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 Abstract 31 

 32 

We provide a long-term evaluation of compact, all-in-one automatic weather stations (AiOWS) 33 
compared to professional-grade Automatic Weather Stations (AWS). We examine the 34 
performance, longevity, and degradation of six AiO WS models over several years of non 35 
serviced use. The objective was to determine how closely these low-cost stations meet World 36 
Meteorological Organization (WMO) performance standards for temperature, humidity, wind, 37 
and precipitation, and to identify their weaknesses and maintenance needs. 38 

Previous studies show the potential value of AiOWS when data are properly quality-controlled, 39 
yet long-term reliability remains uncertain. To address this we deployed six AiO WS units—40 
Davis VVue, Davis VP2, METER ATMOS41, Lufft WS601, and Vaisala WXT520, alongside two 41 
collocated reference AWS meeting WMO standards. Before field installation, each unit was 42 
tested in (KNMI’s) calibration lab for baseline validation. The stations were then operated in 43 
open terrain for multiple years without any servicing, simulating typical end-user neglect. 44 

Initially, all AiO WS met manufacturer specifications. After long-term exposure, however, 45 
sensors displayed varied durability. The Vaisala unit operated continuously for over 13 years, 46 
while others failed between four and seven years due to corrosion, component wear, and sensor 47 
drift. The METER and Davis VVue remained mostly functional but with degraded performance, 48 
whereas both Davis VP2 rain gauges failed early due to reed switch damage. 49 

Temperature measurements were the most robust. In climate chamber tests, new and aged 50 
sensors maintained accuracy within ±0.3 °C across -15 °C to 30 °C, drifting slightly 51 
(underestimating by 0.5–0.7 °C) above 30 °C. Field data confirmed these results, though strong 52 
solar radiation caused overestimations during summer. The Vaisala and Davis VVue units 53 
remained within WMO Class B limits after a decade. Relative humidity showed consistent 54 
deterioration. Most sensors overestimated low humidity and underestimated above 90%, 55 
particularly the METER unit, whose bias grew markedly after five years. Wind speed accuracy 56 
degraded due to mechanical wear. Cup anemometers underreported low winds and failed 57 
completely in some cases. Sonic sensors (Vaisala, METER) produced erratic readings after 58 
several years, highlighting their fragility outdoors. Precipitation performance was weakest 59 
across all models. Tipping bucket designs suffered from clogging, internal corrosion, and 60 
undercatch errors, while haptic or drip-based sensors became inaccurate as components aged 61 
or fouled.  62 

We concluded that compact AiO WS can provide scientifically useful temperature data if 63 
properly managed but fall short for humidity, wind, and particularly precipitation unless regularly 64 
serviced. Long-term unattended operation severely limits reliability, yet moderate maintenance 65 
can potentially restore performance close to WMO Class A/B standards, extending their utility 66 
for dense observation networks. 67 

 68 

1. Introduction 69 

Over the past decades, compact all-in-one Automatic Weather Stations (AiO WS) have become 70 
widespread, offering meteorological measurements at low costs compared to  conventional 71 
Automatic Weather Stations (AWS) operated by National Meteorological Services (NMS). 72 

https://doi.org/10.5194/egusphere-2025-5194
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

Indeed, NMS, such as the Royal Netherlands Meteorological Institute (KNMI) are using this data 73 
in tiered networks, where it is combined with AWS data to improve numerous products ranging 74 
from rainfall to temperature now-casting. Their affordability and ease of deployment have 75 
enabled a rapid expansion of observational networks, particularly in data-sparse regions and 76 
citizen science initiatives. Many peer-reviewed studies have demonstrated the scientific value of 77 
AiO WS in varied research applications. These low-cost, rapidly deployable instruments have 78 
been used for urban climate monitoring (Meier et al., 2017), air quality and heat stress exposure 79 
assessments (Chapman et al., 2020), and enhancements of meteorological networks beyond a 80 
backbone of AWS sites (Overeem et al., 2013). De Vos et al. (2017) showed that crowdsourced 81 
data from thousands of AiO WSs across the Netherlands could be statistically corrected to 82 
produce high-resolution rainfall maps comparable to those from official networks. Similarly, 83 
Meier et al. (2017) validated temperature data from citizen-operated stations in Zurich, finding 84 
them suitable for detecting spatial variations in urban heat islands. These studies highlight that, 85 
when properly calibrated and quality-controlled, data from AiO WS can meaningfully contribute 86 
to scientific research, particularly in applications where high spatial density is prioritised over 87 
individual sensor quality. 88 

The World Meteorological Organization (WMO) provides guidance for the deployment and 89 
operation of AiO WS through its Guide to Instruments and Methods of Observation (WMO-No. 90 
8).  While AiO WS systems are not typically formally certified to meet WMO performance 91 
standards, their measurement principles, and operational concepts often align closely with those 92 
applied to Automatic Weather Stations (AWS) in professional networks. These include 93 
instrument characteristics such as measurement accuracy, long-term reliability, structural 94 
durability and ease of maintenance. The WMO also emphasises the importance of routine 95 
inspection and preventive maintenance, particularly for sensors exposed to outdoor conditions. 96 
Proper siting (away from buildings, trees and shading) is important, with problematic AiO WS 97 
placement locations requiring to be noted in metadata. Furthermore, the WMO promotes quality 98 
control procedures, metadata management, and intercomparison testing to ensure 99 
interoperability and scientific utility. For AiO WS systems to contribute meaningfully to research 100 
or operational monitoring, alignment with an agreed global set of standards is (in our opinion) 101 
the best option to encourage greater use of AiO observations amongst the science community. 102 

