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Abstract

This study addresses the challenges of exposure modelling at the building or object-level in Germany, motivated
by the need for harmonized, open-access data in next generation risk assessments. While aggregated exposure
data suffice for many applications, detailed object-level data are increasingly essential for tasks such as local risk
management and impact forecasting. However, this object-level information is often proprietary, protected by reg-
ulation, poorly documented, and fragmented because data on building usage, structural type, or replacement costs
is often not readily available or not compiled in one dataset. To address this gap, we present an evaluation of po-
tential exposure modelling frameworks utilizing various disaggregation approaches and source data from cadastre-
derived, crowd-sourced, national accounts, and fit-for-purpose datasets. Using information collected from an area
recently affected by a flood disaster and a weighted scoring model, we evaluate the ability of candidates to assign
a building’s economic sector and asset value against our hand-labelled benchmark dataset. Ultimately, we find an
exposure modelling framework disaggregating national-accounts onto cadastre-derived building footprints slightly
out-performs other candidates owing mainly to its transparency and adaptability. However, we conclude that all but
the land-use derived candidate are defensible exposure modelling frameworks — so long as some relevant validation
is performed. The frameworks presented here enable the transparent, reproducible, and maintainable multi-sector
object-level exposure modelling necessary for the next generation of risk analysis and impact forecasting.

Correspondence

Seth Bryant (bryant.seth@gmail.com)

1 Introduction

Natural hazards have impacted billions of people globally over recent decades. To mitigate these impacts, commu-
nities and governments rely on risk models which provide critical information for risk management [Messner, 2007,
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s Merz and Thieken, 2004]. These models typically conceptualize risk as arising from the interaction of three compo-
35 nents: hazard, vulnerability, and exposure [Crichton, 1999]. In this context, exposure refers to the assets at risk from
36 natural hazards, such as buildings, goods, infrastructure, and other elements of value [Merz et al., 2010, Wieland
a7 etal., 2015]. Impact forecasting, which predicts the spatially explicit consequences of an imminent event (e.g., the
33 number and location of affected people and buildings, expected damage, or disruption of services), requires detailed
39 exposure and vulnerability information to translate hazards into impacts, thereby motivating object-level (building-
40 scale) exposure models [Apel et al., 2022]. Exposure modelling aims to identify and quantify these assets, focusing
41 on variables related to natural hazards risk like building size, construction type, construction materials, and asset
42 monetary value [Paprotny et al., 2021, Gerl et al., 2016]. The selection of exposure variables is generally driven by
43 the modelling objectives and availability, underscoring the importance of tailored approaches to risk assessment and
4 impact forecasting.

45 Empirical studies consistently identify asset monetary value as a key predictor of flood losses [Gerl et al., 2016].
4 This asset value is usually expressed as replacement cost (RC) or depreciated cost (DC). RC denotes the expense
47 of rebuilding with new materials, whereas DC captures age-related depreciation. The perpetual inventory method
48 1s commonly used to calculate DC by taking a historic estimate of the building stock (e.g., by federal state in 1946)
4 and adjusting it annually for new construction, demolition, and other flows to arrive at a net asset value (NAV)
so [Schmalwasser and Schidlowski, 2006]. However, there is no universally agreed framework for these categories,
51 and definitions and methods vary between jurisdictions (see Sect. S1). Loss modelling has therefore applied RC to
52 estimate the total economic exposure or reconstruction and DC to approximate owners’ financial losses for insurance
53 compensation [Daniell, 2014]. Other categories such as market value (the price at which a building can be traded
s+ in the marketplace) and insured value (the value assigned to a building for the purpose of insurance) appear less
55 often in natural hazard studies [Merz et al., 2010, Gerl et al., 2016]. Other variables of importance include building
s6 volume, often determined by multiplying footprint area (ground contact area) by height, gross floor area (total area
s of all storeys, excluding the roof), and usable floor area (space available for use, excluding walls) [Zschiesche,
ss 2021].

59 Traditional hazard exposure models often rely on aggregated approaches, resolving exposed assets at coarse
60 spatial scales such as community, block-level, or grid-based [Hall et al., 2005, Sairam et al., 2021]. These aggregated
61 approaches have been useful in large-scale analysis, but may not provide the accuracy required to support local risk
62 management [Rothlisberger et al., 2018, Bryant et al., 2023, Sieg and Thieken, 2022]. Drawing on local case studies,
63 Wiinsch et al. [2009] and Molinari and Scorzini [2017] show that, although the procedure for estimating exposed
e+ assets influences modelled losses, the spatial resolution of the asset data has an even greater influence.

65 In contrast to aggregated approaches, object-level exposure modelling evaluates individual assets explicitly,
e such as the value of single buildings, offering finer granularity or resolution and potentially greater accuracy in
ez damage assessments [Rothlisberger et al., 2018]. The potential for this higher resolution to improve accuracy in loss
es modelling is a function of the spatial variability or spatial correlations of the hazards and vulnerabilities considered.
6o For example, flood intensities and vulnerability characteristics (e.g., building height) can vary over short distances
70 (e.g., between buildings and streets), making flood exposure models particularly sensitive to resolution [Thieken
7 et al.,, 2006, Bryant et al., 2025, 2023]. Similarly, tsunami inundation intensities exhibit short spatial correlation
7 lengths, whereas seismic ground motion remains strongly correlated over much larger distances [Gomez-Zapata
73 et al., 2021]. Consequently, building-level exposure is considered more important for tsunami loss models, while
7 sub-kilometre-scale resolution may be more reasonable for earthquake loss models [Dabbeek et al., 2021].

75 The major challenge facing object-level exposure modelling is that available data, like census information aggre-
76 gated to administrative units, is often coarse and poorly aligned with hazard data. To address this spatial mismatch,
77 regional statistics can be disaggregated into finer spatial units using ancillary data like land use, population, or
78 nighttime lights [Wu et al., 2018, Gémez Zapata et al., 2022]. These methods have been applied at local [Custer and
7o Nishijima, 2018, Figueiredo and Martina, 2016, Sieg and Thieken, 2022, Wu et al., 2019], regional [Wiinsch et al.,
s 2009], national [Kleist et al., 2006, Rothlisberger et al., 2018, Thieken et al., 2006, Wu et al., 2018], and continen-
g1 tal scales [Paprotny et al., 2020b,a, Paprotny and Mengel, 2023, Dabbeek et al., 2021]. For example, Figueiredo
&2 and Martina [2016] utilized open building data and census data to disaggregated residential floor area onto a 50 m



https://doi.org/10.5194/egusphere-2025-5172
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

83 gridded exposure model to show that coarse exposure models over-estimate. Similarly, Bryant et al. [2025] used a
s global flood model to demonstrate the influence of aggregating exposed assets in loss models, showing how typically
g5 concave non-linear flood damage functions lead aggregated models to over-estimate.

