
Replies to Referees’ comments on “Drawing lessons for 
multi-model ensemble design from emulator experiments: 
application to future sea level contribution of the Greenland 
ice sheet” (egusphere-2025-52) 
 

We would like to thank both Referees for the constructive comments. We agree with most of 

the suggestions and, therefore, we have modified the manuscript to take on board the comments 

and suggestions. We recall the reviews and we reply to each of the comments in turn (outlined 

in blue). The page and line numbers are those of the document with track-changes. 

 

Additional changes 

Since the submission of this manuscript, we had the opportunity to include HIRHAM RCM in 

the MME as well. In addition to the modifications suggested, we have thus included this third 

RCM model in the analysis. A major advantage is to define an experiment where only the 

members of HIRHAM and RACMO are used (‘woMAR’ experiment) in addition to the ‘MAR 

only’ experiment. We expect that this modification brings new insights and strengthens our 

conclusions which are, in the original version of the manuscript, based on two RCMs only. The 

results discussed in Sect. 4 have been modified accordingly.  

Referee #1:  
 

Review of “Drawing lessons for multi-model ensemble design from emulator experiments: 

application to future sea level contribution of the Greenland ice sheet” by Rohmer et al. The 

paper “Drawing lessons for multi-model ensemble design from emulator experiments: 

application to future sea level contribution of the Greenland ice sheet” investigates the impact 

of different choices in constructing an emulator capable of predicting the future contribution 

of the Greenland Ice Sheet to sea-level rise. Specifically, the authors examine how the selection 

of models and parameters associated with different physical processes and scales (climate 

scenarios, regional climate models, ice-flow models, and ice-flow parameters) influences the 

emulator in terms of its fidelity, the estimated contribution to sea-level rise, and the associated 

uncertainty. 

 

This study represents a valuable contribution to our understanding of multi-model ensemble 

approaches and emulator design. The numerical experiments are clearly described, and the 

results are noteworthy. Overall, the paper provides an interesting addition to the scientific 

literature. Nonetheless, I have a series of comments and questions that I would like the authors 

to address. On the one hand, in terms of the way the manuscript is written, some sections could 

be streamlined for conciseness (see my first general comment below, as well as specific 

comments). On the other hand, I have a series of more fundamental general comments on key 

aspects of the manuscript. There are three main comments, described herefater, which are 

followed by a series of specific comments addressing more detailed points. Once these concerns 

have been satisfactorily addressed, I will be happy to recommend the paper for publication in 

the Special Issue: Improving the contribution of the land cryosphere to sea level rise 

projections. 

We thank Referee #1 for the positive analysis. We have taken into account the comments and 

suggestions. In what follows, we describe in detail the corrections. 



General comment 1 
This paper lies at the intersection of two fields: glaciological modeling and statistical methods. 

Such interdisciplinary studies are particularly valuable, as the glaciology community may not 

be fully familiar with statistical techniques, while statisticians may not always be aware of the 

challenges involved in estimating future sea-level rise. Furthermore, comparative studies have 

gained increasing importance in glaciology, as they help assess the robustness of different 

modeling approaches. Given this, it is crucial to also investigate how these comparisons are 

constructed in the first place. In this context, the present study is highly relevant. 

 

That being said, I believe the paper could be more explicit about its practical conclusions, 

specifically conclusions (1) and (2) mentioned in the abstract. I would also suggest highlighting 

the conclusions related to the (different) impact of the RCM/ISM choice in the abstract and in 

the introduction (see lines 313–315).  

Additionally, some technical details could be either removed or moved to an appendix or 

supplementary materials. The reasoning behind these suggestions is that most readers of this 

journal are likely geoscientists, who will primarily be interested in the study’s results. By 

streamlining technical details, the paper’s key findings –which are noteworthy– could be 

emphasized more effectively, improving its accessibility. 

We thank Referee #1 for these suggestions. We totally agree that the results described in our 

manuscript should be transferred to a wide readership that is not necessarily specialists of the 

methods.  

To do so, the following modifications have been made: 

- The technical details of the emulator implementation are placed in Appendix A. We also 

added a new Appendix D to detail the methods for the performance analysis suggested 

by Referee #2. Finally, the specific comments of Referee #2 are also integrated in 

Appendices to decrease the level of technicality of the core text; 

- The conclusions of the RCM/ISM are more highlighted in the abstract and in the 

conclusions; 

- In order to improve the transferability of our message, some choices made for the 

representation of the results are modified to be more consistent with IPCC standards, 

i.e. with more largely shared practices:  

o We slightly change the definition of GSAT by computing the difference between 

the temperature at the considered year and the mean temperature over the period 

1995-2014; 

o We analyse in Sect. 3.3 the changes in the likely range, i.e. 17th and 83rd 

percentile instead of the 5th and 95th percentile. We believe that the use of the 

IPCC calibrated language can also ease the communication of our results. 

 

I also wonder whether subsections 2.4 and 3.2 could be simplified by focusing on just one of 

the two indicators (DS and Dh), e.g. DS. While some variability has been observed in the 

results, these indicators are strongly correlated (see figure 6). Furthermore, from a practical 

point-of-view, what really matters is the number of runs to be made (i.e., of DS). Similarly, 

figure captions could be streamlined by omitting details that may not be particularly useful 

(e.g., the exact method used for kernel density estimation; see specific comments below). The 

technical lines 196–219 could also be relegated to supplementary materials. 

We agree with Referee #1’s comment: the number of members is a key criterion, and the 

evolution of the emulator’s predictive capability clearly highlights this aspect. Our primary idea 

for proposing a second criterion was to be able to reflect how much the distribution of the 

members is modified in addition to the size. As rightly indicated by Referee #1, our second 



criterion Dh fails, however, to highlight key situations because of the too strong correlation with 

DS. This goes also in the same line with Referee #2’s comment (minor comment 2.1).  

 

Therefore, we propose to remove this analysis from the main text. We propose then to support 

the discussion in Sect 4.1 with a complementary analysis (Supplementary materials S3) based 

on a well-established, and more widely used, criterion for comparing different probability 

distributions, namely the Kolomogorov-Smirnov (KS) criterion, instead of a criterion 

constructed from ‘scratch’.  

 

 
Figure S7: Position of the emulator’s experiment in a (Dh, Ds) diagram where Ds measures the relative decrease in the 

MME size after applying the experiment, and Dh measures the deviation of the histograms from the original ones (see 

Supplementary Material S3). The blue-coloured marker refers to the reference solution defined as the mean value 

over the 25 iterations of the random validation exercise, described in Sect. 2.4, applied to the original dataset. 