Although well-managed networks of AiO WS are useful for research and can adhere to WMO 103 
guidance on siting, operation and servicing, many networks or individual AiO WS are poorly 104 
maintained/ sited and hence underperforming with respect to manufacturers specifications. As a 105 
result, this has prompted numerous studies evaluating their accuracy and reliability. Vučković 106 
and Schmidt (2023) analysed city-wide data and found a “substantial amount of erroneous 107 
occurrences” (gaps and faulty signals), especially in humidity readings. This shows broader 108 
concerns with the equipment when compared to official Automatic Weather Stations (AWS); AiO 109 
WSs often have suboptimal siting, and exhibit unmonitored and uncorrected instrument drifts. 110 
Hahn et al. (2022) similarly note that some AiO WSs have temperature biases in excess of 111 
WMO guidelines often caused by solar heating or non-standard placement such as indoors or 112 
shielded locations. These issues have motivated the development of rigorous quality control 113 
(QC) methods (e.g., statistical bias corrections) to vet AiO WS observations (Nipen et al., 2020; 114 
Alerskans et al., 2022) prior to use. Nevertheless, confidence in raw data quality is lowered by 115 
these issues, underscoring the need to benchmark AiO WS against reference instruments under 116 
real-world conditions. 117 
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The aim of this work is to quantify how closely compact AiO WS approach WMO performance 118 
guidelines, and to assess their sensor longevity and failure modes observed both in our 119 
experiment and also reported in the literature. This paper publishes data from an opportunistic 120 
AiO WS evaluation experiment conducted at the test field of KNMI in De Bilt, the Netherlands 121 
using the following AiO WS; Davis VVue (called TX7 and TX8 in this paper), Davis VP2 122 
(instruments TX1 and TX2), METER ATMOS41, Lufft WS601, Vaisala WXT520. By directly 123 
benchmarking compact AiO WS against standard meteorological instruments, our aim was to 124 
understand the practical accuracy and longevity limits of a selection of commonly used AiO WS 125 
models. We report observations on sensor accuracy and long-term drift from the literature and 126 
from our long-term field experiment, focusing on temperature, humidity, wind, and precipitation 127 
measurements. 128 

2. Data and Methods 129 

This experiment was conducted at KNMI's test field in De Bilt, the Netherlands (Figure 1). We 130 
evaluated AiO WS models mounted in open terrain at heights between 1.2 and 1.6 m, alongside 131 
two collocated reference Automatic Weather Stations (WMO AWS code 06260 and 06261). The 132 
AWS 06261’s temperature and humidity were measured at 1.5 m above ground level 43 m 133 
North of the AiO WSs and rainfall at 1.0 m  above ground level 15 m North East of the AiO WSs. 134 
All three observations are fully calibrated (to WMO AWS standards) and continuously cross 135 
validated with the observations made at DeBilt AWS (06260) sited 200 m east of the test field by 136 
KNMI’s technical observations team (Figure 1).  137 

Each AiO WS was initially assessed in the KNMI calibration laboratory—using a wind tunnel, 138 
climate chamber, and rain simulator—before being deployed in the field with minimal 139 
maintenance for multiple years.  140 

The study represents a ‘worst-case’ scenario typical of many end users: no instrument 141 
maintenance, cleaning, or mid-deployment recalibration was performed. Throughout the multi-142 
year deployment, we collocated AiO WS data with high-quality AWS measurements to detect 143 
biases, sensor drift, and data gaps.  144 

This approach follows prior field comparisons of AiO WS, such as Jenkins (2014) and Bell et al. 145 
(2015 and 2017) who co-located Davis and Fine Offset stations for one year, and Droździoł and 146 
Absalon (2023), whose multi-month comparisons tested amateur rain gauges against certified 147 
Hellmann gauges. 148 

 149 

3. Results 150 

3.1 Laboratory Comparison 151 

Prior to deployment, each AiO WS underwent calibration laboratory testing to quantify baseline 152 
accuracy, operational range, and to verify consistency with manufacturer specifications. All AiO 153 
WS tested initially met manufacturer specifications (Table 1). After being deployed in the field for 154 
a minimum of 5 years, the AiO WS were removed and reassessed in the calibration laboratory. 155 
Table 1 summarises the manufacturer’s specifications and figure 2 shows the observed 156 
measurement ranges of the aged units that remained functional. 157 
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 158 
Both Davis VVue units (TX7 and TX8), and the METER ATMOS41 remained functional at the 159 
end of deployment (10 years TX7 and TX8, 5 years for the METER). The Vaisala remained 160 
active for >13 years in the field, eventually failing in July 2024 and prompting the finalisation of 161 
this research.  162 

