
Replies to Referee #2’s comments on “Drawing lessons for 
multi-model ensemble design from emulator experiments: 
application to future sea level contribution of the Greenland 
ice sheet” (egusphere-2025-52) 
 

We would like to thank Referee #2 for the constructive comments. We agree with most of the 

suggestions and, therefore, we will modify the manuscript to take on board the comments and 

suggestions. We recall the reviews and we reply to each of the comments in turn (outlined in 

blue). Following the journal’s reviewing procedure, the revised manuscript will be provided 

after the interactive review process, in a second phase. 

 

Additional changes 

Since the submission of this manuscript, we had the opportunity to include HIRHAM in the 

MME as well. In addition to the modifications suggested, we will thus include this third RCM 

model in the analysis. A major advantage will be to define an experiment where only the 

members of HIRHAM and RACMO are used (‘woMAR’ experiment) in addition to the ‘MAR 

only’ experiment. We expect that this modification will bring new insights and strengthen our 

conclusions which are, in the original version of the manuscript, based on two RCMs only. The 

results discussed in Sect. 4 will thus be modified accordingly.  

 

Referee #2:  

This study develops a Random Forest (RF) emulator to emulate Greenland 2100 sea level 

contribution (slc) output from a Multi-model ensemble (MME). In particular, the RF is trained 

using a set of 7 inputs, associated with the climate scenario, the ice sheet model (ISM) used, 

the regional climate model (RCM) used, and different settings of the ISM run. The authors 

investigate how changing the MME design leads to changes in the emulator performance and 

in its range of emulated slc. Based on these metrics, they provide guidelines for future MME 

designs that aim at estimating future ranges of slc from the Greenland ice sheet.  

This study addresses an important and difficult question: how can we improve the design of 

MMEs to provide the best information about the probability density function (PDF) of future 

slc? The concept underlying this study is that the MME itself does not need to characterize this 

PDF, but that it should be designed optimally such that an emulator can do this 

characterization a posteriori. This is a valid and efficient approach to uncertainty 

quantification. It is also a challenging topic, and work on this topic is important. However, at 

this stage, I believe that several points need to be improved to make this study a valuable 

contribution in addressing this question. The authors make recommendations and they “expect 

these recommendations to be informative for the design of next generations of MME” (L22). 

But I believe that their recommendations are dependent on many assumptions or choices that 

they made, without always justifying them and making them clear to the reader. Furthermore, 

more methodological details about the RF emulator are needed because all the results 

presented depend on the emulation and, therefore, the RF design influences strongly any 

interpretation, and thorough RF evaluation is critical as well. I detail my concerns in this 

review, which consists of Major and Minor comments. I do not provide technical comments at 



this stage of the reviewing process because I believe that the more substantial aspects should 

be addressed first. Line numbers in this review correspond to the preprint manuscript. 

We thank Referee #2 for the in-depth analysis of the manuscript. In the following, we provide 

details on how we will account for them in the revised manuscript. 

Major comment 1: Inherent assumptions associated with the MME 
Many of the conclusions are strongly dependent on the particular MME used in this study. I 

have several reservations about this. 

 

First, it is unclear to me how the MME used in this study was acquired and designed. The only 

details provided about the MME are (L74): “We focus on the sea level contribution from the 

Greenland ice sheet (GrIS) in 2100 based on a new MME study performed for the European 

Union’s Horizon 2020 project PROTECT (http://protectslr.eu). Some modelling choices are 

taken from the protocols of the ISMIP6 initiative (Goelzer et al. (2020): in particular, the two 

main emissions scenarios, and the main model parameter explored.” 

 

Has this MME been peer-reviewed? Why are the authors not using the well-established 

ISMIP6 MME? The latter MME also has the advantage of providing a larger set of experiments, 

notably including many more ISMs than the MME of this study. At least, why has the MME not 

been combined with the ISMIP6 MME? Also, given that no publication describing the MME is 

referenced, I believe that it is important to give many more details about the MME 

configuration: Did all ISMs run under high- and low-warming forcing? Are the 15 global 

climate models used in the MME well-balanced across the runs? Etc. 

 

The MME has been peer reviewed within the H2020 Protect project and is currently in 

preparation for submission to the Cryosphere Special Issue journal. In the revised version of 

the manuscript, we will refer to the EGUSPHERE preprint for further details. In addition, we 

will also provide a more detailed description of the Protect MME by paying particular attention 

to highlight the key differences with ISMIP6 MME. 