General comment 2 
Regarding the paper’s methodology, I have some questions about how the way ensembles are 

introduced. Specifically, lines 34–36 state: “Each member of a MME should evenly span a 

representative and exhaustive set of plausible realizations of the combined sources of 

uncertainty, (...), equally represented by a single model run”. This suggests that each member 

of the ensemble should have the same weight. 

 

However, I find this somewhat misleading, and I believe the authors could elaborate further on 

this choice. The assumption that all runs should have equal weight holds only if our current 

knowledge suggests they are equally probable. From a Bayesian perspective, this would 

correspond to assuming a uniform prior distribution. However, this assumption may not always 

be justified. For example: 

(i) Runs from lower-resolution models might be considered less reliable than those from 

higherresolution models as they might not capture relevant small-scale processes. 

(ii) Some values of the uncertain parameters might be less probable if they lead to results that 

deviate significantly from current observations. 

 



Formally, these concerns can be addressed by updating the weights of each run based on their 

likelihood given observational data (e.g., Aschwanden and Brinkerhoff, 2022; Nias et al., 

2023). 

 

I understand that the authors did not include such a step in their analysis, as their focus was 

on assessing the emulator’s capabilities. However, it seems to me that this point should be 

discussed in the methodology or discussion section for two reasons. First, to clarify for the 

reader that the choice of equal probability stems from an assumption about our current 

knowledge and that alternative approaches are possible. Second, because weighting model runs 

based on observational constraints is an emerging direction in the field, and this should be 

discussed in the context of future ISMIP ensemble designs. This could also be mentioned as a 

perspective for future work, as it would be interesting to see whether the conclusions remain 

valid when runs are weighted as a result of a calibration. 

We agree with Referee #1 that this point merits further discussion, particularly in view of the 

forthcoming ISMIP7. The primary goal our study was to study the influence of different factors 

for a given MME, i.e. discovering the influence of groups of members. Thus, the implicit 

assumption of this procedure is that we do not assign any weight to the members a priori. This 

is clarified on page 8, in Sect. 2.3 (line 180); this was also Referee #2’s suggestion (Minor 

comment 4(b)). 

 

This clarification is more particularly useful in Sect. 4 regarding the meaning of the emulator-

based probabilistic predictions. These projections do neither represent calibrated uncertainty 

accounting for model-observation misfits nor the slc probability distribution from the MME, 

because the uniform distribution over the input space is not representative of the MME itself 

(e.g., the minimum spatial resolution is clearly not uniform between 1 and 40 km, see Fig. 3). 

This is clarified on page 11, in Sect. 2.4.2 (lines 227-234). 

 

In addition, the alternative option based on weighting either through expertise (as illustrated by 

Referee #1 with the resolution) or based on model-observation misfits is now discussed in Sect; 

5. We propose to highlight the benefits of the weighting approach, but also the challenges to do 

it, namely: (1) the need for good quality data; (2) the need for data over a large period in the 

past; (3) the need for some types of ISMs to adjust or adapt their implementation. This is 

clarified on page 20, in Sect. 5 (lines 424-426). 

General comment 3 
My third general remark concerns the parameter κ associated with the calving rate. It is unclear 

why this particular parameter was chosen over others. From reading the paper, the rationale 

behind this choice is not obvious—perhaps it is based on modeling considerations or supported 

by previous studies? If so, it seems to me that the authors should provide a stronger justification 

for including this specific parameter. 

 

More fundamentally, I wonder whether comparing the effect of κ to that of RCP scenarios or 

RCMs is entirely meaningful. This comparison contrasts the impact of a single parameter of an 

ice-flow model with that of an entire climate scenario or a regional climate model, which 

incorporate numerous physical parameters. Given this, it is perhaps unsurprising that the effect 

of κ appears quite limited. 

 

We thank Referee #1 for this suggestion. We feel that some clarification about  should here 

be given.  

 



In this study, we rely on a standard approach for integrating ocean forcing, i.e. based on an 

empirically derived retreat parameterization for tidewater glaciers (Slater et al., 2019, 2020) 

that is forced by a RCM-based run-off and ocean temperature changes in seven drainage basins 

around Greenland. In this implementation, retreat and advance of marine-terminating outlet 

glaciers in the ISMs are prescribed as a yearly series of maximum ice front positions (Nowicki 

et al., 2020).  

 

Here,  is not thought as a parameter of the ice-flow model, it rather represents the sensitivity 

of the ocean forcing as a whole. It may be thought of as defining the sensitivity of the 

downscaling from global model to local ice sheet scale, similar to the combined parameter 

choices in RCMs for downscaling climate conditions. In the studied MME, we have different 

RCMs, which have different sensitivities and produce different melt for the same global forcing. 

Since we have only one approach to ‘downscale’ the ocean forcing,  is sampling that 

uncertainty in a similar way. 

 

We recognize that the -based approach remains a strong simplification of the complex 

interaction between marine-terminating outlet glaciers and the ocean, for which physically 

based solutions are in development but not available for all models. However, it should be 

underlined that the advantage of this retreat parameterization is to be applicable in the wide 

variety of models under consideration. Furthermore, it is currently the most widely used 

approach for producing large ensemble for sea level projections, as done for instance by 

Edwards et al. (2021). 

 

This is clarified on pages 3-4, in Sect. 2.1 (lines 96-100). 

 

To illustrate this, one could consider a similar comparison in the opposite direction: assessing 

the impact of choosing a glaciological model of varying complexity (e.g., full Stokes, BP, or 

SIA) against a single parameter from a RCM. This would likely lead to the conclusion that the 

specific parameter from the RCM has a minimal influence. Therefore, I wonder whether 

including κ as an isolated parameter in this study is fully justified. Could the authors maybe 

clarify its relevance within the broader context of the study’s objectives? 

In response to the specific comment of Referee #1, our previous study (Rohmer et al., 2022) 

highlighted the high importance of  compared to other uncertainties, in particular some of 

them related to the complexity of the numerical model as suggested by Referee #1, i.e. the 

choice in the numerical method (Finite Difference, Finite Element), the grid resolution, and the 

ice flow formulation (approximation, higher order, hybrid). To illustrate, the following figure 

(adapted from Fig. 7 and Fig. 8 of Rohmer et al., (2022) based on ISMIP6 MME) shows the 

sensitivity index (denoted µ) that measures the contribution, in terms of sea level equivalent 

SLE, depending on the value of  (panel a) or of the choice in the ice flow formulation (panel 

b). The influence measured by µ for  is on the order of 1-2 cm (at most 5cm) whereas it remains 

on the order of 0.5-1cm for the ice flow method, hence confirming a large importance of this 

parameter. 
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Specific Comments 
We thank Referee #1 for the specific comments. The revised version of the manuscript now 

incorporates all of them.  