In contrast, both Davis VP2 units (after 7 years, 4 months TX1, 6 years 8 months TX2) and the 163 
Lufft WS601 (after 4 years and 2 months) ceased transmitting data. The Davis VP2 both had 164 
raingauge failures very early on in deployment, and no reliable rainfall information was collected 165 
for the entire deployment. Both Davis VP2s (TX7 and TX8) solar panel covering plastic had 166 
become discolored, and upon removal of this plastic covering and insertion of a new battery, 167 
both became became partially functional again. The Lufft WS601 partially recovered 168 
functionality in the lab, transmitting only rain gauge data. Evidence of substantial internal 169 
corrosion was found in the Lufft WS601 (Figure 3, panel 4), possibly due to moisture intrusion. 170 
The Vaisala remained functional for temperature and humidity until the final month of operation 171 
on the test field. The unit failed, and could not be revived for subsequent the calibration 172 
laboratory. However, we note that the Vaisala had operated for more than 13 years without 173 
maintenance, showing the potential lifespan of AiOWS, as well as the risk of ‘zombie’ 174 
instruments (i.e. those that have been uncalibrated for many years), potentially increasing 175 
uncertainty in data quality for networks of AiOWS. 176 

Both Davis VP2 units continued to transmit temperature, humidity, and wind speed data, but 177 
their tipping bucket rain gauges’ magnetic reed switches failed (Figure 3 panel 3), a known 178 
fragile component in outdoor environments (Saraf and Ivan, 1978). Newer Davis VVue and 179 
updated VP2 models utilise a more robust Hall-effect sensors in their tipping bucket rain 180 
gauges, perhaps resulting in the longer life spans observed in TX7 and TX8 . Although the 181 
METER provided temperature, relative humidity, rainfall, and wind speed at deployment’s end, 182 
only temperature and humidity measurements were considered reliable; wind speed and rainfall 183 
data were implausible. 184 

3.1.1 Air Temperature 185 

Temperature sensors were tested in a climate chamber using 5 °C incremental steps from -15 186 
°C to +50 °C under 20% relative humidity, holding at each step for one hour for full equilibrium. 187 
All new AiO WS units adhered closely to specifications within the 0–30 °C band (table 1). The 188 
aged AiO WS showed best performance within -15  to 30 °C, but above 30 °C, temperature was 189 
typically underestimated (figure 2). All Davis AiOWS (TX1,2,7 & 8) had less than 0.3 °C errors 190 
between -15 to 30 °C, whilst above 30 °C all Davis and the METER AiOWS underestimated by 191 
0.5–0.7 °C. Although laboratory tests for the aged Lufft AiO WS were unavailable, Fenner et al. 192 
(2018) reported good precision (±0.1 °C) for Lufft WS700UMB, consistent with the new unit 193 
performance tested at KNMI prior to deployment. Due to non-operation status, the Vaisala (and 194 
aforementioned Lufft) were not tested post-deployment for air temperature. 195 

3.1.2 Relative Humidity (rH) 196 

RH testing involved making 10% rH step increments between 17% and 97% rH at a constant 20 197 
°C conducted in a climate chamber. At equilibrium at each step, rH was held for one hour to 198 
allow for full equilibration. All AiOWS demonstrated similar trends: measured rH started to drop 199 
relative to the reference above ~60-70% rH. The METER performed poorest at low rH but 200 
accuracy improved at higher rH values (figure 2).  201 
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Davis TX 1,2,7 and 8 rH sensors transition from slight overestimation at low rH to 202 
underestimation above 70% aligns with Bell et al. (2017) in their two-year drift study.  203 

Due to non operation status, again, the Lufft and Vaisala were not tested post-deployment. 204 

3.1.3 Wind Speed 205 

Assessment of wind speed accuracy was completed within a wind tunnel, where the windspeed 206 
was adjusted from 1 m/s to 19 m/s in 2 m/s increments. All Davis VVUE (TX7,8) and VP2 207 
(TX1,2) cup underestimated wind speed, particularly below 3 m/s. One of the METER sonic 208 
transducer pairs malfunctioned, recording constant 2 m/s easterly wind at zero real wind speed, 209 
and was excluded from further tests (figure 2). 210 

Davis VVue TX7 and TX8 improved accuracy at higher wind speeds (<10ms). The two Davis 211 
VP2 units performed differently compared to each other: TX2 worsened with speed, attributed to 212 
a rusted bearing evident in run-up test (Figure 3, panel 2), while TX1 slightly improved, similarly 213 
to the TX7 and TX8, indicating that aging of the cup and vane does not result in a consistent 214 
drift or offset that can be corrected at a later data processing stage. Lufft, METER and Vaisala 215 
AiOWS were not tested, due to aforementioned malfunction. 216 

Low-wind bias agrees with Droste et al. (2020), who found AiOWS cup anemometers often fail 217 
to register light breezes. Davis VVue and VP2 devices slightly improve at mid-range speeds (5–218 
12 m/s), whereas Vaisala WXT520 showed a steady –0.5 m/s offset. After eight years, no aged 219 
units provided reliable wind data, confirming mechanical wear and bearing corrosion degrade 220 
cup/vane accuracy, while sonic anemometers suffer from transducer failures. 221 

