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31 Abstract
32

33  We provide a long-term evaluation of compact, all-in-one automatic weather stations (AiOWS)
34  compared to professional-grade Automatic Weather Stations (AWS). We examine the

35 performance, longevity, and degradation of six AiO WS models over several years of non

36  serviced use. The objective was to determine how closely these low-cost stations meet World
37  Meteorological Organization (WMO) performance standards for temperature, humidity, wind,
38 and precipitation, and to identify their weaknesses and maintenance needs.

39  Previous studies show the potential value of AIOWS when data are properly quality-controlled,
40  yet long-term reliability remains uncertain. To address this we deployed six AiO WS units—

41 Davis VVue, Davis VP2, METER ATMOS41, Lufft WS601, and Vaisala WXT520, alongside two
42  collocated reference AWS meeting WMO standards. Before field installation, each unit was

43  tested in (KNMI's) calibration lab for baseline validation. The stations were then operated in

44  open terrain for multiple years without any servicing, simulating typical end-user neglect.

45 Initially, all AiO WS met manufacturer specifications. After long-term exposure, however,

46  sensors displayed varied durability. The Vaisala unit operated continuously for over 13 years,

47  while others failed between four and seven years due to corrosion, component wear, and sensor
48  drift. The METER and Davis VVue remained mostly functional but with degraded performance,
49  whereas both Davis VP2 rain gauges failed early due to reed switch damage.

50  Temperature measurements were the most robust. In climate chamber tests, new and aged

51  sensors maintained accuracy within £0.3 °C across -15 °C to 30 °C, drifting slightly

52  (underestimating by 0.5-0.7 °C) above 30 °C. Field data confirmed these results, though strong
53  solar radiation caused overestimations during summer. The Vaisala and Davis VVue units

54  remained within WMO Class B limits after a decade. Relative humidity showed consistent

55  deterioration. Most sensors overestimated low humidity and underestimated above 90%,

56  particularly the METER unit, whose bias grew markedly after five years. Wind speed accuracy
57  degraded due to mechanical wear. Cup anemometers underreported low winds and failed

58 completely in some cases. Sonic sensors (Vaisala, METER) produced erratic readings after

59  several years, highlighting their fragility outdoors. Precipitation performance was weakest

60 across all models. Tipping bucket designs suffered from clogging, internal corrosion, and

61 undercatch errors, while haptic or drip-based sensors became inaccurate as components aged
62  or fouled.

63  We concluded that compact AiO WS can provide scientifically useful temperature data if

64  properly managed but fall short for humidity, wind, and particularly precipitation unless regularly
65  serviced. Long-term unattended operation severely limits reliability, yet moderate maintenance
66  can potentially restore performance close to WMO Class A/B standards, extending their utility
67  for dense observation networks.

68
69 1. Introduction

70  Over the past decades, compact all-in-one Automatic Weather Stations (AiO WS) have become
71 widespread, offering meteorological measurements at low costs compared to conventional
72 Automatic Weather Stations (AWS) operated by National Meteorological Services (NMS).
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73  Indeed, NMS, such as the Royal Netherlands Meteorological Institute (KNMI) are using this data
74  in tiered networks, where it is combined with AWS data to improve numerous products ranging
75  from rainfall to temperature now-casting. Their affordability and ease of deployment have

76  enabled a rapid expansion of observational networks, particularly in data-sparse regions and

77  citizen science initiatives. Many peer-reviewed studies have demonstrated the scientific value of
78  AiO WS in varied research applications. These low-cost, rapidly deployable instruments have
79  been used for urban climate monitoring (Meier et al., 2017), air quality and heat stress exposure
80 assessments (Chapman et al., 2020), and enhancements of meteorological networks beyond a
81  backbone of AWS sites (Overeem et al., 2013). De Vos et al. (2017) showed that crowdsourced
82  data from thousands of AiO WSs across the Netherlands could be statistically corrected to

83  produce high-resolution rainfall maps comparable to those from official networks. Similarly,

84  Meier et al. (2017) validated temperature data from citizen-operated stations in Zurich, finding
85 them suitable for detecting spatial variations in urban heat islands. These studies highlight that,
86  when properly calibrated and quality-controlled, data from AiO WS can meaningfully contribute
87  to scientific research, particularly in applications where high spatial density is prioritised over

88 individual sensor quality.