 

(1) [Line 12] ‘projection and the quantification of its uncertainty’ → ‘projections and the 

quantification of their uncertainties’. 

This has been corrected. 

 

(2) [Lines 15, 17, and 65] You use ‘experiments’ for two distinct concepts: numerical 

simulations (e.g., line 16) and numerical tests (e.g., line 15). Consider using separate words to 

avoid any confusion. 

To avoid confusion, we now refer to the second type of ‘experiments’ as ‘members’. 

 



(3) [Line 16] ‘(Regional Climate Model RCM, or Ice Sheet Model ISM)’ → ‘(Regional Climate 

Model; RCM, or Ice Sheet Model; ISM)’. 

This has been corrected.  

 

(4) [Line 19] Consider removing ‘utmost’ as it might be overly formal. 

This has been replaced by ‘high’. 

 

(5) [Line 25] ‘projection and the quantification of its uncertainty’ → ‘projections and the 

quantification of their uncertainties’. 

This has been corrected.  

 

(6) [Line 26] ‘co-ordinated sets of numerical experiments’→‘sets of numerical experiments’. 

This has been corrected.  

 

(7) [Line 47] Consider adding references related to (machine-learning-based) emulators. 

A list of real case applications is now provided on page 2 in Sect. 1 (lines 51-52) as follows: 

“[…] like linear-regression (Levermann et al., 2020), Gaussian process regression (Edwards et 

al., 2021), random forest regression (Rohmer et al., 2022), and deep learning-based methods 

(Van Katwyk et al., 2025)”. 

 

Added references 

Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., 

Huybrechts, P., Jordan, J., Leguy, G., Martin, D., et al.: Projecting Antarctica’s contribution 

to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet 

600 models (LARMIP-2), Earth System Dynamics, 11, 35–76, https://doi.org/10.1175/JCLI-

D-23-0580.1, 2020. 

Van Katwyk, P., Fox-Kemper, B., Nowicki, S., Seroussi, H., & Bergen, K. J. (2025). ISEFlow 

v1. 0: A Flow-Based Neural Network Emulator for Improved Sea Level Projections and 

Uncertainty Quantification. EGUsphere, 2025, 1-32. 

 

(8) [Line 47] I might be a bit picky here, but I would argue that the key advantage of statistical 

emulators is their low computational cost; being able to predict the model response at untried 

input values is only useful if it can be done at a reasonable cost. 

We totally agree with Referee #1. We have now underlined this aspect. 

 

(9) [Line 63] Please be consistent with your use of acronyms: either your define what you mean 

by RCM and GCM, or you use directly the corresponding acronyms. Also, a table of acronyms 

would be useful in the paper. 

A table has been added in Appendix E. 

 

(10) [Line 63] Avoid using ‘validation tests’ as this can lead to confusion when it comes to 

glaciological modeling (for which ‘validation’ has another meaning). 

We now use the term “numerical experiments”. 

 

(11) [Line 76] ‘(Goelzer et al. (2020): in particular (...))’ →‘(Goelzer et al., 2020; in particular 

(...))’. 

This has been corrected.  

 



(12) [Line 79] Consider adding a schematic displaying the modeling chain and indicating 

where modeling choices (MME inputs) are introduced. This could be very useful to effectively 

obtain an overview of the context. 

A new Figure 1 has been added to clarify the workflow. 

 

 
New Figure 1: General forcing approach for Greenland ice sheet model projections. The questions relevant for the 

MME design (detailed in Table 2) are related to the modelling choices made for each of the boxes. 

 

(13) [Line 80] Here you define again what a RCM is. If you have already defined it before that 

is not necessary. 

We have removed this part. 

 

(14) [Table 1] Ensure consistent formatting of symbols (italics vs. non-italics). 

This has been corrected. 

 

(15) [Table 1] Consider renaming ‘Symbol’ to ‘Symbol/Acronym’ or simply ‘Name’ to clarify 

that most entries are acronyms. 

The term ‘Name’ is now used. 

 

(16) [Table 1] ‘Sliding basal law’→‘Sliding law’ or ‘Basal friction law’. 

The second term is now used. 

 

(17) [Line 101] Consider defining ‘input setting’ explicitly, e.g. as a particular combination of 

inputs. 

This has been specified as suggested. 

  



Referee #2:  

This study develops a Random Forest (RF) emulator to emulate Greenland 2100 sea level 

contribution (slc) output from a Multi-model ensemble (MME). In particular, the RF is trained 

using a set of 7 inputs, associated with the climate scenario, the ice sheet model (ISM) used, 

the regional climate model (RCM) used, and different settings of the ISM run. The authors 

investigate how changing the MME design leads to changes in the emulator performance and 

in its range of emulated slc. Based on these metrics, they provide guidelines for future MME 

designs that aim at estimating future ranges of slc from the Greenland ice sheet.  

This study addresses an important and difficult question: how can we improve the design of 

MMEs to provide the best information about the probability density function (PDF) of future 

slc? The concept underlying this study is that the MME itself does not need to characterize this 

PDF, but that it should be designed optimally such that an emulator can do this 

characterization a posteriori. This is a valid and efficient approach to uncertainty 

quantification. It is also a challenging topic, and work on this topic is important. However, at 

this stage, I believe that several points need to be improved to make this study a valuable 

contribution in addressing this question. The authors make recommendations and they “expect 

these recommendations to be informative for the design of next generations of MME” (L22). 

But I believe that their recommendations are dependent on many assumptions or choices that 

they made, without always justifying them and making them clear to the reader. Furthermore, 

more methodological details about the RF emulator are needed because all the results 

presented depend on the emulation and, therefore, the RF design influences strongly any 

interpretation, and thorough RF evaluation is critical as well. I detail my concerns in this 

review, which consists of Major and Minor comments. I do not provide technical comments at 

this stage of the reviewing process because I believe that the more substantial aspects should 

be addressed first. Line numbers in this review correspond to the preprint manuscript. 

We thank Referee #2 for the in-depth analysis of the manuscript. In what follows, we provide 

details of the corrections made. 

Major comment 1: Inherent assumptions associated with the MME 
Many of the conclusions are strongly dependent on the particular MME used in this study. I 

have several reservations about this. 

 

First, it is unclear to me how the MME used in this study was acquired and designed. The only 

details provided about the MME are (L74): “We focus on the sea level contribution from the 

Greenland ice sheet (GrIS) in 2100 based on a new MME study performed for the European 

Union’s Horizon 2020 project PROTECT (http://protectslr.eu). Some modelling choices are 

taken from the protocols of the ISMIP6 initiative (Goelzer et al. (2020): in particular, the two 

main emissions scenarios, and the main model parameter explored.” 

