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Abstract. Vegetation indices (VIs) are widely used to assess forest properties, but deriving VIs for attributes not mechanis-
tically linked to forests’ solar reflectance is challenging. Here, data-driven VIs could help, which yield information based on
correlations identified in large datasets of forest and reflectance data. However, data-driven VIs are prone to bias and overfit-
ting if data is limited and the functional form and wavelengths used for the VIs are not sensibly constrained. In this study, we
facilitate the development of data-driven VIs by systematically analyzing VIs with two wavelengths (400nm- 2400nm) and
evaluating their correlations to biomass, leaf area index (LAI), gross primary production (GPP), and net primary production
(NPP) subject to different sources of environmental and physiological uncertainty. Considering 900, 000 forest stands simulated
via a forest and radiative transfer modelling approach, we introduced a new class of VIs and found that data-driven VIs can
provide highly accurate estimates. Particularly VIs combining near and shortwave infrared light yielded promising results, with
biomass, LAI, and GPP often being well estimable from the same wavelength combinations; visible light gained importance
in less dense and structurally heterogeneous forests. Both the functional form of the VIs and the considered uncertainty factors
did not primarily reduce the achievable accuracy, but instead constrained the range of wavelengths from which good indices
could be constructed. This suggests that data-driven vegetation indices can yield valuable results if the wavelength choice is

optimized. This opens new pathways for utilizing recent hyperspectral satellite missions such as EnMAP.

1 Introduction

The reflectance spectrum of a forest contains a vast array of information about its structure, productivity, and health. With the
increasing availability of large-scale datasets of remotely sensed multi-spectral images, vegetation indices have been developed
to estimate key vegetation characteristics, such as biophysical, biochemical, and physiological plants properties (Zeng et al.,
2022). These properties and the corresponding indices are often linked to forest stand characteristics such as leaf area index
(LAI) or gross productivity (GPP), but the links can become inconclusive (e.g. in dense forests; Mutanga et al., 2023), or

be weak for some forest characteristics of interest (e.g. net primary production; NPP; Xiao et al., 2019). Here, data from
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new hyperspectral satellite missions, such as the German EnMAP (Environmental Mapping and Analysis Program) satellite
launched in 2022 (Guanter et al., 2015; Qian, 2021; Storch et al., 2023), could open new ways forward, as they contain
information on not only a few but more than 250 different wavelength channels. Hyperspectral data could be used to develop
new data-driven vegetation indices, harnessing subtle correlations between solar reflectance spectra and forest stand attributes,
which may occur only in specific wavelength regions or require considering several wavelength channels jointly.

However, developing such vegetation indices is challenging, as forests’ reflectance spectra are affected by heterogeneity in
forest structure, plant traits, and environmental conditions (Dong et al., 2024). This variability may not only induce uncertainty
when applying vegetation indices, but may also lead to overfitting when training the underlying models, unless the degrees of
freedom for training are reduced by careful choice of the wavelengths to consider and the functional form to use for the index.
These are the issues we address in this paper.

To that end, large-scale datasets covering the whole range of possible forests under potential environmental conditions and
plant traits are required. These datasets, however, are often not available for NPP and other forest characteristics of interest. A
common approach (see e.g. Fang, 2003; Lemaire et al., 2008; Wang et al., 2022; Dong et al., 2024) to bridge such data gaps
is to consider reflectance data obtained from radiative transfer models (Jacquemoud et al., 2009; Ligot et al., 2014), which
simulate canopy reflectance based on parameters capturing aspects of the environment, vegetation structure, and traits. This
has the advantage that a wide range of scenarios can be considered easily, potentially leading to more general results than
site-specific studies.

Since radiative transfer models for plant canopies include leaf attributes and the LAI as input parameters, several simulation
studies have analyzed the relationships between these variables and reflectance spectra (Fang, 2003; Lemaire et al., 2008;
Estévez et al., 2020). An analysis considering stand characteristics such as NPP or structural properties, in turn, requires a
model representation of forest dynamics as well. We address this problem via a novel hybrid simulation approach connecting
an individual-based forest model with a radiative transfer model (Henniger et al., 2023a).

The history of individual-based forest models dates back to the 70s of the past century (Botkin et al., 1972) and has led to the
development of a wide spectrum of models varying in application focus and complexity (Bugmann and Seidl, 2022). Though
radiative transfer models for canopy reflectance have a similarly long history (Allen et al., 1970; Verhoef, 1984), the two model
types have rarely been combined until recently (Henniger et al., 2023a). In this study, we use the process-based forest gap
model FORMIND (Bohn et al., 2014; Fischer et al., 2016), which considers trees on the individual level and computes their
gross and net productivity based on environmental conditions (e.g. temperature and precipitation), interactions between trees
(e.g. light and water competition), as well as species-specific traits. As the model represents productivity and carbon fluxes
explicitly and features both individual trees and their vertical leaf distribution, FORMIND is particularly suited to assess forest
productivity and structure (Bohn and Huth, 2017; Fischer et al., 2024).