89  The World Meteorological Organization (WMO) provides guidance for the deployment and
90  operation of AiO WS through its Guide to Instruments and Methods of Observation (WMO-No.
91  8). While AiO WS systems are not typically formally certified to meet WMO performance
92  standards, their measurement principles, and operational concepts often align closely with those
93  applied to Automatic Weather Stations (AWS) in professional networks. These include
94  instrument characteristics such as measurement accuracy, long-term reliability, structural
95  durability and ease of maintenance. The WMO also emphasises the importance of routine
96 inspection and preventive maintenance, particularly for sensors exposed to outdoor conditions.
97  Proper siting (away from buildings, trees and shading) is important, with problematic AiO WS
98 placement locations requiring to be noted in metadata. Furthermore, the WMO promotes quality
99  control procedures, metadata management, and intercomparison testing to ensure
100 interoperability and scientific utility. For AiO WS systems to contribute meaningfully to research
101  or operational monitoring, alignment with an agreed global set of standards is (in our opinion)
102  the best option to encourage greater use of AiO observations amongst the science community.

103  Although well-managed networks of AiO WS are useful for research and can adhere to WMO
104  guidance on siting, operation and servicing, many networks or individual AiO WS are poorly

105 maintained/ sited and hence underperforming with respect to manufacturers specifications. As a
106  result, this has prompted numerous studies evaluating their accuracy and reliability. Vuckovi¢
107  and Schmidt (2023) analysed city-wide data and found a “substantial amount of erroneous

108  occurrences” (gaps and faulty signals), especially in humidity readings. This shows broader

109  concerns with the equipment when compared to official Automatic Weather Stations (AWS); AiO
110  WSs often have suboptimal siting, and exhibit unmonitored and uncorrected instrument drifts.
111 Hahn et al. (2022) similarly note that some AiO WSs have temperature biases in excess of

112  WMO guidelines often caused by solar heating or non-standard placement such as indoors or
113  shielded locations. These issues have motivated the development of rigorous quality control
114  (QC) methods (e.g., statistical bias corrections) to vet AiO WS observations (Nipen et al., 2020;
115  Alerskans et al., 2022) prior to use. Nevertheless, confidence in raw data quality is lowered by
116  these issues, underscoring the need to benchmark AiO WS against reference instruments under
117  real-world conditions.
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118  The aim of this work is to quantify how closely compact AiO WS approach WMO performance
119  guidelines, and to assess their sensor longevity and failure modes observed both in our

120  experiment and also reported in the literature. This paper publishes data from an opportunistic
121 AiO WS evaluation experiment conducted at the test field of KNMI in De Bilt, the Netherlands
122 using the following AiO WS; Davis VVue (called TX7 and TX8 in this paper), Davis VP2

123  (instruments TX1 and TX2), METER ATMOS41, Lufft WS601, Vaisala WXT520. By directly
124  benchmarking compact AiO WS against standard meteorological instruments, our aim was to
125 understand the practical accuracy and longevity limits of a selection of commonly used AiO WS
126 models. We report observations on sensor accuracy and long-term drift from the literature and
127  from our long-term field experiment, focusing on temperature, humidity, wind, and precipitation
128  measurements.

129 2. Data and Methods

130  This experiment was conducted at KNMI's test field in De Bilt, the Netherlands (Figure 1). We
131  evaluated AiO WS models mounted in open terrain at heights between 1.2 and 1.6 m, alongside
132 two collocated reference Automatic Weather Stations (WMO AWS code 06260 and 06261). The
133  AWS 06261’s temperature and humidity were measured at 1.5 m above ground level 43 m

134  North of the AiO WSs and rainfall at 1.0 m above ground level 15 m North East of the AiO WSs.
135  All three observations are fully calibrated (to WMO AWS standards) and continuously cross

136  validated with the observations made at DeBilt AWS (06260) sited 200 m east of the test field by
137  KNMTI’s technical observations team (Figure 1).

138  Each AiO WS was initially assessed in the KNMI calibration laboratory—using a wind tunnel,
139  climate chamber, and rain simulator—before being deployed in the field with minimal
140  maintenance for multiple years.