 

Has this MME been peer-reviewed? Why are the authors not using the well-established 

ISMIP6 MME? The latter MME also has the advantage of providing a larger set of experiments, 

notably including many more ISMs than the MME of this study. At least, why has the MME not 

been combined with the ISMIP6 MME? Also, given that no publication describing the MME is 

referenced, I believe that it is important to give many more details about the MME 

configuration: Did all ISMs run under high- and low-warming forcing? Are the 15 global 

climate models used in the MME well-balanced across the runs? Etc. 

 



The MME has been peer reviewed within the H2020 Protect project and has been submitted to 

Special Issue of the Cryosphere journal. In the revised version of the manuscript, we refer to 

the egusphere preprint for further details (Goelzer et al., 2025). Since the release on the 

egusphere platform takes some time, Referee #2 is invited to refer to:  

https://drive.google.com/file/d/1S00IHWGa34mLNlLOyrHEN6Sp7q6-

EbLY/view?usp=sharing 

** Please to do not distribute / use outside the scope of this review** 

 

Reference added 

Goelzer, H., Berends, C. J., Boberg, F., van den Broeke, M., Durand, G., Edwards, T., 

Fettweis, X., Gillet-Chaulet, F., Glaude, Q., Huybrechts, P., Le clec'h, S., Mottram, R., Noel, 

B., Olesen, M., Rahlves, C., Rohmer, J., van de Wal, R. S. W.:  Extending the range and reach 

of physically-based Greenland ice sheet sea-level projections. Preprint egusphere-2025-3098, 

2025. 

 

To specifically reply to Referee #2 comment, we confirm that the experimental design builds 

on the ISMIP6 protocol with four different ice sheet models and extends it to more fully account 

for uncertainties in sea-level projections for the GrIS. This is underlined in Sect. 2. The Protect 

MME is thought as an extension of ISMIP6 MME regarding different aspects: 

- we have included a wider range of CMIP6 climate model output, more climate change 

scenarios (SSP126, SSP245, SSP585); 

- we have provided retreat forcing before 2015 that is calculated from reconstructions of 

past runoff and ocean thermal forcing. This allows for a consistent forcing of the models 

in past and future and to consider historical retreat of the outlet glaciers, which was an 

important source of mass loss after 1990; 

- we have provided surface mass balance forcing from several RCMs, i.e. MAR and 

RACMO for the MME used for this study.  

 

Since the submission of this manuscript, we had the opportunity to include HIRHAM as well. 

We believe that adding this third RCM model brings new insights and makes our conclusions 

more robust (based on two RCMs in the original version of the study). The results discussed in 

Sect. 4 have been modified. 

 

To appreciate this extension, the following table gives the repartition of the members with 

respect to the RCP/SSP scenarios for ISMIP6 MME and for Protect MME (before inclusion of 

HIRHAM). In addition, it should be noted that the total number of members has increased by a 

factor of 4 compared to ISMIP6 MME. 

 

 ISMIP6 MME Protect MME 

RCP26 23 40 

RCP85 156 319  

SSP126 18 189  

SSP245 0 189  

SSP585 59 566 

Total number 256 1303 

 

As a second illustration, the following figure gives an overview of the results of the ensemble 

of projections at the year 2100 for all available Earth System models (ESMs), RCMs and ISMs 

under high, med and low retreat sensitivity. This allows to appreciate, graphically, how well 

the range of sea level is covered. It should however be underlined that, although the collection 

https://urldefense.com/v3/__https:/drive.google.com/file/d/1S00IHWGa34mLNlLOyrHEN6Sp7q6-EbLY/view?usp=sharing__;!!KbSiYrE!lK07WqYAXEnRqIsUPm2VyfLdntQsI49OGPn5dDkoL-Jf9cs05EATQm8HV9GmjsdiblsfxRLHMa0ZxVauqC8$
https://urldefense.com/v3/__https:/drive.google.com/file/d/1S00IHWGa34mLNlLOyrHEN6Sp7q6-EbLY/view?usp=sharing__;!!KbSiYrE!lK07WqYAXEnRqIsUPm2VyfLdntQsI49OGPn5dDkoL-Jf9cs05EATQm8HV9GmjsdiblsfxRLHMa0ZxVauqC8$


of forcing data covers a wide range of variations across different ESMs and scenarios, it 

ultimately still represents an ‘ensemble of opportunity’ similarly as for ISMIP6 MME. Our 

study aims to address the potential implications of this characteristic. 

 

 
Second, the conclusions of this study are strongly dependent on the initial MME used in the 

emulation process. For example, the authors argue that there is “a quasi-linear relationship 

between κ and slc” (L306). But this conclusion is based only on the set of 4 ISMs used in this 

study: CISM, IMAUICE, GISM, and ElmerIce. Furthermore, given that very little experiments 

were performed by ElmerIce and GISM, I assume (I need to assume here because no 

information is provided on the design of the MME) that these two models may well have only 

been run with a single κ value. In this case, the “quasi-linear relationship” would be derived 

only from two ISMs. Given that different ISMs can show very different sensitivities to movement 

of the tidewater glacier front and grounding line positions, this conclusion could well be very 

different if other ISMs are included. So, if one was to perform a similar study with the ISMIP6 

MME, would the “recommendations” for future MME design be different? As another example, 

I mention above that only 4 ISMs are included in the MME, two of which account for > 90% of 

the simulations. By excluding CISM from the training experiments, the authors then make 

“recommendations” about the ability of the emulator to estimate the slc simulated by ISMs not 

included in the design. Here also, this evaluation depends critically on how similar simulated 

slc from CISM is to the simulated slc from IMAUICE. This similarity depends on numerous 

aspects that are specific to these two particular models. I would expect that the 

“recommendations” would be very different if other ISMs (ISSM, PISM ...) show more or less 

similarity with CISM. 

We thank Referee #2 for the insightful analysis. Here we feel that some clarifications about  

should be given. As described in Sect. 2, on page 3-4 (lines 96-99), we rely on a standard 

approach for integrating ocean forcing, i.e. based on an empirically derived retreat 

parameterization for tidewater glaciers (Slater et al., 2019, 2020). In this approach,  is not a 

parameter in the ice-flow model; it rather represents the sensitivity of the ocean forcing as a 

whole. It may be thought of as defining the sensitivity of the downscaling from global model 

to local ice sheet scale, similar to the combined parameter choices in RCMs for downscaling 



climate conditions. In the studied MME, we have different RCMs, which have different 

sensitivities and produce different melt for the same global forcing.  

 

Regarding the specific comment on the quasi linear behaviour, we expect this relationship not 

to change much by adding more ISMs because  is “external” to the ISM as afore-described. 