 

To specifically reply to Referee #2 comment, we confirm that the experimental design builds 

on the ISMIP6 protocol with four different ice sheet models and extends it to more fully account 

for uncertainties in sea-level projections for the GrIS. This is underlined in Sect. 2. The Protect 

MME is thought as an extension of ISMIP6 MME regarding different aspects: 

- we have included a wider range of CMIP6 climate model output, more climate change 

scenarios (SSP126, SSP245, SSP585); 

- we have provided retreat forcing before 2015 that is calculated from reconstructions of 

past runoff and ocean thermal forcing. This allows for a consistent forcing of the models 

in past and future and to consider historical retreat of the outlet glaciers, which was an 

important source of mass loss after 1990; 

- we have provided surface mass balance forcing from several RCMs, i.e. MAR and 

RACMO for the MME used for this study.  

 

Since the submission of this manuscript, we had the opportunity to include HIRHAM as well. 

We believe that adding this third RCM model will add new insights and will make our 

conclusions more robust (based on two RCMs in the original version of the study). The results 

discussed in Sect. 4 will thus be modified. 

 

To appreciate this extension, the following table gives the repartition of the members with 

respect to the RCP/SSP scenarios for ISMIP6 MME and for Protect MME (before inclusion of 



HIRHAM). In addition, it should be noted that the total number of members has increased by a 

factor of 4 compared to ISMIP6 MME. 

 

 ISMIP6 MME Protect MME 

RCP26 23 40 

RCP85 156 319  

SSP126 18 189  

SSP245 0 189  

SSP585 59 566 

Total number 256 1303 

 

As a second illustration, the following figure gives an overview of the results of the ensemble 

of projections at the year 2100 for all available Earth System models (ESMs), RCMs and ISMs 

under high, med and low retreat sensitivity. This allows to appreciate, graphically, how well 

the range of sea level is covered. It should however be underlined that, although the collection 

of forcing data covers a wide range of variations across different ESMs and scenarios, it 

ultimately still represents an ‘ensemble of opportunity’ similarly as for ISMIP6 MME. Our 

study aims to address the potential implications of this characteristic. 

 

 
Second, the conclusions of this study are strongly dependent on the initial MME used in the 

emulation process. For example, the authors argue that there is “a quasi-linear relationship 

between κ and slc” (L306). But this conclusion is based only on the set of 4 ISMs used in this 

study: CISM, IMAUICE, GISM, and ElmerIce. Furthermore, given that very little experiments 

were performed by ElmerIce and GISM, I assume (I need to assume here because no 

information is provided on the design of the MME) that these two models may well have only 

been run with a single κ value. In this case, the “quasi-linear relationship” would be derived 

only from two ISMs. Given that different ISMs can show very different sensitivities to movement 

of the tidewater glacier front and grounding line positions, this conclusion could well be very 

different if other ISMs are included. So, if one was to perform a similar study with the ISMIP6 

MME, would the “recommendations” for future MME design be different? As another example, 

I mention above that only 4 ISMs are included in the MME, two of which account for > 90% of 



the simulations. By excluding CISM from the training experiments, the authors then make 

“recommendations” about the ability of the emulator to estimate the slc simulated by ISMs not 

included in the design. Here also, this evaluation depends critically on how similar simulated 

slc from CISM is to the simulated slc from IMAUICE. This similarity depends on numerous 

aspects that are specific to these two particular models. I would expect that the 

“recommendations” would be very different if other ISMs (ISSM, PISM ...) show more or less 

similarity with CISM. 

We thank Referee #2 for the insightful analysis. Here we feel that some clarifications about  

should be given. As described in Sect. 2, we rely on a standard approach for integrating ocean 

forcing, i.e. based on an empirically derived retreat parameterization for tidewater glaciers 

(Slater et al., 2019, 2020). In this approach,  is not a parameter in the ice-flow model; it rather 

represents the sensitivity of the ocean forcing as a whole. It may be thought of as defining the 

sensitivity of the downscaling from global model to local ice sheet scale, similar to the 

combined parameter choices in RCMs for downscaling climate conditions. In the studied MME, 

we have different RCMs, which have different sensitivities and produce different melt for the 

same global forcing.  

