has a non-negligible impact on the emulator performance. The analysis of the other GSAT intervals 

(Supplementary Materials S1) even shows that the impact of this experiment can be as high as that of ‘woSSP585’. For the 

lowest range of GSAT value, it is ’woSSP245’, and to a lesser extent ’woSSP126’ as well, that drives the most the performance 

decrease. This agrees well with the range of global warming levels that the simulations associated to these SSP scenarios cover. 305 

Finally, the experiments for  appear not to affect much the performance; both experiments having the lowest influence. 

3.3 Impact of design decisions on the emulator-based probabilistic predictions 

In this section, we analyse the impact on the RF-based probabilistic predictions. Since the impact on the percentiles has more 

interest from the perspective of end-users, we primarily focus the analysis on the changes in the slc percentiles, Q17%, Q83% 

and in the median value in Fig. 9. The interested reader can refer to Supplementary materials S2 for an analysis of the whole 310 

slc probability distributions’ changes. Here the results include estimates of uncertainty arising from the emulator itself. Figure 

9 shows that, depending on the GSAT scenario, the percentiles are perturbed in different ways. Several observations can be 

made: 

- Overall, the design decision for  has only a minor impact on the order of the emulator uncertainty indicated by the 

width of the error-bars, regardless of the GSAT change and the considered percentile. This result agrees well with the 315 

analysis on the RF predictive capability in Sect. 3.2; 

- Excluding MAR has a large impact as expected from Sect. 3.2 leading to absolute changes of the different percentile 

on the order of 10%. The largest influence is for the high percentile Q83%, which is under-estimated by more than 

25% for the lowest GSAT scenario; 

- Interestingly, it is not the most important driver of the emulator performance, i.e., experiment ‘woMAR’, that 320 

influences the most the considered percentiles, but the second drivers of the emulator performance, namely 

experiment ‘woCISM’ and ‘woSSP585’. This is shown by the high under-estimation of the median on the order of -

20% when considering ‘woCISM’ for the lowest GSAT scenario. This is also the case when considering ‘woSSP585’ 

for the highest GSAT scenario; 

- The highest decrease of all tests is -30% for Q17% when considering ‘woCISM’ for the lowest GSAT scenario, and 325 

for Q83% when considering ‘woSSP585’ for the highest GSAT scenario. These results agree well with the analysis 

of the emulator performance (Fig. 8); 

- Similarly as for the performance analysis, including in the MME a unique ISM, here CISM, or a unique RCM, here 

MAR, has a non-negligible influence leading to absolute changes on the same order of 10-15% (in average).  
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 330 

Figure 9: Relative difference (in %) between the RF reference solution and the RF model trained when considering the experiments 

indicated in the y-axis (see Table 2 for full details) for the estimates of three slc percentiles in 2100 relative to 2014, the median and 

the quantile at 17% (Q17%) and at 83% (Q83%), considering two GSAT changes, 2°C (+/-0.5°C), and 4°C(+/-0.5°C). The endpoints 

of the error-bars correspond to the 5% and the 95% quantile calculated by applying 100 times the procedure described in Appendix 

B to reflect the emulator uncertainty. 335 

4. Synthesis and Discussion 

4.1 Implications for MME design 

Table 3 summarises the main results from the emulator’s experiments for each design question considering the MME of this 

study. In the following, we take the viewpoint of a MME designer, and derive the practical recommendations from these 

results. 340 
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Table 3. Summary of the results from the emulator’s experiments for each design question considering the MME of this study. 

Input Question Results for the considered MME 

SSP-RCP Does including a medium scenario SSP2-4.5 

improve the results or is it enough to use the end 

members SSP1-2.6 and SSP5-8.5? 

Excluding the medium scenario has a small-to-moderate 

impact, and mainly affects the emulator performance for low 

GSAT values. The main reason is likely to be the importance of 

the end member scenarios, as shown by the experiment 

excluding SSP5-8.5, but also the relatively small number of 

medium scenario simulations in this ensemble and the strong 

linearity of the Greenland ice sheet response with global 

temperature in these models (other models could be more non-

linear). 

RCM choice What is the added value of including new RCM, 

i.e. is it sufficient to focus on MAR regional 

climate model only? 

This is the most impactful decision, whatever the GSAT 

scenario or the criteria, i.e., emulator performance or percentile 

assessment. This result is strongly linked to the high number of 

members using MAR. 

ISM choice What is the added value of accounting for all 

ISMs except for one? 

Restricting the analysis to one unique ISM, here CISM, might 

lead to a moderate over-estimation of the probabilistic 

predictions. In addition, having different ISMs is beneficial 

(experiment ‘woCISM’), but not sufficient with high impact on 

the emulator performance and under-estimation of the 

percentile values. 

Range of  values Should the design cover a large range of values, 

i.e. is it sufficient to focus on extreme values? 

This decision is the least impactful relatively to the others in the 

considered MME. Results suggest that restricting to the 

‘Medium and Extreme’ scenario is sufficient for this parameter, 

which has a relatively linear relationship with ice sheet 

response, though for other parameters this would not be known 

a priori and test simulations would be needed for multiple 

values to characterise whether the relationship was non-linear. 