To support this result, Referee #2 should refer to the following figure adapted from Fig. 7 of 

Rohmer et al. (2022) based on ISMIP6 MME: it shows the sensitivity index (denoted µ) that 

measures the contribution, in terms of sea level equivalent SLE, depending on the value of . 

A quasi-linear trend has here been identified. To complement this analysis, we rely on 

Supplementary Materials S3, which provides details on the quasi-linear relationship of the 

partial dependence plot (as originally described in the manuscript). 

 
 

Finally, we agree with Referee #2 that a more careful attention should be paid not to ‘over-

interpret’ our results by making the recommendations too general. The conclusions are nuanced 

and reformulated in this sense. In addition, we also propose to modify the title to highlight that 

our results are linked to the specificities of our ensemble as follows: “Lessons for multi-model 

ensemble design from emulator experiments: application to a large ensemble for future sea level 

contributions of the Greenland ice sheet”. 

 

Reference 

Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H., and Durand, G.: Improving 

interpretation of sea-level projections through a machine-learning-based local explanation 

approach, Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, 2022. 

 

Such assumptions are not made explicit by the authors. This could very well be misleading to 

the readership targeted by the authors, especially those less familiar with ice sheet modeling 

(e.g., “stakeholders” (L328) and “coastal adaptation practitioners” (L332)). 

We totally agree with Referee #2. The clarification on  has been added in Sect. 2 on page 3-4 

(lines 96-99). 

Major comment 2: Characterization of uncertainty 
The authors use their random forest (RF) emulator such that “changes in the emulator’s 

predictive performance and the emulator-based probabilistic projections provided information 

on several aspects” (L18). After reviewing the manuscript, I identify remaining limitations 

about the RF emulator regarding uncertainty characterization. 

 



The authors use changes in the predictive performance of the RF as a proxy for uncertainty 

remaining about a hypothetical MME (here, a MME excluding some of the experiments). But 

this metric is sensitive to the particular machine learning model used for the emulation. Here, 

the emulation output is thus conditioned on the RF architecture, with a single fixed combination 

of hyperparameters. Is any decrease in predictive performance of this specific RF therefore a 

meaningful assessment of uncertainty imputable to the MME design? This question is critical, 

because the conclusions of this study use this as a fundamental assumption. 

 

This issue is further exacerbated by the fact that the RF does not provide probabilistic output. 

By this, I mean that the RF only provides a point estimate. There is no uncertainty 

quantification. Ideally, the design of a MME should target the strongest reduction in posterior 

covariance (i.e., the uncertainty remaining given the current MME). But this particular RF 

emulator does not provide such metric. This could be addressed by choosing another 

architecture (e.g., Gaussian processes, Williams and Rasmussen (2006)), by subsampling 

techniques for RF models (Mentch and Hooker, 2016), or by adapting the RF to output 

conditional quantiles (Meinshausen and Ridgeway, 2006). 

We thank Referee #2 for this suggestion. We agree that complementing the study with 

uncertainty quantification of the emulators itself bring new insights and allow us to better 

discuss the results. As suggested, we propose to implement the quantile random forest emulator, 

denoted qRF, for both the experiments on the emulator’s performance (Sect. 3.2) and for the 

probabilistic projections (Sect. 3.3).  

 

For the former application, the quantile random forest provides estimates of quantiles at any 

order , denoted 𝑞(𝑠𝑙𝑐|𝐱∗) for a given instance of the input variables 𝐱∗. The quantiles can 

directly be used to define the prediction intervals at any level : 

[𝑞(1−)/2(𝑠𝑙𝑐|𝐱∗); 𝑞(+1)/2(𝑠𝑙𝑐|𝐱∗)].  

 

The new Figure 7 allows to verify the levels of predictability for different intervals of GSAT 

changes. 
 

 

 
New Figure 7: Relative difference (in %) of the performance criteria considering the lowest GSAT values below 2.14°C 

(top) and the highest GSAT values above 3.83°C (bottom) for RAE (a, d), Q² (b, e), and CRPS (c, f). 

 



When performing the probabilistic predictions (Sect. 2.4.2), the emulator uncertainty is 

propagated in addition to the uncertainty of the different input variables based on the following 

procedure: 

(Step 1) Draw N random realisations of the input variables 𝐱̃; 

(Step 2.1) Draw N random number 𝑢̃ between 0 and 1 by assuming a uniform random 

distribution;  

(Step 2.2) Compute the N values 𝑠𝑙𝑐̃ = 𝑞𝑢(𝑠𝑙𝑐|𝐱̃) given 𝑢̃ and 𝐱̃ using the qRF model; 

(Step 2.3) Compute the quantile 𝑄𝑢
 at the chosen level  from the set of N values of 𝑠𝑙𝑐̃; 

(Step 3) Repeat n times Steps 2.1 to 2.3. At Step 2.2, 𝑠𝑙𝑐̃ are calculated for the same set of 

random input variables 𝐱̃ defined at Step 1, but for a newly randomly generated set of levels 𝑢̃ 

defined at Step 2.1. At Step 2.3, the newly calculated quantiles 𝑄𝑢
 vary at each of the 

repetitions, since each time, new random levels 𝑢̃ of the qRF conditional quantiles are 

generated at Step 2.1.  

The output of the procedure is a set of n quantile values (𝑄
𝑢(1)
 , 𝑄

𝑢(2)
  , … , 𝑄

𝑢(𝑛)
  ). The 

variability of the set reflects the emulator uncertainty and can be summarized by the % 

confidence interval with lower and upper bounds defined by the (1-)/2, and the (1+)/2 

quantile of 𝑄𝑢
. In this study, we choose N=10,000, n=100 and =90%. 

 

In addition, we propose to add a new performance indicator to analyse the changes in the 

emulator’s performance in terms of reliability of the predictive probabilistic distribution. This 

is done using the continuous ranked probability score, denoted CRPS, as used for validating 

probabilistic weather forecast (Gneiting et al., 2005). To evaluate the CRPS score, the 

formulation based on quantiles (Berrisch and Ziel (2024): Eq. 2) is used: 

𝐶𝑅𝑃𝑆 =  2 ∫ 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒)
1

0

d
2

𝑃
∑ 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒)

𝜏∈

 

where the term 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒) is defined as 

{
(1 − )(𝑞(𝑠𝑙𝑐|𝐱∗) − 𝑠𝑙𝑐𝑡𝑟𝑢𝑒) if 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 < 𝑞(𝑠𝑙𝑐|𝐱∗)

(𝑠𝑙𝑐𝑡𝑟𝑢𝑒 − 𝑞(𝑠𝑙𝑐|𝐱∗)) if 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 ≥ 𝑞(𝑠𝑙𝑐|𝐱∗)
 , where 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 is the true value of the 

sea level contribution, and where the quantiles 𝑞(𝑠𝑙𝑐|𝐱∗) are evaluated using the trained qRF 

model at given instance of the input variables 𝐱∗ for an equidistant dense grid of quantile levels 

(1, … , 𝑃) with i < 𝑖+1 and 𝑖+1 − 𝑖 = 1/𝑃. In this study, we consider level 1=5% and 

𝑃 =95% with 1/P=5%. 