3.1.4 Precipitation 222 

Ten mm of simulated rainfall was applied three times to each of the functioning AiOWS. The two 223 
Davis VVue units showed excellent performance, with the VVue TX7 performing with only -1% 224 
error (TX7 measurement vs simulated rainfall amount), and the TX8 performed with a -5% error. 225 
Both Davis VP2 had poor performance in tests; although the reed-switch mechanism worked 226 
moderately well when assessed initially (–5% error) but both units failed almost immediately in 227 
the test field (figure 3, panel 3). 228 

The Lufft AiO WS displayed good accuracy (3% error), but we did observe some sticking within 229 
the tipping bucket mechanism during the test; where water overflowed the bucket and hence 230 
was not counted as part of the measurement. Interior corrosion of the tipping bucket was 231 
evident upon disassembly (Figure 3, panel 4). 232 

The METER AiO WS uses a drip counting mechanism; with the number of drips counted per 233 
second relating directly to liquid precipitation entering the funnel. Initial tests conform to WMO 234 
standards. However, upon removing the aged METER from the testfield, we observed that the 235 
funnel was clogged with dust and insect debris, resulting in a delay in rain being fed into the drip 236 
counting mechanism (figure 3, panel 1). We attempted to clear the debris, and lightly clean the 237 
contacts within the drip counting mechanism. However, this did not resolve the issue, and the 238 
unit continued to report inaccurate rainfall. Due to the design of the drip counting mechanism 239 
the mechanism is highly reliant on a calibrated volume of water within each drip to be formed. If 240 
the drip is too small or large a volume, the number of drips compared to the rainfall rate will 241 
move outside of calibration specification, and a under/overestimation will occur. We suggest that 242 
upon a correctly calibrated volume drip of water being attained, the METER would be 243 
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performant again, highlighting the need for regular recalibration/ replacement of the rain gauge 244 
components.  245 

3.2 Field Performance 246 

Personal weather stations showed systematic temperature biases versus the AWS reference 247 
(Figure 4). All AiOWS apart from the METER underpredicted at low temperatures, and over 248 
predict at high temperatures (with likely strong solar radiation, figure 4). We also noticed drift in 249 
some of the AiOWS, with Vaisala initially overestimating temperature by ~+0.3 °C in 2016, 250 
increasing to ~+0.45 °C by 2024. The Meter performed exceptionally well, with very slight 251 
underreading of temperatures across all temperature bands.  252 

Mean Absolute Error (MAE) reflected similar trends. Vaisala and VVue errors increased over 253 
deployment; summer MAE exceeded winter MAE- again highlighting issues in the small 254 
radiation shield designs common in AiOWS. Lufft and VP2 MAE increased over time with higher 255 
summer errors; METER MAE remained steady with seasonal oscillations. Error magnitudes 256 
(~0.2–0.5 °C) align with the aforementioned previous studies. 257 

Relative humidity aligned closely with climate chamber results- underrecording of rH >90% and 258 
overrecording of humidities <70% for all instruments. We also noted a worsening of the METER 259 
rH observations across all rH bands after 2023, indicating that the deterioration within the 260 
sensor may accelerate with age (figure 4.)  261 

Precipitation monthly totals showed large undercatch (Figure 5). Vaisala consistently under-262 
collected relative to AWS with no seasonal or drift pattern detectable. Lufft performed best; 263 
monthly totals within ±25 mm of AWS. Undercatch is consistent with known tipping bucket 264 
limitations where wind can cause 2–10% loss in liquid precipitation, and potentially higher with 265 
snow (Segovia-Cardozo et al., 2023) and poorly maintained gauges tend to under-read (De Vos 266 
et al., 2019). As mentioned above, both Davis VP2 models had very early failure of the reed 267 
switch rain gauge, and no useful data was collected during the deployment. Research into event 268 
detection probability (PoD) and false alarm rate (FAR) showed that none of the AiOWS gauges 269 
detected every rainfall event. PoD averaged well below 1; e.g., only one summer 2018 month 270 
saw Vaisala register 100% of AWS rainfall events. In that month, Lufft detected none. FAR was 271 
low (<0.1) for all except METER, whose spurious tips raised FAR. Our results underline rain 272 
gauge quality control’s importance: even well-performing AiO WS can miss light/short events 273 
(low PoD) and produce false triggers (FAR) without careful calibration and sheltering. 274 

Windspeed observations are not possible to precisely compare with data from the AWS, owing 275 
to the AWS anemometer being mounted at 10m height. Surface roughness is not consistent on 276 
the testfield (due to other instruments, fences and buildings within the surrounding 500 m), and 277 
hence an algorithmic method of calculating true 1.5m wind velocity from the 10m observations 278 
will introduce uncertainty. We note in our comparison with the 10m AWS wind data that the 279 
sonic anemometer equipped METER had the values closest to the AWS data, and the cup and 280 
vane equipped Davis VVUE had the most different (figure 5). 281 

