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Abstract. Hurricanes are among the most destructive natural hazards globally. Accurate risk assessment requires integrated 

hazard, exposure, and vulnerability information, yet the widely used Saffir–Simpson scale, while an effective public-

communication tool, is based on a single hazard quantity (wind speed) and is not well correlated with historical economic 

losses, limiting its predictive value. This study develops a statistical model to predict economic damage from landfalling 15 

North Atlantic hurricanes using optimally weighted, normalised-rank variables representing hazard, exposure, and 

vulnerability. The model significantly reduces root-mean-square error between predicted and observed losses from US$35.6 

billion (when using landfall wind speed) to US$7.0 billion, and substantially outperforms single-parameter predictions, 

including landfall wind speed maxima and central pressure minima. To improve communication of financial risk, we 

introduce a loss-based ‘Hurricane Predictive Damage Scale’ to more directly link hurricane characteristics to economic 20 

impacts. Our results demonstrate that integrating exposure and vulnerability data with hazard observations yields markedly 

better estimates of historical hurricane economic impacts, and this approach is readily applicable to future forecast 

hurricanes, allowing assessment of how damage from an imminent landfall may rank among historical events. This 

framework is transferable to other cyclone-prone regions and highlights the critical need for open exposure and vulnerability 

data to advance climate risk quantification and inform policy. 25 

 

 

Significance statement. Hurricanes are a destructive natural hazard. Saffir–Simpson category is used to convey impact but 

is not well correlated with losses. We combined hazard, exposure, and vulnerability data to predict losses from North 

Atlantic hurricanes. Our model significantly reduces errors between predicted and observed losses and is more skilful than 30 

hazard-only predictions. We introduced a loss-based scale to link hurricane characteristics to economic impacts to help 

quantify climate risk and inform policy. 
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1 Introduction 

Intense tropical cyclones are the most damaging meteorological hazard worldwide (Gallagher Re, 2025; Willis Towers 35 

Watson, 2024, AON, 2024). Between 1980 and 2025, global economic damage due to tropical cyclone (TC) landfalls totals 

U.S.$ 2.9 trillion, primarily reflecting building damage (National Oceanographic and Atmospheric Administration, 2024). In 

addition to financial damage, tropical cyclones also pose a significant threat to life. The most important threats in the United 

States being from storm surge and intense rainfall (Rappaport, 2014), and the average TC leads to an estimated mortality 

burden of 7,000–11,000 mostly non-immediate excess deaths (Young and Hsiang, 2024). 40 

Studies of hurricane damage are challenging because damage depends primarily on lower-frequency and impactful 

landfalling TCs, so uncertainties are generally higher than those associated with basin-wide metrics of TC activity (Emanuel, 

2011). The most financially damaging U.S. hurricanes include the Great Miami Hurricane (1926), Katrina (2005), and 

Harvey (2017). There is also evidence that economic financial damage from hurricanes has increased over time (Grinsted et 

al., 2019; Klotzbach et al., 2022b), highlighting the urgency of understanding impacts and losses, enhancing disaster 45 

preparedness and supporting mitigation efforts. However, studies of hurricane damage are challenging because damage 

depends primarily on low-frequency, high-impact landfalling TCs, so uncertainties are high compared with basin-wide 

metrics of TC activity (Emanuel, 2011). Uncertainty remains over how cyclone-related damage will evolve in a warming 

climate (Jewson, 2023), so understanding the key factors responsible for, and predicting, hurricane damage are critical steps 

in mitigating and preparing for future impacts. 50 

Recent work has demonstrated skilful multi-year predictions of North Atlantic hurricane activity and U.S. hurricane damage, 

but individual high-damage events, particularly those occurring during periods of generally low activity, are not well 

predicted (Lockwood et al., 2023). Each TC’s damage is the result of a potentially unique combination of meteorological 

and socioeconomic factors; in other words, a combination of hazard, exposure and vulnerability variables (Intergovernmental 

Panel on Climate Change, 2012). Hazard variables describe the TC’s physical characteristics, including intensity, duration, 55 

size, and the magnitude and extent of (sub-)perils, such as coastal flooding caused by storm surge and inland flooding caused 

by TC-related rainfall. Exposure variables describe the assets (e.g., buildings) impacted by a TC, and include the location 

and values of residential, industrial and commercial buildings within the TC’s impact footprint. Vulnerability variables 

describe the damage-susceptibility of these assets, and are influenced by factors such as construction type (e.g., materials), 

building design (e.g., height), and building age. Quantifying TC impacts at landfall requires a comprehensive understanding 60 

of these hazard, exposure and vulnerability components of risk risk (Ward et al., 2020). To this end, complex and high-

resolution catastrophe models (e.g., Florida Cat Model) are developed, but these are computationally expensive and unsuited 

to estimating losses for a forecast TC, as forecasts evolve on sub-daily timescales. 
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North Atlantic TCs are categorised using the Saffir–Simpson Hurricane Wind Scale, which indicates potential damage based 

on 1-minute, near-surface wind speed (NOAA, 2021). This scale is an effective public-communication tool. However, as it is 65 

based on a single hazard quantity, it does not predict damage sufficiently skilfully. At landfall, central sea-level pressure 

minima are found to be more strongly correlated with normalised historical hurricane damage than wind speed maxima 

(Klotzbach et al., 2020; Klotzbach et al., 2022a), likely due to central pressure being physically related to both TC intensity 

and size (Chavas et al., 2025). This suggests that the widely used Saffir–Simpson scale misrepresents potential hurricane 

damage, and there are calls for modifying the scale itself (Wehner and Kossin, 2024) and to adopt multidisciplinary (i.e., 70 

hazard, exposure and vulnerability) approaches to understanding hurricane impacts (Camelo and Mayo, 2021). 