 

Regarding the specific comment on the quasi linear behaviour, we expect this relationship not 

to change much by adding more ISMs because  is “external” to the ISM as afore-described. 

To support this result, Referee #2 should refer to the following figure adapted from Fig. 7 of 

Rohmer et al. (2022) based on ISMIP6 MME: it shows the sensitivity index (denoted µ) that 

measures the contribution, in terms of sea level equivalent SLE, depending on the value of . 

A quasi-linear trend has here been identified.  

 
 

We however agree with Referee #2 that a more careful attention should be paid not to ‘over-

interpret’ our results by making the recommendations too general. The conclusions will be 

nuanced and reformulated in this sense. In addition, we also propose to modify the title to 

highlight that our results are linked to the specificities of our ensemble as follows: “Lessons for 

multi-model ensemble design from emulator experiments: application to a large ensemble for 

future sea level contributions of the Greenland ice sheet”. 

 

Reference 

Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H., and Durand, G.: Improving 

interpretation of sea-level projections through a machine-learning-based local explanation 

approach, Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, 2022. 

 



Such assumptions are not made explicit by the authors. This could very well be misleading to 

the readership targeted by the authors, especially those less familiar with ice sheet modeling 

(e.g., “stakeholders” (L328) and “coastal adaptation practitioners” (L332)). 

We totally agree with Referee #2. The clarification on  will be added to Sect. 2 to improve our 

message to stakeholders and coastal adaptation practitioners. 

Major comment 2: Characterization of uncertainty 
The authors use their random forest (RF) emulator such that “changes in the emulator’s 

predictive performance and the emulator-based probabilistic projections provided information 

on several aspects” (L18). After reviewing the manuscript, I identify remaining limitations 

about the RF emulator regarding uncertainty characterization. 

 

The authors use changes in the predictive performance of the RF as a proxy for uncertainty 

remaining about a hypothetical MME (here, a MME excluding some of the experiments). But 

this metric is sensitive to the particular machine learning model used for the emulation. Here, 

the emulation output is thus conditioned on the RF architecture, with a single fixed combination 

of hyperparameters. Is any decrease in predictive performance of this specific RF therefore a 

meaningful assessment of uncertainty imputable to the MME design? This question is critical, 

because the conclusions of this study use this as a fundamental assumption. 

 

This issue is further exacerbated by the fact that the RF does not provide probabilistic output. 

By this, I mean that the RF only provides a point estimate. There is no uncertainty 

quantification. Ideally, the design of a MME should target the strongest reduction in posterior 

covariance (i.e., the uncertainty remaining given the current MME). But this particular RF 

emulator does not provide such metric. This could be addressed by choosing another 

architecture (e.g., Gaussian processes, Williams and Rasmussen (2006)), by subsampling 

techniques for RF models (Mentch and Hooker, 2016), or by adapting the RF to output 

conditional quantiles (Meinshausen and Ridgeway, 2006). 

We thank Referee #2 for this suggestion. We agree that complementing the study with 

uncertainty quantification of the emulators itself would bring new insights and will allow us to 

better discuss the results. As suggested, we propose to implement the quantile random forest 

emulator, denoted qRF, for both the experiments on the emulator’s performance (Sect. 3.3) and 

for the probabilistic projections (Sect. 3.4).  

 

For the former application, the quantile random forest provides estimates of quantiles at any 

order , denoted 𝑞(𝑠𝑙𝑐|𝐱∗) for a given instance of the input variables 𝐱∗. The quantiles can 

directly be used to define the prediction intervals at any level : 

[𝑞(1−)/2(𝑠𝑙𝑐|𝐱∗); 𝑞(+1)/2(𝑠𝑙𝑐|𝐱∗)]. The following figure is a new version of Fig. 4(a), which 

allows to verify the satisfactory level of predictability for a large range of GSAT values with 

Q² ranging from 82%, for the largest GSAT values, to >98%. 



 
New Figure 4. Comparison between the true numerically computed slc and the emulator’s predicted values for the 25 

validation tests (described in Sect. 2.4). Each panel corresponds to test samples for a given range of GSAT values 

(indicated at the top of the panel). 

 

For the latter case, the emulator uncertainty is propagated in addition to the uncertainties to the 

different input variables based on the following procedure: 

(1) Draw a random realization of the input variables 𝐱̃; 

(2) Draw a number 𝑢̃ between 0 and 1 by assuming a uniform random distribution;  

(3) Compute 𝑠𝑙𝑐̃ = 𝑞𝑢(𝑠𝑙𝑐|𝐱̃) given 𝑢̃ using the qRF model. 