FORMIND can be tightly coupled with the multi-layer radiative transfer model mSCOPE (Yang et al., 2017). The mSCOPE
model simulates four streams of sunlight (direct and diffuse down- and upstream of light) in the wavelength range 400nm to
2500nm and extends the classical SCOPE (“Soil Canopy Observation, Photochemistry and Energy fluxes”) model (van der

Tol et al., 2009) by facilitating the simulation of reflectance spectra of canopies with vertically heterogeneous leaf traits. The
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coupled model version allows analyzing the reflectance spectra of dynamically evolving forests and includes an extension of
mSCOPE for multi-species forests (Henniger et al., 2023a). Here, we combine it with a Monte-Carlo approach — an updated
version of the “Forest Factory” (Henniger et al., 2023b) — to generate and analyze a total of 900,000 central European forest
stands along with their reflectance profiles subject to different sources of uncertainty and noise.

The dataset we obtained (and publish along with this study) contains reflectance data for more than 250 different wavelength
channels and corresponding forest properties. Based on these data, we derive specialized vegetation indices for estimating the
forest characteristics biomass, LAI, GPP, and NPP. We conduct a systematic analysis of all vegetation indices combining two
wavelengths in the 400 nm to 2400 nm range, evaluating their ability to estimate biomass, LAI, GPP, and NPP and comparing
the quality of the obtained estimates to predictions derived from “classical” vegetation indices. As vegetation indices come in
countless varieties of functional forms — each potentially constraining the accuracy — we introduce a new class of vegetation
indices, called “parameter-free” vegetation indices, whose form is not pre-imposed via a parametric function but rather directly
inferred from the data. We evaluate which wavelength combinations are best suited for estimating each of the considered forest
characteristics and which form the optimal models take on. Furthermore, we analyze how these results are affected by (1) the
presence of different sources of environmental and physiological uncertainty or (2) the structure of the considered forests.

This paper is structured as follows: first, we provide an overview of our approach. Then we show how we parameterized the
forest model and generated the analyzed forest stands. Afterwards, we describe the parameterization of the radiative transfer
model and adjustments we introduced to simulate the reflectance profiles of forests with a vertically heterogeneous leaf density.

Finally, we provide details on the analysis of the generated forest stands and present the results.

2 Methods

We analyzed the relationships between forests’ solar reflectance spectra and their biomass, LAI, GPP, and NPP in different
uncertainty scenarios. For each scenario, we generated 100,000 forest states via a Markow Chain Monte Carlo (MCMC)
approach applied to a forest model, and simulated the corresponding reflectance spectra using the radiative transfer model
mSCOPE (Yang et al., 2017). Then we fitted parameter-free models to investigate the links between the forest characteristics
and the reflectance values at different wavelengths and compared their predictive capabilities to those of existing vegetation
indices. To investigate how different sources of uncertainty affect the investigated relationships, we applied different noise
terms to the parameters of the radiative transfer model in each scenario and analyzed their effects on the results. The process is

depicted as a flow chart in Fig. 1. Below we provide details on each of these steps.
2.1 Generating forest stands

We used the process-based forest model FORMIND along with a MCMC approach to generate a sample of forest stands repre-
senting the variety of forest compositions potentially found in the field, building on the approach by Henniger et al. (2023b).
FORMIND estimates the GPP and respiration of individual trees by considering competition for light and water and incorporat-

ing environmental factors such as temperature and precipitation. Before applying the model, we updated its parameterization
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Figure 1. Flow chart depicting the development of parameter-free vegetation indices for biomass, leaf area index (LAI), gross primary
production (GPP), and net primary production (NPP). The entropy of tree diameters (DBH entropy) is computed as measure of structural

diversity to analyze the relationship between forest structure and optimal vegetation indices.

for temperate forests in central Europe to better capture the carbon dynamics of heterogeneous forests. We considered forest

90 inventory data collected at the “Hohes Holz” research site in central northern Germany (mean ann. temperature 10.8 °C; mean

ann. precipitation 6601/m?) and changed the temperate model parameterization (Bohn et al., 2014) in the following aspects:

(1) we updated the allometric relationships according to data from Jucker et al. (2022); (2) we adjusted parameters for light cli-

mate and respiratory losses to better model the carbon dynamics in structurally heterogeneous forests; (3) we chose parameters

on soil properties that matched the soil at the research site (values taken from Maidment, 1993); (4) we added the mechanistic

95 defoliation and mortality mechanism introduced by Fischer et al. (2024); and (5) we used a new approach to consider weather

data on a daily time scale whereas forest dynamics such as growth and mortality remain modelled on the yearly time scale.
Details on the parameterization can be found in SI S5.

Typically, forest models such as FORMIND are initialized with existing forest inventory data or simulate forest successions

starting from bare ground. However, since these simulations may not cover the entirety of forest states found in managed

100 forests, we used a different approach here. Trees cannot survive if their GPP is insufficient to cover their respiratory needs.
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Hence, assuming that the GPP of any live tree found in a real forest must exceed its respiration (Bohn and Huth, 2017), we
randomly assembled a sample of states satisfying this property, starting from a uniform prior of forest states.