86 Many asset-scale exposure models treat building geometry (i.e., floor area or building volume) as a final mul-
s7 tiplier, applied transparently to scale a unit cost (e.g., €/m? or €/m?) to obtain asset value (€). For example,
ss Paprotny et al. [2020b] disaggregated national gross fixed asset values of dwellings for 22 EU countries to derive
so national €/m? averages from floor area estimates. Similarly, using public census data, expert knowledge, and en-
o0 gineering manuals, the European Seismic Risk Model 2020 (ESRM?20) provides an open-source continental-scale
o1 exposure model that estimates occupancy types and typical per-asset replacement costs from country-wide unit
o costs (€/ m?2) (see Table S8) [Crowley et al., 2021]. Building on the ESRM20 exposure model, Nievas et al. [2023]
o3 developed EHRE, a high-resolution exposure model for Europe that assigns probabilistic ESRM20 building classes
o to OpenStreetMap (OSM) [OpenStreetMap contributors, 2017] building footprints, while retaining the ESRM20
os per-building replacement costs.

9 Despite recent advancements in disaggregation and exposure modelling, few attempts at validation or compar-
o7 ison have been published [Rothlisberger et al., 2018, Sieg et al., 2023, Sieg and Thieken, 2022, Thieken et al.,
9s 2006, Wiinsch et al., 2009]. Validating against loss records, Schroter et al. [2018] compare cadastre-derived pre-
99 dictors against post-event survey loss models and conventional depth—damage curves to show that these predictors
10 enable object-level loss estimates with accuracy comparable to survey-based models and substantially better than
101 depth—-damage curves. However, we are aware of no published direct comparison or validation of locally explicit
102 building asset values. To address these gaps, our study aims to develop and compare several models for object-level
103 exposure estimations applicable to Germany. Specifically, the objectives are to survey and identify potential data
104 sources, design a set of candidate exposure models, and quantitatively and transparently evaluate these to identify a
105 robust, reproducible model for multi-sector risk analysis and impact forecasting.

ws 2 Methods

w7 Our study first developed and processed candidate sector classification and asset value models, fundamental com-
108 ponents of most exposure models. These candidate models were then evaluated using a hand-labelled benchmark
109 dataset we built for our study area.

uo 2.1 Study Area

11 Our study focuses on the Ahrweiler District (“Landkreis Ahrweiler”) in western Germany (Figure 1). In July 2021,
12 the region experienced a severe flood event that caused significant economic losses and fatalities [Lehmkuhl et al.,
us  2022] (see Figure 2). Ahrweiler’s history of flooding spans centuries, with over 70 floods recorded in the past 500
us years [Briihl, 2025], the first one being reported in 1348 [Seel, 2025].

115 The service sector in Ahrweiler constitutes the most important economic sector with a share of 70.9% of the
16 GDP; followed by manufacturing industry (27.8%); and agriculture, forestry, and fishing (1.2%) [Rheinland-Pfalz,
17 2025]. Land use is 53.3% forest and vegetation, 31.1% agriculture, 7.2% settlements (3.3% residential, 1.0%
us industrial, 1.6% recreational), 6.8% infrastructure, and the remainder water bodies and other uses [Rheinland-Pfalz,
119 2025]. Public records show over 40,000 residential buildings with 88.8% being detached and semi-detached houses
120 (as of 2023) and roughly 6,000 registered companies [Rheinland-Pfalz, 2025].
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Figure 1: Study area maps showing: a) study location; b) study boundary (NUTS-3 name [and code]); and c) typical
detail of village area with building locations from datasets discussed in the text. Map data from OpenStreetMap
(ODbL) — openstreetmap.org/copyright.
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Figure 2: Overview of typical buildings during the 2021 floods. Image © Christian / Adobe Stock (ID: 447651476),
licensed by GFZ Helmholtz Centre for Geosciences Potsdam.
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21 2.2 Data

122 To develop and process our candidate models, we first gathered freely available building-exposure and asset-value
123 datasets, with a focus on building fixed asset values, that is, considering the structural and non-structural ar-
124 chitectural components of the buildings, but not their movable contents/equipment. A systematic search using
15 Google [Google, 2025a] and Google Scholar [Google, 2025b] yielded the datasets summarized in Table S2, from
126 which we then selected those datasets listed in Table 1 for further analysis (see Sect. S2 for details). The three
127 asset value candidate datasets considered here are the Basic European Assets Map (BEAM), the European High
128 Resolution Exposure (EHRE) model, and data derived from the European Statistical Office (Eurostat). While the
129 raw EHRE data is object-level and model-ready, the BEAM and Eurostat data require additional processing with
130 ancillary data as described in the following sections.

Table 1: Summary of datasets and sources used in this study. RC: Replacement Cost, NAV: Net Asset Value, GVA:
Gross Value Added, NUTS: Nomenclature of Territorial Units for Statistics.

132

133

134

135

136

137

138

139

140

name spatial rela- attributes classification access vintage reference
tion
Eurostat GVA  tabular GVA € 6 sector groups (Table S3)  free access 2018 Eurostat [2025b]
Regional (NUTS 3)
Eurostat Capital tabular (na- RC € for Other buildings 10 sector groups free access 2018 Eurostat [2025a]
Stocks tional) and structures
Insee  Capital tabular (na- gross fixed capital € for 10 sector groups free access 2018 Insee [2022]
Stocks tional) Other buildings and struc-
tures and Buildings other
than dwellings
Paprotny [2022] tabular (na- RC €/m? for dwellings Residential only free access 2022 Paprotny [2022]
tional) and  household contents
(2000-2020)
BEAM polygon DC or NAV €/m? (see Ta- sector (residential; indus- ~free access 2018 Copernicus
ble 2) trial; service; agriculture) [2020]
EHRE point and RC € (structural compo- sector (residential; com- upon request 2020 Nievas et al.
polygon nents) mercial; and industrial) [2023]
LoDl polygon building function (i.e., use); 34 building functions licensed 2022 BKG [2023]
geometry (height and area)
OSM polygon landuse types 35 landuse types free access 2024 OpenStreetMap
contributors
[2017]
CORINE polygon landuse types 19 landuse types free access 2018 Copernicus
[2018]
NUTS-regions  polygon n/a n/a free access 2023 BKG [2024]
BKI book tabular building construction costs, 24 building use types for purchase 2021 BKI [2021]
(book) regionalization factors