To provide a hurricane categorisation that better reflects damage, Bloemendaal et al. (2021) devised a ‘Tropical Cyclone 

Severity scale’, which categorised TCs by combining wind speed, storm surge and accumulated rainfall. TCs ranked by this 

scale corresponded better with historical financial damage compared with the Saffir–Simpson scale. However, several TC 

events were still ascribed to a low category despite their high damage. For example, Hurricane Sandy (2012) caused an 75 

estimated U.S.$ 70 bn in normalised economic losses, but its classification was only changed from category 1 in the Saffir–

Simpson scale to category 2 in the ‘Tropical Cyclone Severity scale’. Beyond using hazard information alone, Pilkington and 

Mahmoud (2016) used an artificial neural network model to forecast the economic impact from hurricanes using hazard and 

exposure data, including landfall location, population affected, wind speed, central pressure, precipitation and storm surge. 

Baldwin et al. (2023) showed the importance of differences in vulnerability between conurbations and rural areas for 80 

accurately modelling TC risk across the Philippines. Their model included wind hazard, exposure data, and a vulnerability 

layer to link a given wind speed to a percentage of exposed assets destroyed. These recent studies add to a growing body of 

evidence that combining these factors is necessary to capture risk (Ward et al., 2020). 

An open question is whether a scale that includes TC hazard as well as landfall-centred exposure and vulnerability 

information, which all determine risk, can predict historical TC damage. Moreover, there remains a need for a TC scale that 85 

accurately captures damage potential that (i) can help understand historical events and (ii) may be used to estimate and 

communicate how damaging a forecast TC may be (in the context of historical events). While the Saffir–Simpson scale may 

be easily interpretable and an important component of public early-warnings, several sectors, particularly financial (e.g., (re-

)insurance and banking) and energy, require a skilful estimation of likely damage to inform decision-making, ideally without 

significant computational cost. 90 

Focussing on historical North Atlantic hurricanes, this study examines numerous hurricane hazard, exposure and 

vulnerability quantities to determine whether the inclusion of socio-economic data into a novel TC classification scheme 

improves our ability to represent—and forecast—their damage. Such a scheme may be used prior to a forecast TC landfall to 
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communicate potential damage accurately and in a usable way to key stakeholders, such as governments, disaster-

management agencies, and financial sectors. Here, ‘usable’ refers to the need to communicate the likely rank, and the 95 

corresponding financial damage, of a forthcoming TC will have in the context of damage from historical events, allowing 

responding agencies and stakeholders to make appropriate preparations and (re-)insurance to mobilise sufficient capital, 

based on historical experiences. With this aim, we address the following research questions: 

● Which single hazard, exposure and vulnerability variable has the highest correlation to historical hurricane damage? 

● Is a combination of hazard, exposure and vulnerability data more skilful in predicting historical damage? 100 

● Does a novel ‘Hurricane Predictive Damage Scale’ better represent damage than the Saffir–Simpson Scale? 

This study is structured as follows: datasets and methods are described in section 2, results presented in sections 3–5, with a 

novel TC scale evaluated in section 6, and discussion and conclusions presented in section 7. 

2 Data and methodology 

In this section, we first describe the datasets we use, providing loss, hazard, exposure and vulnerability information for 105 

historical hurricanes affecting the U.S (section 2.1). Fig. 1 provides a summary of datasets used in this study and the 

temporal coverage spanned by each. We then describe the methods (section 2.2) employed to quantify these quantities within 

the footprint of each historical hurricane in our analysis and the statistical approach to investigate and predict historical 

damage (section 2.2). 
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 110 

Figure 1. Overview of datasets used in this study. Hazard, exposure and vulnerability predictors are combined, with loss 

estimates being the predictand. Note that the x-axis timeline is not linear. 

2.1 Data 

2.1.1. Normalised historical hurricane losses 

Historical hurricane economic loss estimates were collated from various government agencies and published studies: Blake 115 

et al. (2011); Grinsted et al. (2019); Muller et al. (2025); Weinkle et al. (2018) (Fig. 1). Loss estimates from Blake et al. 

(2011) are regularly updated by the National Oceanographic and Atmospheric Administration (NOAA), providing economic 

losses for hurricanes which exceed U.S.$ 1 bn (National Centers for Environmental Information, 2025). Loss estimates are 

available from 1965, when Hurricane Betsy caused U.S.$ 1.4 bn in economic loss, to the end of 2024, where Hurricane 

Milton caused U.S.$ 34.3 bn (National Centers for Environmental Information, 2025). Loss estimates from other studies are 120 
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limited to various time-periods (Table 1), and were collated from various sources including U.S. National Hurricane Center 

reports, Monthly Weather Review discussions, and National Centers for Environmental Information reports for individual 

storms. Damage estimates vary between sources and depend on whether (sub-)perils (e.g., coastal and inland flooding) are 

included alongside wind. Historical loss estimates are also provided by the Emergency Events Database (EM-DAT), in 

which estimates are collated from United Nations, governmental and non-governmental agencies, the (re-)insurance sector, 125 

research institutions, and the press (Delforge et al., 2025). 

