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Abstract13

This study addresses the challenges of exposure modelling at the building or object-level in Germany, motivated14

by the need for harmonized, open-access data in next generation risk assessments. While aggregated exposure15

data suffice for many applications, detailed object-level data are increasingly essential for tasks such as local risk16

management and impact forecasting. However, this object-level information is often proprietary, protected by reg-17

ulation, poorly documented, and fragmented because data on building usage, structural type, or replacement costs18

is often not readily available or not compiled in one dataset. To address this gap, we present an evaluation of po-19

tential exposure modelling frameworks utilizing various disaggregation approaches and source data from cadastre-20

derived, crowd-sourced, national accounts, and fit-for-purpose datasets. Using information collected from an area21

recently affected by a flood disaster and a weighted scoring model, we evaluate the ability of candidates to assign22

a building’s economic sector and asset value against our hand-labelled benchmark dataset. Ultimately, we find an23

exposure modelling framework disaggregating national-accounts onto cadastre-derived building footprints slightly24

out-performs other candidates owing mainly to its transparency and adaptability. However, we conclude that all but25

the land-use derived candidate are defensible exposure modelling frameworks — so long as some relevant validation26

is performed. The frameworks presented here enable the transparent, reproducible, and maintainable multi-sector27

object-level exposure modelling necessary for the next generation of risk analysis and impact forecasting.28

Correspondence29

Seth Bryant (bryant.seth@gmail.com)30

1 Introduction31

Natural hazards have impacted billions of people globally over recent decades. To mitigate these impacts, commu-32

nities and governments rely on risk models which provide critical information for risk management [Messner, 2007,33
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Merz and Thieken, 2004]. These models typically conceptualize risk as arising from the interaction of three compo-34

nents: hazard, vulnerability, and exposure [Crichton, 1999]. In this context, exposure refers to the assets at risk from35

natural hazards, such as buildings, goods, infrastructure, and other elements of value [Merz et al., 2010, Wieland36

et al., 2015]. Impact forecasting, which predicts the spatially explicit consequences of an imminent event (e.g., the37

number and location of affected people and buildings, expected damage, or disruption of services), requires detailed38

exposure and vulnerability information to translate hazards into impacts, thereby motivating object-level (building-39

scale) exposure models [Apel et al., 2022]. Exposure modelling aims to identify and quantify these assets, focusing40

on variables related to natural hazards risk like building size, construction type, construction materials, and asset41

monetary value [Paprotny et al., 2021, Gerl et al., 2016]. The selection of exposure variables is generally driven by42

the modelling objectives and availability, underscoring the importance of tailored approaches to risk assessment and43

impact forecasting.44

Empirical studies consistently identify asset monetary value as a key predictor of flood losses [Gerl et al., 2016].45

This asset value is usually expressed as replacement cost (RC) or depreciated cost (DC). RC denotes the expense46

of rebuilding with new materials, whereas DC captures age-related depreciation. The perpetual inventory method47

is commonly used to calculate DC by taking a historic estimate of the building stock (e.g., by federal state in 1946)48

and adjusting it annually for new construction, demolition, and other flows to arrive at a net asset value (NAV)49

[Schmalwasser and Schidlowski, 2006]. However, there is no universally agreed framework for these categories,50

and definitions and methods vary between jurisdictions (see Sect. S1). Loss modelling has therefore applied RC to51

estimate the total economic exposure or reconstruction and DC to approximate owners’ financial losses for insurance52

compensation [Daniell, 2014]. Other categories such as market value (the price at which a building can be traded53

in the marketplace) and insured value (the value assigned to a building for the purpose of insurance) appear less54

often in natural hazard studies [Merz et al., 2010, Gerl et al., 2016]. Other variables of importance include building55

volume, often determined by multiplying footprint area (ground contact area) by height, gross floor area (total area56

of all storeys, excluding the roof), and usable floor area (space available for use, excluding walls) [Zschiesche,57

2021].58

Traditional hazard exposure models often rely on aggregated approaches, resolving exposed assets at coarse59

spatial scales such as community, block-level, or grid-based [Hall et al., 2005, Sairam et al., 2021]. These aggregated60

approaches have been useful in large-scale analysis, but may not provide the accuracy required to support local risk61

management [Röthlisberger et al., 2018, Bryant et al., 2023, Sieg and Thieken, 2022]. Drawing on local case studies,62

Wünsch et al. [2009] and Molinari and Scorzini [2017] show that, although the procedure for estimating exposed63

assets influences modelled losses, the spatial resolution of the asset data has an even greater influence.64

In contrast to aggregated approaches, object-level exposure modelling evaluates individual assets explicitly,65

such as the value of single buildings, offering finer granularity or resolution and potentially greater accuracy in66

damage assessments [Röthlisberger et al., 2018]. The potential for this higher resolution to improve accuracy in loss67

modelling is a function of the spatial variability or spatial correlations of the hazards and vulnerabilities considered.68

For example, flood intensities and vulnerability characteristics (e.g., building height) can vary over short distances69

(e.g., between buildings and streets), making flood exposure models particularly sensitive to resolution [Thieken70

et al., 2006, Bryant et al., 2025, 2023]. Similarly, tsunami inundation intensities exhibit short spatial correlation71

lengths, whereas seismic ground motion remains strongly correlated over much larger distances [Gomez-Zapata72

et al., 2021]. Consequently, building-level exposure is considered more important for tsunami loss models, while73

sub-kilometre-scale resolution may be more reasonable for earthquake loss models [Dabbeek et al., 2021].74

The major challenge facing object-level exposure modelling is that available data, like census information aggre-75

gated to administrative units, is often coarse and poorly aligned with hazard data. To address this spatial mismatch,76

regional statistics can be disaggregated into finer spatial units using ancillary data like land use, population, or77

nighttime lights [Wu et al., 2018, Gómez Zapata et al., 2022]. These methods have been applied at local [Custer and78

Nishijima, 2018, Figueiredo and Martina, 2016, Sieg and Thieken, 2022, Wu et al., 2019], regional [Wünsch et al.,79

2009], national [Kleist et al., 2006, Röthlisberger et al., 2018, Thieken et al., 2006, Wu et al., 2018], and continen-80

tal scales [Paprotny et al., 2020b,a, Paprotny and Mengel, 2023, Dabbeek et al., 2021]. For example, Figueiredo81

and Martina [2016] utilized open building data and census data to disaggregated residential floor area onto a 50 m82
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gridded exposure model to show that coarse exposure models over-estimate. Similarly, Bryant et al. [2025] used a83

global flood model to demonstrate the influence of aggregating exposed assets in loss models, showing how typically84

concave non-linear flood damage functions lead aggregated models to over-estimate.85