We considered forest patches of 20 m x 20 m size. Starting from bare ground, we randomly added or removed trees of random
sizes and species. Then we computed the GPP and autotrophic respiration of the forest stand for one year and evaluated whether
the stand was “feasible”, i.e., (1) each tree’s GPP exceeded its respiration, and (2) the tree crowns did not exceed the available
space. If the stand was feasible, we repeated the procedure; otherwise we returned to the last feasible state and repeated the
attempt to add and remove trees until a feasible state was found.

To increase the range of qualitatively different forest stands, we used a hierarchical sampling approach when adding new
trees, randomly constraining the potential tree sizes and species in some stands (Henniger et al., 2023b). Furthermore, we
facilitated computational efficiency by dynamically adjusting the “step size”, i.e., the number of individual tree additions or
removals between two forest feasibility checks: we started at 5 additions / removals and increased or decreased this number
by factor 2 if the last five feasibility checks were positive or negative, respectively. After 200 tree additions or removals, we
terminated the process. Further details regarding this approach are provided in SI S2.

We generated 100, 000 forest stands for the environmental conditions found at the Hohes Holz site. The forest stands differ,
among others, in biomass, tree number, and species composition. For each stand, we computed the biomass, LAI, GPP, and NPP

(mean values: 321 tcﬁM biomass, LAI of 3, 28.8 t}?a I;I\r/l GPP, 34 “}g Dyll/[ NPP). Furthermore, we determined the basal-area-

weighted DBH entropy for the tree size distribution (Fischer et al., 2024), which is a measure for the structural heterogeneity of
forests (mean: —4.54). We provide the formula of basal-area-weighted DBH entropy in SI S4. The distribution of these forest
characteristics is visualized in SI S3. Lastly, we computed the forests’ solar reflectance spectra using the radiative transfer

model mSCOPE, as described below.
2.2 Simulating solar reflectance spectra

We simulated the solar reflectance spectra of the generated forest patches for wavelengths between 400nm and 2400 nm.
To that end, we used an extended version of the radiative transfer model mSCOPE, designed for application in forests with
vertically heterogeneous leaf traits (Yang et al., 2017; Henniger et al., 2023a). Our extended model version adds on to the
original in also considering vertically heterogeneous leaf densities. Furthermore, we adjusted the probability of observing
sunflecks on the ground, as the structure and covering of the ground are difficult to model exactly.

We parameterized the radiative transfer model similar to Henniger et al. (2023a) but adjusted individual parameters based
on data from the TRY plant trait database (Kattge et al., 2011). A list of the parameters can be found in SI S1. We set the view
zenith angle to 0° and the sun zenith angle to 31.5°, corresponding to maximal zenith angle observed at the Hohes Holz site.
Furthermore, we set the relative azimuth angle between sun and view direction to a value of 140° (Henniger et al., 2023a), but
note that this value is only relevant if the view zenith is changed from its default 0°. We set the probability to observe direct
sunlight (sunflecks) at the ground to 0, which reduced the simulated reflectance values in the visible range. This improved the

agreement between model results and field observations at the study site.
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We simulated forests and corresponding hyperspectral data for 9 scenarios with different sources of of uncertainty each. First,
we considered the scenario without any parameter uncertainty. Second, we adjusted the LAI input to the radiative transfer model

in each simulated forest patch by a random factor € € [ from a log-uniform distribution: In(e) ~ U (In(2/3), In(3/2)).

3 2]
Here, U(a, b) is the uniform distribution in [a,b]. Using a log-uniform multiplicative perturbation ensures that the parameters
remain in the positive domain and in their respective order of magnitude.

Third, we perturbed all species’ leaf trait parameters (Chlorophyll a+b content, leaf mass per unit area, equivalent water

thickness, senescence material, carotenoid content) independently by random factors € € [ (log-uniform distribution).

372]

Fourth, we altered the leaf structure parameter in each patch by a random factor ¢ € [ (log-uniform distribution), but

53]
constrained the resulting values to the the admissible range [1,3] where necessary. Fifth, we changed the leaf inclination
parameters by random values € ~ U/(—0.2, 0.2) and constrained them to the admissible range [—1, 1] if required. Furthermore,
we normalized these parameters by their joint Euclidean norm if the norm exceeded 1.

Sixth, we drew the soil wetness parameter in each simulated patch randomly from /(0, 1). Seventh, we changed the sun
and view zenith angles as well as the relative azimuth by independent random values from &/ (—15°, 15°). Eighth, we imposed
independent random perturbations to all simulated reflectance values. The perturbations followed normal distributions with

mean 0 and standard o; = 0.05R; + 0.005, where ¢ indicates the wavelength and R; the corresponding reflectance value.

Finally, ninth, we combined all the perturbations listed above.
2.3 Analyzing vegetation indices

For each considered uncertainty scenario, we generated 100,000 forest states with corresponding reflectance spectra and filtered

out all forest states with a biomass below 50 £9PM

, as the hyperspectral model was primarily designed for areas with full
forest cover. We split the datasets into 75% training and 25% validation data. Then we selected all possible pairs of two
wavelengths and fitted a model estimating either biomass, LAI, GPP, or NPP based on the corresponding reflectance values of
these wavelengths in the training data.