We collated hurricane loss estimates from multiple sources to maximise sample size and to include differing loss estimates 

for storms included in multiple datasets (Table 1). Records from Weinkle et al. (2018) and Grinsted et al. (2019) end in 

2017, and records from Muller et al. (2025) end in 2022. EM-DAT loss estimates from the 2024 hurricane season from 

Delforge et al. (2025) appear incomplete or are much lower than reported by NOAA (e.g., Helene and Milton (both 2024) 130 

are shown as causing less than U.S. 1bn in economic loss in EM-DAT). Weinkle et al. (2018) and EM-DAT provide 

estimates of the total economic damage across the whole hurricane track, whereas Grinsted et al. (2019) and Muller et al. 

(2025) provide a breakdown of economic damage per hurricane landfall, if a hurricane makes multiple landfalls across the 

U.S. along its track. Due to the lack of standardised damage recording in the U.S., economic loss estimates for every 

landfalling TC that occurred from 1979 to present (2024) are not available. Instead this study is limited to loss estimates 135 

included from these various sources (Table 1). 

Hurricane economic loss estimates in this study represent average damage per hurricane landfall from various these sources 

(Delforge et al., 2025; Grinsted et al., 2019; Muller et al., 2025; National Centers for Environmental Information, 2025; 

Weinkle et al., 2018), hereafter termed ‘average loss’. Where damage estimates are available for multiple landfalls of a 

hurricane, the average economic damage estimate is taken from only Grinsted et al. (2019) and Muller et al. (2025), 140 

providing damage estimates per landfall. This approach increases the sample size for which financial loss estimates are 

available (Table 1). When loss estimates from these studies are merged and averaged, loss estimates are available for 134 

landfalling (including multiple landfalls) and bypassing hurricanes between 1979 and 2024 (Table 1). 

 

 145 
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Table 1. Summary of hurricane loss datasets and the number of named storms (wind speed ≥39 mph) making landfall in 

(including multiple landfalls) or bypassing the U.S. from 1979 to 2024 for which an economic loss estimate is available. 

Dataset reference Dataset coverage Landfalling TCs (1979–2024) 

National Centers for 

Environmental Information (2025) 

(≥ bn loss) 

1965–present 58 

Delforge et al. (2025) 1900–present 74 

Muller et al. (2025) 1979–2022 33 

Weinkle et al. (2018) 1900–2018 59 

 Grinsted et al. (2019) 1900–2018 102 

Average loss from above sources 1979–present 134 
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Studies typically normalise historical economic loss by calibrating estimates to present-day levels of damage and apply 

adjustment factors for changes in inflation, wealth and building density (Weinkle et al., 2018). Simple normalisation applies 150 

country-wide inflation and wealth adjustments and quantifies changes in building density as changes in residential housing 

units. This does not account for regional variations in wealth and inflation changes, changes in building vulnerability over 

time. Industrial or commercial building density changes may also not be accounted for, nor the impacts of climate change. 

Nevertheless, normalisation is needed to help quantify present-day risk and we employ an updated approach based on 

Weinkle et al. (2018) and Muller et al. (2025), by adjusting loss estimates using a country-wide inflation factor, a country-155 

wide real-wealth-per-housing-unit factor (both as of 2024), and county-wide (rather than country-wide) changes in housing 

unit density factors. We perform this within a TC’s radius (estimated using the radius of 34 kt wind speed, R34) (Eq 1).  

𝑫𝟐𝟎𝟐𝟒 	= 	𝑫𝒚 ⋅ 𝑰𝟐𝟎𝟐𝟒
𝒚
⋅ 𝑾
𝑯𝒏𝟏)(𝟐𝟎𝟐𝟒&𝒚)𝒚

⋅ 𝑯𝒏𝟏)(𝟐𝟎𝟐𝟒&𝒚)𝒚
    (Eq. 1) 

where D is damage per hurricane (and year), y, I is inflation, W is real national wealth per housing unit, and Hn is housing 

unit density. I is determined using the annual implicit price deflator for gross domestic product provided by the U.S. Federal 160 

Reserve Bank of St. Louis for the period 1979–2024 (U.S. Bureau of Economic Analysis, 2023). H density is determined 

within R34 using U.S. housing unit data (U.S. Census Bureau, 2024). W is quantified using an estimate of current-cost net 

stock of fixed assets and consumer durable goods (U.S. Bureau of Economic Analysis, 2025). Changes in housing unit 

density per hurricane require storm size estimates, so using regional changes in housing unit density constrains the sample 

size because TC size information in best-track data is not available for all TCs (further discussion below). 165 

2.1.2. Hazard data 

Hurricane track location, intensity and size information was obtained from the International Best Track Archive for Climate 

Stewardship (IBTrACS) v04r01 (Gahtan et al., 2024), provided by the National Hurricane Center (NHC), part of the 