Many asset-scale exposure models treat building geometry (i.e., floor area or building volume) as a final mul-86

tiplier, applied transparently to scale a unit cost (e.g., AC/m2 or AC/m3) to obtain asset value (AC). For example,87

Paprotny et al. [2020b] disaggregated national gross fixed asset values of dwellings for 22 EU countries to derive88

national AC/m2 averages from floor area estimates. Similarly, using public census data, expert knowledge, and en-89

gineering manuals, the European Seismic Risk Model 2020 (ESRM20) provides an open-source continental-scale90

exposure model that estimates occupancy types and typical per-asset replacement costs from country-wide unit91

costs (AC/m2) (see Table S8) [Crowley et al., 2021]. Building on the ESRM20 exposure model, Nievas et al. [2023]92

developed EHRE, a high-resolution exposure model for Europe that assigns probabilistic ESRM20 building classes93

to OpenStreetMap (OSM) [OpenStreetMap contributors, 2017] building footprints, while retaining the ESRM2094

per-building replacement costs.95

Despite recent advancements in disaggregation and exposure modelling, few attempts at validation or compar-96

ison have been published [Röthlisberger et al., 2018, Sieg et al., 2023, Sieg and Thieken, 2022, Thieken et al.,97

2006, Wünsch et al., 2009]. Validating against loss records, Schröter et al. [2018] compare cadastre-derived pre-98

dictors against post-event survey loss models and conventional depth–damage curves to show that these predictors99

enable object-level loss estimates with accuracy comparable to survey-based models and substantially better than100

depth–damage curves. However, we are aware of no published direct comparison or validation of locally explicit101

building asset values. To address these gaps, our study aims to develop and compare several models for object-level102

exposure estimations applicable to Germany. Specifically, the objectives are to survey and identify potential data103

sources, design a set of candidate exposure models, and quantitatively and transparently evaluate these to identify a104

robust, reproducible model for multi-sector risk analysis and impact forecasting.105

2 Methods106

Our study first developed and processed candidate sector classification and asset value models, fundamental com-107

ponents of most exposure models. These candidate models were then evaluated using a hand-labelled benchmark108

dataset we built for our study area.109

2.1 Study Area110

Our study focuses on the Ahrweiler District (“Landkreis Ahrweiler”) in western Germany (Figure 1). In July 2021,111

the region experienced a severe flood event that caused significant economic losses and fatalities [Lehmkuhl et al.,112

2022] (see Figure 2). Ahrweiler’s history of flooding spans centuries, with over 70 floods recorded in the past 500113

years [Brühl, 2025], the first one being reported in 1348 [Seel, 2025].114

The service sector in Ahrweiler constitutes the most important economic sector with a share of 70.9% of the115

GDP; followed by manufacturing industry (27.8%); and agriculture, forestry, and fishing (1.2%) [Rheinland-Pfalz,116

2025]. Land use is 53.3% forest and vegetation, 31.1% agriculture, 7.2% settlements (3.3% residential, 1.0%117

industrial, 1.6% recreational), 6.8% infrastructure, and the remainder water bodies and other uses [Rheinland-Pfalz,118

2025]. Public records show over 40,000 residential buildings with 88.8% being detached and semi-detached houses119

(as of 2023) and roughly 6,000 registered companies [Rheinland-Pfalz, 2025].120
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Figure 1: Study area maps showing: a) study location; b) study boundary (NUTS-3 name [and code]); and c) typical
detail of village area with building locations from datasets discussed in the text. Map data from OpenStreetMap
(ODbL) — openstreetmap.org/copyright.
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Figure 2: Overview of typical buildings during the 2021 floods. Image © Christian / Adobe Stock (ID: 447651476),
licensed by GFZ Helmholtz Centre for Geosciences Potsdam.
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2.2 Data121

To develop and process our candidate models, we first gathered freely available building-exposure and asset-value122

datasets, with a focus on building fixed asset values, that is, considering the structural and non-structural ar-123

chitectural components of the buildings, but not their movable contents/equipment. A systematic search using124

Google [Google, 2025a] and Google Scholar [Google, 2025b] yielded the datasets summarized in Table S2, from125

which we then selected those datasets listed in Table 1 for further analysis (see Sect. S2 for details). The three126

asset value candidate datasets considered here are the Basic European Assets Map (BEAM), the European High127

Resolution Exposure (EHRE) model, and data derived from the European Statistical Office (Eurostat). While the128

raw EHRE data is object-level and model-ready, the BEAM and Eurostat data require additional processing with129

ancillary data as described in the following sections.130

Table 1: Summary of datasets and sources used in this study. RC: Replacement Cost, NAV: Net Asset Value, GVA:
Gross Value Added, NUTS: Nomenclature of Territorial Units for Statistics.

name spatial rela-
tion

attributes classification access vintage reference

Eurostat GVA
Regional

tabular
(NUTS 3)

GVA AC 6 sector groups (Table S3) free access 2018 Eurostat [2025b]

Eurostat Capital
Stocks

tabular (na-
tional)

RC AC for Other buildings
and structures

10 sector groups free access 2018 Eurostat [2025a]

Insee Capital
Stocks

tabular (na-
tional)

gross fixed capital AC for
Other buildings and struc-
tures and Buildings other
than dwellings

10 sector groups free access 2018 Insee [2022]

Paprotny [2022] tabular (na-
tional)

RC AC/m2 for dwellings
and household contents
(2000–2020)

Residential only free access 2022 Paprotny [2022]

BEAM polygon DC or NAV AC/m2 (see Ta-
ble 2)

sector (residential; indus-
trial; service; agriculture)

free access 2018 Copernicus
[2020]

EHRE point and
polygon

RC AC (structural compo-
nents)

sector (residential; com-
mercial; and industrial)

upon request 2020 Nievas et al.
[2023]

LoD1 polygon building function (i.e., use);
geometry (height and area)

34 building functions licensed 2022 BKG [2023]

OSM polygon landuse types 35 landuse types free access 2024 OpenStreetMap
contributors
[2017]

CORINE polygon landuse types 19 landuse types free access 2018 Copernicus
[2018]

NUTS-regions polygon n/a n/a free access 2023 BKG [2024]

BKI book tabular
(book)

building construction costs,
regionalization factors

24 building use types for purchase 2021 BKI [2021]

2.2.1 Datasets from the Statistical Office of the European Union (Eurostat)131

The Statistical Office of the European Union (Eurostat) provides harmonized economic data across member states,132

making it an invaluable source for national-level asset value estimates [Eurostat, 2013]. In Germany, this data is col-133

lected by each “Länderstatistikamt” (State Statistical Office) and organized by “Statistisches Bundesamt (Destatis)”134