Here, we considered two types of models: (1) an affine-linear model of the form f = ag + a1 Ry, + a2 R.,, where f is
the forest attribute, w; and ws are the wavelengths, and R,,, and R,,, are the corresponding reflectance values, and (2) a
parameter-free model based on regular binning of the data. The shape of parameter-free models is not given by a simple
formula but directly derived from the data, making these models particularly useful for data-driven vegetation indices. To
obtain the parameter-free model, we binned the data into 25 regular intervals along each wavelength axis, resulting in 625
potential bins for the tuples (R, , R, ). Then we determined the mean vale of the considered forest property in each bin and

assigned this value to the middle point of this bin. That is, for a bin [@, ,bw, | X [Gw.,,bw, ], We set

Gy, + buyy an—Fwa o
f( 2 ? ) . |B| Z.fl? (1)

ieB

where B is the set of all data points in the bin and |B]| its cardinality. We then applied a bi-linear interpolation between these
points to obtain model predictions for all other reflectance values. For reflectances outside the convex hull of the training data,

we applied a nearest neighbour extrapolation based on the closest bin centre.
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Wavelength used in analysis of

Range name Wavelength range [nm] classical indices [nm)]

Ultraviolet (UV) [400, 450) -

Blue 450, 500) 460

Green [500, 570) 560

Red [570, 670) 655

Red edge (RE) [670, 760) 725

Near infrared (NIR) [760, 1360] 865
Shortwave infrared 1 (SWIR1) [1440, 1820] -
Shortwave infrared 2 (SWIR2) [1950, 2400] -

Table 1. Considered wavelength ranges. The water absorption bands are excluded, as no reliable reflectance data can be obtained for these
wavelengths in practice. The last column provides the wavelengths used for representing the band when analyzing classical vegetation indices
(Tab. 2).

For both model types, we computed the Pearson R? of each fitted model based on the validation data. Furthermore, we
created heatmaps for the R? values as function of the wavelengths. Afterwards, we determined for each forest characteristic
the maximal obtained R? and the percentage Py ¢ of models achieving an R? of at least 90% of the maximum. We computed
Py by determining the surface area in the heatmap where models achieved a sufficiently large R? and dividing it by the
total surface area of all considered bands (Tab. 1). Specifically, we defined a function fy o(wy,ws) with fo.o(wy,we) =1
for wavelength pairs with sufficient R? and fo.9(w1,w2) =0 otherwise, Then, Py.g = [ [ fo.0(w1,w2)dw;dw,, which we
approximated via a midpoint Riemann sum (numerical integration) of fy 9 with those wavelength pairs as sampling points for
which we had computed reflectance values.

To measure how important each individual band (Tab. 1) is for obtaining a large R?, we determined the fraction of all models
that use a wavelength from the respective band and achieve a high R? (90% of max). We plotted this quantity (colour coded
by band) along with the respective maximal R? for each considered forest characteristic and uncertainty scenario.

To understand the impact of forest structure on these results, we repeated the analysis in the scenario without uncertainty after
grouping the data by forest density (biomass below or greater than 200 %) and structural diversity (DBH entropy Sppn
less or greater than —2.5; cf. Fischer et al., 2024). That way, we obtained the maximal R? values and the most significant

wavelength bands for forests with different structural properties. To streamline our study, we focused our analysis on the NPP.
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We visualized the functional form of the best models in the absence of noise with heatmaps. We set the obtained R? values
into context with existing vegetation indices by determining the correlations of classical vegetation indices with biomass, LAI,
GPP, and NPP based on our simulated data without noise. Here, we considered all vegetation indices listed by Zeng et al.
(2022) that use reflectances from clearly defined wavelengths or bands and do not depend on a site-specific parameterization.
By squaring the correlation coefficients, we obtained the R? values that could potentially be achieved with affine-linear models

predicting the forest properties based on the vegetation indices.

3 Results

The R? values of the analyzed classical vegetation indices and the best linear and parameter-free models are displayed in Tab.
2. For the scenario without uncertainty, the new data-driven models achieve much higher R? values than the best classical
vegetation indices: 0.75 (data-driven) vs. 0.34 (NDVIre) for the biomass, 0.97 (data-driven) vs. 0.6 (EVI) for the LAI 0.75
(data-driven) vs. 0.55 (EVI) for the GPP, and 0.6 (data-driven) vs. 0.34 (CAI) for the NPP. The maximal R? achieved with
linear models was almost equal to the value achieved with parameter-free models and in one case (GPP) even slightly higher.

While the maximal achieved R? values were similar for linear and parameter-free models, the range P g of wavelengths for
which high R? values (90% of max.) were achieved differed and was much smaller for linear models, especially for biomass
and NPP (Fig. 2). In the scenario without environmental or physiological uncertainty, the biomass and LAI could be estimated
best based on NIR reflectance combined with a reflectance from narrow bands from the SWIR range: one band close to the
water absorption band between NIR and SWIR1, one at the centre of SWIR1, one close to the water absorption band between
SWIRI and SWIR2, and one encompassing the second half of SWIR2. These wavelength ranges were also well suited for
estimating GPP, for which, however, an additional range combining green and red with NIR wavelengths yielded high R?
values as well.