141 The study represents a ‘worst-case’ scenario typical of many end users: no instrument

142  maintenance, cleaning, or mid-deployment recalibration was performed. Throughout the multi-
143  year deployment, we collocated AiO WS data with high-quality AWS measurements to detect
144  biases, sensor drift, and data gaps.

145  This approach follows prior field comparisons of AiO WS, such as Jenkins (2014) and Bell et al.
146 (2015 and 2017) who co-located Davis and Fine Offset stations for one year, and Drozdziot and
147  Absalon (2023), whose multi-month comparisons tested amateur rain gauges against certified
148  Hellmann gauges.

149
150 3. Results
151 3.1 Laboratory Comparison

152  Prior to deployment, each AiO WS underwent calibration laboratory testing to quantify baseline
153  accuracy, operational range, and to verify consistency with manufacturer specifications. All AiO
154 WS tested initially met manufacturer specifications (Table 1). After being deployed in the field for
155  a minimum of 5 years, the AiO WS were removed and reassessed in the calibration laboratory.
156  Table 1 summarises the manufacturer’s specifications and figure 2 shows the observed

157  measurement ranges of the aged units that remained functional.
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159  Both Davis VVue units (TX7 and TX8), and the METER ATMOS41 remained functional at the
160  end of deployment (10 years TX7 and TX8, 5 years for the METER). The Vaisala remained
161  active for >13 years in the field, eventually failing in July 2024 and prompting the finalisation of
162  this research.

163 In contrast, both Davis VP2 units (after 7 years, 4 months TX1, 6 years 8 months TX2) and the
164  Lufft WS601 (after 4 years and 2 months) ceased transmitting data. The Davis VP2 both had
165  raingauge failures very early on in deployment, and no reliable rainfall information was collected
166  for the entire deployment. Both Davis VP2s (TX7 and TX8) solar panel covering plastic had
167  become discolored, and upon removal of this plastic covering and insertion of a new battery,
168  both became became partially functional again. The Lufft WS601 partially recovered

169  functionality in the lab, transmitting only rain gauge data. Evidence of substantial internal

170  corrosion was found in the Lufft WS601 (Figure 3, panel 4), possibly due to moisture intrusion.
171 The Vaisala remained functional for temperature and humidity until the final month of operation
172  on the test field. The unit failed, and could not be revived for subsequent the calibration

173  laboratory. However, we note that the Vaisala had operated for more than 13 years without
174  maintenance, showing the potential lifespan of AIOWS, as well as the risk of ‘zombie’

175  instruments (i.e. those that have been uncalibrated for many years), potentially increasing

176  uncertainty in data quality for networks of AiOWS.

177 Both Davis VP2 units continued to transmit temperature, humidity, and wind speed data, but
178  their tipping bucket rain gauges’ magnetic reed switches failed (Figure 3 panel 3), a known

179  fragile component in outdoor environments (Saraf and lvan, 1978). Newer Davis VVue and

180  updated VP2 models utilise a more robust Hall-effect sensors in their tipping bucket rain

181  gauges, perhaps resulting in the longer life spans observed in TX7 and TX8 . Although the

182  METER provided temperature, relative humidity, rainfall, and wind speed at deployment’s end,
183  only temperature and humidity measurements were considered reliable; wind speed and rainfall
184  data were implausible.

185  3.1.1 Air Temperature

186  Temperature sensors were tested in a climate chamber using 5 °C incremental steps from -15
187  °C to +50 °C under 20% relative humidity, holding at each step for one hour for full equilibrium.
188  All new AiO WS units adhered closely to specifications within the 0-30 °C band (table 1). The
189  aged AiO WS showed best performance within -15 to 30 °C, but above 30 °C, temperature was
190 typically underestimated (figure 2). All Davis AIOWS (TX1,2,7 & 8) had less than 0.3 °C errors
191 between -15 to 30 °C, whilst above 30 °C all Davis and the METER AiOWS underestimated by
192  0.5-0.7 °C. Although laboratory tests for the aged Lufft AiO WS were unavailable, Fenner et al.
193  (2018) reported good precision (0.1 °C) for Lufft WS700UMB, consistent with the new unit

194  performance tested at KNMI prior to deployment. Due to non-operation status, the Vaisala (and
195  aforementioned Lufft) were not tested post-deployment for air temperature.