4. Discussion 282 

4.1 Sensor drift and degradation mechanisms due to environmental exposure 283 

The long unattended deployment across multiple AiOWS revealed sensor-specific degradation 284 
pathways that explain the differences seen in Figures 2–5. Degradation for all variables (aside 285 
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from rH) is seemingly governed less by instrument age than by instrument design coupled with 286 
cumulative environmental stressors (such as solar loading, humidity cycling, particulates, 287 
biofouling and corrosion from wind-driven rain/ condensation.) This is demonstrated by the early 288 
damage to the Davis VP2 rain gauge system resulting in no data being collected, whilst the 289 
Vaisala system worked for more than 13 years, whilst operating in exactly the same 290 
environmental conditions. Relative humidity did however show a potential drift that worsened 291 
with age of the sensor. 292 

Temperature displayed the strongest long-term stability. Laboratory tests showed that aged units 293 
remained close to specifications in the 0–30 °C band, with a consistent underestimation of ≈0.6 294 
°C above 30 °C relative to the reference. In the field, monthly biases were typically within ≈±0.2–295 
0.5 °C. The Vaisala trended from ≈+0.3 °C toward ≈+0.45 °C by 2024, while the two Davis VVue 296 
sensors exhibited seasonality—underestimation in winter and overestimation in summer (Figure 297 
4). The patterns are indicative of radiation-shield issues in AiOWS under high insolation 298 
conditions rather than thermistor drift. This is demonstrated by the high temperature bias (> 30 299 
°C) on the test field being in the opposite direction to the bias observed in the climate chamber. 300 
The Netherlands is too cold to have >30 C air temperatures without solar radiation (i.e. at night 301 
time). However, the climate chamber does not heat using insolation, and thus is representative 302 
of nighttime temperature and humidity conditions. Therefore, a laboratory calibration of the 303 
AiOWS temperature sensors under conditions of high temperature and zero radiation (and 304 
correction of the temperature measured) would actually result in a larger positive temperature 305 
bias being recorded by the instruments at peak summertime solar radiation for all instruments 306 
apart from the METER. 307 

Data from the field tests confirmed the laboratory observations on relative humidity  (Figure 4). 308 
Here, all AiOWS overreported rH at low rH conditions, and underreported rH at high rH 309 
conditions (>90% rH). Vaisala’s rH bias started near –6%, trending towards zero over ~10 years. 310 
METER’s rH bias grew rapidly from –1% to +8% within 4–5 years. VVue sensors followed 311 
similar patterns: bias rose until 2020, then returned towards zero by 2021. Lufft’s rH bias 312 
increased from ~0% to +3% in the first three years. All except Lufft showed largest 313 
underestimation at 90–100% RH and overestimation below 60%. rH MAE trends mirrored the 314 
biases. METER’s MAE rose steeply (5–7%), Vaisala’s declined towards ~2%, VVue and Lufft 315 
remained ~3–4%. These confirm that long-term sensor calibration drift and bias trends observed 316 
in other work (e.g. Bell et al., 2017; Ingleby et al., 2012).  As discussed in the literature, these 317 
behaviors match also failure mechanisms of polymer-film capacitive sensors such as moisture 318 
ingress, contamination, UV/thermal aging, producing low-rH positive bias and high-rH 319 
saturation; as seen in both laboratory tests and field time series (Bell et al., 2017; Ingleby et al., 320 
2012).  321 

Wind speed saw all anemometers under-reporting relative to the 10 m AWS (primarily due to the 322 
height of the AiOWS (1.5 m) being influenced by surface roughness of the ground.) For this 323 
reason, it is not logical to directly compare the wind data with the AWS data. Our binned AiOWS 324 
in figure 5 shows this, with substantial under recording of windspeeds across all sensors. This 325 
highlights the necessity of using wind tunnel testing of the AiOWS to understand degradation of 326 
windspeed observations, rather than imperfectly co-located observations. 327 

Precipitation. Rain was the least reliable and durable variable. Substantial detritus was found in 328 
all AiO after field deployments (figure 6), comprising of insects, leaves and pine cones. 329 
Considering the open grassland location of the study, we would predict that AiOWS situated 330 
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closer to woodland or agricultural areas would suffer more from such fouling. Tipping buckets 331 
under-collected in the field and deteriorated mechanically; both VP2 units suffered reed-switch 332 
failure (no tips after mid-2018).  333 

4.2 Performance relative to WMO standards and international guidance 334 

The WMO Guide (WMO-No. 8) provides accuracy classes that serve as practical benchmarks 335 
for research and operations. The combined laboratory and field results indicate initial 336 
compliance with Class B for temperature and portions of wind, but rapid degradation toward 337 
Class C/D for humidity and rainfall. 338 

Temperature. New units routinely achieved Class B (±0.5–0.6 °C) and sometimes approached 339 
Class A (±0.2 °C) in laboratory conditions. Field MAE typically remained ≈0.2–0.5 °C (Figure 2; 340 
Table 2). The systematic ≈0.6 °C underestimation above 30 °C across multiple platforms 341 
suggests overheating caused by the non ventilated compact radiation shields found on the 342 
tested AiO WS, mitigable by aspiration, improved siting, or post-hoc radiation corrections 343 
(Cornes et al., 2020; WMO-No. 8). 344 