2.2.1 Datasets from the Statistical Office of the European Union (Eurostat)

The Statistical Office of the European Union (Eurostat) provides harmonized economic data across member states,
making it an invaluable source for national-level asset value estimates [Eurostat, 2013]. In Germany, this data is col-
lected by each “Linderstatistikamt” (State Statistical Office) and organized by “Statistisches Bundesamt (Destatis)”
(Federal Statistical Office) who provide the data to Eurostat [Arbeitskreis Volkswirtschaftliche Gesamtrechnungen
der Lénder, 2021]. Prior to 2025, data were usually organized using the Statistical Classification of Economic Ac-
tivities in the European Community (NACE Rev. 2), a hierarchical scheme distinguishing 21 level one categories or
sectors [European Commission, 2008]. For example, the Gross value added (GVA) at basic prices by NUTS3 region
table [Eurostat, 2025b] provides an estimate for the economic output minus consumption by allocating national
totals to regions, using as much regional data as possible while maintaining consistency with national totals [Euro-
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121 pean Commission. Statistical Office of the European Union, 2013]. This table provides GVA estimates per year for
122 Nomenclature of Territorial Units for Statistics (NUTS) 3 regions (roughly 400 in Germany) for six economic sector
143 groups (see Table S3). Providing a more refined discretization by asset types, the Capital stocks by industry (NACE
us  Rev.2) and detailed asset type table [Eurostat, 2025a] estimates the value of fixed assets per year at national scale
15 for 21 NACE (level-one) sectors. Values are provided on a gross or net basis; gross denotes the value of all fixed
146 assets still in use valued at current replacement cost (as if new), whereas net deducts accumulated consumption of
17 fixed capital. The table provides gross values for the asset category Other buildings and structures (AN.112) which
us is an aggregate of the categories shown in Table S4. Therefore, the published AN.112 category lump together many
19 assets not of interest to exposure modelling of non-residential building assets (e.g., railways), and generally require
10 some disaggregation (e.g., to AN.1121) if used as such [Paprotny et al., 2020a].

11 2.2.2 Basic European Asset Map (BEAM)

12 The Basic European Asset Map (BEAM) was developed by the European Commission Joint Research Centre to
153 “‘estimate, evaluate and compare real and potential damages caused by natural disasters all across Europe” and
15 provides €/m? asset values mapped to land use polygons for 11 asset layers using the “net concept, which reflects
155 the depreciated construction costs (not restoration costs or insured assets)” [Copernicus, 2020]. From these 11
156 layers, we focus here on those related to building asset values listed in Table 2. For residential buildings, BEAM
157 estimates depreciated construction costs (DC) by multiplying €/m? construction costs by a depreciation rate, before
158 disaggregating to land use polygons with regional unit counts and density factors. In contrast, for non-residential
159 buildings, BEAM estimates NAV by allocating national totals to NUTS 2 regions before disaggregating to land use
160 polygons using employee counts and density factors. While the BEAM data product is freely available and their
161 methods are (briefly) summarized in IABG mbH and geomer GmbH [2020], all factors mentioned above and the
12 software pipeline are unpublished and proprietary.

BEAM sector BEAM asset layer Cost basis BEAM group
residential private housing: buildings & equipment DC settlement
industrial industry immobile (building & equipment) NAV economy
service services immobile (building & equipment) NAV economy
agricultural agriculture immobile (building & equipment) NAV agriculture

Table 2: BEAM asset layers [Copernicus, 2020] included in our study. Note that for our analysis, asset values are
multiplied by the factors shown in Table S7 to isolate the “building” portion (see text for details). DC: depreciated
(construction) cost; NAV: net asset value.

163 2.2.3 European High Resolution Exposure (EHRE) model

164+ The European High Resolution Exposure (EHRE) model presented in Nievas et al. [2023] is a European-wide expo-
165 sure model that results from the combination of (i) the aggregated exposure model of ESRM20 [Crowley et al., 2021,
166 2020], (ii) data on individual buildings from OSM, processed as OpenBuildingMap (OBM) [GFZ, 2024, Schorlem-
167 mer et al., 2020], and (iii) remote sensing-derived built-up areas from the Global Human Settlement Layer (GHSL)
168 [Corbane et al., 2018]. It represents buildings as a combination of individual OSM building footprints and, in re-
160 gions where OSM is deemed incomplete, “remainder” estimates, which are represented on a ~ 100m grid. EHRE
170 inherits all the occupancy cases, structural classes (GEM Building Taxonomy v3.0 [Silva et al., 2022]), number of
i1 building occupants, and replacement costs per building from the ESRM20 model. For Germany, these estimates are
12 largely based on census data retrieved in 2011 [Crowley et al., 2020]. Individual building footprints are assigned by
173 EHRE a series of potential structural classes and their associated probabilities. ESRM20 replacement costs (RC),
1 referenced to 2020, are obtained by applying country- and occupancy-specific reconstruction costs (€/m?, see Ta-
175 ble S8), adjusted by material-dependent modifiers (0.95—-1.05) which are then multiplied by the average usable floor
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176 area of each building class in a region. In EHRE, these regional values are maintained and object-distributed, not
177 adjusting for the geometry (i.e., area) of OBM buildings. In other words, ESRM20 estimates regional exposure on
17s  administrative units (totals and averages), whereas EHRE distributes these values to the building scale by linking
179 ESRM20 classes and costs to individual OSM footprints (and filling gaps with aggregated remainder buildings).

180 EHRE inherits the occupancy types of individual OSM footprints from OBM, which assigns them by: (i) re-
181 trieval of all OSM tags associated with the building, (ii) mapping of the OSM tags onto GEM Taxonomy occupancy
182 types, and (iii) a final rule-based selection. Extracts of the EHRE model are available upon request, and the whole
13 suite of software used to create it is publicly available and open-source (see Nievas et al. [2023] for details).