 

In addition, we propose to add a new performance indicator to analyse the changes in the 

emulator’s performance in terms of reliability of the predictive probabilistic distribution. This 

is done using the continuous ranked probability score, denoted crps, as used for validating 

probabilistic weather forecast (Gneiting et al., 2005). To evaluate the crps score, the 

formulation based on quantiles (Berrisch and Ziel (2024): Eq. 2) is used: 

𝑐𝑟𝑝𝑠 =  2 ∫ 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒)
1

0

d
2

𝑃
∑ 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒)

𝜏∈

 

where the term 𝐵(𝑞(𝑠𝑙𝑐|𝐱∗), 𝑠𝑙𝑐𝑡𝑟𝑢𝑒) is defined as 

{
(1 − )(𝑞(𝑠𝑙𝑐|𝐱∗) − 𝑠𝑙𝑐𝑡𝑟𝑢𝑒) if 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 < 𝑞(𝑠𝑙𝑐|𝐱∗)

(𝑠𝑙𝑐𝑡𝑟𝑢𝑒 − 𝑞(𝑠𝑙𝑐|𝐱∗)) if 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 ≥ 𝑞(𝑠𝑙𝑐|𝐱∗)
 , where 𝑠𝑙𝑐𝑡𝑟𝑢𝑒 is the true value of the 

sea level contribution, and where the quantiles 𝑞(𝑠𝑙𝑐|𝐱∗) are evaluated using the trained qRF 

model at given instance of the input variables 𝐱∗ for an equidistant dense grid of quantile levels 

(1, … , 𝑃) with i < 𝑖+1 and 𝑖+1 − 𝑖 = 1/𝑃. In this study, we consider level 1=5% and 

𝑃 =95% with 1/P=5%. 

 

This score jointly quantifies the calibration of qRF probability distribution, i.e. the reliability of 

the estimation, and its sharpness (i.e. the concentration/dispersion of the probability 

distribution). The lower crps, the higher the quality of the qRF probabilistic predictions, with a 

lower limit of zero. 

 

Our first tests (Figure below) show some similarities with the results for RAE and Q² 

performance indicators, but with a clearer effect of ISM experiments (CISM and noCISM). The 

results will be finalised in the revised version of the manuscript provided in the second phase 

of the reviewing process. A more thorough discussion will be provided in Sect. 4. 



 
New Figure. Relative difference (in %) for the estimates of RF predictive capability measured by CROS, between the 

RF reference solution and the RF emulators trained by applying the experiment described in Table 2. The dots indicate 

the results of the 25 repetitions of random validation tests (described in Sect. 2.4). 

 

Finally, we will also elaborate more in the Discussion section on the problem of model 

uncertainty related to the construction of the emulator; in particular the problem of 

hyperparameters’ tuning and its relatively lesser impact for random forest models (Probst et al., 

2019; Bischl et al., 2023). 

 

Added references 

Berrisch, J., Ziel, F., 2024. Multivariate probabilistic crps learning with an application to day-

ahead electricity prices. International Journal of Forecasting, 40(4), 1568-1586, 

doi:10.1016/j.ijforecast.2024.01.005 

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., et al., 2023. Hyperparameter 

optimization: Foundations, algorithms, best practices, and open challenges. Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484, doi: 

10.1002/widm.1484 

Gneiting T, Raftery AE, Westveld III AH, Goldman T. 2005. Calibrated probabilistic 

forecasting using ensemble model output statistics and minimum crps estimation. Monthly 

Weather Review 133(5): 1098–1118 

Probst, P., Wright, M. N., Boulesteix, A. L., 2019. Hyperparameters and tuning strategies for 

random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discovery, 9(3), 

e1301, doi:10.1002/widm.1301 

Minor comment 1: Lack of technical information 

All the results and conclusions from the study are dependent on the RF emulator. As such, I 

find that more information on the RF development and evaluation are needed. I highlight some 

aspects to prioritize here below. 