196  3.1.2 Relative Humidity (rH)

197  RH testing involved making 10% rH step increments between 17% and 97% rH at a constant 20
198  °C conducted in a climate chamber. At equilibrium at each step, rH was held for one hour to

199  allow for full equilibration. All AIOWS demonstrated similar trends: measured rH started to drop
200 relative to the reference above ~60-70% rH. The METER performed poorest at low rH but

201 accuracy improved at higher rH values (figure 2).
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202  Davis TX 1,2,7 and 8 rH sensors transition from slight overestimation at low rH to
203  underestimation above 70% aligns with Bell et al. (2017) in their two-year drift study.

204  Due to non operation status, again, the Lufft and Vaisala were not tested post-deployment.
205  3.1.3 Wind Speed

206  Assessment of wind speed accuracy was completed within a wind tunnel, where the windspeed
207  was adjusted from 1 m/s to 19 m/s in 2 m/s increments. All Davis VVUE (TX7,8) and VP2

208  (TX1,2) cup underestimated wind speed, particularly below 3 m/s. One of the METER sonic
209 transducer pairs malfunctioned, recording constant 2 m/s easterly wind at zero real wind speed,
210  and was excluded from further tests (figure 2).

211 Davis VVue TX7 and TX8 improved accuracy at higher wind speeds (<10ms). The two Davis
212 VP2 units performed differently compared to each other: TX2 worsened with speed, attributed to
213  arusted bearing evident in run-up test (Figure 3, panel 2), while TX1 slightly improved, similarly
214  to the TX7 and TX8, indicating that aging of the cup and vane does not result in a consistent
215  drift or offset that can be corrected at a later data processing stage. Lufft, METER and Vaisala
216 AIOWS were not tested, due to aforementioned malfunction.

217  Low-wind bias agrees with Droste et al. (2020), who found AiOWS cup anemometers often fail
218  to register light breezes. Davis VVue and VP2 devices slightly improve at mid-range speeds (5—
219 12 m/s), whereas Vaisala WXT520 showed a steady —0.5 m/s offset. After eight years, no aged
220 units provided reliable wind data, confirming mechanical wear and bearing corrosion degrade
221  cup/vane accuracy, while sonic anemometers suffer from transducer failures.

222  3.1.4 Precipitation

223  Ten mm of simulated rainfall was applied three times to each of the functioning AiOWS. The two
224  Davis VVue units showed excellent performance, with the VVue TX7 performing with only -1%
225  error (TX7 measurement vs simulated rainfall amount), and the TX8 performed with a -5% error.
226  Both Davis VP2 had poor performance in tests; although the reed-switch mechanism worked
227  moderately well when assessed initially (-5% error) but both units failed almost immediately in
228 the test field (figure 3, panel 3).

229  The Lufft AiO WS displayed good accuracy (3% error), but we did observe some sticking within
230 the tipping bucket mechanism during the test; where water overflowed the bucket and hence
231  was not counted as part of the measurement. Interior corrosion of the tipping bucket was

232 evident upon disassembly (Figure 3, panel 4).

233 The METER AiO WS uses a drip counting mechanism; with the number of drips counted per
234  second relating directly to liquid precipitation entering the funnel. Initial tests conform to WMO
235  standards. However, upon removing the aged METER from the testfield, we observed that the
236  funnel was clogged with dust and insect debris, resulting in a delay in rain being fed into the drip
237  counting mechanism (figure 3, panel 1). We attempted to clear the debris, and lightly clean the
238  contacts within the drip counting mechanism. However, this did not resolve the issue, and the
239  unit continued to report inaccurate rainfall. Due to the design of the drip counting mechanism
240  the mechanism is highly reliant on a calibrated volume of water within each drip to be formed. If
241  the drip is too small or large a volume, the number of drips compared to the rainfall rate will

242  move outside of calibration specification, and a under/overestimation will occur. We suggest that
243  upon a correctly calibrated volume drip of water being attained, the METER would be
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244  performant again, highlighting the need for regular recalibration/ replacement of the rain gauge
245  components.