18« 2.2.4 Ancillary datasets

185 The Level of Detail 1 (LoD1) dataset provided by the Bundesamt fiir Kartographie und Geoddsie (BKG) (“Federal
16 Agency for Cartography and Geodesy”) [BKG, 2023] provides information on buildings across Germany. It in-
17 cludes polygons of all buildings that are recorded in the Amtliche Liegenschaftskatasterinformationssystem (ALKIS)
18 (“Official Real Estate Cadastre Information System”) of all German federal states [AdV, 2023] as of 2022. LoD1 is
189 cadastre-derived, drawing directly on authoritative land parcel and building records maintained by state cadastral of-
100 fices, ensuring national coverage, legal consistency, and administrative validity. Information on individual building
101 use types (called “[building] function”) is given for each individual building as well as the building height. In the
192 LoD1 dataset, roof shapes are assumed to be flat, consequently, heights of complex buildings are averaged. LoD1
103 building use or function is recorded by the cadastral authorities of the federal states, based on information such as
104 building permit applications [Waldhof, 2025]. For the below analysis, geometries with non-building functions (e.g.
105 stadiums, water tanks, bridges) were discarded.

196 Another source we use for building data is OpenStreetMap (OSM) [OpenStreetMap contributors, 2017], a global
17 editable map database built and maintained by volunteers. It describes a large number of geographic features,
198 including individual building footprints, roads and land use polygons, providing 35 land use classes in our study
190 area. Further land use information was obtained from Coordination of Information on the Environment (CORINE)
200 Land Cover data [Copernicus, 2018] which includes a pan-European land cover and land use inventory with 44
201 classes, 19 of which are found in our study area.

202 Benchmark construction cost information was sourced from Baukosten Gebdiude Neubau 2021 (BKI) (“Con-
203 struction costs for new buildings 20217) [BKI, 2021]. BKI [2021] provides construction cost values of 75 different
204 building use types as €/m? (see Table S9), based on a database of several thousand invoiced projects for new build-
205 ings collected by architectural associations in Germany. The book is available for purchase online for personal
206 use and is intended to provide a realistic basis for reliable cost estimation of construction projects for architects,
207 engineers, building contractors and experts.

208 2.3 Candidate Models

200 In loss modelling, the variables selected for exposure models are typically guided by vulnerability research and the
210 availability of data. This commonly leads building-related models to include categorical dimensions such as use,
21 construction type, and economic sector. These categories provide informative predictors of vulnerability behaviour
212 (e.g., via stratified modelling) and, in the case of economic sector classification, useful dimensions for communi-
213 cating results to stakeholders. In practice, sector classification (e.g., residential, industrial, service) is frequently
214 applied deterministically to each asset by transferring labels from a related, more granular categorical source (e.g.,
215 building function or land use) with a simple lookup table or reclassification schema. While there is no standard
216 sector classification label set for building use, common frameworks include NACE 2.0 with its 21 economic areas
217 (see Table S3) or a more basic framework like the one employed by BEAM (Table 2). Here, we adapt or develop
218 four candidate exposure models or workflows for assigning sector labels to building assets, the results of which
210 are evaluated against our hand-labelled benchmark. From these, the three best performing are further developed
20 into candidate asset value models formulated on the BEAM, Eurostat, and EHRE datasets as described below. All
221 resulting derived datasets are provided in Buhrmann [2025b] and Buhrmann [2025a].
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22 2.3.1 LoDI1+Eurostat

23 The first workflow we consider uses the granular per-asset building function information obtained from the LoD1
24 dataset and a reclassification schema (Supplementary Data Table 1) to map these to the six sectors provided by
25 Eurostat [2025b] (see Table S3).

226 To obtain asset-value estimates from this per-asset sector-classified layer, we adopted the method of Paprotny
227 et al. [2020a] for non-residential and Paprotny et al. [2020b] for residential RC as shown in Fig. 3. Accordingly,
28 to obtain an estimate per-sector of the regional RC for non-residential buildings for our year of interest from pub-
29 lished data, Paprotny et al. [2020a] disaggregates both spatially (national to regional) and categorically (AN.112 to
230 AN.1121). These disaggregations are achieved using simple ratios obtained from ancillary data tables:

GVAr‘s,y « GFCn,s,y,AN.IIZI
GVArLs,y GFCn,x,y,ANAIIZ

RCsyaN.1121 = RCy 5 y,AN.112 X (N
231 where RCpyaN.1121 is the Buildings other than dwellings (AN.1121; Table S4) RC for a NUTS 3 region r in
232 sector s for year y; RC, ) aN.112 is the national gross RC for Other buildings and structures (AN.112) assets from
233 Burostat [2025a]; GVA,, ;. is the national and GVA,, is the NUTS 3 regional GVA from Eurostat [2025b]; and
2 GFC, 5, an.112 and GFC,, s, an.1121 are the gross fixed capital for Other buildings and structures (AN.112) and
235 Buildings other than dwellings (AN.1121) respectively obtained from Insee [2022] [Paprotny, Dominik, 2025].
236 Values for each variable are provided per-sector group in Table S5 and S6. Within our NUTS 3 region, these values
27 were finally distributed to individual buildings proportional to building volume (m?), computed by multiplying
238 LoDI1 footprint area by height attributes.

239 For residential buildings, asset values were calculated by multiplying LoD1 footprint area by the national value
210 of 2.478 € /m? taken from Paprotny [2022] who calculated this value by dividing the national gross replacement
241 cost of the dwelling stock, derived from Eurostat national accounts and perpetual inventory method estimates from
22 2018, by the total residential floor area in Germany [Paprotny et al., 2020b].
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Figure 3: LoDI1+Eurostat asset value model workflow adapted from Paprotny et al. [2020a,b].
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2.3.2 LoD1+BEAM

The second workflow considered here provides a similar classification based on LoD1 function data, but uses BEAM
data to disaggregate asset values. Accordingly, a separate reclassification schema was used to map the LoD1 func-
tion values to one of the four sectors: residential, industrial, service, or agriculture (Supplementary Data Table
1).

As the BEAM dataset provides a relatively coarse land use polygon scale €/m? asset value, we opted to back-
calculate a regional aggregate €, then re-distribute this to individual buildings by volume for each sector. To
subtract the equipment values included in BEAM from our building value estimate, per-sector multipliers adapted
from [Arbeitskreis Volkswirtschaftliche Gesamtrechnungen der Linder, 2023] and shown in Table S7 were used.
See Fig. 4 for a visualization of the workflow.
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Figure 4: LoD1+BEAM asset value model workflow.
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2.3.3 EHRE

Buildings in EHRE come pre-classified deterministically into five occupancy cases: residential, commercial, indus-
trial, mixed, and other. The mixed category, used for buildings with a combination of uses, we re-label “ambiguous”
to match the benchmark data. The “other” category EHRE uses for a set of OBM buildings whose occupancy is not
represented in ESRM20 (e.g., hospitals, schools, assembly buildings), which are not assigned any structural classes
or replacement values. For the residential, commercial, and industrial buildings, EHRE provides a set of stochastic
structural classes and replacement values for each building. To obtain a single deterministic building asset value for
comparison against the other models, we sum and collapse these classes to a single replacement value, then multi-
ply by the structural and non-structural factors shown in Table S8 (effectively excluding the “contents” component).
The workflow is visualized in Fig. 5 and the source EHRE data extract is provided in Nievas [2025].