(Federal Statistical Office) who provide the data to Eurostat [Arbeitskreis Volkswirtschaftliche Gesamtrechnungen135

der Länder, 2021]. Prior to 2025, data were usually organized using the Statistical Classification of Economic Ac-136

tivities in the European Community (NACE Rev. 2), a hierarchical scheme distinguishing 21 level one categories or137

sectors [European Commission, 2008]. For example, the Gross value added (GVA) at basic prices by NUTS3 region138

table [Eurostat, 2025b] provides an estimate for the economic output minus consumption by allocating national139

totals to regions, using as much regional data as possible while maintaining consistency with national totals [Euro-140
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pean Commission. Statistical Office of the European Union, 2013]. This table provides GVA estimates per year for141

Nomenclature of Territorial Units for Statistics (NUTS) 3 regions (roughly 400 in Germany) for six economic sector142

groups (see Table S3). Providing a more refined discretization by asset types, the Capital stocks by industry (NACE143

Rev.2) and detailed asset type table [Eurostat, 2025a] estimates the value of fixed assets per year at national scale144

for 21 NACE (level-one) sectors. Values are provided on a gross or net basis; gross denotes the value of all fixed145

assets still in use valued at current replacement cost (as if new), whereas net deducts accumulated consumption of146

fixed capital. The table provides gross values for the asset category Other buildings and structures (AN.112) which147

is an aggregate of the categories shown in Table S4. Therefore, the published AN.112 category lump together many148

assets not of interest to exposure modelling of non-residential building assets (e.g., railways), and generally require149

some disaggregation (e.g., to AN.1121) if used as such [Paprotny et al., 2020a].150

2.2.2 Basic European Asset Map (BEAM)151

The Basic European Asset Map (BEAM) was developed by the European Commission Joint Research Centre to152

“estimate, evaluate and compare real and potential damages caused by natural disasters all across Europe” and153

provides AC/m2 asset values mapped to land use polygons for 11 asset layers using the “net concept, which reflects154

the depreciated construction costs (not restoration costs or insured assets)” [Copernicus, 2020]. From these 11155

layers, we focus here on those related to building asset values listed in Table 2. For residential buildings, BEAM156

estimates depreciated construction costs (DC) by multiplyingAC/m2 construction costs by a depreciation rate, before157

disaggregating to land use polygons with regional unit counts and density factors. In contrast, for non-residential158

buildings, BEAM estimates NAV by allocating national totals to NUTS 2 regions before disaggregating to land use159

polygons using employee counts and density factors. While the BEAM data product is freely available and their160

methods are (briefly) summarized in IABG mbH and geomer GmbH [2020], all factors mentioned above and the161

software pipeline are unpublished and proprietary.162

BEAM sector BEAM asset layer Cost basis BEAM group

residential private housing: buildings & equipment DC settlement
industrial industry immobile (building & equipment) NAV economy
service services immobile (building & equipment) NAV economy
agricultural agriculture immobile (building & equipment) NAV agriculture

Table 2: BEAM asset layers [Copernicus, 2020] included in our study. Note that for our analysis, asset values are
multiplied by the factors shown in Table S7 to isolate the “building” portion (see text for details). DC: depreciated
(construction) cost; NAV: net asset value.

2.2.3 European High Resolution Exposure (EHRE) model163

The European High Resolution Exposure (EHRE) model presented in Nievas et al. [2023] is a European-wide expo-164

sure model that results from the combination of (i) the aggregated exposure model of ESRM20 [Crowley et al., 2021,165

2020], (ii) data on individual buildings from OSM, processed as OpenBuildingMap (OBM) [GFZ, 2024, Schorlem-166

mer et al., 2020], and (iii) remote sensing-derived built-up areas from the Global Human Settlement Layer (GHSL)167

[Corbane et al., 2018]. It represents buildings as a combination of individual OSM building footprints and, in re-168

gions where OSM is deemed incomplete, “remainder” estimates, which are represented on a ≈ 100m grid. EHRE169

inherits all the occupancy cases, structural classes (GEM Building Taxonomy v3.0 [Silva et al., 2022]), number of170

building occupants, and replacement costs per building from the ESRM20 model. For Germany, these estimates are171

largely based on census data retrieved in 2011 [Crowley et al., 2020]. Individual building footprints are assigned by172

EHRE a series of potential structural classes and their associated probabilities. ESRM20 replacement costs (RC),173

referenced to 2020, are obtained by applying country- and occupancy-specific reconstruction costs (AC/m2, see Ta-174

ble S8), adjusted by material-dependent modifiers (0.95–1.05) which are then multiplied by the average usable floor175
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area of each building class in a region. In EHRE, these regional values are maintained and object-distributed, not176

adjusting for the geometry (i.e., area) of OBM buildings. In other words, ESRM20 estimates regional exposure on177

administrative units (totals and averages), whereas EHRE distributes these values to the building scale by linking178

ESRM20 classes and costs to individual OSM footprints (and filling gaps with aggregated remainder buildings).179

EHRE inherits the occupancy types of individual OSM footprints from OBM, which assigns them by: (i) re-180

trieval of all OSM tags associated with the building, (ii) mapping of the OSM tags onto GEM Taxonomy occupancy181

types, and (iii) a final rule-based selection. Extracts of the EHRE model are available upon request, and the whole182

suite of software used to create it is publicly available and open-source (see Nievas et al. [2023] for details).183

2.2.4 Ancillary datasets184

The Level of Detail 1 (LoD1) dataset provided by the Bundesamt für Kartographie und Geodäsie (BKG) (“Federal185

Agency for Cartography and Geodesy”) [BKG, 2023] provides information on buildings across Germany. It in-186

cludes polygons of all buildings that are recorded in the Amtliche Liegenschaftskatasterinformationssystem (ALKIS)187

(“Official Real Estate Cadastre Information System”) of all German federal states [AdV, 2023] as of 2022. LoD1 is188

cadastre-derived, drawing directly on authoritative land parcel and building records maintained by state cadastral of-189

fices, ensuring national coverage, legal consistency, and administrative validity. Information on individual building190

use types (called “[building] function”) is given for each individual building as well as the building height. In the191

LoD1 dataset, roof shapes are assumed to be flat, consequently, heights of complex buildings are averaged. LoD1192

building use or function is recorded by the cadastral authorities of the federal states, based on information such as193

building permit applications [Waldhof, 2025]. For the below analysis, geometries with non-building functions (e.g.194

stadiums, water tanks, bridges) were discarded.195

Another source we use for building data is OpenStreetMap (OSM) [OpenStreetMap contributors, 2017], a global196

editable map database built and maintained by volunteers. It describes a large number of geographic features,197

including individual building footprints, roads and land use polygons, providing 35 land use classes in our study198

area. Further land use information was obtained from Coordination of Information on the Environment (CORINE)199