246 3.2 Field Performance

247  Personal weather stations showed systematic temperature biases versus the AWS reference
248  (Figure 4). All AIOWS apart from the METER underpredicted at low temperatures, and over
249  predict at high temperatures (with likely strong solar radiation, figure 4). We also noticed drift in
250 some of the AIOWS, with Vaisala initially overestimating temperature by ~+0.3 °C in 2016,

251  increasing to ~+0.45 °C by 2024. The Meter performed exceptionally well, with very slight

252  underreading of temperatures across all temperature bands.

253  Mean Absolute Error (MAE) reflected similar trends. Vaisala and VVue errors increased over
254  deployment; summer MAE exceeded winter MAE- again highlighting issues in the small

255  radiation shield designs common in AiOWS. Lufft and VP2 MAE increased over time with higher
256  summer errors; METER MAE remained steady with seasonal oscillations. Error magnitudes
257  (~0.2-0.5 °C) align with the aforementioned previous studies.

258  Relative humidity aligned closely with climate chamber results- underrecording of rH >90% and
259  overrecording of humidities <70% for all instruments. We also noted a worsening of the METER
260 rH observations across all rH bands after 2023, indicating that the deterioration within the

261  sensor may accelerate with age (figure 4.)

262  Precipitation monthly totals showed large undercatch (Figure 5). Vaisala consistently under-
263  collected relative to AWS with no seasonal or drift pattern detectable. Lufft performed best;

264  monthly totals within £25 mm of AWS. Undercatch is consistent with known tipping bucket

265 limitations where wind can cause 2—10% loss in liquid precipitation, and potentially higher with
266  snow (Segovia-Cardozo et al., 2023) and poorly maintained gauges tend to under-read (De Vos
267  etal, 2019). As mentioned above, both Davis VP2 models had very early failure of the reed
268  switch rain gauge, and no useful data was collected during the deployment. Research into event
269  detection probability (PoD) and false alarm rate (FAR) showed that none of the AIOWS gauges
270  detected every rainfall event. PoD averaged well below 1; e.g., only one summer 2018 month
271 saw Vaisala register 100% of AWS rainfall events. In that month, Lufft detected none. FAR was
272 low (<0.1) for all except METER, whose spurious tips raised FAR. Our results underline rain
273  gauge quality control’s importance: even well-performing AiO WS can miss light/short events
274  (low PoD) and produce false triggers (FAR) without careful calibration and sheltering.

275  Windspeed observations are not possible to precisely compare with data from the AWS, owing
276  to the AWS anemometer being mounted at 10m height. Surface roughness is not consistent on
277  the testfield (due to other instruments, fences and buildings within the surrounding 500 m), and
278  hence an algorithmic method of calculating true 1.5m wind velocity from the 10m observations
279  will introduce uncertainty. We note in our comparison with the 10m AWS wind data that the

280  sonic anemometer equipped METER had the values closest to the AWS data, and the cup and
281  vane equipped Davis VVUE had the most different (figure 5).

282 4. Discussion
283 4.1 Sensor drift and degradation mechanisms due to environmental exposure

284  The long unattended deployment across multiple AiOWS revealed sensor-specific degradation
285  pathways that explain the differences seen in Figures 2-5. Degradation for all variables (aside
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286  from rH) is seemingly governed less by instrument age than by instrument design coupled with
287  cumulative environmental stressors (such as solar loading, humidity cycling, particulates,

288  biofouling and corrosion from wind-driven rain/ condensation.) This is demonstrated by the early
289  damage to the Davis VP2 rain gauge system resulting in no data being collected, whilst the

290 Vaisala system worked for more than 13 years, whilst operating in exactly the same

291  environmental conditions. Relative humidity did however show a potential drift that worsened
292  with age of the sensor.

293  Temperature displayed the strongest long-term stability. Laboratory tests showed that aged units
294  remained close to specifications in the 0—30 °C band, with a consistent underestimation of =0.6
295  °C above 30 °C relative to the reference. In the field, monthly biases were typically within =+0.2—
296 0.5 °C. The Vaisala trended from =+0.3 °C toward =+0.45 °C by 2024, while the two Davis VVue
297  sensors exhibited seasonality—underestimation in winter and overestimation in summer (Figure
298  4). The patterns are indicative of radiation-shield issues in AIOWS under high insolation

299  conditions rather than thermistor drift. This is demonstrated by the high temperature bias (> 30
300 °C) on the test field being in the opposite direction to the bias observed in the climate chamber.
301  The Netherlands is too cold to have >30 C air temperatures without solar radiation (i.e. at night
302 time). However, the climate chamber does not heat using insolation, and thus is representative
303  of nighttime temperature and humidity conditions. Therefore, a laboratory calibration of the

304  AIOWS temperature sensors under conditions of high temperature and zero radiation (and

305  correction of the temperature measured) would actually result in a larger positive temperature
306  bias being recorded by the instruments at peak summertime solar radiation for all instruments
307  apart from the METER.