 

On the one hand, some conclusions were expected beforehand, namely the influence of emulator experiments leading to high 

decrease in the MME size between 70% and 90%, i.e., ‘woMAR’, ‘woSSP585’, and ‘woCISM’. This decrease logically 345 

degrades the predictive capability since the RF is trained on a small dataset (Sect. 3.2). On the other hand, some other 

conclusions could not necessarily have been anticipated in detail more particularly the implications on the percentile 

assessment (Sect. 3.3). Here, ‘woMAR’ is not necessarily the highest contributor to the changes although it leads to the highest 

size decrease of nearly 90%. Depending on the GSAT scenario considered and on the targeted level of the percentile, the 

inclusion of SSP5-8.5 or that of CISM has strong implications although the induced decrease in MME size is lower on the 350 
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order of 70%. This suggests that this is not only a problem of ‘size’ but also a problem of type of information that is removed 

from the ensemble depending on the targeted objective, i.e., emulator performance or percentile assessment. As a complement, 

we analysed in Supplementary Materials S3 an indicator that measures the changes in the member distributions of the new 

MME subsets after application of the emulator experiment. This shows that the ‘woCISM’ experiment leads to the largest 

perturbation of the member distribution, i.e., by >50% largest that of ‘woMAR’. This suggests that the additional important 355 

factor is also the diversity among the members within the MME. This result helps to explain the greater contribution of 

‘woCISM’ to the percentile (Sect. 3.3), although it must be recognised that the indicator introduced in Supplementary Materials 

S3 remains a first-order approximation of this diversity, and that further work should look into this aspect in more detail. 

A very practical implication can be derived from the  experiments: results indicate that restricting to the extreme and medium 

scenario is sufficient here because of the lesser impact between the two experiments, ‘Med. & Extr.’ or “Narrow”. This result 360 

is interpreted as being linked to a quasi-linear relationship between  and slc as shown in Rohmer et al. (2022) using the MME 

of ISMIP6 for Greenland. This was confirmed by the analysis detailed in Supplementary Materials S3. In practice, this result 

implies that the number of scenarios explored in the MME can be limited to a three-scenario approach (low-medium-high 

value), i.e. the number of members can be reduced, thus reducing the number of long numerical simulations required. 

Results for RCM and ISM choice can be seen as an additional justification for intensifying the model intercomparison efforts 365 

initiated in the past. They also support, to some extent, a posteriori, the choices that have been made for the construction of 

the MME considered here (based on that of Goelzer et al. (2020)). Restricting the analysis to one unique ISM, here CISM, 

leads to a clear over-estimation of the percentiles, which suggests that having a diversity of ISMs is here beneficial. This is in 

line with the initiative originally launched in ISMIP6 (Nowicki et al., 2016), which included coupled ISMs as well as stand-

alone ISMs in CMIP for the first time. Similarly, the choice of restricting the MME to MAR is impactful for the emulator 370 

performance and the percentile assessment. This calls for intensifying the cooperative research efforts, potentially within a 

MIP, by extending this study to different RCM models, instead of MAR only, or investigating the relevance of using different 

versions of MAR (see Table 2). This also relates to the question of initialisation (and initial mass loss estimates) where the 

RCM choice is a key ingredient (e.g., Otosaka et al., 2023). 

4.2 Implications from stakeholders’ point of view 375 

Our work can help stakeholders in several ways. First, our study contributes to a better understanding of the contribution of 

Greenland ice sheet melt to sea level rise. According to the latest authoritative sea level projections developed by the IPCC 

(Fox-Kemper et al., 2022) the GIS contribution to sea-level rise is projected to reach 8cm [4cm; 13cm] (median [likely range]) 

by 2100 for the SSP2-4.5 scenario. This means Greenland has a sizeable share to the total global mean sea level rise and their 

uncertainties, which were estimated at 56cm [44cm; 76cm] for this scenario according to the same report. Second, our results 380 

support coastal adaptation practitioners in their decision-making. Our emulator experiments in Sect. 3.2 and 3.3 highlight how 

the different modelling choices affect differently the median or the upper tail (here measured by the Q83% percentile). This 

difference is important, because the literature on adaptation decision-making has clearly shown that knowing the median is 
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not sufficient for coastal adaptation practitioners managing long-living critical infrastructures or making strategic decisions 

for regions or countries (Hinkel et al., 2019). These practitioners need credible assessments of the uncertainties in ice mass 385 

losses in Greenland, including for the low probability scenarios corresponding to the tail of probabilistic projection. For 

example, France selected a unique climate scenario of 3°C GWL used in France within its 3rd development plan published in 

2025. To define the associated sea-level scenarios to be mainstreamed in public policies, a detailed consideration of 

uncertainties is required to understand which security margins are taken (Le Cozannet et al., 2025). Thus, our study supports 

the need for improved experimental designs by making some practical recommendations, especially regarding the 390 

consideration of ISM, RCM and RCP8.5/SSP5-8.5 simulations.  