Land Cover data [Copernicus, 2018] which includes a pan-European land cover and land use inventory with 44200

classes, 19 of which are found in our study area.201

Benchmark construction cost information was sourced from Baukosten Gebäude Neubau 2021 (BKI) (“Con-202

struction costs for new buildings 2021”) [BKI, 2021]. BKI [2021] provides construction cost values of 75 different203

building use types as AC/m3 (see Table S9), based on a database of several thousand invoiced projects for new build-204

ings collected by architectural associations in Germany. The book is available for purchase online for personal205

use and is intended to provide a realistic basis for reliable cost estimation of construction projects for architects,206

engineers, building contractors and experts.207

2.3 Candidate Models208

In loss modelling, the variables selected for exposure models are typically guided by vulnerability research and the209

availability of data. This commonly leads building-related models to include categorical dimensions such as use,210

construction type, and economic sector. These categories provide informative predictors of vulnerability behaviour211

(e.g., via stratified modelling) and, in the case of economic sector classification, useful dimensions for communi-212

cating results to stakeholders. In practice, sector classification (e.g., residential, industrial, service) is frequently213

applied deterministically to each asset by transferring labels from a related, more granular categorical source (e.g.,214

building function or land use) with a simple lookup table or reclassification schema. While there is no standard215

sector classification label set for building use, common frameworks include NACE 2.0 with its 21 economic areas216

(see Table S3) or a more basic framework like the one employed by BEAM (Table 2). Here, we adapt or develop217

four candidate exposure models or workflows for assigning sector labels to building assets, the results of which218

are evaluated against our hand-labelled benchmark. From these, the three best performing are further developed219

into candidate asset value models formulated on the BEAM, Eurostat, and EHRE datasets as described below. All220

resulting derived datasets are provided in Buhrmann [2025b] and Buhrmann [2025a].221
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2.3.1 LoD1+Eurostat222

The first workflow we consider uses the granular per-asset building function information obtained from the LoD1223

dataset and a reclassification schema (Supplementary Data Table 1) to map these to the six sectors provided by224

Eurostat [2025b] (see Table S3).225

To obtain asset-value estimates from this per-asset sector-classified layer, we adopted the method of Paprotny226

et al. [2020a] for non-residential and Paprotny et al. [2020b] for residential RC as shown in Fig. 3. Accordingly,227

to obtain an estimate per-sector of the regional RC for non-residential buildings for our year of interest from pub-228

lished data, Paprotny et al. [2020a] disaggregates both spatially (national to regional) and categorically (AN.112 to229

AN.1121). These disaggregations are achieved using simple ratios obtained from ancillary data tables:230

RCr,s,y,AN.1121 = RCn,s,y,AN.112×
GVAr,s,y

GVAn,s,y
× GFCn,s,y,AN.1121

GFCn,s,y,AN.112
(1)

where RCr,s,y,AN.1121 is the Buildings other than dwellings (AN.1121; Table S4) RC for a NUTS 3 region r in231

sector s for year y; RCn,s,y,AN.112 is the national gross RC for Other buildings and structures (AN.112) assets from232

Eurostat [2025a]; GVAn,s,y is the national and GVAr,s,y is the NUTS 3 regional GVA from Eurostat [2025b]; and233

GFCn,s,y,AN.112 and GFCn,s,y,AN.1121 are the gross fixed capital for Other buildings and structures (AN.112) and234

Buildings other than dwellings (AN.1121) respectively obtained from Insee [2022] [Paprotny, Dominik, 2025].235

Values for each variable are provided per-sector group in Table S5 and S6. Within our NUTS 3 region, these values236

were finally distributed to individual buildings proportional to building volume (m3), computed by multiplying237

LoD1 footprint area by height attributes.238

For residential buildings, asset values were calculated by multiplying LoD1 footprint area by the national value239

of 2.478AC/m2 taken from Paprotny [2022] who calculated this value by dividing the national gross replacement240

cost of the dwelling stock, derived from Eurostat national accounts and perpetual inventory method estimates from241

2018, by the total residential floor area in Germany [Paprotny et al., 2020b].242
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Sector Classification

Paprotny (2022)
• RCn [EUR/m²] Derived data

Input data

Building 
values

Total RC in Ahrweiler [EUR]

regional and categorical 
disaggregation (Eq. 1)

Total RC per unit volume 
[EUR/m³]

÷ building total vol.

x building 
vol.

Processing

Legend Eurostat sectors

Eurostat (2025b, 2025a)
• RCn, GVAn, GVAs [EUR]

Insee (2022)
• GFCn, GFCs [EUR]

x building area

RC of individual buildings 
[EUR]

production

agricultural

residential

non-market

market services

construction

LoD1 geometry

corporate

Figure 3: LoD1+Eurostat asset value model workflow adapted from Paprotny et al. [2020a,b].
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2.3.2 LoD1+BEAM243

The second workflow considered here provides a similar classification based on LoD1 function data, but uses BEAM244

data to disaggregate asset values. Accordingly, a separate reclassification schema was used to map the LoD1 func-245

tion values to one of the four sectors: residential, industrial, service, or agriculture (Supplementary Data Table246

1).247

As the BEAM dataset provides a relatively coarse land use polygon scale AC/m2 asset value, we opted to back-248

calculate a regional aggregate AC, then re-distribute this to individual buildings by volume for each sector. To249

subtract the equipment values included in BEAM from our building value estimate, per-sector multipliers adapted250

from [Arbeitskreis Volkswirtschaftliche Gesamtrechnungen der Länder, 2023] and shown in Table S7 were used.251

See Fig. 4 for a visualization of the workflow.252

DC or NAV of individual 
buildings [EUR]

Sector classification

Derived data

Input data

Model 
Results

Total [EUR] per polygon

Total [EUR] in Ahrweiler

[EUR/m²] x area [m²]

Sum of all polygons

Total per unit volume [EUR/m³]

Divide by volume of 
all buildings

x building vol.