NPP was best estimable based on wavelengths in the SWIR range combined with any other range. Specifically, combi-
nations of the centre SWIRI range with any visible or NIR wavelength, combinations of two significantly different SWIR1
wavelengths, and combinations of SWIR2 with visible wavelengths or SWIR1 wavelengths close to the first water absorption
band permitted high R? values.

Analyzing the best models for the considered forest characteristics yielded several similarities. The best models have in
common that the estimated forest properties increase with the reflectance of one wavelength, while they decrease with the
reflectance of the other (Fig. 3). The reflectance values we used for fitting the models were correlated and hence accumulated
along increasing lines [ : R,,, = ag + a2 R,,, in the two-wavelength space (see dots in Fig. 3; R,,, and R,,, are the reflectances
of the considered wavelengths w; and ws). The gradient of the forest properties was perpendicular to this line, indicating that
(1) many different reflectance pairs could lead to the same forest property estimate if they lie on a line parallel to the correlation
line [ and (2) the models were sensitive to changes in individual reflectance values (other reflectance held constant).

The effect of uncertainty on the potential 22 was moderate in most of the considered scenarios (dots in Fig. 4). In five of the

seven considered noise scenarios with only one uncertainty source, the maximal obtained R? was almost insensitive to noise



https://doi.org/10.5194/egusphere-2025-5198
Preprint. Discussion started: 10 November 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

R2
Index Full name Equation

Biomass LAI GPP NPP

SR Simple ratio NIR/Red 0.28 028 034 001

NDVI  Normalized difference vegetation index Ny 0.29 031 036  0.00

MSR Modified simple ratio % 0.29 029 035 001

DVI Difference vegetation index NIR — Red 0.10 0.55 0.49 0.16

EVD2 Two-band enhanced vegetation index (EVI) NQI 1{){ (NIR—Red) 012 0.58 0.53 0.15

without blue band +2.4-Red+1
NIRv Near-infrared reflectance of vegetation NDVI- NIR 0.11 0.57 0.52 0.16
NDVI Fernel—normalized difference vegetation tanh (NDVI2) 0.29 031 036 0.00
index

EVI Enhanced vegetation index NIRféig(Iili;.l;-eg%ue 1 0.14 0.60*  0.55* 0.15

PRI Photochemical reflectance index % 0.10 0.01 0.00 0.07

ccl Chlorophyll/carotenoid index % 0.00 011 001 012

clee Green chromatic coordinate i e 0.05 006 001 0.8

Clred-edge  Red-edge chlorophyll index NIR/RE —1 0.33 0.28 0.44 0.00

NDVIre  Red-edge NDVI NETRE 0.34* 029 045 0.0

MTCI MERIS total chlorophyll index % 0.33 0.18 033 001

NDWIT  Normalized difference water index % 0.07 046 040  0.11

NDLI  Normalized difference lignin index piman e 0.13 058 051 0.2
CAI  Cellulose absorption index 100 (201 f 2200 — Ryjgg) 031 005 002  034*

- Linear models ag + a1 Ry, +a2Ruy, 0.74 0.96 0.75 0.59

- Non-parameteric models n.a. 0.75 0.97 0.74 0.60

Table 2. Squared correlation coefficients between different forest characteristics and vegetation indices listed in Zeng et al. (2022). The
asterisks highlight the respective highest values in each column, excluding the values obtained by models developed in this paper, for which
the best R? values are given in the last two rows. The values were computed based on forests generated without considering environmental or
physiological uncertainty. The formulas and index names were taken from Zeng et al. (2022) with minor corrections. The specific wavelengths

used for the named bands are provided in Tab. 1. tNote on NDWI: version by Gao (1996), not McFeeters (1996).
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Figure 2. Wavelength combinations used in the best (a) linear and (b) parameter-free models for different properties of forests without envi-
ronmental or physiological uncertainty. Each colour corresponds to a different forest characteristic. The shaded areas show the combinations
of wavelengths for which models with at least 90% the R? value of the best 2-wavelength model could be constructed. The graphs on the z

and y axis show the mean reflectance profiles of all considered forest stands.

and did not decrease by more than 0.07. For biomass, LAI, and GPP, this applied for uncertainty in leaf traits, leaf structure,
leaf angle, soil wetness, and sun and view angles. White noise had a slightly higher effect (R? reduction by up to 0.15), and
LAI uncertainty was the individual uncertainty source with the highest impact (R? reduction up to 0.2 for biomass and GPP
and 0.3 for LAI). For the NPP, LAI uncertainty was less significant for the maximal R?. Instead, the leaf parameters played
the most important individual role (R? decrease by 0.16). For all forest characteristics, the combined noise scenario yielded
the lowest R2, which was about half as big as without uncertainty, respectively.