Finally, the importance of SSP5-8.5, although expected, also underlines the fact that a wide range of emissions scenarios and 

climate simulations should continue to be considered in the future. The SSP5.8-5 scenario in this ensemble contains many 

simulations and covers a wide range of global warming levels at 2100. To represent plausible outcomes of failure of states to 

meet their own commitments, or political backlashes leading to climate policy setbacks (see recent discussion by Meinshausen 395 

et al., 2024), medium and medium-high emissions scenarios (e.g. radiative forcing reaching between 4.5 and 7.0W/m2 in 2100) 

should continue to be used for simulations of climate impacts such as for the Greenland ice sheet, so that these do not rely too 

much on emulators interpolating from end member scenarios. Furthermore, the current design of the SSP3-7.0 involves very 

high aerosol emissions, so that the resulting simulations need to be considered carefully (Shiogama et al., 2023). Being able to 

use more intermediate climate simulations reaching radiative forcing between 4.5 and 7.0W/m2 in 2100 is all the more 400 

important as another need is now emerging: projections of ice mass loss for specific levels of global warming relative to 

preindustrial (as in the IPCC: Fox-Kemper et al., 2022; see also the latest adaptation plan in France, Le Cozannet et al., 2025). 

Indeed, scenarios based on global warming levels can be potentially better understood by stakeholders than the SSP or RCP 

scenarios, and also allow users to better make the link with the climate objectives set out in the Paris agreement to stabilize 

climate change well below 2°C GWL. For all scenarios, including global warming levels, the development of probabilistic 405 

projections requires emulators, whose accuracy and precision can be improved by better experimental design. 

5. Concluding remarks and further work 

Developing robust protocols to design balanced and complete numerical experiments for MME is a matter of active research 

that has called multiple studies either for sea level projections via selection criteria (Barthel et al., 2020) or from an uncertainty 

assessment’s perspective (Aschwanden et al., 2021), and more generally for regional impact assessment (Merrifield et al., 410 

2023; Evin et al., 2019). In this study, we take advantage of a large MME produced for Greenland ice sheet contributions to 

future sea level to define a series of emulator’s experiments that are closely related to practical MME design decisions. Our 

results confirm the high importance of including the SSP5-8.5 scenario as well as having diverse ISM and RCM models. 

Finally, the less impactful choice in this ensemble is the one in the sampling of the Greenland tidewater glacier retreat 
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parameter, because it has a relatively linear relationship with sea level contribution. These recommendations (detailed in Table 415 

3) can be informative for the design of next generation MME for Greenland (ISMIP7: Nowicki et al., 2023).  

Although the MME considered in this study covers a large spectrum of situations (multiple SSP scenarios, different RCMs 

and ISMs), with more than 1,000 members, a series of aspects need to be considered in the future to further increase the 

robustness of these results. First, our procedure should be tested on additional MMEs of interest to improve the transferability 

of our results, in particular for Antarctica (Seroussi et al., 2020), for multi-centennial projections (e.g., Seroussi et al., 2024), 420 

and for glaciers (Marzeion et al., 2020). These tests should also include new types of MMEs that are combined with calibration 

(e.g., Aschwanden and Brinkerhoff, 2022). They make it possible to circumvent an assumption in our study, namely that all 

members have the same weight, by taking into account the reliability of the different members (for example, low-resolution 

models compared with high-resolution models) or observational constraints, provided that good-quality data are available over 

a sufficiently long period in the past and that the numerical implementation of the ISMs is suitable for calibration. Second, our 425 

results are based on the use of an emulator, i.e., a statistical approximation of the ‘true’ chain of numerical models. The efforts 

made to nuance the results by including indicators of the emulator uncertainty should be strengthened in the future by 

considering multiple types of emulator models (e.g., Yoo et al., 2025) but also the impact of hyperparameter tuning (Bischl et 

al., 2023). Finally, our recommendations are derived, by construction, a posteriori, i.e., based on the available members of a 

large-size MME. Therefore, a third avenue here is to derive recommendations earlier on in the process, i.e. early during the 430 

construction of the MME design, through an iterative manner between phases of simulations (either test simulations to evaluate 

sensitivity to different inputs, or small exploratory ensembles that do not use the full computing/person/project time available) 

and emulator training – and re-training – with each phase, to identify key gaps (e.g. additional parameter interaction tests in 

Edwards et al., 2021). From a methodological perspective, robust tools may be found in the data valuation domain (Sim et al., 

2022), which aims to study the worth of data in machine learning models based on similar methods as the ones used by Rohmer 435 

et al. (2022) in the context of sea level projections. Transposed to the MME context, these tools could be used in future studies 

to assess the impact of each member in the emulator’s predictions, i.e. the worth of each member. This type of result is expected 

to serve as guidance to the MME design in particular regarding the question of completeness and the necessity for balanced 

design.  