BEAM data polygons
• DCs or NAVs [EUR/m²]
• area [m²]

Processing steps

BEAM sectorsLegend

industrial

agricultural

residential

service

LoD1 geometry

Figure 4: LoD1+BEAM asset value model workflow.
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2.3.3 EHRE253

Buildings in EHRE come pre-classified deterministically into five occupancy cases: residential, commercial, indus-254

trial, mixed, and other. The mixed category, used for buildings with a combination of uses, we re-label “ambiguous”255

to match the benchmark data. The “other” category EHRE uses for a set of OBM buildings whose occupancy is not256

represented in ESRM20 (e.g., hospitals, schools, assembly buildings), which are not assigned any structural classes257

or replacement values. For the residential, commercial, and industrial buildings, EHRE provides a set of stochastic258

structural classes and replacement values for each building. To obtain a single deterministic building asset value for259

comparison against the other models, we sum and collapse these classes to a single replacement value, then multi-260

ply by the structural and non-structural factors shown in Table S8 (effectively excluding the “contents” component).261

The workflow is visualized in Fig. 5 and the source EHRE data extract is provided in Nievas [2025].262

EHRE OSM buildings

• standardized RC values [EUR]
• probabilistic building types

sum RC values of all realizations

RC of individual buildings 
[EUR]

Derived data

Input data

Building 
values

Processing steps

EHRE sectorsLegend

industrial

residential

commercial

RC structural and non-
structural composition factors 

(Table S8)

multiply

Per-building deterministic RC 
(all components) [EUR]

Figure 5: EHRE asset value model workflow adapted from Nievas et al. [2023].
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2.3.4 OSM land use classification263

For comparison against the above workflows that leverage building-specific attributes for sector classification, we264

developed an alternative classification approach based solely on open-source land use data using hierarchical impu-265

tation of first OSM polygons and then CORINE gridded land use data. First, the land use classes of both datasets266

were classified into one of BEAM’s economic sectors using the lookup table from Supplementary Data Table 1267

before spatially joining onto LoD1 building locations. This results in most assets sourcing land use information268

from the OSM polygons, but in some areas where these are missing the CORINE value is taken. The land use based269

workflow is shown in Figure 6.270

LoD1 buildings
• area [m²]
• volume [m³]

OSM land use polygons
Buildings (partially) classified 

into BEAM sector

Buildings (fully) classified into 
BEAM sector CORINE land use polygons

Derived data

Input data

Processing steps

Assign land use types to 
sectors

BEAM sectorsLegend

industrial

agricultural

residential

service

Spatial 
join

Figure 6: OSM land use classification model workflow.

2.4 Benchmark Dataset271

To develop our benchmark dataset, we selected four representative study plots based on knowledge of the region272

(Figure 1). From these, a dataset of 844 sample buildings focusing on the four study plots and the village of273

Bad Neuenahr-Ahrweiler was created by hand (based on LoD1 geometries) representing typical residential and274

non-residential buildings in Ahrweiler [Buhrmann, 2025b]. Assets were classified into 24 building use types from275

BKI [2021], which we further categorized into the three basic sectors residential, industrial, and service and a276

fourth ambiguous category as a catch-all for building use types (e.g., “commercial buildings, with apartments”)277

whose sector assignment is ambiguous (see Supplementary Data Table 1). Building classifications were determined278

through detailed visual inspections using Google Earth [Google, 2024a], Google Street View [Google, 2024b],279

Mapillary [Meta Platforms Ireland Limited, 2024], and ImmoScout24 [Immobilien Scout GmbH, 2024] in March280

2024, comparing 3D representations to descriptions and images in BKI [2021] and site visits (see Sect S4 for281

details). New construction costs per-asset were calculated by multiplying unit construction costs from BKI [2021]282

(see Table S9), the regional cost factor (0.986), and individual building volumes from LoD1. The workflow is283

summarized in Fig S1.284
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3 Results & Discussion285

This section presents and discusses the evaluation results of the candidate sector classification and asset value286

models.287

3.1 Sector Classification288

The differences in classification results between the four classification models against the four sectors of the bench-289

mark dataset for the 844 sample buildings are summarized in Fig. 7 with per-label performance metrics provided in290

Table S11 and mean values for each model in Table S12.291
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Figure 7: Sample building sector classification results against the benchmark dataset for four candidate models.
Bars labelled by building count and grouped by the three economic sectors of the benchmark dataset plus a fourth
ambiguous category. Bars are coloured by the sector classification of each candidate model. Note that EHRE (panel
c) is natively OSM-indexed (unlike the others which are LoD1 indexed), leading to unmatched records (n=82).
EHRE also treats some benchmark building collections as single-part, leading to the anomalous total building count
(n=699) (see text for details).

Examining performance across all four models shows LoD1+Eurostat (Fig. 7a) and LoD1+BEAM (Fig. 7b)292

perform best (F1 = 0.71; Table S12). Both these models are in perfect agreement with each other (assuming equiv-293
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alence of all Eurostat “services” labels per Table S10) as both models share a LoD1 “function” basis and vary only294

in their terminal category assignments (see Supplementary Data Table 1). This LoD1 data assigns roughly 75% of295

the non-residential buildings in our benchmark dataset to “Building for business or trade” which we map to “mar-296

ket service” and “service” in the Eurostat and BEAM models respectively. However, our manual classification of297

these buildings in the benchmark dataset describes many as industrial or ambiguous. In other words, while some298

rare buildings with specific uses are well classified in LoD1 (e.g., Schools, Churches, Fire Departments), there is299

insufficient resolution to differentiate between the more numerous industrial and service buildings. Beyond this, the300

two additional categories in the Eurostat model compared to the BEAM (six vs. four) give Eurostat slightly more301

resolution. The utility of this can be seen in the non-market services category (Fig. 7a), 97% of which match the302

benchmark service classification. However, because we opted for a simple four category benchmark, this advantage303

is not reflected in the performance metrics of Table S12.304

The OSM land use model (Fig. 7d) performs the worst of all models (F1 = 0.45), chiefly by over-assigning305

buildings to the residential sector. For example, about 90% of benchmark buildings labelled as service are misclas-306

sified as residential by this model. This bias arises from the application of coarse land use polygons downscaled to307

individual buildings in dense, predominantly residential areas that contain a small number of service buildings. In308

such settings, buildings belonging to a minority-sector (e.g., service) are misclassified to the dominant residential309

land use during the polygon-to-object translation.310

To compare against the EHRE model (Fig. 7c), which is OSM geometry indexed, it was necessary to spatially311

join these records to the LoD1-based benchmark dataset. Because LoD1 is designed for 3D building representation,312

some objects that are single-part in EHRE are multi-part in LoD1. To provide a fair comparison, LoD1 building313

part geometries were merged in these cases. Further, we slightly shifted < 1% of LoD1 features to match EHRE314

geometry in obvious (and rare) cases. This yielded 617 record matches and 82 orphaned benchmark records (un-315

matched EHRE records were discarded like the other models). The orphaned records could be attributed to the316

different vintage of underlying data or the treatment of incomplete data. For example, while LoD1 does not provide317

any treatment of uncertainty or missing buildings, EHRE uses a built-up-area ratio to estimate a missing-fraction318

and assigns information related to these “remainder” buildings to a roughly 100x100m grid cell. Considering these319

disparate geometries, EHRE had comparable performance to the other non-land-use based models in the residential320

(F1 ≈ 0.92) sector. The service sector benchmark labels however EHRE generally assigned to the other category,321

which EHRE uses as a catch-all for buildings whose occupancy type is unknown in OBM (because of a lack of322