National Oceanographic and Atmospheric Administration (NOAA). For each historical hurricane, we obtained maximum 

wind speed, vmax, minimum central sea-level pressure, cp, translation speed, radius of maximum wind (from the storm 170 

centre), RMW, and the outermost (i.e., beyond RMW) radii of 34-, 50- and 64-knot wind speeds from the storm centre), 

respectively, R34, R50 and R64. Each quantity was determined at the timestep before the storm centre crosses over land, so 

atmospheric fields are not impacted by land-surface interactions. However, IBTrACS data are incomplete (i.e., not all hazard 
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variables are available at every timestep for every TC). Therefore, we supplemented IBTrACS with data from NOAA’s 

HURDAT2 reanalysis (Landsea and Franklin, 2013)—specifically, the “U.S. Hurricane Impacts / Landfalls” table 175 

(Hurricane Research Division, 2025) of landfall information collected by NOAA reconnaissance aircraft. Where data are 

missing in IBTrACS, HURDAT2 data are substituted, if available. Where data are available in IBTrACS and HURDAT2 at 

a given timestep, HURDAT2 data were prioritised. 

Storm surge and rainfall cause damage through coastal and inland flooding but are not included in IBTrACS and 

HURDAT2. In this study, historical hurricane storm surge (maximum storm surge height) data are taken from the storm 180 

surge residual product (Copernicus Climate Change Service, 2022), derived using the Global Tide Surge Model (version 3.0) 

forced by European Centre for Medium-Range Weather Forecasts’ fifth-generation reanalysis (ERA5; Hersbach et al., 

2020). This provides hourly reconstructed historical storm surge height from 1950–present. Storm surge residual is 

calculated as the difference between the total water level and simulated storm-tide elevation, including the influence of storm 

surge and tide. Storm surge may be larger in the hours before or after a hurricane makes landfall, depending on antecedent 185 

tidal height. To account for this, we defined the maximum storm surge residual as the maximum along the U.S. coastline 

within a 1,000 km radius of the TC’s central coordinate and 24 hours before and after a hurricane makes landfall. An 

example maximum storm surge residual for Hurricane Katrina (2005) is shown in Fig. S1. 

Historical rainfall footprints per hurricane were derived from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) 

dataset (Beck et al., 2019), which assimilates gauge observations and satellite data to reconstruct 3-hourly rainfall 1979–190 

present. For each historical hurricane, we determined total accumulated rainfall along the hurricane track, maximum 3-

hourly rain rate along the track, and the maximum total rain accumulation per grid-point along the track, within a 500 km 

radius of the hurricane centre for each timestep. (Location taken from IBTrACS.) An example rainfall accumulation 

footprint for Hurricane Katrina is shown in Fig. S2. To complement MSWEP, the maximum rainfall accumulation along the 

TCs track is also provided by NOAA (National Oceanographic and Atmospheric Administration, 2025) was also collated per 195 

historical storm. Only a single maximum rainfall value is provided by NOAA for most storms, preventing differentiation 

between multiple landfalls. 

2.1.3. Exposure data 

We took county-level building value information across the U.S. from the National Risk Index (Federal Emergency 

Management Agency, 2024), derived from Hazus 6.0 (Federal Emergency Management Agency, 2022), providing 2022-200 

relative valuations per county based on the 2020 U.S. Census. Building values are time-invariant. Near present-day (2019) 
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building value is also quantified using the LitPOP dataset (Eberenz et al., 2020), providing global aggregated building value 

estimates at a 1-km spatial resolution. Building value estimates vary between studies, hence we used two building value 

datasets. 

We also used decadal, county-level housing unit density data (U.S. Census Bureau, 2024), available 1950–present as well as 205 

time-varying (every five years) building density estimates from the Global Human Settlement Layer (GHSL), where built-up 

surface area data are derived from Sentinel-2 satellite composite and Landsat satellite imagery, providing from 1975–present 

at 1-km spatial resolution (Pesaresi and Politis, 2023). Annual gridded population density between 2000 and 2020 at 1-km 

spatial resolution data were obtained from WorldPop (WorldPop, 2018). For hurricane landfalls outside the temporal 

coverage of GHSL and WorldPop data, we used data for the closest available year. 210 

2.1.4. Vulnerability data 

Vulnerability—the susceptibility of an asset to damage—is influenced by building age, often used as a proxy for building 

condition and resilience, and related to changes in building codes (regulated construction standards that include a minimal 

resistance to extreme weather). We use county-level average building age data (U.S. Census Bureau, 2024) and a county-

level indicator of building resistance to extreme weather (Federal Emergency Management Agency, 2025). County-level 215 

Hurricane Risk Score (defined as average hurricane social vulnerability and community resilience as a percentage) and 

Hurricane Historical Loss Ratio (defined as the percentage of a location’s exposed value damaged by past hurricanes) data 

were also used (Federal Emergency Management Agency, 2024; Zuzak et al., 2021), and we quantified the mean Hurricane 

Risk Score and Hurricane Historical Loss Ratio across all counties within the each hurricane’s landfall footprint. GDP data 

per affected U.S. state per year, which may indicate a state’s resilience resources, for the period 1998–2024 (U.S. Bureau of 220 

Economic Analysis, 2025) were used, and 1998 GDP values applied to all landfalls prior to 1998. 