Author contributions 440 

JR and HG designed the concept. TE pre-processed the MME results. JR set up the methods and undertook the statistical 

analyses. JR and HG defined the protocol of experiments. JR, HG, TE, GLC, HG, GD analysed and interpreted the results. JR 

wrote the manuscript draft. JR, HG, TE, GLC, GD reviewed and edited the manuscript.  



21 

 

Competing interests 

The authors declare that they have no conflict of interest. 445 

Code/Data availability 

We provide the data and R scripts to run the experiments and analysing the results on the Github repository: 

https://github.com/rohmerj/MMEdesign 

Acknowledgements 

We acknowledge the modelling work that constitutes the MME analysed in this study: the PROTECT Greenland ice sheet 450 

modelling and regional climate modelling groups, and the World Climate Research Programme and its Working Group on 

Coupled Modelling for coordinating and promoting CMIP5 and CMIP6. We thank the modelling groups for producing and 

making available their model output and the Earth System Grid Federation (ESGF) for archiving the CMIP data and providing 

access. HG has received funding from the Research Council of Norway under project 324639 and had access to resources 

provided by Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway through 455 

projects NN8006K, NN8085K, NS8006K, NS8085K and NS5011K. This project has received funding from the European 

Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 869304, PROTECT. The authors would 

like to acknowledge the assistance of DeepL (https://www.deepl.com/fr/translator) in refining the language and grammar of 

this manuscript.  

https://github.com/rohmerj/MMEdesign
https://www.deepl.com/fr/translator


22 

 

References 460 

Altmann, A., Tolosi, L., Sander, O. and Lengauer, T.: Permutation importance: a corrected feature importance measure, 

Bioinformatics, 26, 1340-1347, 2010. 

Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief communication: A roadmap towards credible 

projections of ice sheet contribution to sea level. The Cryosphere, 15(12), 5705-5715, 2021. 

Aschwanden, A., and Brinkerhoff, D. J.: Calibrated mass loss predictions for the Greenland ice sheet. Geophysical Research 465 

Letters, 49(19):e2022GL099058, 2022. 

Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and 

Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, Cryosphere, 14, 

855-879, doi:10.5194/tc-14-855-2020, 2020. 

Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 470 

192-213, 2012. 

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.-L., 

Deng, D., Lindauer, M.: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484, 2023. 

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 475 

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification and regression trees, Wadsworth, California, 1984. 

Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., et al.: Projected land ice contributions to 

twenty-first-century sea level rise, Nature, 593(7857), 74-82, 2021. 

Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Box, J. E., and Steffen, K.: Climate of the Greenland 

ice sheet using a high-resolution climate model – Part 1: Evaluation, The Cryosphere, 4, 511–527, doi:10.5194/tc-4-511-2010, 480 

2010. 

Evin, G., Hingray, B., Blanchet, J., Eckert, N., Morin, S., and Verfaillie, D.: Partitioning uncertainty components of an 

incomplete ensemble of climate projections using data augmentation, Journal of Climate, 32(8), 2423-2440, 2019. 

Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions 

of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 485 

1015–1033, doi:10.5194/tc-11-1015-2017, 2017. 

Friedman, J. H.: Greedy function approximation: A gradient boosting machine, Annals of statistics, 29(5), 1189-1232, 

doi:10.1214/aos/1013203451, 2001. 

Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., 

Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: 490 

Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working 

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, 



23 

 

A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, 

J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)], Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011, 2021. 495 

Gneiting T., Raftery A. E., Westveld III A. H., and Goldman T.: Calibrated probabilistic forecasting using ensemble model 

output statistics and minimum crps estimation. Monthly Weather Review 133(5): 1098–1118, 2005. 

Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-

Chaulet, F., Golledge, N. R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H., Larour, E., Lipscomb, 

W.’H., Le clec'h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N., 500 

Seroussi, H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F. A.: Design and results of the ice sheet model initialisation 

experiments initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12, 1433-1460, https://doi.org/10.5194/tc-12-

1433-2018, 2018. 

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., et al.: The future sea-level contribution of the 

Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14(9), 3071-3096, 2020. 505 

Goelzer, H., Berends, C. J., Boberg, F., van den Broeke, M., Durand, G., Edwards, T., Fettweis, X., Gillet-Chaulet, F., Glaude, 

Q., Huybrechts, P., Le clec'h, S., Mottram, R., Noel, B., Olesen, M., Rahlves, C., Rohmer, J., van de Wal, R. S. W.:  Extending 

the range and reach of physically-based Greenland ice sheet sea-level projections. Preprint egusphere-2025-3098, 2025. 

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 

Springer: Berlin/Heidelberg, Germany, 2009. 510 

Hinkel, J., Church, J.A., Gregory, J.M., Lambert, E., Le Cozannet, G., Lowe, J., McInnes, K.L., Nicholls, R.J., van Der Pol, 

T.D. and Van De Wal, R.: Meeting user needs for sea level rise information: A decision analysis perspective, Earth's Future, 

7(3), 320-337, 2019. 