OSM tags, or lack of OBM rules to translate those tags into a final occupancy type) and buildings whose OBM323

occupancy type does not correspond to any of the three ESRM20 occupancy cases (residential, commercial, in-324

dustrial). EHRE’s application of these other labels we consider omission errors (because replacement values are325

omitted from these assets) rather than commission errors (active assertion of the wrong label). If we were to instead326

map this other category to service, EHRE’s weighted score for this sector would increase enough to surpass the327

LoD1-based models (F1 ≈ 0.72). Further, as our evaluation only considers asset-to-asset comparisons, we do not328

consider any of the residential or commercial remainder buildings imputed by EHRE (Table 3).329

Looking at the three classification sectors of the benchmark dataset (industrial, residential, and service), shows330

the variability in performance across the four candidate models. The highest classification agreement was observed331

for residential buildings, with all four models classifying nearly all sample buildings consistently (recall ≥ 0.98);332

over-estimation was more challenging, especially for OSM land use (Fig. 7d; precision ≈ 0.57) as discussed above.333

For the service sector, the LoD1 function-based models (Fig. 7a,b) had reasonable true positive capture (recall334

≈ 0.83), but over-classified industrial and ambiguous buildings as service (precision ≈ 0.65). For industrial assets,335

the OSM land use model performed best (F1 ≈ 0.68), suggesting industrial land use is relatively distinct and well336

mapped in OSM for our study area. The industrial group in the EHRE model is comprised mostly of industrial337

(n=12), unmatched (n=12), and mixed (n=13) buildings, which suggests reasonable performance considering the338

mixed category includes some industrial occupancy types. On the other hand, the LoD1-based models failed to map339

any industrial assets owing to the lack of any such labels in the dataset (see Supplementary Data Table 1).340

The final benchmark category ambiguous was used as a catchall for unclear or mixed building use in our hand341

labelling. As the two LoD1-based models (Fig. 7a,b) do not have any mixed or ambiguous categories, these bench-342
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mark buildings were generally mapped as service. This pattern arises because many of these buildings are mixed343

use (commercial buildings with apartments, warehouse buildings, without mixed use, and single-, multiple- and344

multi-storey garages) which LoD1 labels Building for business or trade. EHRE on the other hand does have a345

mixed category; however, most these assets (n=46) we found to be clearly industrial or service in our benchmark346

(rather than ambiguous).347

In summary, the LoD1 function-based models (Fig. 7a,b), with their government-collected per-asset data (and348

unfortunate use restrictions) unsurprisingly provided the closest match to our hand-labelled benchmark dataset,349

despite being unable to identify any industrial or ambigious buildings. The open-source object-based EHRE also350

performed well (Fig. 7c), especially if the other category is considered service. Lastly, the open-source hierarchical351

imputation OSM land use based model (Fig. 7d) performed the worst against our benchmark, primarily through the352

over-assignment of residential labels; therefore, we exclude this model from the subsequent sections.353
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3.2 Regional Total Asset Values354

Extending three of the above sector classification label sets by joining asset values from regional datasets, Table 3355

provides a summary of resulting asset values aggregated to the Ahrweiler District.356

Table 3: Building asset value model results per sector for Ahrweiler (DEB12; Fig. 1). Sectors with no buildings
are omitted. See text for model descriptions. NAV: net asset values; RC: replacement costs; DC: depreciated
(construction) costs.

LoD1+Eurostat (RC)
sector building count aggregate AC unit value

residential 44,819 1.14×1010 2,478AC/m2

production 19 5.53×108 52,517AC/m3

market services 14,905 4.90×108 21AC/m3

corporate services 94 5.48×108 2,391AC/m3

non-market services 1919 1.35×109 251AC/m3

TOTAL 61,756 1.43×1010

LoD1+BEAM
sector building count aggregate AC unit value (AC/m3)

residential (DC) 44,819 5.33×109 118
service (NAV) 16,918 7.64×109 295
industrial (NAV) 19 4.78×108 104,034

TOTAL 61,756 1.34×1010

EHRE (RC)
sector building count aggregate AC

residential 53,077 1.23×1010

commercial 813 1.68×109

industrial 600 5.66×108

residential (remainder) 10,202.2 2.36×109

commercial (remainder) 364.72 7.48×108

TOTAL 65,056.92 1.77×1010

Comparing across models, we find large variations in estimated asset value district-wide aggregates. This echoes357

the findings of [Röthlisberger et al., 2018], who showed that model estimates can diverge by factors up to 50–200358

at 10 km2 aggregation in Switzerland. Comparing our findings for the residential-sector for the two LoD1 function-359

based models with identical assets (LoD1+BEAM and LoD1+Eurostat), we find the Eurostat-based RC estimate360

more than double that of BEAM’s DC. Computationally, this arises primarily from disaggregating with BEAM’s361

117.50AC/m3 DC vs. Paprotny [2022]’s 2.478AC/m2 RC (Table 3); which is unsurprising considering BEAM in-362

cludes depreciation whereas [Paprotny, 2022] does not. More surprising, considering these different cost-bases, the363

non-residential sectors counterbalance the residential differences, such that the total (all-sector) sums of the two364

LoD1-based models happen to fall within ≈ 7%. Looking at the unit costs, both LoD1-based models produced365

some implausible values as a result of disaggregating regional values onto sectors poorly represented by LoD1.366

For example, LoD1+Eurostat’s production unit cost is two orders of magnitude beyond any of the BKI unit costs367

(Table S9) while LoD1+BEAM’s industrial sector, with only 19 buildings, is three orders of magnitude beyond.368

Similarly, LoD1+Eurostat’s market services unit cost is an order of magnitude lower than any of the BKI values.369
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This suggests our sector mapping (Supplementary Data Table 1) and LoD1 function data are not well matched to370

the Eurostat reporting structure in our region.371

The EHRE model estimates a larger residential RC (12.3 BAC) even without the remainder buildings (2.4 BAC)372

owing to the higher building counts, despite the lower ESRM20 multipliers (see Table S8), while the non-residential373

building stock in EHRE is the smallest of all models (3.0 BAC).374

While these total asset value figures are not directly comparable to loss model estimates, the large disparities375

found here suggest exposure model asset values contribute a similar level of uncertainty to that of other components376

in a risk model chain. For example, BN-FLEMOps has a Mean Absolute Error around 15% [Wagenaar et al., 2018]377

and FLEMOps 24% [Thieken et al., 2008] when comparing modelled to observed losses.378
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3.3 Per-Asset Values379

Comparing asset-to-asset, Figure 8 presents the two LoD1-geometry distributed asset value models against the BKI380