Hurricane wind vulnerability may also be expressed as a logistic–cubic wind–damage function, relating wind speed to the 

fractional value of assets lost. This study uses a simple quantification of this (Eq. 2 and Eq. 3), which was deduced by 

(Emanuel, 2011). 

𝒇 = 𝒗𝒏𝟑

𝟏)𝒗𝒏𝟑
,         (Eq. 2) 225 

where f is the fraction of the property value lost and vn is defined as: 
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𝒗𝒏 =
[(𝒗-𝒗𝒕𝒉𝒓𝒆𝒔𝒉)	,𝟎]
𝒗𝒉𝒂𝒍𝒇-𝒗𝒕𝒉𝒓𝒆𝒔𝒉

,        (Eq. 3) 

where v is TC’s wind speed, vmax and vthresh and vhalf are the thresholds at which no damage and half asset damage occur, 

respectively. 

Building characteristics (height, construction type, age etc) influence vhalf, estimated to be between 96 and 139 kts (Vickery 230 

et al., 2006). In this study, damage estimates were computed for historical hurricanes using this single vulnerability function 

for all buildings, with vthresh = 40 kts and vhalf = 140 kts. Multiple vulnerability functions for various buildings with different 

properties e.g., age, construction type, cannot be used due to the lack of data on individual building characteristics. This asset 

damage potential is applied to the total LitPOP exposure value and GHSL building density within each hurricane’s footprint 

to determine the percentage of LitPOP exposure value and GHSL building density damaged. At each timestep, vmax is used 235 

with Eq. 2 and Eq. 3 (Emanuel, 2011) and the extracted exposure value and building density. 

 

2.2. Methods 

2.2.1. Statistical estimation of hurricane size 

Hurricane size (i.e., R34, R50 and R64) data are only available in IBTrACS from 2002 onwards. This significantly 240 

constrains the sample size of TCs available for studies of impact, as size is needed to determine the region incurring damage, 

and, practically, the exposure and vulnerability impact footprints derived in this study require TC size estimate. Therefore, 

we developed a simple hurricane size estimation method to reconstruct hurricane size prior to 2002, extending the landfalling 

TC record for this study. Such estimates may be less accurate than direct observations, but this statistical approach is proven 

to be a skilful supplement to missing IBTrACS data (Fig. 2 and Fig. S3) and allows for storm size estimation prior to 2002, 245 

and more than doubling our sample size from TCs between 2002 and 2024 to TCs between 1979-2024. 

We developed a skilful random forest statistical model to estimate R34, R50 and R64 for each hurricane and at each timestep 

based on vmax, RMW, cp and latitude (Fig. 2), with RMW being the most influential predictor. When R34 estimates from this 

statistical model are evaluated against R34 observations for the period 2002 onwards, using a leave-one-out approach (i.e., 

training the prediction model on observations except one, and evaluating skill on the left-out observation) across 4,220 250 
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observations, a Spearman’s correlation coefficient of 0.88 and a mean absolute error (MAE) of 21.8 nm was found (Fig. 2). 

Prediction models were developed to estimate R50 and R64 for historical storms where observations are available, with 

evaluation shown in Fig. S3. From 1979 to 2002, however, RMW information within IBTrACS is also incomplete, so RMW 

estimates from HURDAT2 and reconstructions from Gori et al. (2023) were used. Gori et al. (2023) estimated RMW by 

combining the TC wind model of Chavas et al. (2015) and ERA5 data. Where RMW is missing from IBTrACS, RMW is 255 

replaced by values from HURDAT2 or Gori et al. (2023), with HURDAT2 values preferred. For missing data over 

successive timesteps, RMW values from the previous timestep were used, assuming that large changes in horizontal size 

within 3 hours are rare. Of all 3-hourly timesteps where a TC is over land (approximately 10,000 timesteps), approximately 

2,500 timesteps have a missing RMW estimate from each of these three datasets, precluding a random-forest model estimate 

of R34, R50 or R64 and the TC was therefore omitted from our analysis. Where size was not observed or estimated, TC 260 

footprints could not be accurately determined (see section 2.2.2.), and hence RMW observations from previous timesteps 

were used. Although this introduces additional uncertainty, R34, R50 and R64 estimates from the random forest model using 

RMW estimates from previous timesteps are also a function of cp, vmax and latitude, quantities that are much less frequently 

missing in IBTrACS. 

 265 
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Figure 2. Comparison of estimated and observed hurricane R34 covering the period 1979–2023. Our random forest 

statistical model uses the hurricanes vmax, RMW, cp and latitude as TC size predictors. 

2.2.2. Extracting exposure and vulnerability impact footprints 

For each hurricane, exposure and vulnerability data were extracted within the R34, R50 and R64 radii at each timestep, and 270 

accumulated to create two impact footprints: one along the full hurricane track (Fig. 3) and one from the immediate landfall 

coordinates (i.e., up to 12 hours after landfall). TC’s generally weaken over land, and thus obtaining two impact footprints 

allows for an indication of impacts from the immediate landfall, where intensity and therefore impacts are likely to be 

greatest, and the full TC track. 