The ranges of wavelengths that yield a near-optimal R? (bars in Fig. 4) were more strongly affected by uncertainty than the
optimal potential R? values. Here, uncertainty in the leaf traits and the leaf structure had the strongest effect, in particular for
biomass and NPP, where the fraction P, g of evaluated models with an R? exceeding 90% of the optimum dropped by more
than 82%. For the NPP, uncertainty in the leaf inclination parameters had a similarly strong impact. The value P, g decreased
least in the presence of LAI and sun / view angle uncertainty. In the joint noise scenario, /% 9 was strongly reduced for all
forest characteristics.

In most considered scenarios, the presence of uncertainty did not affect the combinations of wavelength bands in which

models with a high R? could be found (colours in Fig. 4). However, in the presence of leaf trait uncertainty, no models using
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Figure 3. The best parameter-free models for (a) biomass, (b) LAI, (c) GPP, and (d) NPP, respectively, for forests without environmental or
physiological uncertainty. The axes correspond to reflectance values (R,, is the reflectance of wavelength w in nanometers). The background
colour depicts the model’s prediction, i.e., the respective forest characteristic corresponding to a reflectance pair. The points correspond to
simulated forest patches in the validation dataset: their positions correspond to their reflectances, their colours to their biomass, LAI, GPP,

and NPP.

visible and red edge bands achieved near-optimal R? values. For the NPP, uncertainty in the leaf structure parameters had a
230 similar effect. Furthermore, models with near-infrared light lost their predictive capabilities for NPP if uncertainty beyond LAI

and sun / view angles was present.
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Figure 4. Impact of different uncertainty factors on the predictability of forest characteristics. Each bar and point corresponds to a source of
uncertainty. The circles depict the maximal possible R values. The bars show the fraction of considered wavelength pairs for which a model
with an R? of at least 90% of the respective maximum can be constructed. Here, the colours depict the bands from which the corresponding
wavelengths are taken. It is visible that while the maximal R? is only moderately sensitive to uncertainty in environmental factors and leaf

properties, the range of wavelengths for which a high R? can be attained decreases significantly in the presence of noise.

Filtering the considered forest stands and developing specialized models for forests with high / low biomass and / or structural
diversity generally improved the R? values for NPP (black circles in Fig. 5). NPP estimates achieved particularly high R? values

(> 0.7) in forests with small biomass (< 200 tohg M) 'whereas the R? values were lower in denser forests (B2 < 0.63). Binning

by structural diversity yielded more intricate results: if the forests were also filtered by biomass, focusing on forests with lower

structural heterogeneity (Sppy < —2.5) led to larger R? values. Specifically, NPP could be estimated with an R? of 0.81 in
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forests with low biomass and low structural heterogeneity, whereas the R? dropped to 0.49 in forests structurally diverse forests
with high biomass. If no biomass filter was applied, however, NPP could be better estimated in structurally diverse forests.

Structural diversity had a larger effect than the biomass on F; g, the range of wavelengths based on which NPP estimates
with a high R? (> 90% of max.) could be achieved (coloured circles in Fig. 5). More models achieved a near-maximal R>
in structurally homogeneous forests. The biomass range only made a strong difference for structurally homogeneous forests,
where Py ¢ was significantly larger in forests with a low biomass.

Filtering by biomass and structural diversity had a significant effect on the bands that were best suited to estimate NPP
(colours in Fig. 5). Most prominently, the percentage of high-achieving models using NIR light was much larger in forests
known to have a small biomass (namely 51%-70%) or large structural heterogeneity (20%-99%). In contrast, NIR light was
much less used in the best models for unfiltered forests (14% of the high-achieving models) or forests with neither large

structural heterogeneity nor small biomass (0%).

4 Discussion

We analyzed 900,000 temperate forest stands and corresponding reflectance profiles. Considering different sources of uncer-
tainty, we systematically evaluated a total of more than 7 million data-driven models for biomass, LAI, GPP, and NPP based
on different wavelength pairs. We found that even in the presence of significant uncertainty, the data-driven models yielded
relatively large R? values, significantly exceeding the R2 values obtained from classical vegetation indices. This suggests that
data-driven vegetation indices, even if using only two wavelengths, are a promising tool for deriving forest properties from
remote sensing data.

Neither a large number of different wavelengths nor a complicated functional form were necessary to estimate forest at-
tributes with relatively high accuracy. In fact, linear models superseded parameter-free models without pre-imposed functional
form in some wavelength regions. However, focusing on a specific functional form limited the range of wavelengths suitable
for analyzing forest attributes and increased the challenge of identifying the optimal wavelengths. This agrees with earlier
findings by Gong et al. (2003), who evaluated different wavelength combinations and functional forms to estimate LAI based
on reflectance data. The better suitability of linear models in some wavelength regions is due to the limited resolution of the
binning method we applied in the parameter-free case, where we computed average values of forest characteristics for individ-
ual reflectance intervals. Increasing the resolution (i.e., using smaller intervals) or using more general parametric models will
therefore lead to even better R? values than we presented, but may require larger datasets.