(a) The evaluation of the RF (L174-183) is assessed through a random sampling evaluation, 

but I find the details about the evaluation method somewhat unclear. First, the authors mention 

the “iteration of the procedure” (L180). However, it is not explained what is iterative in this 

procedure. Later in the manuscript, the authors often refer to “25 validation tests” (e.g., 

caption of Figure 4). But this number of 25 is not explained in the description of the evaluation 



method. Thus, I can only assume that the random validation is iterated 25 times. Second, it is 

unclear what the validation performance measure shown in Figure 4 represents. In Figure 4a, 

there are clearly much more than 25 points, but clearly less than 25 × 55 = 1375 points (where 

55 is the number of test samples mentioned on L180). Thus, what does each point represent? In 

addition, why are there much less points shown in Figure 4b than Figure 4a? Finally, the 

authors explain that there are 55 test samples, but they draw 5 samples for 10% ranges between 

0 and 100% (L179-180). As such, there should be 5 × 10 = 50 test samples I believe, not 55. 

(b) I wonder why it was decided to use this random evaluation procedure. In particular, the 

commonly-used 10-fold cross validation procedure would have been a more natural choice. 

This would also avoid the influence of sampling biases related with the random sampling of 

relatively few experiments (55 from the 1303 experiments per iteration). Since 10-fold cross 

validation was used for parameter fitting (L197), I suppose that there is no computational issue 

for this. Also, it would be straightforward to exclude the members from the 9 training folds as 

required by the specific experiments (e.g., exclude all SSP5-8.5 when training for woSSP585). 

Thus, is there any reason to prefer the random evaluation over the 10-fold cross validation? 

We reply here to comments (a) and (b). Referee #2 is right to say that 10-fold cross validation 

would be a more natural choice. The reason for proposing an alternative validation procedure 

is to make sure to reflect the ability of the emulator to perform well over a wide range of GSAT 

values instead of randomly selected cases. This ability is important in our case, because we 

discuss the performance with respect to the probabilistic projections given fixed GSAT values. 

The new Figure 4 (Major comment 2) illustrates this type of analysis. 

 

Though our GSAT definition does not strictly correspond to the global warming level defined 

in AR6, they can help end users to interpret the projections associated to temperature constraints 

as illustrated by recent projections for France by Le Cozannet et al. (2025). 

 

We also thank Referee #2 for noticing the problem with the number of test cases. The 

presentation in Sect. 2.4 has been clarified. We also propose to increase the number of test 

cases, now 10 per bin of GSAT values resulting in 100 test samples covering a larger range of 

GSAT values (new Figure 4, above). 

 

Added reference 

Goneri Le Cozannet, Remi Thieblemont, Jeremy Rohmer and Cecile Capderrey (2025). Sea-

level scenarios aligned with the 3rd adaptation plan in France. (in press) 

https://doi.org/10.5802/crgeos.290 

 

(c) More technical details about the RF emulator construction would be beneficial. In 

particular, mixing categorical and continuous inputs is not straightforward, and may incur 

performance sensitivity to the RF design. For example, what is the splitting criterion used: 

mean absolute error, mean squared error, other? And how did the authors alleviate the 

potential issue of selection bias towards the inputs that have more possible splits? This could 

partly influence the different sensitivities to, for example, SSP5-8.5 scenario (global annual 

mean surface air temperature change, GSAT, is a continuous input with many different values), 

ISM (categorical input), κ (continuous input with few different values). As such, some 

information on these technical aspects would help the reader understand how modeling 

challenges may affect the results or not. 

We agree that more technical details should be added. 

 

We use the mean squared error in the loss function of the random forest model. The treatment 

of categorical variables is based on the recommendation by Hastie et al. (2009): chapter 9.2.4. 



We follow the implementation proposed by Wright et al. (2019), who showed that ordering the 

factor levels a priori, here by their mean response, is at least as good as the standard approach 

of considering all 2-partitions in all datasets considered, while being computationally faster; It 

has been shown to be more efficient than dummy coding and simply ignoring the nominal 

nature of the predictors as well. 

 

However, as Referee #1 highlighted in her/his first comment, “the most readers of this journal 

are likely geoscientists, who will primarily be interested in the study’s results”. We propose to 

move these details in Appendix A on the Random Forest implementation. 

 

Added references 

Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Springer, 

New York. 2nd edition. 

Wright, M. N., & König, I. R. (2019). Splitting on categorical predictors in random forests. 

PeerJ, 7, e6339. 