Hough, A. and Wong, T.E.: Analysis of the evolution of parametric drivers of high-end sea-level hazards, Advances in 

Statistical Climatology, Meteorology and Oceanograp, hy, 8(1), 117-134, 2022. 515 

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G.: Challenges in combining projections from multiple climate 

models, J. Climate, 23, 2739–2758, 2010. 

Le Cozannet, G., Thiéblemont, R., Rohmer, J., and Capderrey, C.: Sea-level scenarios aligned with the 3rd adaptation plan in 

France. Comptes Rendus. Géoscience, 357(G1), 105-123, 2025. 

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, 520 

A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and NearTerm 

Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment 

Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, 

S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, 

T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 525 

York, NY, USA, pp. 553–672, doi:10.1017/9781009157896.006, 2021. 



24 

 

Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., Huybrechts, P., Jordan, J., Leguy, G., 

Martin, D., et al.: Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response 

functions of 16 ice sheet 600 models (LARMIP-2), Earth System Dynamics, 11, 35–76, https://doi.org/10.1175/JCLI-D-23-

0580.1, 2020. 530 

Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, 

J. H., Perego, M., Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., and Worley, P. H.: Description and evaluation of 

the Community Ice Sheet Model (CISM) v2.1, Geosci. Model Dev., 12, 387–424, doi:10.5194/gmd-12-387-2019, 2019. 

Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K. J., 

Matschoss, P. R., Plattner, G.-K., Yohe, G. W., and Zwiers, A. F. W.: Guidance note for lead authors of the IPCC fifth 535 

assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC), 2010. 

Available at https://www.ipcc.ch  

Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., et al.: Partitioning the uncertainty of ensemble 

projections of global glacier mass change. Earth's Future, 8(7), e2019EF001470, 2020. 

Meinshausen, N.: Quantile regression forests. Journal of Machine Learning Research, 7(35): 983–999, 2006. 540 

Meinshausen, M., Schleussner, C. F., Beyer, K., Bodeker, G., Boucher, O., Canadell, J. G., et al.: A perspective on the next 

generation of Earth system model scenarios: towards representative emission pathways (REPs), Geoscientific Model 

Development Discussions, 2023, 1-40, 2023. 

Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., and Knutti, R.: An investigation of weighting schemes suitable for 

incorporating large ensembles into multi-model ensembles, Earth System Dynamics, 11(3), 807-834, 2020. 545 

Merrifield, A. L., Brunner, L., Lorenz, R., Humphrey, V., and Knutti, R.: Climate model Selection by Independence, 

Performance, and Spread (ClimSIPS v1. 0.1) for regional applications, Geoscientific Model Development, 16(16), 4715-4747, 

2023. 

Nowicki, S. M. J., Payne, A., Larour, E., Seroussi, H., Goelzer, H., Lipscomb, W., Gregory, J., Abe-Ouchi, A., and Shepherd, 

A.: Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6, Geosci. Model Dev., 9, 4521-4545, 550 

doi:10.5194/gmd-9-4521-2016, 2016. 

Nowicki, S., Payne, A. J., Goelzer, H., Seroussi, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Alexander, P., Asay-Davis, 

X. S., Barthel, A., Bracegirdle, T. J., Cullather, R., Felikson, D., Fettweis, X., Gregory, J., Hatterman, T., Jourdain, N. C., 

Kuipers Munneke, P., Larour, E., Little, C. M., Morlinghem, M., Nias, I., Shepherd, A., Simon, E., Slater, D., Smith, R., 

Straneo, F., Trusel, L. D., van den Broeke, M. R., and van de Wal, R.: Experimental protocol for sealevel projections from 555 

ISMIP6 standalone ice sheet models, Cryosphere, 14, 2331–2368, doi:10.5194/tc-14-2331-2020, 2020. 

Nowicki, S., Payne, A. J., Seroussi, H. L., Goelzer, H., Smith, R. S., Asay-Davis, X., et al.: Plans for the Ice Sheet Model 

Intercomparison Project for CMIP7, In AGU Fall Meeting Abstracts, vol. 2023, pp. G52A-07, 2023. 

Otosaka, I. N., Shepherd, A., Ivins, E. R., Schlegel, N. J., Amory, C., van den Broeke, M. R. et al.: Mass balance of the 

Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data, 15(4), 1597–1616, 2023. 560 

https://www.ipcc.ch/


25 

 

Probst, P., Wright, M. N., and Boulesteix, A. L.: Hyperparameters and tuning strategies for random forest, Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1301, 2019. 

Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H., & Durand, G.: Improving interpretation of sea-level projections 

through a machine-learning-based local explanation approach, The Cryosphere, 16(11), 4637-4657, 2022. 

Rohmer, J., Idier, D., Paris, F., Pedreros, R., & Louisor, J.: Casting light on forcing and breaching scenarios that lead to marine 565 

inundation: Combining numerical simulations with a random-forest classification approach. Environmental Modelling & 

Software, 104, 64-80, 2018. 

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., et al.: ISMIP6 Antarctica: a multi-

model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14(9), 3033-3070, 2020. 