 275 

Figure 3. Example LitPOP exposure value impact footprint of Hurricane Katrina (2005). Hurricane locations from IBTrACS 

every three hours are shown as black dots, with the R34 radius around the hurricane centre indicated by the red line. Note 

multiple landfalls in Florida and the Gulf of Mexico coast are shown. 
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2.2.3. Predictive statistical approaches 280 

In this study, we used a weighted combined-rank framework, linear regression framework and the random forest decision-

tree framework to combine input predictors across hazard, exposure and vulnerability to predict historical hurricane damage. 

These methods were selected for their interpretability. Our target prediction variable is average damage for each TC, derived 

from multiple datasets (Grinsted et al., 2019; Muller et al., 2025; National Centers for Environmental Information, 2025; 

Weinkle et al., 2018), maximising the sample of hurricanes for which a loss estimate is available (Table 2). Overall, 106 285 

hurricanes, for which all risk variables can be quantified, are available to train our predictive model.  

To evaluate the predictive skill of the linear regression and random forest predictive models, a leave-one-out cross-validation 

was used, where each input case is treated once as the test case and the model trained on the remaining cases. The leave-one-

out approach is better suited to evaluating the skill of single predictions than, for example, k-fold cross-validation, where 

input data are split into training subsets. For the weighted combined-rank framework, which determines the combined 290 

damage rank from various hazard, exposure and vulnerability ranks, such validation is not appropriate, as the combined rank 

approach does not require training data. For this approach, the optimal combinations of weights between -10 and 10 are 

determined for each combination of input variables, to minimize a cost function, which in this case is the RMSE between 

predicted hurricane rank and observed hurricane damage rank. These approaches allow our model to be useful for predicting 

damage due an impending hurricane, if input (hazard) predictors were obtained from forecast data, and exposure and 295 

vulnerability predictors were obtained from the forecast track and size data. To reiterate: a key aim of this study, to develop 

an approach to estimate expected damage for future forecast landfalling hurricanes. 

 

 

 300 
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Table 2. Number of named storms (wind speed >39 mph) from 1979 to 2024 making landfall for which all hazard, exposure 

and vulnerability characteristics can be derived from various studies including damage estimates.  

 

We quantified model performance with Spearman correlation coefficient, ρ, (testing the ordering of prediction according to 305 

correlation between ranked values—i.e., whether one storm is more damaging than another), Pearson correlation 

coefficients, r, (testing non-ranked correlation), and model root-mean-square error (RMSE). Spearman’s ρ and RMSE are 

Loss dataset # TCs with all loss variables 

Weinkle et al. (2018) 57 

Grinsted et al. (2019) 76 

Muller et al. (2025) 33 

EM-DAT (2025) 21 

National Centers for Environmental Information (2025) 57 

Average loss 106 (out of 134 — see Table 1) 
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both used, as ρ is a good indicator of the capability of accurately predicting damage rank, but not suitable for identifying 

cases where large differences occur in the damage prediction of a single hurricane. 

Two approaches were considered for representing input variables: raw values and ranked values. As input variables span 310 

disparate ranges (for example, cp spans 900–1000 hPa and LitPOP exposure spans U.S.$ 10 million to 1 trillion), raw values 

were normalised to the same scale as ranked values 1–n (i.e., 1–106). In this normalisation, each variable is linearly rescaled 

so that the maximum value is assigned a score of 1 and its minimum a score of 106, with intermediate values mapped 

proportionally between these bounds. Linear and normalised input variable ranks were derived, with rank 1 corresponding to 

the costliest event and rank 106 to the least costly. To predict each hurricane’s loss, the alike loss ranks and predicted loss 315 

ranks were identified and the loss associated with that observed loss rank is assigned to the hurricane with the alike predicted 

loss rank. 

 

3 Historical relationship between hurricane vmax and damage 

Economic damage across the U.S. from landfalling hurricanes has generally increased over time and exhibits large 320 

interannual variability (Fig. 4). The most destructive year for hurricane-related damage was 2005, with U.S.$ 153 bn in un-

normalised (and approximately U.S.$ 350 in normalised) economic damage (Fig. 4). The most damaging hurricane was 

Hurricane Katrina (Fig. 5), although uncertainty is evident across available loss estimates (Grinsted et al., 2019; Muller et 

al., 2025; National Centers for Environmental Information, 2025; Weinkle et al., 2018). If Katrina occurred today, economic 

damage may be in the range of U.S.$ 190–290 bn. Hurricane Harvey (2017) is the second-most damaging hurricane, but 325 

uncertainty is more considerable, with estimates ranging from U.S.$ 90 to U.S.$ 190 bn. The Great Miami Hurricane (1926), 

although not considered in this study, caused an estimated U.S.$ 105 bn in un-normalised economic damage (Weinkle et al., 

2018), and would likely surpass Katrina were this event to occur today. 

 

 330 
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Figure 4. Average historical North Atlantic hurricane economic loss normalised to 2024 (red) and un-normalised by 

inflation, wealth and housing unit density (blue). 