[2021] construction-cost benchmark (also LoD1-geometry distributed). This figure shows a near-linear relationship381

between modelled and benchmark asset values for all sectors, which is intuitive if we consider that both the models382

and the benchmark are geometry-based; i.e, they differ mainly in the unit cost multipliers applied to the building383

area or volume (see Table 3 and Table S9 for unit costs). Setting aside the sectors with implausible disaggregated384

unit rates (e.g., market services and corporate services), all assets in the LoD1+Eurostat model underestimate the385

benchmark. This can also be seen (partially) by comparing the non-market services unit cost (348AC/m3) to the BKI386

service unit costs (Table S9); nearly all of which are higher. This underestimation in our LoD1+Eurostat model387

likely arises from its reliance on stock-average values [Paprotny et al., 2020a], in contrast to the new-build construc-388

tion cost averages reported by BKI. Similarly, all residential BEAM assets underestimate their BKI counterparts,389

with a unit cost of 118AC/m3, lower than any reported by BKI. While this is unsurprising considering BEAM390

includes a depreciation factor, the over-assignment of residential labels discussed earlier, or inaccurate building391

volumes could also influence the discrepancy. In contrast, the LoD1+BEAM service assets are less biased, with the392

295AC/m3 falling within BKI’s wide range (Table S9); however, this results in higher variance than the other sectors.393

Unlike the LoD1-based models and the benchmark data, EHRE is object- rather than geometry-distributed, as-394

signing asset values using probabilistic construction types from ESRM20’s regional totals. In other words, EHRE395

preserves regional average replacement costs (from ESRM20) whereas the LoD1-based models considered here pre-396

serve asset-level unit costs. Further, because EHRE’s OSM geometry basis provides a simpler more consolidated397

footprint-based representation of buildings, whereas LoD1 — designed for 3D buildings — represents complex398

buildings with multiple features, building-by-building value comparison is subjective and challenging (unlike cate-399

gorical comparison). Our early attempts at this failed to find a satisfactory definition of a building object between the400

two datasets (esp. for large complex structures), but in general we found EHRE strongly under-estimates residential401

and industrial replacement costs, while sometimes over- or under-estimating commercial ones relative to the bench-402

mark. The open-source nature of EHRE and the ESRM20 exposure model it builds upon mean, however, that the403

performance of the EHRE model in this regard could be improved, firstly, by changing the average replacement cost404

per area and, secondly, by using the area of the OSM building footprints to calculate the replacement costs, instead405

of retaining the average replacement cost per building values of ESRM20 (which are based on average building406

areas).407
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Figure 8: Asset values for (a) LoD1+Eurostat (RC) and (b) LoD1+BEAM (residential is DC while non-residential
is NAV) models against the benchmark dataset. Data markers represent the BKI [2021] type and colours the model
sector. Solid lines provide the linear trend of the respective sector while the dashed line shows a 1:1 reference.
Distributions of respective asset values are shown as histograms adjacent to the axes. RC: Replacement Cost, NAV:
Net Asset Value, DC: Depreciated Costs.
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3.4 Weighted Scoring Model408

To provide a more robust basis for model selection we use a semi-quantitative Weighted Scoring Model (WSM)409

to communicate the relative strengths and weaknesses of the three asset value model candidates. Derived from the410

multiple-criteria decision-making mathematical framework, this technique is widely used to prioritize options by411

assigning weights to various criteria, which are then scored and ranked [Zionts, 1981]. For this, we developed the412

criterion and weights shown in Table S13 to inform decisions on model selection based on previous experience.413

As presented in Table 4, each model is subjectively scored on a scale of 0–10 for each criterion before scores are414

multiplied by their respective weights then summed.415

Table 4: Scores and weights for the asset value models. See Table S13 for a description of each criterion.

Criteria Weight LoD1+Eurostat LoD1+BEAM EHRE

Benchmark classification 0.15 8 7 6
Benchmark values 0.15 7 8 4
Sustainability 0.1 7 4 5
Model parsimony 0.1 5 6 7
Transparency 0.1 7 3 7
Uncertainty handling 0.1 5 5 8
Breadth of asset types 0.15 6 8 7
Adaptability 0.15 9 5 7
Total score 1 6.9 6 6.3

Translating the sector and asset-value benchmark comparisons from above to the WSM, the LoD1+Eurostat416

model slightly out-performs the other candidates owing mainly to the benchmark performance, sustainability, and417

adaptability. Eurostat data are updated annually, offering a clear advantage, whereas the update cycles of BEAM418

are unclear and EHRE currently has no planned updates. Like BEAM, Eurostat data tables are web-hosted with419

open access; however, the LoD1 data requires a license (commonly provided for free to public bodies and research420

institutes under specific agreements), while commercial users typically obtain fee-based licences. Of the three work-421

flows considered, LoD1+Eurostat is more onerous than LoD1+BEAM, requiring the downloading and disaggrega-422

tion of regional and categorical estimates (see Eq. 1). EHRE on the other-hand is already disaggregated to per-asset423

stochastic classes; therefore pre-processing is only required if the user desires deterministic values (like our study).424

Considering the transparency of the underlying data, BEAM is substantially more opaque than the other candidates,425

with no source code or parameter values provided and documentation only a short paragraph, in some cases without426

references. In contrast, we find the LoD1+Eurostat and EHRE models to be similarly transparent, both relying on427

large-scale opaque source data (e.g., OSM, LoD1) but with subsequent calculations performed transparently. For428

example, the EHRE source code is published [Nievas et al., 2023] while the simpler LoD1+Eurostat methods are429

described by Fig. 3 and Eq. 1. EHRE is the only model to explicitly consider uncertainty, both through the incor-430

poration of probabilistic building types and the use of “remainder” layers and the “other” building sector. Finally,431

while our study focuses on building structural asset values, numerous other asset types are often incorporated into432

exposure models (e.g., population, building contents). In this regard, LoD1+Eurostat provides the narrowest set of433

asset types as it is the least pre-processed for exposure modelling. However, this minimal processing affords the434

greatest flexibility for LoD1+Eurostat, which provides data for any year across the Eurozone, allowing advanced435

modellers to tune the exposure model for their context.436

3.5 Limitations and recommendations437

With this study, we provide the first per-asset evaluation of asset value models for exposure modelling. Although438

extending these workflows to other regions in Germany would be straightforward, the need for a labour-intensive439

hand-labelled benchmark restricted our evaluation to a single region, meaning the findings are only transferrable440
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to regions with construction practices, economic conditions, and exposure distributions comparable to Ahrweiler.441

Future studies with more resources should consider extending the breadth and coverage of our benchmark dataset.442