Seroussi, H., Pelle, T., Lipscomb, W. H., Abe‐Ouchi, A., Albrecht, T., Alvarez‐Solas, J., et al.: Evolution of the Antarctic Ice 570 

Sheet over the next three centuries from an ISMIP6 model ensemble, Earth's Future, 12(9), e2024EF004561, 2024. 

Shiogama, H., Fujimori, S., Hasegawa, T., Hayashi, M., Hirabayashi, Y., Ogura, T., Iizumi, T., Takahashi, K. and Takemura, 

T.: Important distinctiveness of SSP3–7.0 for use in impact assessments. Nature Climate Change, 13(12), pp.1276-1278, 2023. 

https://doi.org/10.1038/s41558-023-01883-2 

Sim, R. H. L., Xu, X., and Low, B. K. H.: Data Valuation in Machine Learning:" Ingredients", Strategies, and Open Challenges, 575 

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Survey Track, 5607-5614, 

doi:10.24963/ijcai.2022/782, 2022. 

Silverman, B. W.: Density Estimation for Statistics and Data Analysis, London: Chapman & Hall, ISBN 9780412246203, 

1986. 

Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H., Fettweis, X., and Holte, J.: Estimating Greenland tidewater 580 

glacier retreat driven by submarine melting, The Cryosphere, 13, 2489–2509, 2019. 

Slater, D. A., Felikson, D., Straneo, F., Goelzer, H., Little, C. M., Morlighem, M., Fettweis, X., and Nowicki, S.: Twenty-first 

century ocean forcing of the Greenland ice sheet for modelling of sea level contribution, The Cryosphere, 14, 985-

1008, doi:10.5194/tc-14-985-2020, 2020. 

Storlie, C. B., Swiler, L. P., Helton, J. C., and Sallaberry, C. J.: Implementation and evaluation of nonparametric regression 585 

procedures for sensitivity analysis of computationally demanding models. Reliability Engineering & System Safety, 94(11), 

1735-1763, 2009. 

Tadesse, M., Wahl, T., and Cid, A.: Data-Driven Modeling of Global Storm Surges, Frontiers in Marine Science, 7, 260, 

https://doi.org/10.3389/fmars.2020.00260, 2020. 

Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philos. T. Roy. Soc. A, 590 

365, 2053–2075, doi:10.1098/rsta.2007.2076, 2007. 

Turner, F., Rougier, J., Edwards, T., Coulon, V., and Klose, A. K.: Building probabilistic projections of the Antarctic 

contribution to global sea level rise using a random forests emulato, EGU General Assembly 2024, Vienna, Austria, 14–19 

Apr 2024, EGU24-16820, doi:10.5194/egusphere-egu24-16820, 2024. 

https://doi.org/10.5194/tc-14-985-2020


26 

 

Tyralis, H., Papacharalampous, G., and Langousis, A.: A Brief Review of Random Forests for Water Scientists and 595 

Practitioners and Their Recent History in Water Resources, Water, 11, 910, https://doi.org/10.3390/w11050910, 2019. 

Van Breedam, J., Huybrechts, P., and Crucifix, M.: A Gaussian process emulator for simulating ice sheet–climate interactions 

on a multi-million-year timescale: CLISEMv1.0, Geosci. Model Dev., 14, 6373–6401, doi:10.5194/gmd-14-6373-2021, 2021. 

Van Katwyk, P., Fox-Kemper, B., Nowicki, S., Seroussi, H., & Bergen, K. J. (2025). ISEFlow v1. 0: A Flow-Based Neural 

Network Emulator for Improved Sea Level Projections and Uncertainty Quantification. EGUsphere, 2025, 1-32. 600 

Wirths, C., Stocker, T. F., and Sutter, J. C.: The influence of present-day regional surface mass balance uncertainties on the 

future evolution of the Antarctic Ice Sheet, The Cryosphere, 18(9), 4435-4462, 2024. 

Wright, M. N., and König, I. R.: Splitting on categorical predictors in random forests. PeerJ, 7, e6339, 2019. 

Yoo, M., Gopalan, G., Hoffman, M., Coulson, S., Han, H. K., Wikle, C. K., & Hillebrand, T.: Emulation with uncertainty 

quantification of regional sea‐level change caused by the Antarctic Ice Sheet. Journal of Geophysical Research: Machine 605 

Learning and Computation, 2(2), e2024JH000349, 2025. 

  



27 

 

Appendix A Random Forest regression model 

Let us first denote slci=1,…,n the ith value of sea level contribution calculated relative to the ith vector of p input parameters’ 

values 𝒙i=1,…,n = {𝑥1, 𝑥2, … , 𝑥𝑝}i=1,…,n where n is the total number of experiments. The Random Forest (RF) regression model 610 

is a non-parametric technique based on a combination (ensemble) of tree predictors (using regression tree, Breiman et al. 