Despite the relatively high R? values we obtained, ranging from 0.6 for the NPP to 0.97 for the LAI, our results show that
identifying the right wavelengths for estimating specific forest properties is key. In the absence of uncertainty, the classical
vegetation indices rarely utilized wavelength pairs optimal for estimating any of the considered forest characteristics. Excep-
tions were the vegetation indices using red and NIR / red edge light (e.g. NDVI, EVI, NDVIre, NIRv), which were, however,

only in the optimal range for estimating GPP and neither of the other forest characteristics. This is surprising, since LAI and
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Figure 5. Predictability of the NPP for subsets of the forest stands. In the second and third column, the forest stands are filtered by DBH
entropy, where low values indicate dominance by a single tree or multiple similarly-sized trees, whereas high values indicate that the basal
area is evenly distributed over trees of different size classes. In the first column, no filtering by DBH entropy is applied. Similarly, the second
and third row correspond to forests with high and low above-ground biomass, respectively, whereas no filtering was applied in the first row.
The diameters of the hollow black circles correspond to the respective maximal R? values that could be achieved for the dataset. The shaded
areas are proportional to the fraction of considered wavelength pairs for which a high R? (> 90% of maximum) could be achieved. The
colours depict the bands from which the corresponding wavelengths were taken. It is visible that for dense forests, most models consider a
wavelength from the near infrared band. In contrast, for sparser forests, the SWIR1 band was used more frequently. In general, it was easier

to estimate the NPP of dense forests and forests dominated by trees from few size classes.

GPP are typically assumed to be strongly correlated (Gitelson et al., 2014), and several vegetation indices were developed by
considering the reflectance profile of leafs (Zeng et al., 2022).

In the presence of environmental or physiological uncertainty, the range of suitable wavelengths decreased significantly,
and some bands lost their suitability. For example, visible light became sub-optimal when leaf traits were uncertain, and NIR
light became unsuited for estimating NPP in this case. This suggests that the choice of wavelengths for estimating forest

characteristics should take into account the type and magnitude of uncertainty expected in the field data. Identifying and
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quantifying these sources of uncertainty will hence be an important preparational step to deriving data-driven vegetation indices
for forest characteristics.

Aside the above-mentioned cases, the best band combinations for estimating forest characteristics remained remarkably
stable throughout the considered scenarios. In particular, combinations of longer wavelengths (NIR, SWIR1, and SWIR2)
were generally well suited. This is in line with previous studies (Gong et al., 2003; Lemaire et al., 2008; Psomas et al., 2011;
Houborg and McCabe, 2018; Almeida et al., 2019), yet contrasts with the most common choices of wavelengths for vegetation
indices (only 4 out of 23 vegetation indices listed in the review of Zeng et al. (2022) combined two wavelengths from these
bands). However, these vegetation indices may also applied to assess the presence of vegetation, e.g. classify areas into forest
landscapes and other landscape types, whereas in our study, we considered forests only, i.e., presumed that the landscape had
been filtered to only include forests before. Nonetheless, a classification into forested and unforested land could be easily
conducted in an independent preparational step, making forest-specific vegetation indices applicable in combined multi-step
procedures in practice.

We found that combinations of NIR and SWIR wavelengths were particularly useful for estimating forest characteristics.
Reflectance in the SWIR range is strongly related to leaf water content, lignin, proteins, nitrogen and cellulose (Curran, 1989;
Fu et al., 2021; Zeng et al., 2022), and the combination of LAI and nitrogen content has been found well suited for estimating
forest productivity (Reich, 2012; Zhang et al., 2023). The significance of NIR / SWIR combinations may be further understood
by considering the sensitivity of forest reflectance to LAI, which is low in the NIR range but high in the SWIR range (Verrelst
et al., 2015; sensitivity analysis of radiative transfer models). Furthermore, NIR and SWIR reflectances are much less sensitive
to leaf constituents such as chlorophyll or carotenoid than reflectances from the visible spectrum (Mousivand et al., 2014;
Verrelst et al., 2015; Prikaziuk and van der Tol, 2019). This may also explain why visible light became unsuitable for estimating
GPP when the leaf properties were uncertain. We note, however, that a discussion of potential technical limitations in measuring
NIR / SWIR light or required atmospheric corrections is beyond the scope of this study.

Since uncertainty of leaf constituents may be induced by high species richness, reflectances from the visible spectrum may
be unsuitable for assessing particularly diverse forests. The significance of visible light decreased similarly in forests with high
biomass, potentially due to the low penetration depth of visible light (Hovi and Rautiainen, 2020) leading to a quick saturation
of reflectance-LAlI relationships (Mutanga et al., 2023). These findings suggest that visible light is sub-optimal to assess the
considered forest characteristics in structurally complex forests.

Noteworthily, an increase in the heterogeneity of tree sizes had a contrasting effect: it increased the significance of visible
light for estimating NPP. The tree size diversity, measured by the DBH entropy in this study, is low if forest patches are
dominated by individual large trees, overshadowing understorey trees. If multiple differently sized trees contribute equally to a
forest’s basal area, it is more likely that their canopies are directly visible from above, making it easier and potentially optimal
to use visible light to assess the forest state. This relationship may not hold in strongly stratified (e.g. tropical) forests, though.