308 Data from the field tests confirmed the laboratory observations on relative humidity (Figure 4).
309  Here, all AIOWS overreported rH at low rH conditions, and underreported rH at high rH

310  conditions (>90% rH). Vaisala’s rH bias started near —6%, trending towards zero over ~10 years.
311 METER'’s rH bias grew rapidly from —1% to +8% within 4-5 years. VVue sensors followed

312  similar patterns: bias rose until 2020, then returned towards zero by 2021. Lufft's rH bias

313  increased from ~0% to +3% in the first three years. All except Lufft showed largest

314  underestimation at 90—100% RH and overestimation below 60%. rH MAE trends mirrored the
315  biases. METER'’s MAE rose steeply (5-7%), Vaisala’s declined towards ~2%, VVue and Lufft
316  remained ~3—4%. These confirm that long-term sensor calibration drift and bias trends observed
317  in other work (e.g. Bell et al., 2017; Ingleby et al., 2012). As discussed in the literature, these
318  behaviors match also failure mechanisms of polymer-film capacitive sensors such as moisture
319 ingress, contamination, UV/thermal aging, producing low-rH positive bias and high-rH

320 saturation; as seen in both laboratory tests and field time series (Bell et al., 2017; Ingleby et al.,
321 2012).

322  Wind speed saw all anemometers under-reporting relative to the 10 m AWS (primarily due to the
323  height of the AIOWS (1.5 m) being influenced by surface roughness of the ground.) For this

324  reason, it is not logical to directly compare the wind data with the AWS data. Our binned AiOWS
325 infigure 5 shows this, with substantial under recording of windspeeds across all sensors. This
326  highlights the necessity of using wind tunnel testing of the AiOWS to understand degradation of
327  windspeed observations, rather than imperfectly co-located observations.

328  Precipitation. Rain was the least reliable and durable variable. Substantial detritus was found in
329 all AiO after field deployments (figure 6), comprising of insects, leaves and pine cones.
330 Considering the open grassland location of the study, we would predict that AIOWS situated
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331 closer to woodland or agricultural areas would suffer more from such fouling. Tipping buckets
332  under-collected in the field and deteriorated mechanically; both VP2 units suffered reed-switch
333  failure (no tips after mid-2018).

334 4.2 Performance relative to WMO standards and international guidance

335 The WMO Guide (WMO-No. 8) provides accuracy classes that serve as practical benchmarks
336  for research and operations. The combined laboratory and field results indicate initial

337  compliance with Class B for temperature and portions of wind, but rapid degradation toward
338 Class C/D for humidity and rainfall.

339  Temperature. New units routinely achieved Class B (+0.5-0.6 °C) and sometimes approached
340 Class A (0.2 °C) in laboratory conditions. Field MAE typically remained =0.2—-0.5 °C (Figure 2;
341  Table 2). The systematic =0.6 °C underestimation above 30 °C across multiple platforms

342  suggests overheating caused by the non ventilated compact radiation shields found on the
343  tested AiO WS, mitigable by aspiration, improved siting, or post-hoc radiation corrections

344  (Cornes et al., 2020; WMO-No. 8).

345 Relative humidity showed that initial performance was often within Class B (5% rH) and

346  occasionally near Class A (+2%) for sensors, but field drift drove many instruments into Class
347  C/D within 3-5 years—consistent with polymer-film aging and contamination. This suggests that
348  annual recalibration or sensor replacement is necessary for unattended deployments (Bell et al.,
349  2017; Ingleby et al., 2012).

350 Wind speed showed that in laboratory conditions, anemometers typically met Class B

351  thresholds (£10% or £2 m s™"), but aging of bearings reduced effective class to C for the Davis
352 VP2 and VVUE AiOWS especially at low winds where friction from aged bearing and run-up
353  thresholds dominate.