EHRE sectors

residential

Input data

EHRE OSM buildings

Derived data

« standardized RC values [EUR]
« probabilistic building types

Building
values

-
(]
o
[]
3
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. Processing steps

sum RC values of all realizations

Per-building deterministic RC
(all components) [EUR]

multiply RC structural and non-
structural composition factors
(Table S8)

A

RC of individual buildings
[EUR]

Figure 5: EHRE asset value model workflow adapted from Nievas et al. [2023].
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23 2.3.4 OSM land use classification

264 For comparison against the above workflows that leverage building-specific attributes for sector classification, we
265 developed an alternative classification approach based solely on open-source land use data using hierarchical impu-
266 tation of first OSM polygons and then CORINE gridded land use data. First, the land use classes of both datasets
267 were classified into one of BEAM’s economic sectors using the lookup table from Supplementary Data Table 1
268 before spatially joining onto LoD1 building locations. This results in most assets sourcing land use information
260 from the OSM polygons, but in some areas where these are missing the CORINE value is taken. The land use based
270 workflow is shown in Figure 6.

: | LoD1 buildings
:|__Input data | e area [m?]

; - |+ volume [m?]

: Derived data : agricultural

 Processing steps residential

BEAM sectors

Assign land use types to
sectors

Buildings (partially) classified |
into BEAM sector

OSM land use polygons ’

Spatial
join s

v

Buildings (fully) classified into
BEAM sector CORINE land use polygons

A

Figure 6: OSM land use classification model workflow.

o1 2.4 Benchmark Dataset

22 To develop our benchmark dataset, we selected four representative study plots based on knowledge of the region
o3 (Figure 1). From these, a dataset of 844 sample buildings focusing on the four study plots and the village of
274 Bad Neuenahr-Ahrweiler was created by hand (based on LoD1 geometries) representing typical residential and
275 non-residential buildings in Ahrweiler [Buhrmann, 2025b]. Assets were classified into 24 building use types from
276 BKI [2021], which we further categorized into the three basic sectors residential, industrial, and service and a
o7 fourth ambiguous category as a catch-all for building use types (e.g., “commercial buildings, with apartments”)
27s - whose sector assignment is ambiguous (see Supplementary Data Table 1). Building classifications were determined
279 through detailed visual inspections using Google Earth [Google, 2024a], Google Street View [Google, 2024b],
280 Mapillary [Meta Platforms Ireland Limited, 2024], and ImmoScout24 [Immobilien Scout GmbH, 2024] in March
281 2024, comparing 3D representations to descriptions and images in BKI [2021] and site visits (see Sect S4 for
282 details). New construction costs per-asset were calculated by multiplying unit construction costs from BKI [2021]
263 (see Table S9), the regional cost factor (0.986), and individual building volumes from LoD1. The workflow is
28« summarized in Fig S1.
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w3 Results & Discussion

286 This section presents and discusses the evaluation results of the candidate sector classification and asset value
267 models.

28 3.1 Sector Classification

280 The differences in classification results between the four classification models against the four sectors of the bench-
200 mark dataset for the 844 sample buildings are summarized in Fig. 7 with per-label performance metrics provided in
201 Table S11 and mean values for each model in Table S12.

600 LoD1+Eurostat LoD1+BEAM
a) EUROSTAT sectors (n=844) b) BEAM sectors (n=844)
500 4 market services (179) B service (368)
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’: ) ’7
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EHRE OSM land-use
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Figure 7: Sample building sector classification results against the benchmark dataset for four candidate models.
Bars labelled by building count and grouped by the three economic sectors of the benchmark dataset plus a fourth
ambiguous category. Bars are coloured by the sector classification of each candidate model. Note that EHRE (panel
c¢) is natively OSM-indexed (unlike the others which are LoD1 indexed), leading to unmatched records (n=82).
EHRE also treats some benchmark building collections as single-part, leading to the anomalous total building count
(n=699) (see text for details).

202 Examining performance across all four models shows LoD1+Eurostat (Fig. 7a) and LoD1+BEAM (Fig. 7b)
203 perform best (F] = 0.71; Table S12). Both these models are in perfect agreement with each other (assuming equiv-

14



https://doi.org/10.5194/egusphere-2025-5172
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

204 alence of all Eurostat “services” labels per Table S10) as both models share a LoD1 “function” basis and vary only
205 1in their terminal category assignments (see Supplementary Data Table 1). This LoD1 data assigns roughly 75% of
206 the non-residential buildings in our benchmark dataset to “Building for business or trade” which we map to “mar-
207 ket service” and “service” in the Eurostat and BEAM models respectively. However, our manual classification of
208 these buildings in the benchmark dataset describes many as industrial or ambiguous. In other words, while some
200 rare buildings with specific uses are well classified in LoD1 (e.g., Schools, Churches, Fire Departments), there is
300 insufficient resolution to differentiate between the more numerous industrial and service buildings. Beyond this, the
301 two additional categories in the Eurostat model compared to the BEAM (six vs. four) give Eurostat slightly more
sz resolution. The utility of this can be seen in the non-market services category (Fig. 7a), 97% of which match the
303 benchmark service classification. However, because we opted for a simple four category benchmark, this advantage
304 1is not reflected in the performance metrics of Table S12.

305 The OSM land use model (Fig. 7d) performs the worst of all models (F; = 0.45), chiefly by over-assigning
306 buildings to the residential sector. For example, about 90% of benchmark buildings labelled as service are misclas-
307 sified as residential by this model. This bias arises from the application of coarse land use polygons downscaled to
308 individual buildings in dense, predominantly residential areas that contain a small number of service buildings. In
300 such settings, buildings belonging to a minority-sector (e.g., service) are misclassified to the dominant residential
30 land use during the polygon-to-object translation.

