
Detailed response to referee#2’s comments on: OS-2025-5187 “Horizontal transport on 
the continental shelf driven by periodic rotary wind stress” by Paldor and Friedland 

The Referee comments are written below in black and the authors response in blue  

I read the paper with great interest. Through a theoretical approach, the authors found a 
mean drift driven by a variable wind over a sloping continental shelf. I have the following 
questions for the authors’ reference. 

Thank you for the comment “I read the paper with great interest”. 

The authors assumed that the bottom stress of a wind-driven current can be neglected, 
stated in Lines 92-93. This should be justified carefully. Near the coast (but beyond the 
gray region shown in Figure 1), the convergence/divergence of alongshore wind-driven 
Ekman transport induces a sea-surface slope, which in turn generates a barotropic 
current. Near sea bed, this barotropic current induces the bottom shear stress. It is 
exactly the bottom Ekman tranpsort that drives the compensating shoreward corrent 
shown in Figure 1. Hence, it is highly questionable to exclude the bottom shear stress. 
Certainly, the authors can state that this study only consider regions not very close to 
the coast, thus bottom shear is not that important. However, this requires the water 
depth being at least three times greater than the Ekman frictional thickness. In this 
case, the wind-driven Ekman current actually cannot feel the sea bed. Unfortunately, 
the authors treated the water depth H as the Ekman thickness (Eq. 5), thus the Ekman 
transport feels the topography even in deep water, which is not ture. 

In the revised version we added an entire paragraph in L102-108 where we explain how 
𝐻 serves both as descriptor of the bottom topography and the depth of the Ekman layer. 

Other issues are as follows. 

1. This paper actually considers the movement of centroid of water column, 
instead of the surface water that is often focused in Ekman dynamics. Please 
state it clearly. 

We now explain (L82-84) that the transformation from system (3) to system (4) is only 
valid for the vertically averaged velocity in the water column. 

2. The overall mathematics was unclear to me (and perhaps to most readers). 
Some key steps were missing. Some examples will be given. 

We hope that the explanations we added in the revised better clarify the mathematical 
procedures. 

3. I don’t see the necessity of introducing the variable D (=U+y). Can you explain in 
which way it simplifies the mathematics or makes the physics more 
transparent ? 



This fundamental step is now elaborated in the paragraph straddling P5-6 and in 
particular the newly added L127-129  

4. Why can the solution of (12-13) be written as (14-15) ? Equation (16) was split 
into (18) and the equation in Line 160, why? It excludes the possibility that G(t) 
could be associated with sin(omega*t). I can see that the authors intentionally 
split the solution into an oscillatory (at frequency omega) term and an inertial (at 
frequency f) term, then verified that they can obtain such a solution that satisfies 
the equations. It is necessary to prove that the solution of the equations is 
unique. 

We rewrote this subsection and hope that it is clearer now. Briefly, Eq. (13) is now solved 
by integrating it once w.r.t. time (which yields Eq. (14)). For Eq. (12) we assume the form 
given in (15) – a combination of a solution of the inhomogeneous equation (a ∗ sin⁡(𝜔𝑡)) 
and a general solution of the associated homogeneous equation (G(t) that solves into 
𝐴 ∗ sin⁡(𝑡)). We then solve each of these by equating the coefficients of sin⁡(𝜔𝑡) and 
sin⁡(t) in (12).     

5. The derivation of (25) is unclear. 

In the revised version we expand the explanation in the paragraph preceding Eq. (24) 
(which was (25) in the previous version). We hope it is now clear that oscillatory terms 
average out to 0 so the only contribution can arise from the last term on the RHS of (23) 

6. It is unclear how one can know that D is oscillatory based on (23). It seems to me 
the second term on R.H.S. has a non-zero periodic mean. 

This results directly from Eq. (13). See the response to comment #4. 

7. It is unclear how one can get the relationship in Line 183 based on (24). If delta_y 
uses the oscillatory solution in (19) and delta_D is also oscillatory, the time-
average of all terms should be zero. 

Except for the sin⁡(𝜔𝑡) ∗ sin⁡(𝜔𝑡)  where the second sin(𝜔𝑡) comes from 𝛿𝑦 in the last 
term on the RHS of (23). This product averages out to ½ after using the trigonometric 
identity sin2(𝜔𝑡) = (1 − cos(2𝑥)/2.   

8. The authors compared the numerical and theoretical solutions to the equations 
in Section 4. It is unsurprising that they are consistent. What’s more reasonable 
is to compare the theoretical results with the simulation of a hydrodynamic 
model (either 2D or 3D). 

A note was added in L267-270 in which we propose the Eulerian problem as a sequel.  

  

 