Minor comment 2: Use of global mean temperature change 
The authors aggregate all the combinations of emission scenario (SSP) and global climate 

model (GCM) as a value of GSAT. I wonder if this does not risk misrepresenting the climate 

forcing affecting the Greenland ice sheet (GrIS). In particular, a given GSAT could very well 

lead to different magnitudes of: 

(1) GrIS surface air temperature change 

(2) GrIS precipitation 

(3) GrIS ocean forcing 

I expect that there may well be some substantial differences in these 3 components between 

different GCMs. It would be interesting to explore whether separating the single GSAT variable 

into these 3 separate components refines the emulator predictions. 

This choice is based on the approach followed by previous emulation studies (Edwards et al. 

(2021). An alternative would use regional climate variables. Although this would improve the 

signal-to-noise ratio for the emulator, but would restrict us to using computationally expensive 

general circulation models from CMIP5/6, for which there only a few tens of models. With the 

GSAT option, as performed by Edwards et al. (2021), the simple climate model like FaIR can 

be also used to explore uncertainties in each scenario thoroughly, using the latest assessments 

of equilibrium climate sensitivity. 

Referee #2 is also invited to refer to our reply to major comment 1 on the clarification of  

which is closely related to the sensitivity of the ocean forcing as a whole. 

Finally, in order to be more consistent with IPCC practices, we will slightly change the 

definition of GSAT by computing the difference between the temperature at the considered year 

and the mean temperature over the period 1995-2014. To ensure consistency, this is also done 

for slc, which is computed relative to the mean slc over the same period.  

Minor comment 3: Interpretation of some results 
I find that the interpretation of results are not always well supported quantitatively. I note that, 

in some cases, this may simply be due to a lack of clarity in the interpretation. I provide here a 

few examples. 



2.1 The Dh, DS definition 

In Figure 6, the authors show the different combinations of decrease in MME size (DS) and 

deviations from original histograms (Dh) resulting from their model experiments. Firstly, I 

think that the manuscript would benefit from a clearer definition of Dh. It is defined as “the 

average difference in the count numbers between the two histograms (normalised by the total 

number of members)” (L172-173). I believe that the normalization is by the histogram counts, 

not the total number of members, because otherwise Dh would be proportional to DS. For 

example, assume that for a given variable, we have a hypothetical 3-category histogram with 

counts 5, 10, 85 (i.e., n=100). In hypothetical experiment 1, the counts are 0, 10, 85 (i.e., n=95). 

In this case, DS = 100−5/100 = 0.95 and, following the definition, Dh = 5+0+0 /3 × 1/100 = 

1/60 . In hypothetical experiment 2, the counts are 5, 10, 80 (i.e., n=95). In this case, DS = 

100−5/100 = 0.95 and Dh = 0+0+5/3 × 1/100 = 1/60 . This shows that taking “the average 

difference in the count numbers between the two histograms (normalised by the total number 

of members)” results in an identical pair (DS,Dh) for these two hypothetical experiments. I am 

probably misunderstanding here, but I think that a more precise definition would help. 

We thank Referee #2 for this insightful comment which made us rethink our procedure. As 

rightly shown by Referee #2, the proposed indicator Dh might fail to reflect the changes in the 

histograms. 

 

As a remedy, we propose to rely on a well-established criterion for comparing different 

probability distributions, namely the Kolomogorov-Smirnov (KS) statistic, defined as: 

 

𝐾𝑆𝑋 = max |𝐹ref(𝑋) − 𝐹ref|𝐸i
(𝑋|𝐸i)| 

 

where 𝐹ref is the cumulative probability distribution CDF for the input X considering the 

reference solution, without perturbation; 𝐹ref|𝐸i
(𝑋|𝐸i) is the cumulative probability distribution 

CDF for X when applying the emulator experiment, i.e. when removing members. For 

categorical inputs, the CDF is defined by assigning each level an integer index. 

 

The new Dh criterion is then defined as the average value of 𝐾𝑆𝑋 over all Xs. By doing so, we 

make sure that Dh reflects the average value of the deviations in the members’ distributions. 

 

The new Figure shows how each experiment affects the MME. The use of the new Dh criterion 

is more ‘discriminative’ by highlighting different groups of points: 

- The group of points at the bottom, left corner corresponding to MAR, Narrow Kappa, 

woSSP245 and woSSP126. They all have minor-to-moderate impact on both criteria, 

DS and Dh; 

- The group of points with decrease in size DS on the same order of magnitude, i.e. 

between 55 and 65% with different behaviours in terms of histograms’ perturbation as 

shown by the wide range of Dh values. This group corresponds, in increasing order of 

Dh to ‘Med. and Extr. Kappa’, woSSP585 and woCISM; 

- The point at an intermediate position with moderate DS and Dh changes which 

corresponds to CISM. 