Our model-based approach allowed us to investigate the relationships between forests’ solar reflectance spectra and forest
structure and productivity for a large number of different forest stands. Nonetheless, this approach also came with drawbacks

due to inherent model limitations. For example, though considering environmental effects such as drought, the impact of
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leaf phenology or trees’ health and stress level on optical leaf properties (Watt et al., 2021; Zhou et al., 2021) are currently not
captured by the forest model used here (FORMIND). Similarly, the effects of shadows occurring on the surface of heterogeneous
tree canopies (Hilker et al., 2010; Zeng et al., 2022), which could affect the estimability of forest characteristics by inducing a
relationship between forests’ height heterogeneity and their reflectance, are not accounted for in mSCOPE. We addressed these
simplifications by modelling and investigating the effect of different uncertainty factors on the results, and our findings are in
good agreement with earlier analyses on the predictive power of wavelength combinations for estimating LAI (Gong et al.,
2003).

Building on previous work on generating ecologically feasible forests with simulation models (Bohn and Huth, 2017; Hen-
niger et al., 2023b) and combining forest models with radiative transfer models (Henniger et al., 2023a), we introduced several
methodological advancements. Our Markov Chain Monte Carlo approach for sampling forests allows a rigorous statistical
interpretation of the distribution of the resulting forests. Furthermore, the algorithm’s simplicity reduces the risk of model
artifacts potentially favouring specific forest structures, makes it easier to incorporate climatic effects on forest states and to
exchange the underlying forest model with other process-based forest models. The updates of the forest model FORMIND and
its parameterization for temperate forests improved the model’s efficiency and accuracy in heterogeneous forests.

The adjusted version of mSCOPE disentangles the vertical space and LAI dimensions, thereby permitting the simulation of
forests with heterogeneous leaf densities in different layers of the canopy. The new soil sunfleck parameter reduces the impact
of uncertain soil properties on reflectance and may lead to more accurate results in scenarios with large solar zenith angles.

Combining a process-based forest model with a radiative transfer model permits new lines of research on the relationships
between forest attributes and forests’ solar reflectance profiles. In this study, we focused on the forest attributes biomass, LAI,
GPP, and NPP, which are key for understanding forest dynamics. However, our approach can easily be extended to conduct
similar analyses for other forest characteristics such as species and structural diversity, net ecosystem exchange, forest health
or disturbance. The results, such as the R? maps presented in this study, could inspire new data-driven vegetation indices
specialized for specific forest characteristics.

Moreover, since the composition of forests and their attributes can be configured freely, tailor-made vegetation indices could
be designed for forests with already known structural characteristics. In this study, we aimed at considering a broad spectrum of
forests with different structural characteristics. Via the random pre-sampling of species pool and height range (Henniger et al.,
2023b), we obtained even-aged monocultures as well as uneven-aged heterogeneous forests. If the area of interest contained
forests with known characteristics, such as some highly managed forests in central Europe, tailor-made vegetation indices
could yield even better results. The data set of combined forest and reflectance data that is published along with this study can
be easily utilized for corresponding analyses.

In this study, we focused on simple models considering only two wavelengths each. This facilitated a deeper understanding
of the importance of individual wavelengths for assessing forests. Applied to hyperspectral data from the field, the presented
approach could lead to the development of new vegetation indices. These could be used to assemble novel large-scale datasets

on forest attributes, increasing our understanding of the state and dynamics of forests on the global scale.
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5 Conclusions

We used a hybrid modelling approach to generate large datasets of forest stands and corresponding hyperspectral data in the
400nm-2400nm range. Based on these datasets, we systematically evaluated the potential of vegetation indices to estimate
above-ground biomass, LAI, GPP, and NPP. We found that estimates from data-driven indices could be significantly more
accurate than predictions derived from “classical” vegetation indices.

We assessed which wavelength combinations were best suited for estimating the considered forest characteristics and ob-
served that combinations of NIR and SWIR light yielded good results in general, with biomass, LAI, and GPP often being
well estimable via the same wavelength combinations. The optimal choice of wavelengths depended on the structure of the
considered forests, with visible light gaining in importance in less dense and structurally heterogeneous forests.

We proposed and evaluated a new class of vegetation indices, namely parameter-free vegetation indices. We found that the
functional form of the vegetation indices did not significantly affect the maximal possible achievable accuracy, but instead
constrained the range of wavelengths where this accuracy could be attained. We obtained a similar result with respect to
uncertainty: evaluating different potential sources of uncertainty in physiological and environmental parameters, we observed
that while uncertainty did not strongly reduce the achievable accuracy, it decreased the range of wavelengths where accurate
vegetation indices could be constructed. These results, along with the simulation approach introduced in this study and the
generated data, may facilitate the development of new data-driven vegetation indices, optimized for estimating individual

forest characteristics of interest and tailored to the structure of the considered forests.

Data availability. The forest characteristics and reflectance profiles generated in this study can be found at the Zenodo public repository at

https://zenodo.org/doi/10.5281/zenodo.16748241 (Fischer et al., 2025).
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