Similarly, we chose to focus on asset values and sector classification as the simplest means for comparing diverse443

workflows; however, exposure models typically include additional variables like building size, construction type,444

construction materials, etc. Including these, and non-building assets, in the benchmark and evaluation would provide445

a more complete comparison. However, as the significance of each of these variables will depend on the particulars446

of the hazard in question and its associated vulnerability model, the usefulness of such a general study (rather than447

one specific to a particular case) should be carefully considered.448

The dependency of our benchmark on the underlying BKI [2021] data, which only provides average new con-449

struction costs in Germany, makes the comparison less useful for certain disaster modelling applications like es-450

timating insurance claims or disaster reconstruction for a heterogeneous set of buildings. More useful would be451

observed replacement costs from disaster affected buildings; however, this information is notoriously difficult to452

collect and plagued with uncertainty when self-reported [Rözer et al., 2019]. Similarly, because we opted to provide453

a broad evaluation, we include asset value workflows with different cost basis (RC, DC, NAV) and years (2018,454

2020, and 2022), making our findings less conclusive. Aligning cost bases or developing standardized conversion455

approaches could improve the appearance of the evaluation, but at the expense of attribution and interpretability.456

While our work only considers classical disaggregation workflows built on standard accounting and cadastral457

datasets, the challenges reported here suggest opportunities for employing machine learning and remote sensing458

based methods, especially for asset classification. For example, Gouveia et al. [2024], Silva et al. [2024] trained459

algorithms on labelled images of buildings with promising results.460

Lastly, during data collection and publication we struggled to obtain and release asset-level data, a challenge461

commonly faced by European exposure modellers. This type of building-level economic data is generally considered462

to be privacy protected under the EU’s General Data Protection Regulation [Union, 2016]. While many benefits463

arise from such protections, policy makers should consider the burden this places on asset-level disaster modelling464

[McLennan et al., 2020].465

4 Conclusions466

This study developed and benchmarked object-level asset value models for a region in Germany, examining vari-467

ous disaggregation approaches from cadastre-derived (LoD1), crowd-sourced (OSM), national accounts (Eurostat),468

and fit-for-purpose datasets (EHRE and BEAM). We adapted and extended four exposure modelling workflows to469

develop asset-level models, then evaluated these with our hand-labelled benchmark dataset.470

From this, we found that the cadaster-derived LoD1-based models performed best overall against the benchmark471

at labelling a building’s sector (F1 = 0.71), but lacked the resolution necessary to identify industrial uses. Aggre-472

gate, region-wide values diverged between the candidate models (up to an order-of-magnitude at the sector level),473

suggesting an under-appreciated level of uncertainty — comparable to uncertainties reported in other aspects of risk474

modelling, like vulnerability — and emphasizing the need for local validation. Similarly, we found implausible475

unit rates when disaggregating regional sector totals onto LoD1 functions that poorly represent our local sector476

mix (e.g., unit costs three orders of magnitude beyond comparable published values), signalling the importance of477

aligning regional data with building-level data. Setting these implausible unit rates aside, we found both Eurostat478

and BEAM based models generally underestimate the new construction costs reported by our benchmark. This479

reflects, respectively, Eurostat’s reliance on stock-average replacement costs rather than new-build price lists, and480

BEAM’s inclusion of depreciation in construction costs. Extending this evaluation using a scoring model to examine481

less-quantitative factors important for exposure modelling like sustainability, transparency, and adaptability, we find482

all candidate models (except the land use based model) score similarly. However, the LoD1- and Eurostat-based483

model performs slightly better, mainly due to its ease of adaptation across regions and time periods, and the relative484

simplicity of maintaining and updating it.485

These findings suggest that, other than the land-use-based model, any of the three workflows considered here can486

provide a defensible asset-level exposure model in Germany, albeit with different cost basis. Modellers should select487
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the workflow that aligns with their sustainability, adaptability, sophistication, and cost-basis needs and perform local488

validation. In summary, we find transparent, maintainable workflows, not coarse land use proxies, yield the most489

reliable object-level exposure when grounded in local validation.490
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Code/Data Availability491

Source datasets used for the analysis are listed in Table 1 and are freely available at the web links provided; with492

the exception of the EHRE data extract which is provided in Nievas [2025]. All sector mappings we employ are493

provided in Supplementary Data Table 1. Results for the three candidate asset value models (and their corresponding494

sector classification) are openly provided in Buhrmann [2025b] with geometry provided in Buhrmann [2025a] (upon495

request to preserve privacy). Software to develop the models and perform the analysis is provided in Buhrmann496

[2025c].497
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Tobias Sieg, Sarah Kienzler, Viktor Rözer, Kristin Vogel, Henning Rust, Axel Bronstert, Heidi Kreibich, Bruno681

Merz, and Annegret H. Thieken. Toward an adequate level of detail in flood risk assessments. Journal of Flood682

Risk Management, 16(3):e12889, September 2023. ISSN 1753-318X, 1753-318X. doi: 10.1111/jfr3.12889. URL683

https://onlinelibrary.wiley.com/doi/10.1111/jfr3.12889.684

Vitor Silva, Svetlana Brzev, Charles Scawthorn, Catalina Yepes, Jamal Dabbeek, and Helen Crowley. A Building685

Classification System for Multi-hazard Risk Assessment. International Journal of Disaster Risk Science, 13686

(2):161–177, April 2022. ISSN 2095-0055, 2192-6395. doi: 10.1007/s13753-022-00400-x. URL https:687

//link.springer.com/10.1007/s13753-022-00400-x.688

Vitor Silva, Romain Sousa, Feliz Ribeiro Gouveia, Jorge Lopes, and Maria Joao Guerreiro. A building imagery689

database for the calibration of machine learning algorithms. Earthquake Spectra, 40(2):1577–1590, May 2024.690

ISSN 8755-2930, 1944-8201. doi: 10.1177/87552930241229103. URL https://journals.sagepub.com/691

doi/10.1177/87552930241229103.692

A. H. Thieken, M. Müller, L. Kleist, I. Seifert, D. Borst, and U. Werner. Regionalisation of asset values for risk693

analyses. Natural Hazards and Earth System Sciences, 6(2):167–178, March 2006. ISSN 1684-9981. doi:694

10.5194/nhess-6-167-2006. URL https://nhess.copernicus.org/articles/6/167/2006/.695

A. H. Thieken, A. Olschewski, H. Kreibich, S. Kobsch, and B. Merz. Development and evaluation of FLEMOps696

– a new Flood Loss Estimation MOdel for the private sector. In Flood Recovery, Innovation and Response I,697

volume I, pages 315–324. WIT Press, London, England, June 2008. ISBN 978-1-84564-132-0.698

European Union. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on699

the protection of natural persons with regard to the processing of personal data and on the free movement of700

such data, and repealing directive 95/46/ec (general data protection regulation). Official Journal of the European701

Union, L 119, 4 May 2016, pp. 1–88, 2016. URL https://eur-lex.europa.eu/eli/reg/2016/679/oj.702
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