354  Precipitation showed that none of the AiO WS achieved reliable WMO Class B compliance.

355  Wind-induced undercatch, intensity-dependent tipping bias, clogging, and component failure led
356 to persistent negative biases. Using a reference of 10 minutes NI and Event detection metrics
357  (PoD well below 1; low FAR except spurious METER tips) quantify reliability limits. Even where
358  monthly aggregates appeared plausible (e.g., Lufft within =25 mm), failures emerged with age
359 and contamination. As deployed, precipitation sensing in AiO WS should be treated as

360 qualitative unless supported by frequent inspection, leveling, shielding, and calibration checks
361  (Segovia-Cardozo et al., 2023; Drozdziot & Absalon, 2023).

362 4.3 Recommendations for AiO WS networks and users

363  Quality control and assurance should be designed around known degradation/ sensor

364  weaknesses rather than nominal specifications from the manufacturer. We recommend to

365 implement quarterly visual inspections, funnel cleaning, and re-leveling for gauges. At

366  semiannual checks; annual cup/vane bearing need inspection and replacement as needed, and
367  given the drift seen in figure 4, the capacitive rH sensors needs to be viewed as a consumable
368 item, and renewed frequently.

369 There is potentially a need to improve radiation shielding/aspiration design in AiO WS,

370  particularly those deployed in high-insolation sites. The failure of the METER and Vaisala sonic
371 anemometers suggest that attempts by the manufacturer to strengthening these components
372  against damage and environmental degradation would also be beneficial. For precipitation,
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373  maintaining level AiO WS mounting and the use of bird guards (where feasible) to reduce
374  undercatch and ingestion of debris into the funnel would likely improve observational quality.

375  Maintaining metadata on installations, maintenance, component swaps, and calibration results
376 s vital to improve confidence in AIOWS data. There is a need to train AiOWS operators in how
377  to perform functional tests (manual bucket tips, anemometer spin tests) and complete basic QC
378 interpretation, particularly when the AiOWS are operated by non-experts/ citizen scientists.

379 4.4 Implications for applications and cost-benefit considerations

380  For temperature and mid-range wind measurements, AiO WS offer value, particularly for

381  spatially dense nowcasting, urban climatology, and micro-meteorological applications where
382  biases of a few tenths of a degree or =5—-10% are acceptable or correctable. For humidity and
383  precipitation, AiO WS generally require more frequent servicing to remain useful in operational
384  systems (such as required by a national meteorological service). Operational plans should
385  budget for recurring sensor replacements (rH), routine gauge cleaning/calibration (raingauge
386  and cup and vane anemometers), and redundancy in the form of a higher quality raingauge
387  system for rainfall where this parameter is of high importance.

388 4.5 Limitations and future work

389  The study mimicked worst-case user behavior (minimal maintenance) to test intrinsic durability
390 limits. While this reveals fundamental constraints, networks with preventive maintenance and
391  calibration schedules will likely outperform the results shown here. However, as this was an
392  opportunistic study, we can see suggest improvements for future studies within this field. The
393  most logical improvement is to concurrently test multiple examples of AIOWS, so we can assign
394  greater confidences to issues and trends observed across multiple units, rather than a single/
395 two individual weather stations. We would also like future work to quantify improvements from
396 scheduled maintenance regimes, assess newer solid-state rain sensors and low-cost sonics
397 under extended deployments, and further investigate radiative heat related air temperature
398 over-reading caused by high solar insolation heating the comparatively (vs a AWS) small

399 radiation shields found on most AiO WS.

400 5. Conclusions

401 Six AiO WSs were assessed through laboratory calibration and multiple years of unattended
402  deployment at KNMI’s testfield site. The results show that, despite a prolonged period without
403 maintenance, certain variables—particularly air temperature— remained within acceptable
404  accuracy limits for scientific applications. Across both the laboratory and field settings below
405  temperatures of 30 °C, all AiO WSs aligned with WMO Class B standards even after

406  environmental exposure and zero maintenance.