1984). By nature, tree models can deal with mixed types of variables, categorical or continuous. Each tree in the ensemble 

(forest) is built based on the principle of recursive partitioning, which aims at finding an optimal partition of the input 

parameters’ space by dividing it into L disjoint sets R1, …, RL to have homogeneous Yi values in each set Rl=1,…,L by minimizing 

a splitting criterion, which is chosen in this study as the sum of squared errors (Breiman et al. 1984). The minimal number of 615 

observations in each partition is termed nodesize (denoted ns). 

The RF model, as introduced by Breiman (2001), aggregates the different regression trees as follows: (1) random bootstrap 

sample from the training data and randomly select mtry variables at each split; (2) construct ntree trees T(), where t denotes 

the parameter vector based on which the tth tree is built; (3) aggregate the results from the prediction of each single tree to 

estimate the conditional mean of slc as: 620 

𝐸(𝑠𝑙𝑐|𝑿 = 𝐱(𝑠)) = ∑ 𝑤j(𝐱(𝑠))𝑠𝑙𝑐j
𝑛
j=1 ,         (A1) 

where E is the mathematical expectation, and the weights 𝑤𝑗  are defined as 

𝑤j(𝐱(s)) =
∑ 𝑤j(𝐱(s), 𝑡)

𝑛tree
𝑡=1

𝑛𝑡𝑟𝑒𝑒
, with 𝑤j(𝐱(s),) =

I
{𝑋jϵR𝑙(𝑥,𝜶)}

#{i∶ 𝑋iϵR𝑙(𝑥,𝜶)}
,       (A2) 

where I(A) is the indicator operator which equals 1 if A is true, 0 otherwise; R𝑙(𝑥,𝛼) is the partition of the tree model with 

parameter  which contains x. 625 

The RF hyperparameters considered in the study are ns and mtry which have shown to have a large impact on the RF 

performance (Probst et al., 2019). The number of ntree was set up to a large value of 1,000 because of its smaller influence on 

the RF model performance (relative to ns and mtry). To select values for these parameters, we rely on an approach based on a 

10-fold cross validation exercise (Hastie et al., 2009), which consists in varying ns from 1 to 10, and mtry from 1 to 7, and in 

selecting the most optimal combination with respect to cross-validation predictive error. The number of random trees is fixed 630 

at 1,000; preliminary tests having showed that this latter parameter has little influence provided that it is large enough.  

An additional difficulty of our study is the presence of a large number of categorical variables with large number of levels 

(unordered values). The partitioning algorithm described above tends to favour categorical predictors with many levels (Hastie 

et al. (2009): chapter 9.2.4). To alleviate this problem, we rely on the computationally efficient algorithm proposed by Wright 

et al. (2019) based on ordering the levels a priori, here by their mean response. 635 
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Appendix B Accounting for the emulator uncertainty 

The RF method described in Appendix A is very flexible and can be adapted to predict quantiles, which can be used to assess 

the RF emulator uncertainty. To do so, we rely on the quantile regression forest (qRF) model, which was originally developed 

by Meinshausen (2006), who proposed to estimate the conditional quantile 𝑞(𝑦|𝒙) at level  as 

𝑞(𝑠𝑙𝑐|𝒙) = inf (𝒙: 𝐹𝑆𝐿𝐶|𝐗(𝑠𝑙𝑐|𝒙) ≥ ),         (B1) 640 

where 𝐹𝑆𝐿𝐶|𝐗(𝑦|𝐱) = ∑ 𝑤𝑗(𝒙)I{𝑆𝐿𝐶𝑗𝑠𝑙𝑐}
𝑛
𝑗=1 ,         (B2) 

where the weights are calculated in the same manner as for the regression RF model (described in Appendix A). The major 

difference with the formulation for regression RF is that the qRF model computes a weighed empirical cumulative distribution 

function of slc for each partition instead of computing a weighted average value.  

The quantiles computed using the qRF model can directly be used to define the prediction intervals at any level : 645 

[𝑞(1−)/2(𝑠𝑙𝑐|𝐱∗); 𝑞(+1)/2(𝑠𝑙𝑐|𝐱∗)], which can be used to reflect the RF emulator uncertainty when providing the emulator 

predictions.  

When performing the probabilistic predictions (Sect. 2.4.2), the emulator uncertainty is propagated in addition to the 

uncertainty of the different input variables based on the following procedure: 

(Step 1) Draw N random realizations of the input variables 𝐱̃; 650 

(Step 2.1) Draw N random number 𝑢̃ between 0 and 1 by assuming a uniform random distribution;  

(Step 2.2) Compute the N values 𝑠𝑙𝑐̃ = 𝑞𝑢(𝑠𝑙𝑐|𝐱̃) given 𝑢̃ and 𝐱̃ using the qRF model; 

(Step 2.3) Compute the quantile 𝑄𝑢
 at the chosen level  from the set of N values of 𝑠𝑙𝑐̃; 

(Step 3) Repeat n times Steps 2.1 to 2.3. At Step 2.2, 𝑠𝑙𝑐̃ are calculated for the same set of random input variables 𝐱̃ defined at 

Step 1, but each time a newly randomly generated set of levels 𝑢̃ is used based on Step 2.1. This means that, at Step 2.3, the 655 

newly calculated quantiles 𝑄𝑢
 vary for each of the repetitions.  