 

This score jointly quantifies the calibration of qRF probability distribution, i.e. the reliability of 

the estimation, and its sharpness (i.e. the concentration/dispersion of the probability 

distribution). The lower CRPS, the higher the quality of the qRF probabilistic predictions, with 

a lower limit of zero. 

 

Finally, we underline in Sect. 5 the problem of model uncertainty related to the construction of 

the emulator; in particular the problem of hyperparameters’ tuning and its relatively lesser 

impact for random forest models (Bischl et al., 2023). 

 

Added references 

Berrisch, J., Ziel, F., 2024. Multivariate probabilistic crps learning with an application to day-

ahead electricity prices. International Journal of Forecasting, 40(4), 1568-1586, 

doi:10.1016/j.ijforecast.2024.01.005 

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., et al., 2023. Hyperparameter 

optimization: Foundations, algorithms, best practices, and open challenges. Wiley 



Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484, doi: 

10.1002/widm.1484 

Gneiting T, Raftery AE, Westveld III AH, Goldman T. 2005. Calibrated probabilistic 

forecasting using ensemble model output statistics and minimum crps estimation. Monthly 

Weather Review 133(5): 1098–1118 

Minor comment 1: Lack of technical information 

All the results and conclusions from the study are dependent on the RF emulator. As such, I 

find that more information on the RF development and evaluation are needed. I highlight some 

aspects to prioritize here below. 

(a) The evaluation of the RF (L174-183) is assessed through a random sampling evaluation, 

but I find the details about the evaluation method somewhat unclear. First, the authors mention 

the “iteration of the procedure” (L180). However, it is not explained what is iterative in this 

procedure. Later in the manuscript, the authors often refer to “25 validation tests” (e.g., 

caption of Figure 4). But this number of 25 is not explained in the description of the evaluation 

method. Thus, I can only assume that the random validation is iterated 25 times. Second, it is 

unclear what the validation performance measure shown in Figure 4 represents. In Figure 4a, 

there are clearly much more than 25 points, but clearly less than 25 × 55 = 1375 points (where 

55 is the number of test samples mentioned on L180). Thus, what does each point represent? In 

addition, why are there much less points shown in Figure 4b than Figure 4a? Finally, the 

authors explain that there are 55 test samples, but they draw 5 samples for 10% ranges between 

0 and 100% (L179-180). As such, there should be 5 × 10 = 50 test samples I believe, not 55. 

(b) I wonder why it was decided to use this random evaluation procedure. In particular, the 

commonly-used 10-fold cross validation procedure would have been a more natural choice. 

This would also avoid the influence of sampling biases related with the random sampling of 

relatively few experiments (55 from the 1303 experiments per iteration). Since 10-fold cross 

validation was used for parameter fitting (L197), I suppose that there is no computational issue 

for this. Also, it would be straightforward to exclude the members from the 9 training folds as 

required by the specific experiments (e.g., exclude all SSP5-8.5 when training for woSSP585). 

Thus, is there any reason to prefer the random evaluation over the 10-fold cross validation? 

We reply here to comments (a) and (b). Referee #2 is right to say that 10-fold cross validation 

would be a more natural choice. The reason for proposing an alternative validation procedure 

is to make sure to reflect the ability of the emulator to perform well over a wide range of GSAT 

values instead of randomly selected cases. This ability is important in our case, because we 

discuss the performance with respect to the probabilistic projections given fixed GSAT values. 

The new Figure 5 (Major comment 2) illustrates this type of analysis. 

 

 
New Figure 5: Boxplot of the RAE (a), Q² (b) and CRPS (c) performance indicator for different ranges of GSAT 

(indicated on the x-axis). The lower RAE and the closer Q² to one, the higher the emulator predictive capability. The 



lower CRPS, the higher quality of the emulator predictive probabilistic distribution. The horizontal red dashed line 

indicates the median value calculated over all validation tests defined through the repeated validation procedure 

described in Sect. 2.4.1 considering the whole range of GSAT. 

 

Though our GSAT definition does not strictly correspond to the global warming level defined 

in AR6, they can help end users to interpret the projections associated to temperature constraints 

as illustrated by recent projections for France by Le Cozannet et al. (2025). 

 

We also thank Referee #2 for noticing the problem with the number of test cases. The 

presentation in Sect. 2.4.1 (on page 10, lines 201-211 has been clarified as follows: “In this 

study, we are more particularly interested in the ability of the emulator to perform well over a 

wide range of GSAT values. This is important in our case, because constraining the predictions 

to temperature constraints can help end-users to interpret the projections as illustrated by recent 

projections for France by Le Cozannet et al. (2025), although it should be noted that our GSAT 

definition does not strictly correspond to the global warming level (GWL) defined in AR6. 

Therefore, instead of relying on the widely used cross validation procedure (Hastie et al., 2009), 

we propose an alternative validation procedure adapted to our objective as follows: (1) the 

GSATs are classified into a finite number of intervals, the ends of which are defined by the 

GSAT percentiles, with levels ranging from 0 to 100% with a fixed increase of 25%. This results 

in the following GSAT intervals, [0.705, 2.14°C], [2.14, 3.34°C], [3.34, 3.83°C], and [3.83, 

5.00°C]; (2) for each interval, 50 samples are randomly selected. For one iteration of the 

procedure, a total of ntest=200 test samples are randomly selected. The procedure is repeated 25 

times.” 

 

Added reference 

Goneri Le Cozannet, Remi Thieblemont, Jeremy Rohmer and Cecile Capderrey (2025). Sea-

level scenarios aligned with the 3rd adaptation plan in France. (in press) 

https://doi.org/10.5802/crgeos.290 

 

(c) More technical details about the RF emulator construction would be beneficial. In 

particular, mixing categorical and continuous inputs is not straightforward, and may incur 

performance sensitivity to the RF design. For example, what is the splitting criterion used: 

mean absolute error, mean squared error, other? And how did the authors alleviate the 

potential issue of selection bias towards the inputs that have more possible splits? This could 

partly influence the different sensitivities to, for example, SSP5-8.5 scenario (global annual 

mean surface air temperature change, GSAT, is a continuous input with many different values), 

ISM (categorical input), κ (continuous input with few different values). As such, some 

information on these technical aspects would help the reader understand how modeling 

challenges may affect the results or not. 