Relative humidity showed that initial performance was often within Class B (±5% rH) and 345 
occasionally near Class A (±2%) for sensors, but field drift drove many instruments into Class 346 
C/D within 3–5 years—consistent with polymer-film aging and contamination. This suggests that 347 
annual recalibration or sensor replacement is necessary for unattended deployments (Bell et al., 348 
2017; Ingleby et al., 2012). 349 

Wind speed showed that in laboratory conditions, anemometers typically met Class B 350 
thresholds (±10% or ±2 m s⁻¹), but aging of bearings reduced effective class to C for the Davis 351 
VP2 and VVUE AiOWS especially at low winds where friction from aged bearing and run-up 352 
thresholds dominate.  353 

Precipitation showed that none of the AiO WS achieved reliable WMO Class B compliance. 354 
Wind-induced undercatch, intensity-dependent tipping bias, clogging, and component failure led 355 
to persistent negative biases. Using a reference of 10 minutes NI and Event detection metrics 356 
(PoD well below 1; low FAR except spurious METER tips) quantify reliability limits. Even where 357 
monthly aggregates appeared plausible (e.g., Lufft within ≈±25 mm), failures emerged with age 358 
and contamination. As deployed, precipitation sensing in AiO WS should be treated as 359 
qualitative unless supported by frequent inspection, leveling, shielding, and calibration checks 360 
(Segovia-Cardozo et al., 2023; Droździoł & Absalon, 2023). 361 

4.3 Recommendations for AiO WS networks and users 362 

Quality control and assurance should be designed around known degradation/ sensor 363 
weaknesses rather than nominal specifications from the manufacturer. We recommend to 364 
implement quarterly visual inspections, funnel cleaning, and re-leveling for gauges. At 365 
semiannual checks; annual cup/vane bearing need inspection and replacement as needed, and 366 
given the drift seen in figure 4, the capacitive rH sensors needs to be viewed as a consumable 367 
item, and renewed frequently. 368 

There is potentially a need to improve radiation shielding/aspiration design in AiO WS, 369 
particularly those deployed in high-insolation sites. The failure of the METER and Vaisala sonic 370 
anemometers suggest that attempts by the manufacturer to strengthening these components 371 
against damage and environmental degradation would also be beneficial. For precipitation, 372 
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maintaining level AiO WS mounting and the use of bird guards (where feasible) to reduce 373 
undercatch and ingestion of debris into the funnel would likely improve observational quality. 374 

Maintaining metadata on installations, maintenance, component swaps, and calibration results 375 
is vital to improve confidence in AiOWS data. There is a need to train AiOWS operators in how 376 
to perform functional tests (manual bucket tips, anemometer spin tests) and complete basic QC 377 
interpretation, particularly when the AiOWS are operated by non-experts/ citizen scientists.  378 

4.4 Implications for applications and cost-benefit considerations 379 

For temperature and mid-range wind measurements, AiO WS offer value, particularly for 380 
spatially dense nowcasting, urban climatology, and micro-meteorological applications where 381 
biases of a few tenths of a degree or ≈5–10% are acceptable or correctable. For humidity and 382 
precipitation, AiO WS generally require more frequent servicing to remain useful in operational 383 
systems (such as required by a national meteorological service). Operational plans should 384 
budget for recurring sensor replacements (rH), routine gauge cleaning/calibration (raingauge 385 
and cup and vane anemometers), and redundancy in the form of a higher quality raingauge 386 
system for rainfall where this parameter is of high importance.  387 

4.5 Limitations and future work 388 

The study mimicked worst-case user behavior (minimal maintenance) to test intrinsic durability 389 
limits. While this reveals fundamental constraints, networks with preventive maintenance and 390 
calibration schedules will likely outperform the results shown here. However, as this was an 391 
opportunistic study, we can see suggest improvements for future studies within this field. The 392 
most logical improvement is to concurrently test multiple examples of AiOWS, so we can assign 393 
greater confidences to issues and trends observed across multiple units, rather than a single/ 394 
two individual weather stations. We would also like future work to quantify improvements from 395 
scheduled maintenance regimes, assess newer solid-state rain sensors and low-cost sonics 396 
under extended deployments, and further investigate radiative heat related air temperature 397 
over-reading caused by high solar insolation heating the comparatively (vs a AWS) small 398 
radiation shields found on most AiO WS. 399 

5. Conclusions 400 

Six AiO WSs were assessed through laboratory calibration and multiple years of unattended 401 
deployment at KNMI’s testfield site. The results show that, despite a prolonged period without 402 
maintenance, certain variables—particularly air temperature— remained within acceptable 403 
accuracy limits for scientific applications. Across both the laboratory and field settings below 404 
temperatures of 30 °C, all AiO WSs aligned with WMO Class B standards even after 405 
environmental exposure and zero maintenance.  406 

In contrast, precipitation measurements proved to be generally unreliable. Tipping bucket 407 
mechanisms—particularly those in the Davis Vantage Vue and Lufft—performed best in both lab 408 
and field tests, but even these showed considerable degradation over time when compared with 409 
rain gauge data from an AWS. Haptic and drip-counting sensors (e.g., Vaisala WXT520 and 410 
METER Atmos41) were especially prone to underreporting, likely from sensor fouling and 411 
material degradation. 412 

Relative humidity sensors showed the clearest evidence of long-term drift. The AiO WSs met 413 
Class B performance thresholds under high-humidity conditions in the lab, real-world data 414 

https://doi.org/10.5194/egusphere-2025-5194
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.