The output of the procedure is a set of n quantile values (𝑄
𝑢(1)
 , 𝑄

𝑢(2)
  , … , 𝑄

𝑢(𝑛)
  ). The variability among these values reflects 

the emulator uncertainty and can be summarized by the % confidence interval with lower and upper bounds defined by the 

(1-)/2, and the (1+)/2 quantile of 𝑄𝑢
. In this study, we choose N=10,000, n=100 and =90%. 

Appendix C Screening analysis 660 

We rely on the hypothesis testing of Altmann et al. (2010). To identify the significant predictor variables, the null hypothesis 

“no association between slc and the corresponding predictor variable” is tested. The corresponding p-value is evaluated by (1) 

computing the probability distribution of the importance measure of each predictor variable through multiple replications (here 

1,000) of permuting slc; (2) training a RF model; and (3) computing the permutation-based variable importance. When the p-

value is below a given significance threshold (typically of 5%), it indicates that the null hypothesis should be rejected, i.e., the 665 

considered predictor variable has a significant influence on slc. Figure C1 shows that four predictor variables have non-
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significant influence with p-values above 5%, namely the choice in the account for thermodynamics, the choice in the sliding 

law, the type of initialisation and the number of years for initialisation phase.  

 

Figure C1: Screening analysis showing the p-values of the RF variable importance-based test of independence of Altmann et al. 670 

(2010). The vertical red line indicates the significance threshold at 5%. When the p-value is below 5%, it indicates that the null 

hypothesis should be rejected, i.e., the considered variable has a significant influence, and should retained in the RF construction. 
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Figure C2: Count number of the MME members with respect to the variables identified as non-influential. 

Appendix D Formal definition of the performance criteria 675 

Let us consider the slc prediction error, i.e. 𝑒(i) = 𝑠𝑙𝑐(i) − 𝑠𝑙𝑐̂(i) for each test sample i=1,…,ntest. We consider two performance 

indicators to measure the emulator’s predictive capability as follows: 

- the relative absolute error, 𝑅𝐴𝐸 =
1

𝑛test
∑ |

𝑒(𝑖)

𝑠𝑙𝑐(𝑖)|
𝑛test
𝑖=1  (quoted as a percentage); 

- the coefficient of determination, 𝑄2 = 1 −
∑ (𝑒(𝑖))

2ntest
𝑖=1

∑ (𝑠𝑙𝑐(𝑖)−𝑠𝑙𝑐̅̅ ̅̅ )
2ntest

𝑖=1

 where 𝑠𝑙𝑐̅̅ ̅̅  is the average value of slc calculated over the 

test set. 680 

In addition, we consider a third performance indicator, i.e., the continuous rank probability score CRPS, that jointly quantifies 

the calibration of qRF probability distribution, i.e. the reliability of the estimation, and its sharpness (i.e. the 

concentration/dispersion of the probability distribution). To evaluate the CRPS score, the formulation based on quantiles 

(Berrisch and Ziel (2024): Eq. 2) is used: 

𝐶𝑅𝑃𝑆 =  2 ∫ 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒)
1

0

d
2

𝑃
∑ 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒)

𝜏∈

, 685 

where the term 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒) is defined as: 

{
(1 − )(𝑞(𝑠𝑙𝑐|𝐱∗) − 𝑠𝑙𝑐𝑡𝑟𝑢𝑒) if 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 < 𝑞(𝑠𝑙𝑐|𝐱∗)

(𝑠𝑙𝑐𝑡𝑟𝑢𝑒 − 𝑞(𝑠𝑙𝑐|𝐱∗)) if 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 ≥ 𝑞(𝑠𝑙𝑐|𝐱∗)
 ,  
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where 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 is the true value of the sea level contribution, and where the quantiles 𝑞(𝑠𝑙𝑐|𝐱∗) are evaluated using the trained 

qRF model at given instance of the input variables 𝐱∗ for an equidistant dense grid of quantile levels (1, … , 𝑃) with i < 𝑖+1 

and 𝑖+1 − 𝑖 = 1/𝑃. In this study, we consider level 1=5% and 𝑃 =95% with 1/P=5%. 690 

Appendix E List of acronyms / abbreviations 

Name Description 

AR Assessment Report 

CMIP Coupled Model Intercomparison Project 

CRPS Continuous Ranked Probability Score 

GCM Global Climate Model 

GrIS Greenland Ice-Sheet 

GSAT Global Surface Atmosphere Temperature 

GWL Global Warming Level 

IPCC Intergovernmental Panel on Climate Change 

ISM Ice-Sheet Model 

ISMIP Inter-Sectoral Impact Model Intercomparison Project 

qRF Quantile Random Forest 

MME Multi-model ensemble 

RAE Relative Absolue Error 

RCM Regional Climate Model 

RCP Representative Concentration Pathway 

RF Random Forest 

slc Sea level contribution 

SMB Surface Mass Balance 

SSP Shared Socio-economic Pathways 

 