311 To compare against the EHRE model (Fig. 7c), which is OSM geometry indexed, it was necessary to spatially
312 join these records to the LoD1-based benchmark dataset. Because LoD1 is designed for 3D building representation,
313 some objects that are single-part in EHRE are multi-part in LoD1. To provide a fair comparison, LoD1 building
a4 part geometries were merged in these cases. Further, we slightly shifted < 1% of LoD1 features to match EHRE
315 geometry in obvious (and rare) cases. This yielded 617 record matches and 82 orphaned benchmark records (un-
a1 matched EHRE records were discarded like the other models). The orphaned records could be attributed to the
a1z different vintage of underlying data or the treatment of incomplete data. For example, while LoD1 does not provide
318 any treatment of uncertainty or missing buildings, EHRE uses a built-up-area ratio to estimate a missing-fraction
a9 and assigns information related to these “remainder” buildings to a roughly 100x100m grid cell. Considering these
30 disparate geometries, EHRE had comparable performance to the other non-land-use based models in the residential
s (F1 = 0.92) sector. The service sector benchmark labels however EHRE generally assigned to the other category,
32 which EHRE uses as a catch-all for buildings whose occupancy type is unknown in OBM (because of a lack of
323 OSM tags, or lack of OBM rules to translate those tags into a final occupancy type) and buildings whose OBM
324 occupancy type does not correspond to any of the three ESRM20 occupancy cases (residential, commercial, in-
325 dustrial). EHRE’s application of these other labels we consider omission errors (because replacement values are
326 omitted from these assets) rather than commission errors (active assertion of the wrong label). If we were to instead
327 map this other category to service, EHRE’s weighted score for this sector would increase enough to surpass the
328 LoDI1-based models (F; = 0.72). Further, as our evaluation only considers asset-to-asset comparisons, we do not
30 consider any of the residential or commercial remainder buildings imputed by EHRE (Table 3).

330 Looking at the three classification sectors of the benchmark dataset (industrial, residential, and service), shows
a3 the variability in performance across the four candidate models. The highest classification agreement was observed
sz for residential buildings, with all four models classifying nearly all sample buildings consistently (recall > 0.98);
333 over-estimation was more challenging, especially for OSM land use (Fig. 7d; precision = 0.57) as discussed above.
s34 For the service sector, the LoD1 function-based models (Fig. 7a,b) had reasonable true positive capture (recall
s~ 0.83), but over-classified industrial and ambiguous buildings as service (precision ~ 0.65). For industrial assets,
336 the OSM land use model performed best (F1 = 0.68), suggesting industrial land use is relatively distinct and well
337 mapped in OSM for our study area. The industrial group in the EHRE model is comprised mostly of industrial
33 (n=12), unmatched (n=12), and mixed (n=13) buildings, which suggests reasonable performance considering the
339 mixed category includes some industrial occupancy types. On the other hand, the LoD1-based models failed to map
40 any industrial assets owing to the lack of any such labels in the dataset (see Supplementary Data Table 1).

341 The final benchmark category ambiguous was used as a catchall for unclear or mixed building use in our hand
a2 labelling. As the two LoD1-based models (Fig. 7a,b) do not have any mixed or ambiguous categories, these bench-
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343 mark buildings were generally mapped as service. This pattern arises because many of these buildings are mixed
3as use (commercial buildings with apartments, warehouse buildings, without mixed use, and single-, multiple- and
s multi-storey garages) which LoD1 labels Building for business or trade. EHRE on the other hand does have a
a6 mixed category; however, most these assets (n=46) we found to be clearly industrial or service in our benchmark
347 (rather than ambiguous).

348 In summary, the LoD1 function-based models (Fig. 7a,b), with their government-collected per-asset data (and
a4 unfortunate use restrictions) unsurprisingly provided the closest match to our hand-labelled benchmark dataset,
350 despite being unable to identify any industrial or ambigious buildings. The open-source object-based EHRE also
s performed well (Fig. 7¢), especially if the other category is considered service. Lastly, the open-source hierarchical
352 imputation OSM land use based model (Fig. 7d) performed the worst against our benchmark, primarily through the
353 over-assignment of residential labels; therefore, we exclude this model from the subsequent sections.
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3.2 Regional Total Asset Values

Extending three of the above sector classification label sets by joining asset values from regional datasets, Table 3
provides a summary of resulting asset values aggregated to the Ahrweiler District.

Table 3: Building asset value model results per sector for Ahrweiler (DEB12; Fig. 1). Sectors with no buildings
are omitted. See text for model descriptions. NAV: net asset values; RC: replacement costs; DC: depreciated
(construction) costs.

LoD1+Eurostat (RC)

sector building count aggregate € unit value
residential 44,819 1.14 x 1010 2,478 € /m?
production 19 5.53 x 108 52,517 €/m3
market services 14,905 4.90 x 108 21 €/m?
corporate services 94 5.48 x 108 2,391 €/m?
non-market services 1919 1.35x 10° 251€/m?
TOTAL 61,756 1.43 x 1010

LoD1+BEAM

sector building count aggregate € unit value (€/m?)
residential (DC) 44819 5.33x 10° 118
service (NAV) 16,918 7.64 x 10° 295
industrial (NAV) 19 4.78 x 108 104,034
TOTAL 61,756 1.34 % 1010

EHRE (RC)

sector building count aggregate €

residential 53,077 1.23 x 1010

commercial 813 1.68 x 10°

industrial 600 5.66 x 108

residential (remainder) 10,202.2 2.36 x 10°

commercial (remainder) 364.72 7.48 x 108

TOTAL 65,056.92 1.77 x 1010

Comparing across models, we find large variations in estimated asset value district-wide aggregates. This echoes
the findings of [Rothlisberger et al., 2018], who showed that model estimates can diverge by factors up to 50-200
at 10 km? aggregation in Switzerland. Comparing our findings for the residential-sector for the two LoD1 function-
based models with identical assets (LoD1+BEAM and LoD1+Eurostat), we find the Eurostat-based RC estimate
more than double that of BEAM’s DC. Computationally, this arises primarily from disaggregating with BEAM’s
117.50€/m3 DC vs. Paprotny [2022]’s 2.478 € /m? RC (Table 3); which is unsurprising considering BEAM in-
cludes depreciation whereas [Paprotny, 2022] does not. More surprising, considering these different cost-bases, the
non-residential sectors counterbalance the residential differences, such that the total (all-sector) sums of the two
LoD1-based models happen to fall within ~ 7%. Looking at the unit costs, both LoD1-based models produced
some implausible values as a result of disaggregating regional values onto sectors poorly represented by LoD1.
For example, LoD 1+Eurostat’s production unit cost is two orders of magnitude beyond any of the BKI unit costs
(Table S9) while LoD1+BEAM’s industrial sector, with only 19 buildings, is three orders of magnitude beyond.
Similarly, LoD 1+Eurostat’s market services unit cost is an order of magnitude lower than any of the BKI values.
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a0 This suggests our sector mapping (Supplementary Data Table 1) and LoD1 function data are not well matched to
sn  the Eurostat reporting structure in our region.