11 
 

showed increasing bias over time. The Vaisala remained within Class B tolerances in the field, 415 
but most others, particularly the METER Atmos41, degraded into Class C or D performance 416 
bands.  417 

The long-term field deployment revealed operational challenges as well. Data availability was 418 
severely impacted by yellowing of solar panel covers, clogging of rain gauges with detritus, and 419 
failure of instrument components, such as reed switches. Of the six stations, only the Vaisala 420 
WXT520 delivered a near-complete dataset. However, we conclude that with moderate effort in 421 
cleaning the AiOWS, replacement of humidity sensors and wind tunnel calibration, the data 422 
collected from these devices will become increasingly valuable to end users.  423 
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442 
  443 

Figure 1.  444 

Left- Location of the KNMI testfield (N 52.099, E 5.176) with the AiOWS and AWS 06261 site 445 
indicated with a blue square, and the AWS 06260 indicated with a red circle. Right, photograph 446 
of the aged AiOWS installed at the testfield  447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 
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 460 

 461 

 462 

 463 

Figure 2.  464 

Top: Temperature difference of each Personal Weather Station (PWS) from the Reference, at 465 
20% relative humidity with no wind or irradiation. At each step, the 1 minute average measured 466 
temperature is taken from the PWS 1 minute before the climate chamber moved on to the next 467 
step. 468 

Middle: Relative humidity difference of each Personal Weather Station (PWS) from the 469 
Reference at constant temperature (20°C) and no wind or irradiation. At each step, the 1 minute 470 
average measured relative humidity is taken from the PWS 1 minute before the climate 471 
chamber moved on to the next step. 472 

Bottom: Wind speed difference of each Personal Weather Station from Reference in the wind 473 
tunnel. Measurement was taken after one to two minutes at stable reference speed and 474 
measured speed. 475 
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 476 

 477 

 478 

Figure 3.  479 

i METER’s drop counter system, using two gold plated electrodes 480 

 ii Corrosion of the sealed ball bearing supporting the cup anemometer on the Davis VP2 481 
instrument 482 

 iii Failed reed switch on the Davis VP2 483 

iv Corrosion on circuitboards and tipping bucket rain gauge in Lufft 484 

 485 

 486 

 487 
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 488 

 489 

Figure 4 Temperature Bias and relative humidity bias from the AiO WS deployed at the testfield.  490 
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 491 

Figure 5 Rainfall intensity bias and windspeed bias from the AiO WS deployed at the testfield. 492 
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 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

Figure 6. Detritus found in Davis VP2 tipping bucket rain gauge after 7 years of operation. 511 

 512 
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  Class A  Class B  Class C  Class D  

Temperature 
(°C)  

< 0.2°C   < 0.5°C   1°C   > Class C  

Relative 
Humidity  

< 2%  < 5%  < 10%  > Class C  

Wind speed  < 1 m/s or < 5%  < 2 m/s or < 
10%  

< 3 m/s or < 
15%  

> Class C  

Liquid 
Precipitation 
Intensity 
(mm/hr)  

< 0.2 mm/hr or < 
5%  

< 0.5 mm/hr or < 
10%  

< 2 mm/hr or < 
15%  

> Class C  

  523 

PWS Manufacturers' Specifications confirmed at initial calibration 524 

  Vaisala 
WXT520  

METER 
ATMOS41  

Lufft WS700-
UMB  

Davis 
Vantage Pro-
2 (both)  

Davis 
Vantage Vue 
(both)  

Temperature 
(°C)  

±0.3°C   ±0.2°C   ±0.2°C 

±0.5°C >30 
°C  

±0.3°C   ±0.3°C   

Relative 
Humidity  

±3%  ±2%  
 

±2%  ±2% ±2% 

Wind Speed  ±0.3 m/s maximum: 
±3% or ±0.3 
m/s 
 

maximum: 
±3% or ±0.3 
m/s 
 

maximum: 
±5% or ±0.9 
m/s 
 

maximum: 
±5% or ±0.9 
m/s 

Liquid 
Precipitation 
Intensity 
(mm/hr)  

 ±2%  ±5%    ±2%   maximum: 
±3% of total 
or ±0.2mm 
 

maximum: 
±5% of total 
or ±0.9mm 
 

 525 

Table 1. WMO classification of measurement accuracy from AiO WS and specifications 526 
versus observed stated and laboratory confirmed measurement accuracy for new AiO 527 
WS units. 528 

 529 

 530 
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11. References 532 

https://doi.org/10.5194/egusphere-2025-5194
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

Bell, S., Cross, J., and Parry, D.: A methodology for study of in-service drift of meteorological 533 
humidity sensors, Metrologia, 54, 583–591, https://doi.org/10.1088/1681-7575/aa7f2b, 2017. 534 

S. Bell, D. Cornford en L. Bastin, „How good are citizen weather stations? Addressing a biased 535 
opinion,” Weather, nr. 70, pp. 75-84, 2015. 536 