Hurricane Katrina, however, is one of many high-impact TCs whose Saffir–Simpson category is at odds with the magnitude 

of damage caused. Katrina was classified as category 3 at landfall using the Saffir–Simpson, despite causing unprecedented 335 

and record-breaking damage (Fig. 5). Other damaging cases which are mismatched with their Saffir–Simpson category at 

landfall, which include category 1 Hurricane Sandy (2012) and category 2 Hurricane Ike (2008), which each caused U.S.$ 

99.5 and 57 bn in economic damage respectively. The historical record reveals the limitation of an event’s Saffir–Simpson 

category in conveying its economic damage (Fig. 5), which has also been found in other studies (e.g., Bloemendaal et al., 

2021). 340 
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Figure 5. Average economic financial loss per hurricane, normalised to 2024, for loss events exceeding U.S.$ 5 bn. Error 

bars indicate the range in loss estimates across datasets (Grinsted et al., 2019; Muller et al., 2025; National Centers for 345 

Environmental Information, 2025; Weinkle et al., 2018) and the colour indicates landfall Saffir–Simpson category. 

Although economic damage generally increases with the Saffir–Simpson landfall category (and therefore wind speed), the 

Saffir–Simpson scale has limited skill in predicting economic damage (Fig. 6a), with a correlation across 129 past hurricanes 

of ρ = 0.54 (RMSE of U.S.$ 17.1 bn) when using linear fit. When using vmax to predict normalised hurricane economic 

damage, the correlation (ρ = 0.51) and (RMSE = U.S.$ 17.6 bn) are slightly lower (Fig. 6b). This result is consistent with 350 

Klotzbach et al. (2020). Notably, landfall vmax is significantly less skilful at predicting economic damage for more extreme 

storms, with generally higher error at more extreme vmax values (Fig. 6b), which is particularly problematic as an inaccurate 

forecast for these more intense storms would produce larger errors. The relationship between vmax and damage is potentially 

nonlinear but spread in damage generally increases with vmax. Performing a rank correlation between observed economic 

damage and damage predicted from vmax reveals significant spread (and heteroscedasticity) across the observed damage 355 

range (Fig. 7a), and this is found for all events as well as those for which damage exceeds U.S.$ 1 bn (Fig. 7b). 
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Figure 6. Average economic hurricane financial loss (normalised to 2024) versus a) Saffir–Simpson category and b) landfall 

vmax of U.S. landfalls over the period 1979–2023. Blue lines indicate linear fits and an indication of goodness of fit is given 360 

in each legend: mean absolute error (MAE), absolute error (AE), and sample size, N. 

 

Figure 7. Leave-one-out evaluation using a generalised linear prediction model to predict historical hurricane loss rank 

using landfall vmax for a) all hurricanes for which all landfall variables could be derived (n = 106) and b) hurricanes that 

caused ≥$1 bn normalised economic damage (n = 60). Rank 1 denotes the most intense hurricane at landfall and the highest 365 

normalised economic damage. 
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4 Relationships between historical hurricane damage and risk-related variables 

We next analysed linear correlations between single risk-related predictors and historical hurricane damage over the period 

1979–2024, using both raw values (Fig. 8a) and ranks (Fig. 8b). This analysis demonstrates that high prediction skill may be 370 

obtained across numerous hazard, exposure and vulnerability TC quantities, with landfall cp rank yielding the highest 

correlation (r = -0.78), followed by GHSL building density damage percentage (r = 0.77) and LitPOP exposure value 

damage percentage (r = 0.74) (Fig. 8a). Overall, using the value rank per storm yields higher correlations than using raw 

values (Fig. 8c) because using ranks normalises to a linear scale, suggesting that landfall attribute ranks may provide more 

skilful damage predictions. This complements the analysis of Klotzbach et al. (2022a), who showed that landfall cp better 375 

correlates with damage rank than vmax or accumulated cyclone energy (ACE). Here, we further show that landfall cp 

outperforms other hazard variables and that landfall exposure and vulnerability variables yield higher correlations with 

damage rank than landfall vmax.  

In this study, hazard variables at landfall (vmax, cp, storm surge, R34, translation speed, and RMW) remain unchanged, but 

variables quantified within a hurricane footprint depend on chosen hurricane size metric (i.e., R34, R50 or R64) and those 380 

quantified for along hurricane track depend on timeframe (i.e., full track or 12 hours post landfall). For landfall variables 

with significant correlation to damage (i.e., ≥0.3), a 12-hour post-landfall track yields similar (or somewhat higher) 

correlation compared to using the full track where winds exceed 34 kts (Fig. S4a). This indicates that including the full track, 

where winds weaken over land, reduces correlation. But focussed studies of inland impacts may require full-track analysis 

and therefore may yield lower skill than landfall studies.  385 

Additionally, correlations are generally higher when considering normalised rather than unnormalised economic damage 

(Fig. S4b). The correlation between damage rank and variable rank is lower when using R64 to define impact radius 

compared with R34 and R50 (Fig. S4c). R64 is typically less than 100 nm, which may be too small to capture hurricane 

impacts, especially for lower-resolution data (e.g., county-level housing unit data). Correlations using R34 and R50 are 

similar. Notably, the percentage of damaged GHSL building density across the full track has a strong correlation with 390 

damage rank (ρ = 0.78), equalling that of landfall cp (Fig. 8). The damage density correlation using R50 (ρ = 0.79) slightly 

outperforms that of landfall cp. 
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 395 

Figure 8. Pearson’s correlation coefficients between historical hurricane landfall variables quantified at landfall and within 