372 The EHRE model estimates a larger residential RC (12.3 B€) even without the remainder buildings (2.4 B€)
a3 owing to the higher building counts, despite the lower ESRM20 multipliers (see Table S8), while the non-residential
a7+ building stock in EHRE is the smallest of all models (3.0 B€).

375 While these total asset value figures are not directly comparable to loss model estimates, the large disparities
aze  found here suggest exposure model asset values contribute a similar level of uncertainty to that of other components
377 in a risk model chain. For example, BN-FLEMOps has a Mean Absolute Error around 15% [Wagenaar et al., 2018]
azs - and FLEMOps 24% [Thieken et al., 2008] when comparing modelled to observed losses.
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s 3.3 Per-Asset Values

30 Comparing asset-to-asset, Figure 8 presents the two LoD1-geometry distributed asset value models against the BKI
381 [2021] construction-cost benchmark (also LoD1-geometry distributed). This figure shows a near-linear relationship
32 between modelled and benchmark asset values for all sectors, which is intuitive if we consider that both the models
333 and the benchmark are geometry-based; i.e, they differ mainly in the unit cost multipliers applied to the building
384 area or volume (see Table 3 and Table SO for unit costs). Setting aside the sectors with implausible disaggregated
385 unit rates (e.g., market services and corporate services), all assets in the LoD1+Eurostat model underestimate the
6 benchmark. This can also be seen (partially) by comparing the non-market services unit cost (348 € /m3) to the BKI
sz service unit costs (Table S9); nearly all of which are higher. This underestimation in our LoD1+Eurostat model
38 likely arises from its reliance on stock-average values [Paprotny et al., 2020a], in contrast to the new-build construc-
380 tion cost averages reported by BKI. Similarly, all residential BEAM assets underestimate their BKI counterparts,
30 with a unit cost of 118€/m?>, lower than any reported by BKI. While this is unsurprising considering BEAM
31 includes a depreciation factor, the over-assignment of residential labels discussed earlier, or inaccurate building
32 volumes could also influence the discrepancy. In contrast, the LoOD1+BEAM service assets are less biased, with the
03 295 €/m? falling within BKI’s wide range (Table S9); however, this results in higher variance than the other sectors.
304 Unlike the LoD1-based models and the benchmark data, EHRE is object- rather than geometry-distributed, as-
395 signing asset values using probabilistic construction types from ESRM20’s regional totals. In other words, EHRE
396 preserves regional average replacement costs (from ESRM20) whereas the LoD 1-based models considered here pre-
397 serve asset-level unit costs. Further, because EHRE’s OSM geometry basis provides a simpler more consolidated
a8 footprint-based representation of buildings, whereas LoD1 — designed for 3D buildings — represents complex
399 buildings with multiple features, building-by-building value comparison is subjective and challenging (unlike cate-
a0 gorical comparison). Our early attempts at this failed to find a satisfactory definition of a building object between the
a1 two datasets (esp. for large complex structures), but in general we found EHRE strongly under-estimates residential
a2 and industrial replacement costs, while sometimes over- or under-estimating commercial ones relative to the bench-
a3 mark. The open-source nature of EHRE and the ESRM20 exposure model it builds upon mean, however, that the
a4 performance of the EHRE model in this regard could be improved, firstly, by changing the average replacement cost
405 per area and, secondly, by using the area of the OSM building footprints to calculate the replacement costs, instead
a6 Of retaining the average replacement cost per building values of ESRM20 (which are based on average building
407 areas).
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Figure 8: Asset values for (a) LoD1+Eurostat (RC) and (b) LoD1+BEAM (residential is DC while non-residential
is NAV) models against the benchmark dataset. Data markers represent the BKI [2021] type and colours the model
sector. Solid lines provide the linear trend of the respective sector while the dashed line shows a 1:1 reference.
Distributions of respective asset values are shown as histograms adjacent to the axes. RC: Replacement Cost, NAV:
Net Asset Value, DC: Depreciated Costs.
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ws 3.4 Weighted Scoring Model

a0 To provide a more robust basis for model selection we use a semi-quantitative Weighted Scoring Model (WSM)
410 to communicate the relative strengths and weaknesses of the three asset value model candidates. Derived from the
411 multiple-criteria decision-making mathematical framework, this technique is widely used to prioritize options by
412 assigning weights to various criteria, which are then scored and ranked [Zionts, 1981]. For this, we developed the
a3 criterion and weights shown in Table S13 to inform decisions on model selection based on previous experience.
414 As presented in Table 4, each model is subjectively scored on a scale of 0-10 for each criterion before scores are
«15 multiplied by their respective weights then summed.

Table 4: Scores and weights for the asset value models. See Table S13 for a description of each criterion.

Criteria Weight LoDI1+Eurostat LoDI+BEAM EHRE
Benchmark classification  0.15 8 7 6
Benchmark values 0.15 7 8 4
Sustainability 0.1 7 4 5
Model parsimony 0.1 5 6 7
Transparency 0.1 7 3 7
Uncertainty handling 0.1 5 5 8
Breadth of asset types 0.15 6 8 7
Adaptability 0.15 9 5 7
Total score 1 6.9 6 6.3
416 Translating the sector and asset-value benchmark comparisons from above to the WSM, the LoD1+Eurostat