We agree that more technical details should be added. 

 

We use the mean squared error in the loss function of the random forest model. The treatment 

of categorical variables is based on the recommendation by Hastie et al. (2009): chapter 9.2.4. 

We follow the implementation proposed by Wright et al. (2019), who showed that ordering the 

factor levels a priori, here by their mean response, is at least as good as the standard approach 

of considering all 2-partitions in all datasets considered, while being computationally faster; It 

has been shown to be more efficient than dummy coding and simply ignoring the nominal 

nature of the predictors as well. 

 



However, as Referee #1 highlighted in her/his first comment, “the most readers of this journal 

are likely geoscientists, who will primarily be interested in the study’s results”. We propose to 

move these details in Appendix A on the Random Forest implementation. 

 

Added references 

Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Springer, 

New York. 2nd edition. 

Wright, M. N., & König, I. R. (2019). Splitting on categorical predictors in random forests. 

PeerJ, 7, e6339. 

Minor comment 2: Use of global mean temperature change 
The authors aggregate all the combinations of emission scenario (SSP) and global climate 

model (GCM) as a value of GSAT. I wonder if this does not risk misrepresenting the climate 

forcing affecting the Greenland ice sheet (GrIS). In particular, a given GSAT could very well 

lead to different magnitudes of: 

(1) GrIS surface air temperature change 

(2) GrIS precipitation 

(3) GrIS ocean forcing 

I expect that there may well be some substantial differences in these 3 components between 

different GCMs. It would be interesting to explore whether separating the single GSAT variable 

into these 3 separate components refines the emulator predictions. 

This choice is based on the approach followed by previous emulation studies (Edwards et al. 

(2021). An alternative would use regional climate variables. Although this would improve the 

signal-to-noise ratio for the emulator, but would restrict us to using computationally expensive 

general circulation models from CMIP5/6, for which there only a few tens of models. With the 

GSAT option, as performed by Edwards et al. (2021), the simple climate model like FaIR can 

be also used to explore uncertainties in each scenario thoroughly, using the latest assessments 

of equilibrium climate sensitivity. 

Referee #2 is also invited to refer to our reply to major comment 1 on the clarification of  

which is closely related to the sensitivity of the ocean forcing as a whole. 

Note that we slightly change the definition of GSAT, in order to be more consistent with IPCC 

practices, by computing the difference between the temperature at the considered year and the 

mean temperature over the period 1995-2014.  

Minor comment 3: Interpretation of some results 
I find that the interpretation of results are not always well supported quantitatively. I note that, 

in some cases, this may simply be due to a lack of clarity in the interpretation. I provide here a 

few examples. 

2.1 The Dh, DS definition 

In Figure 6, the authors show the different combinations of decrease in MME size (DS) and 

deviations from original histograms (Dh) resulting from their model experiments. Firstly, I 

think that the manuscript would benefit from a clearer definition of Dh. It is defined as “the 

average difference in the count numbers between the two histograms (normalised by the total 

number of members)” (L172-173). I believe that the normalization is by the histogram counts, 

not the total number of members, because otherwise Dh would be proportional to DS. For 

example, assume that for a given variable, we have a hypothetical 3-category histogram with 



counts 5, 10, 85 (i.e., n=100). In hypothetical experiment 1, the counts are 0, 10, 85 (i.e., n=95). 

In this case, DS = 100−5/100 = 0.95 and, following the definition, Dh = 5+0+0 /3 × 1/100 = 

1/60 . In hypothetical experiment 2, the counts are 5, 10, 80 (i.e., n=95). In this case, DS = 

100−5/100 = 0.95 and Dh = 0+0+5/3 × 1/100 = 1/60 . This shows that taking “the average 

difference in the count numbers between the two histograms (normalised by the total number 

of members)” results in an identical pair (DS,Dh) for these two hypothetical experiments. I am 

probably misunderstanding here, but I think that a more precise definition would help. 

We thank Referee #2 for this insightful comment which made us rethink our procedure. As 

rightly shown by Referee #2, the proposed indicator Dh might fail to reflect the changes in the 

histograms. 

 

Therefore, we propose to remove this analysis from the main text. In addition, we propose to 

support the discussion in Sect 4.1, on page 18, lines 352-359 with a complementary analysis 

(Supplementary materials S3) based on a well-established, and more widely used, criterion for 

comparing different probability distributions, namely the Kolomogorov-Smirnov (KS) 

criterion, instead of a criterion constructed from ‘scratch’.  

 

 
Figure S7: Position of the emulator’s experiment in a (Dh, Ds) diagram where Ds measures the relative decrease in the 

MME size after applying the experiment, and Dh measures the deviation of the histograms from the original ones (see 

Supplementary Material S3). The blue-coloured marker refers to the reference solution defined as the mean value 

over the 25 iterations of the random validation exercise, described in Sect. 2.4, applied to the original dataset. 

 

2.2 The Dh, DS results 

I do not understand the interpretation of the impact from Dh, DS on the emulator performance 

(Sect. 3.3). First, the authors write “Excluding the extreme SSP scenario SSP5-8.5 (experiment 

’woSSP585’) has the largest impact in terms of RAE relative difference with respect to the 

original RF performance (Sect. 3.1), where RAE is increased of ∼ 10% compared to the 



original RAE value (Fig. 4)” (L245). However, Figure 7 shows a ∼ 275% relative difference 

in RAE, so it is not clear to me where the value “∼ 10%” comes from. Second, I do not follow 

the logic of the arguments. The authors write that (i) the high DS of woSSP585 causes large 

errors. But then, (ii) they argue that “this ‘size effect’ is not the only contributor to the 

performance impact, as shown by the ‘woCISM’ experiment, which removes an equivalent 

number of members to the ‘woSSP585’ experiment (Fig. 6), and the resulting RAE increase 

reaches half that of ‘woSSP585’ experiment” (L253). And (iii) that the woCISM experiment 

has the largest Dh value. However, when I interpret Figures 6 and 7, I find that (a) woSSP585 

and woCISM have similar DS values (i.e., (ii)), (b) woCISM has higher Dh than woSSP585 

(i.e., (iii)), but (c) that the errors from woSSP585 ar much higher than those of woCISM (Figure 

7). So, it seems that the lower Dh of woSSP585 is accompanied by larger errors. This is the 

opposite message to that conveyed in the text: “This shows that the second important factor 

here is the diversity among the members within the MME after applying the experiment. The 

Dh indicator remains, however, a first-order approximation of this diversity (...)” (L256). The 

statement of greater diversity leading to lower errors, is not supported by the larger errors of 

woSSP585 compared to woCISM. To summarize: DS(woSSP585) ≈ DS(woCISM), 

Dh(woSSP585) < Dh(woCISM) where low Dh implies greater “diversity”, but 

RAE(woSSP585) >> RAE(woCISM). 