Chapman, L., Bell, C., Bell, S., Litchfield, A., Stoke, A., Neely, A., and Hemming, D.: Can citizen 537 
science data be used to predict urban heat island exposure? A case study from Birmingham, 538 
UK, Theor. Appl. Climatol., 141, 949–965, https://doi.org/10.1007/s00704-020-03199-0, 2020. 539 

Cornes, R., Fenner, D., Jones, C., and Lussana, C.: A correction method for short-wave 540 
radiation bias in citizen temperature observations, Q. J. R. Meteorol. Soc., 146, 2430–541 
2446, https://doi.org/10.1002/qj.3794, 2020. 542 

De Vos, L. W., Droste, A. M., Zander, M. J., Overeem, A., Leijnse, H., Heusinkveld, B. G., 543 
Steeneveld, G. J., and Uijlenhoet, R.: Hydrometeorological monitoring using opportunistic 544 
sensing networks in the Amsterdam metropolitan area, Bull. Am. Meteorol. Soc., 101, E167–545 
E185, https://doi.org/10.1175/BAMS-D-18-0237.1, 2020. 546 

Dombrowski, O., Klaus, J., Gisler, M., and Niessner, F.: Performance of the ATMOS41 all-in-one 547 
weather station for weather monitoring, Sensors, 21, 741, https://doi.org/10.3390/s21030741, 548 
2021. 549 

Droste, A. M., Heusinkveld, B. G., Fenner, D., and Steeneveld, G. J.: Assessing the potential 550 
and application of crowdsourced urban wind data, Q. J. R. Meteorol. Soc., 146, 2671–551 
2688, https://doi.org/10.1002/qj.3829, 2020. 552 

Fenner, D., Chapman, L., Bechtel, B., and Demuzere, M.: Correcting citizen-science air 553 
temperature measurements across urban landscapes, Int. J. Climatol., 38, 539–554 
552, https://doi.org/10.1002/joc.5362, 2018. 555 

Hahn, C., Garcia-Martí, I., Sugier, J., Emsley, F., Beaulant, A.-L., Oram, L., Strandberg, E., 556 
Lindgren, E., Sunter, M., and Ziska, F.: Observations from personal weather stations—557 
EUMETNET interests and experience, Climate, 10, 192, https://doi.org/10.3390/cli10120192, 558 
2022. 559 

Ingleby, B., Moore, D., Sloan, C., and Dunn, R.: Evolution and accuracy of surface humidity 560 
reports, J. Atmos. Oceanic Technol., 30, 2025–2043, 2012. 561 

Jenkins, T.: A comparison between two types of widely used weather stations, Weather, 69, 562 
100–107, https://doi.org/10.1002/wea.2292, 2014. 563 

KNMI TR296: Wind Tunnel and Field Test of Three 2D Sonic Anemometers, Royal Netherlands 564 
Meteorological Institute Technical Report, 2020. 565 

Meier, F., Fenner, D., Demuzere, M., and Kadygrov, N.: CrowdQC+: A quality control method for 566 
crowdsourced meteorological data, Environ. Model. Softw., 96, 188–567 
200, https://doi.org/10.1016/j.envsoft.2017.06.021, 2017. 568 

Meier, F., Fenner, D., Grassmann, T., Otto, M., and Scherer, D.: Crowdsourcing air temperature 569 
from citizen weather stations for urban climate research, Urban Clim., 19, 170–570 
191, https://doi.org/10.1016/j.uclim.2017.01.006, 2017. 571 

https://doi.org/10.5194/egusphere-2025-5194
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

Napoly, A., Grassmann, T., Meier, F., and Fenner, D.: Development and application of a 572 
statistically-based quality control for crowdsourced air temperature data, Front. Earth Sci., 6, 573 
118, https://doi.org/10.3389/feart.2018.00118, 2018. 574 

NOAA PMEL Technical Note: Wind Speed Variability of Vaisala WXT520, Pacific Marine 575 
Environmental Laboratory, NOAA, 2011. 576 

Overeem, A., Robinson, J. C., Leijnse, H., Steeneveld, G. J., Horn, B. K. P., and Uijlenhoet, R.: 577 
Crowdsourcing urban air temperatures from smartphone battery temperatures, Geophys. Res. 578 
Lett., 40, 4081–4085, https://doi.org/10.1002/grl.50786, 2013. 579 

Saraf, R., and Ivan, G.: Reed Switch Degradation in Environmental Applications, IEEE Trans. 580 
Device Mater. Reliab., 1978. 581 

Segovia-Cardozo, D. A., Bernal-Basurco, C., and Rodríguez-Sinobas, L.: Tipping bucket rain 582 
gauges in hydrological research: Summary on measurement uncertainties, calibration, and error 583 
reduction strategies, Sensors, 23, 5385, https://doi.org/10.3390/s23125385, 2023. 584 

Vučković, M., and Schmidt, J.: On the importance of data quality assessment of crowdsourced 585 
meteorological data, Sustainability, 15, 6941, https://doi.org/10.3390/su15086941, 2023. 586 

World Meteorological Organization: Guide to Instruments and Methods of Observation (WMO-587 
No. 8), 2018 edition, WMO, Geneva, Switzerland, 2018. 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

https://doi.org/10.5194/egusphere-2025-5194
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.