417 model slightly out-performs the other candidates owing mainly to the benchmark performance, sustainability, and
418 adaptability. Eurostat data are updated annually, offering a clear advantage, whereas the update cycles of BEAM
419 are unclear and EHRE currently has no planned updates. Like BEAM, Eurostat data tables are web-hosted with
40 open access; however, the LoD1 data requires a license (commonly provided for free to public bodies and research
421 institutes under specific agreements), while commercial users typically obtain fee-based licences. Of the three work-
42 flows considered, LoD 1+Eurostat is more onerous than LoD 1+BEAM, requiring the downloading and disaggrega-
423 tion of regional and categorical estimates (see Eq. 1). EHRE on the other-hand is already disaggregated to per-asset
424 stochastic classes; therefore pre-processing is only required if the user desires deterministic values (like our study).
a5 Considering the transparency of the underlying data, BEAM is substantially more opaque than the other candidates,
426 with no source code or parameter values provided and documentation only a short paragraph, in some cases without
a7 references. In contrast, we find the LoD1+Eurostat and EHRE models to be similarly transparent, both relying on
a8 large-scale opaque source data (e.g., OSM, LoD1) but with subsequent calculations performed transparently. For
429 example, the EHRE source code is published [Nievas et al., 2023] while the simpler LoD1+Eurostat methods are
a0 described by Fig. 3 and Eq. 1. EHRE is the only model to explicitly consider uncertainty, both through the incor-
431 poration of probabilistic building types and the use of “remainder” layers and the “other” building sector. Finally,
432 while our study focuses on building structural asset values, numerous other asset types are often incorporated into
433 exposure models (e.g., population, building contents). In this regard, LoD1+Eurostat provides the narrowest set of
434 asset types as it is the least pre-processed for exposure modelling. However, this minimal processing affords the
435 greatest flexibility for LoD1+Eurostat, which provides data for any year across the Eurozone, allowing advanced
43¢ modellers to tune the exposure model for their context.

7 3.5 Limitations and recommendations

438 With this study, we provide the first per-asset evaluation of asset value models for exposure modelling. Although
439 extending these workflows to other regions in Germany would be straightforward, the need for a labour-intensive
a0 hand-labelled benchmark restricted our evaluation to a single region, meaning the findings are only transferrable
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a1 to regions with construction practices, economic conditions, and exposure distributions comparable to Ahrweiler.
42 Future studies with more resources should consider extending the breadth and coverage of our benchmark dataset.
43 Similarly, we chose to focus on asset values and sector classification as the simplest means for comparing diverse
44 workflows; however, exposure models typically include additional variables like building size, construction type,
445 construction materials, etc. Including these, and non-building assets, in the benchmark and evaluation would provide
46 a more complete comparison. However, as the significance of each of these variables will depend on the particulars
47 of the hazard in question and its associated vulnerability model, the usefulness of such a general study (rather than
4 one specific to a particular case) should be carefully considered.

449 The dependency of our benchmark on the underlying BKI [2021] data, which only provides average new con-
450 struction costs in Germany, makes the comparison less useful for certain disaster modelling applications like es-
451 timating insurance claims or disaster reconstruction for a heterogeneous set of buildings. More useful would be
452 observed replacement costs from disaster affected buildings; however, this information is notoriously difficult to
453 collect and plagued with uncertainty when self-reported [Rozer et al., 2019]. Similarly, because we opted to provide
454 a broad evaluation, we include asset value workflows with different cost basis (RC, DC, NAV) and years (2018,
455 2020, and 2022), making our findings less conclusive. Aligning cost bases or developing standardized conversion
456 approaches could improve the appearance of the evaluation, but at the expense of attribution and interpretability.

457 While our work only considers classical disaggregation workflows built on standard accounting and cadastral
4ss  datasets, the challenges reported here suggest opportunities for employing machine learning and remote sensing
450 based methods, especially for asset classification. For example, Gouveia et al. [2024], Silva et al. [2024] trained
460 algorithms on labelled images of buildings with promising results.

461 Lastly, during data collection and publication we struggled to obtain and release asset-level data, a challenge
42 commonly faced by European exposure modellers. This type of building-level economic data is generally considered
463 to be privacy protected under the EU’s General Data Protection Regulation [Union, 2016]. While many benefits
464 arise from such protections, policy makers should consider the burden this places on asset-level disaster modelling
465 [McLennan et al., 2020].

w 4 Conclusions

a7 This study developed and benchmarked object-level asset value models for a region in Germany, examining vari-
468 ous disaggregation approaches from cadastre-derived (LoD1), crowd-sourced (OSM), national accounts (Eurostat),
460 and fit-for-purpose datasets (EHRE and BEAM). We adapted and extended four exposure modelling workflows to
40 develop asset-level models, then evaluated these with our hand-labelled benchmark dataset.

471 From this, we found that the cadaster-derived LoD 1-based models performed best overall against the benchmark
472 at labelling a building’s sector (F; = 0.71), but lacked the resolution necessary to identify industrial uses. Aggre-
473 gate, region-wide values diverged between the candidate models (up to an order-of-magnitude at the sector level),
474 suggesting an under-appreciated level of uncertainty — comparable to uncertainties reported in other aspects of risk
a5 modelling, like vulnerability — and emphasizing the need for local validation. Similarly, we found implausible
476 Unit rates when disaggregating regional sector totals onto LoD1 functions that poorly represent our local sector
477 mix (e.g., unit costs three orders of magnitude beyond comparable published values), signalling the importance of
47e  aligning regional data with building-level data. Setting these implausible unit rates aside, we found both Eurostat
479 and BEAM based models generally underestimate the new construction costs reported by our benchmark. This
a0 reflects, respectively, Eurostat’s reliance on stock-average replacement costs rather than new-build price lists, and
41 BEAM’s inclusion of depreciation in construction costs. Extending this evaluation using a scoring model to examine
a2 less-quantitative factors important for exposure modelling like sustainability, transparency, and adaptability, we find
453 all candidate models (except the land use based model) score similarly. However, the LoD1- and Eurostat-based
s34 model performs slightly better, mainly due to its ease of adaptation across regions and time periods, and the relative
g5 simplicity of maintaining and updating it.

486 These findings suggest that, other than the land-use-based model, any of the three workflows considered here can
457 provide a defensible asset-level exposure model in Germany, albeit with different cost basis. Modellers should select
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48 the workflow that aligns with their sustainability, adaptability, sophistication, and cost-basis needs and perform local
g0 validation. In summary, we find transparent, maintainable workflows, not coarse land use proxies, yield the most
400 reliable object-level exposure when grounded in local validation.

23



https://doi.org/10.5194/egusphere-2025-5172
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

« Code/Data Availability

42 Source datasets used for the analysis are listed in Table 1 and are freely available at the web links provided; with
a3 the exception of the EHRE data extract which is provided in Nievas [2025]. All sector mappings we employ are
a04 provided in Supplementary Data Table 1. Results for the three candidate asset value models (and their corresponding
495 sector classification) are openly provided in Buhrmann [2025b] with geometry provided in Buhrmann [2025a] (upon
406 request to preserve privacy). Software to develop the models and perform the analysis is provided in Buhrmann
497 [20250].
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