After reanalysing the results, we believe that the analysis Ds,Dh only supports the discussion 

in Sect. 4 but further developments may be needed to derive a robust Dh indicator. This is now 

clearly indicated on page 18, lines 352-359. 

2.3 Figure S3 (in Section S2) 

The authors write “The analysis of an alternative indicator of emulator’s predictive capability 

in Supplementary materials S2 confirms these results” (L261). However, in my view, Figure 6 

(RAE results) and Figure S3 (Q2, coefficient of determination results) show contrasting 

conclusions. For example, RAE of woCISM, CISM, and MAR are comparable (Figure 6). 

However, Q2 is clearly lower for woCISM than for MAR and CISM (Figure S3). This indicates 

differences when evaluating relative errors versus explained variance. Thus, these differences 

are potentially interesting to analyze, instead of being discarded as is done in the main text. In 

particular, they could relate to the emulator performance sensitivity to high versus low slc (the 

latter being more influential on relative metrics), or its sensitivity in the ability to predict values 

away from the mean value, or other aspects that would require investigation. Note that this 

links back to my general comment about the importance of understanding the RF emulator, 

because the interpretation of the results depends strongly on this understanding. 

We thank Referee #2 for this valuable suggestion. We totally agree with Referee #2. We have 

included in the analysis not only RAE but also Q². In addition we also propose to analyse the 

performance indicator CRPS that measures the quality of the emulator’s predictive probability 

as well. Referee #2 is invited also to refer to our detailed reply to Major comment 2.  

2.4 Figure 8 

There are many aspects that I find puzzling or questionable in Figure 8. Firstly, the results do 

not correspond to what is shown in Figure S4, where the Q5% and Q95% are shown with the 

black error bars. For example, in the column ΔGSAT=+3◦, Q95% of woCISM, woSSP245, and 

woSSP585 are clearly strongly different from the Q95% labeled “original” (Figure S4). But 

Figure 8 shows that these differences are ≤ 1%. I believe that there is an inconsistency here, or 

something that I misunderstand about Figure 8. 

Secondly, I do no understand how it is possible that the changes in median and quantiles at 

ΔGSAT=+4◦ are so small for woSSP585. In this design experiment, the RF model has 



presumably not even seen such levels of warming during training because the SSP 5-8.5 

scenario has been excluded. But, by definition, tree models (including RF) predict slc based on 

decision rules seen during training. Thus, it is not clear how the RF can predict relatively 

similar slc values under ΔGSAT=+4◦ when excluding SSP 5-8.5 as when it is not excluded. I 

am probably misunderstanding something here, but I believe that the authors should explain 

this counter-intuitive aspect of their results. 

We thank Referee #2 for this careful analysis. We confirm that, for some experiments, there are 

some discrepancies that have revealed a bug in our scripts for the plotting. We have updated 

the results in the new manuscript. 

Minor comment 4: Some conclusions need to be put into perspective 
For different aspects, I find that better communication and/or more context about the 

conclusions is needed. I highlight some key examples here. 

 

(a) Concerning κ, the authors argue for “the lesser importance of the choice in the range of the 

Greenland tidewater glacier retreat parameter” (L21). However, they compare it with the 

influence of the SSP scenario and of the ISM choice. It is expected that a single parameter 

should have much less influence than a global warming scenario and than a full ice sheet model. 

We thank Referee #2 for this comment. Referee #2 is invited to refer the clarification made 

above about : It is not thought as a parameter of the ice-flow model, it rather represents the 

sensitivity of the ocean forcing as a whole. It may be thought of as defining the sensitivity of 

the downscaling from global model to local ice sheet scale, similar to the combined parameter 

choices in RCMs for downscaling climate conditions. In the studied MME, we have different 

RCMs, which have different sensitivities and produce different melt for the same global forcing. 

Since we have only one approach to ‘downscale’ the ocean forcing,  is sampling that 

uncertainty in a similar way. 

 

In addition, our previous study (Rohmer et al., 2022) highlighted the high importance of  

compared to other uncertainties. Referee #2 is also invited to refer to our detailed reply to major 

comment 1 as well to Referee #1’s comment 3. 

 

Reference 

Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H., and Durand, G.: Improving 

interpretation of sea-level projections through a machine-learning-based local explanation 

approach, Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, 2022. 

 

(b) It should be better emphasized that the probabilistic ranges shown by the authors are not 

probabilistic projections of Greenland slc. Instead, they show a range of emulator predictions 

(thus conditioned on the emulator architecture) assuming a uniform distribution over the 

different inputs (L186). Thus, it does not represent calibrated uncertainty accounting for model-

observation misfits (e.g., Aschwanden and Brinkerhoff, 2022). And neither does it represent the 

slc PDF from the MME, because the uniform distribution over the input space is not 

representative of the MME itself (e.g., the minimum spatial resolution is clearly not uniform 

between 1 and 40 km, see Fig. 3). As such, I believe that the true meaning of the PDFs shown 

in Figure 5 should be explained explicitly in order to avoid any reader misinterpreting those 

PDFs. 

We agree with this comment. To do so, we propose to clarify the caption of the new Fig. 5 as 

well as the description in the new Sect. 2.4.2 on page 11, lines 227-230. 

 



(c) The authors make a conclusion on “the utmost importance of including the SSP5-8.5 

scenario, due to the large number of simulations available and the range of global warming 

they cover” (L19- 20). However, I do not think that the authors have proven the co-existence 

of these two points. For example, could it be that including only a few training simulations with 

high global warming forcing would be sufficient to drastically decrease the errors of woSSP585 

shown in Figure7? In other words, maybe the emulator needs only a few high-warming training 

examples to correctly interpolate in the existing range of warming scenarios. Or maybe, as the 

authors write (L19-20), it is also the high number of experiments that is important. However, 

as far as I understand, the results presented in this study do not allow to evaluate the relative 

importance of these two aspects. 

We agree with Referee #2: we believe that the influence of the MME size is shown by our 

results, but disentangling this effect from the range of global warning remains too complicated 

at least with the procedure proposed here. 

 

More broadly, we have nuanced our conclusions in this sense (Sect. 5) by outlining that our 

results depend on the considered MME. The title has also been modified in this sense, i.e., 

“Lessons for multi-model ensemble design drawn from emulator experiments: application to a 

large ensemble for future sea level contributions of the Greenland ice sheet.” 
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