 
New Figure 6. Position of the emulator’s experiment in a (Dh, Ds) diagram where Ds measures the relative decrease in 

the MME size after applying the experiment, and Dh measures the deviation of the histograms from the original ones. 

2.2 The Dh, DS results 

I do not understand the interpretation of the impact from Dh, DS on the emulator performance 

(Sect. 3.3). First, the authors write “Excluding the extreme SSP scenario SSP5-8.5 (experiment 

’woSSP585’) has the largest impact in terms of RAE relative difference with respect to the 

original RF performance (Sect. 3.1), where RAE is increased of ∼ 10% compared to the 

original RAE value (Fig. 4)” (L245). However, Figure 7 shows a ∼ 275% relative difference 

in RAE, so it is not clear to me where the value “∼ 10%” comes from. Second, I do not follow 

the logic of the arguments. The authors write that (i) the high DS of woSSP585 causes large 

errors. But then, (ii) they argue that “this ‘size effect’ is not the only contributor to the 

performance impact, as shown by the ‘woCISM’ experiment, which removes an equivalent 

number of members to the ‘woSSP585’ experiment (Fig. 6), and the resulting RAE increase 

reaches half that of ‘woSSP585’ experiment” (L253). And (iii) that the woCISM experiment 

has the largest Dh value. However, when I interpret Figures 6 and 7, I find that (a) woSSP585 

and woCISM have similar DS values (i.e., (ii)), (b) woCISM has higher Dh than woSSP585 

(i.e., (iii)), but (c) that the errors from woSSP585 ar much higher than those of woCISM (Figure 

7). So, it seems that the lower Dh of woSSP585 is accompanied by larger errors. This is the 

opposite message to that conveyed in the text: “This shows that the second important factor 

here is the diversity among the members within the MME after applying the experiment. The 

Dh indicator remains, however, a first-order approximation of this diversity (...)” (L256). The 

statement of greater diversity leading to lower errors, is not supported by the larger errors of 

woSSP585 compared to woCISM. To summarize: DS(woSSP585) ≈ DS(woCISM), 

Dh(woSSP585) < Dh(woCISM) where low Dh implies greater “diversity”, but 

RAE(woSSP585) >> RAE(woCISM). 

In the revised version of the manuscript, we will discuss in more details the links between the 

groups highlighted above and the implications with respect to the emulator’s performance as 

well the influence on the probabilistic projections. Note also that the results will be updated 

taking also into account new members with HIRHAM RCMs. 

2.3 Figure S3 (in Section S2) 

The authors write “The analysis of an alternative indicator of emulator’s predictive capability 

in Supplementary materials S2 confirms these results” (L261). However, in my view, Figure 6 



(RAE results) and Figure S3 (Q2, coefficient of determination results) show contrasting 

conclusions. For example, RAE of woCISM, CISM, and MAR are comparable (Figure 6). 

However, Q2 is clearly lower for woCISM than for MAR and CISM (Figure S3). This indicates 

differences when evaluating relative errors versus explained variance. Thus, these differences 

are potentially interesting to analyze, instead of being discarded as is done in the main text. In 

particular, they could relate to the emulator performance sensitivity to high versus low slc (the 

latter being more influential on relative metrics), or its sensitivity in the ability to predict values 

away from the mean value, or other aspects that would require investigation. Note that this 

links back to my general comment about the importance of understanding the RF emulator, 

because the interpretation of the results depends strongly on this understanding. 

We thank Referee #2 for this valuable suggestion. We totally agree with Referee #2 and will 

include in the analysis not only RAE but also Q². In addition we also propose to analyse the 

performance indicator crps that measures the quality of the emulator’s predictive probability as 

well. Referee #2 is invited also to refer to our detailed reply to Major comment 2.  

2.4 Figure 8 

There are many aspects that I find puzzling or questionable in Figure 8. Firstly, the results do 

not correspond to what is shown in Figure S4, where the Q5% and Q95% are shown with the 

black error bars. For example, in the column ΔGSAT=+3◦, Q95% of woCISM, woSSP245, and 

woSSP585 are clearly strongly different from the Q95% labeled “original” (Figure S4). But 

Figure 8 shows that these differences are ≤ 1%. I believe that there is an inconsistency here, or 

something that I misunderstand about Figure 8. 