407 In contrast, precipitation measurements proved to be generally unreliable. Tipping bucket

408  mechanisms—particularly those in the Davis Vantage Vue and Lufft—performed best in both lab
409  and field tests, but even these showed considerable degradation over time when compared with
410  rain gauge data from an AWS. Haptic and drip-counting sensors (e.g., Vaisala WXT520 and

411 METER Atmos41) were especially prone to underreporting, likely from sensor fouling and

412  material degradation.

413  Relative humidity sensors showed the clearest evidence of long-term drift. The AiO WSs met
414  Class B performance thresholds under high-humidity conditions in the lab, real-world data
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415  showed increasing bias over time. The Vaisala remained within Class B tolerances in the field,
416  but most others, particularly the METER Atmos41, degraded into Class C or D performance
417  bands.

418  The long-term field deployment revealed operational challenges as well. Data availability was
419  severely impacted by yellowing of solar panel covers, clogging of rain gauges with detritus, and
420 failure of instrument components, such as reed switches. Of the six stations, only the Vaisala
421 WXT520 delivered a near-complete dataset. However, we conclude that with moderate effort in
422  cleaning the AIOWS, replacement of humidity sensors and wind tunnel calibration, the data
423  collected from these devices will become increasingly valuable to end users.
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443

444  Figure 1.

445  Left- Location of the KNMI testfield (N 52.099, E 5.176) with the AIOWS and AWS 06261 site
446  indicated with a blue square, and the AWS 06260 indicated with a red circle. Right, photograph
447  of the aged AIOWS installed at the testfield

448
449
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455
456
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463
464  Figure 2.

465  Top: Temperature difference of each Personal Weather Station (PWS) from the Reference, at
466  20% relative humidity with no wind or irradiation. At each step, the 1 minute average measured
467  temperature is taken from the PWS 1 minute before the climate chamber moved on to the next
468  step.

469  Middle: Relative humidity difference of each Personal Weather Station (PWS) from the

470  Reference at constant temperature (20°C) and no wind or irradiation. At each step, the 1 minute
471  average measured relative humidity is taken from the PWS 1 minute before the climate

472  chamber moved on to the next step.

473  Bottom: Wind speed difference of each Personal Weather Station from Reference in the wind
474  tunnel. Measurement was taken after one to two minutes at stable reference speed and
475  measured speed.
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476

477

478
479  Figure 3.

480 i METER’s drop counter system, using two gold plated electrodes

481 ii Corrosion of the sealed ball bearing supporting the cup anemometer on the Davis VP2
482  instrument

483 i Failed reed switch on the Davis VP2

484  iv Corrosion on circuitboards and tipping bucket rain gauge in Lufft
485

486

487
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Figure 4 Temperature Bias and relative humidity bias from the AiO WS deployed at the testfield.
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492  Figure 5 Rainfall intensity bias and windspeed bias from the AiO WS deployed at the testfield.
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511 Figure 6. Detritus found in Davis VP2 tipping bucket rain gauge after 7 years of operation.
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Class A Class B Class C Class D

Temperature < 0.2°C < 0.5°C 1°C > Class C

(°C)

Relative < 2% < 5% <10% > Class C

Humidity

Wind speed <1m/s or<5% [<2mls or < < 3 m/s or < > Class C
10% 15%

Liquid < 0.2 mm/hr or << 0.5 mm/hr or << 2 mm/hror< > Class C

Precipitation 5% 10% 15%

Intensity

(mm/hr)

523

524  PWS Manufacturers' Specifications confirmed at initial calibration

Vaisala METER Lufft WS700- Davis Davis
WXT520 IATMOS41 UMB \Vantage Pro- [Vantage Vue
2 (both) (both)
Temperature [+0.3°C +0.2°C +0.2°C +0.3°C +0.3°C
°C
() +0.5°C >30
°C
Relative +3% +2% +2% +2% +2%
Humidity
Wind Speed *0.3 m/s maximum: [maximum: |maximum: |maximum:
+3% or 0.3 *3% or ¥0.3 [*5% or #0.9 [*5% or £0.9
m/s m/s m/s m/s
Liquid *2% +5% +2% maximum: |maximum:
Precipitation +3% of total *5% of total
Intensity or £0.2mm  jor £0.9mm
(mm/hr)

525

526  Table 1. WMO classification of measurement accuracy from AiO WS and specifications
527  versus observed stated and laboratory confirmed measurement accuracy for new AiO
528 WS units.
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