Secondly, I do no understand how it is possible that the changes in median and quantiles at 

ΔGSAT=+4◦ are so small for woSSP585. In this design experiment, the RF model has 

presumably not even seen such levels of warming during training because the SSP 5-8.5 

scenario has been excluded. But, by definition, tree models (including RF) predict slc based on 

decision rules seen during training. Thus, it is not clear how the RF can predict relatively 

similar slc values under ΔGSAT=+4◦ when excluding SSP 5-8.5 as when it is not excluded. I 

am probably misunderstanding something here, but I believe that the authors should explain 

this counter-intuitive aspect of their results. 

We thank Referee #2 for his careful analysis. We confirm that, for some experiments, there are 

some discrepancies that have revealed a bug in our scripts for the plotting. We will of course 

update the results in the new manuscript. 

Minor comment 4: Some conclusions need to be put into perspective 
For different aspects, I find that better communication and/or more context about the 

conclusions is needed. I highlight some key examples here. 

 

(a) Concerning κ, the authors argue for “the lesser importance of the choice in the range of the 

Greenland tidewater glacier retreat parameter” (L21). However, they compare it with the 

influence of the SSP scenario and of the ISM choice. It is expected that a single parameter 

should have much less influence than a global warming scenario and than a full ice sheet model. 

We thank Referee #2 for this comment. We feel that some clarification about  should here be 

given. Here,  is not thought as a parameter of the ice-flow model, it rather represents the 

sensitivity of the ocean forcing as a whole. It may be thought of as defining the sensitivity of 

the downscaling from global model to local ice sheet scale, similar to the combined parameter 

choices in RCMs for downscaling climate conditions. In the studied MME, we have different 

RCMs, which have different sensitivities and produce different melt for the same global forcing. 



Since we have only one approach to ‘downscale’ the ocean forcing,  is sampling that 

uncertainty in a similar way. 

 

In addition, our previous study (Rohmer et al., 2022) highlighted the high importance of  

compared to other uncertainties. Referee #2 is also invited to refer to our detailed reply to major 

comment 1 as well to Referee #1’s comment 3. 

 

Reference 

Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H., and Durand, G.: Improving 

interpretation of sea-level projections through a machine-learning-based local explanation 

approach, Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, 2022. 

 

(b) It should be better emphasized that the probabilistic ranges shown by the authors are not 

probabilistic projections of Greenland slc. Instead, they show a range of emulator predictions 

(thus conditioned on the emulator architecture) assuming a uniform distribution over the 

different inputs (L186). Thus, it does not represent calibrated uncertainty accounting for model-

observation misfits (e.g., Aschwanden and Brinkerhoff, 2022). And neither does it represent the 

slc PDF from the MME, because the uniform distribution over the input space is not 

representative of the MME itself (e.g., the minimum spatial resolution is clearly not uniform 

between 1 and 40 km, see Fig. 3). As such, I believe that the true meaning of the PDFs shown 

in Figure 5 should be explained explicitly in order to avoid any reader misinterpreting those 

PDFs. 

We agree with this comment. To do so, we propose to clarify the caption of Fig. 5 as well as 

the description in Sect. 2.4. 

 

(c) The authors make a conclusion on “the utmost importance of including the SSP5-8.5 

scenario, due to the large number of simulations available and the range of global warming 

they cover” (L19- 20). However, I do not think that the authors have proven the co-existence 

of these two points. For example, could it be that including only a few training simulations with 

high global warming forcing would be sufficient to drastically decrease the errors of woSSP585 

shown in Figure7? In other words, maybe the emulator needs only a few high-warming training 

examples to correctly interpolate in the existing range of warming scenarios. Or maybe, as the 

authors write (L19-20), it is also the high number of experiments that is important. However, 

as far as I understand, the results presented in this study do not allow to evaluate the relative 

importance of these two aspects. 

We agree with Referee #2 and it also goes in the same line than the comment on the dependence 

of the results to the MME (Major comment 1). We will nuance our conclusions in this sense. 

We believe that the influence of the MME size is shown by our results, but disentangling this 

effect from the range of global warning remains too complicated at least with the procedure 

proposed here. 
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