12 hours of landfall and their NOAA financial loss for the period 1979–2024. Shown are a) raw values versus loss, b) 

variable rank values versus loss, and c) the coefficient difference between raw versus ranked values (i.e., ranked minus raw 

values). Note that the x-axes differ between the panels, based on the correlation order. Colours indicate if the variable is a 

hazard (yellow), exposure (blue) or vulnerability (red) variable (refer to Fig. 1). 400 

5 Statistical prediction of historical hurricane damage 

Using landfall vmax rank to predict storm damage, by assigning the loss from the alike loss rank, yields ρ = 0.67 and RMSE = 

U.S.$ 36.2 bn (Fig. 9), so vmax has limited skill in historical damage. Among the most underestimated damage events are 

hurricanes Katrina (2005) and Harvey (2017), which were category-3 and category-4, respectively, at landfall (Fig. 4), but 

are the two most damaging hurricanes since 1979 (Fig. 10a). Furthermore, using vmax alone leads to damage predictions 405 

exceeding U.S.$ 30 bn for several less-damaging (≤ U.S.$ 10 bn) events (Fig. 10a), including Michael (2018), Laura (2020), 
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Dennis (2005), Andrew (1992; second landfall) and Idalia (2023). In our analysis (Fig. 8), and in recent work (Klotzbach et 

al., 2020; Klotzbach et al., 2022a), landfall cp is found to be the most skilful single hazard quantity to predict historical 

damage, and using landfall cp rank to predict damage rank improves this correlation (Spearman correlation coefficient 0.78 

and RMSE U.S.$ 26.3 bn) (Fig. 9). However, several events, across a range of actual damages, remain poorly predicted: 410 

Hurricane Andrew (1992), hurricanes Michael (2018), Rita (2005), Hugo (1989), Dennis (2005), Allen (1980) and Idalia 

(2023) are all overestimated (Fig. 10b). This similarity between vmax and cp in predictive power is due to the physical 

pressure–wind balance intrinsic to hurricanes (Chavas et al., 2017), indicating that intensity metrics alone cannot accurately 

model damage. 

We now combine landfall hazard, exposure and vulnerability quantities to derive more skilful models to predict historical 415 

hurricane damage, using three statistical approaches: multiple linear repression, random forest, and weighted combined rank 

(Fig. 9). Using a random forest model based on the optimal combination of hazard, exposure and vulnerability variables 

improves the damage prediction model skill (ρ = 0.87; RMSE = U.S.$ 18.7 bn), with a further improvement being obtained 

from using a linear regression model  (ρ = 0.87: RMSE = U.S.$ 17.1 bn) (Fig. 9). Even further improvement in skill is found 

when using a weighted combined-sum approach (ρ = 0.89; RMSE = U.S.$ 7.0 bn) (Fig. 9). Overall, effectively combining 420 

hazard, exposure and vulnerability predictors is found to reduce the RMSE of TC damage predictions by as much as ~67% 

compared with using landfall vmax rank alone, and by ~55% when using landfall cp rank alone (Fig. 9). 

 

Figure 9. The a) Spearman correlation coefficients and b) root mean squared error (RMSE) of each tested historical 

hurricane damage prediction model. 425 
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We found that the optimal model to predict historical hurricane damage uses the combined normalised rank of landfall cp, 

maximum rainfall accumulation rank, and the percentage of total GHSL building density damage within R64 of the 

hurricane centre and within 12 hours of the hurricane's landfall (Fig. 10c). This model includes two hazard quantities 

representing hurricane wind and inland flooding intensity (cp and rainfall), with hurricane radius implicitly included in the 430 

percentage of total GHSL building density damage (with storms with larger R64 having higher impacted building density 

values). This also includes exposure values of impacted building density and applies a vulnerability function, by determining 

the percentage of damaged buildings proportional to vmax (at each timestep). Overall, this model demonstrates the extent to 

which damage prediction skill can be improved when accounting for hazard, exposure and vulnerability aspects of hurricane 

risk. 435 

Across the 106 historical hurricanes in our sample, this prediction model has the lowest RMSE (U.S.$ 7.0 bn), when these 

hazard, exposure and vulnerability hurricane landfall attributes are ranked and summed, while also applying the optimal 

weights (Fig. 9c). Moreover, considering highly damaging historical hurricanes (≥ U.S.$ 20 bn), ρ = 0.9, which is greatly 

improved compared with using only landfall vmax (ρ = 0.45) or landfall cp (ρ = 0.66) (Fig. 9). This model results in the five 

most-damaging hurricanes (Katrina, Harvey, Andrew, Ian, and Sandy) being ordered according to observed losses, and thus 440 

their damage is very well captured.  

Some discrepancies remain across all historical storms between predicted and observed damage ranks, but for higher-loss 

events (≥ U.S.$ 20–80 bn), damage rank is very skilfully predicted. The largest errors include hurricanes Michael (2018), 

Opal (1995) and Allen (1980), all of which have a high landfall cp rank (i.e., high intensity) but did not cause (relatively) 

high damage. Overall, this model is markedly more skilful than using the single variables of landfall vmax and cp to predict a 445 

storm's damage (Fig. 9 and Fig. 10). 
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Figure 10. Comparisons of landfall variable rank with loss rank to predict past hurricane damage given past economic 

damage observations, using a) landfall vmax rank, b) landfall cp rank, and c) optimally selected and weighted (refer to Fig. 8) 450 

hazard, exposure and vulnerability linear rank variables at landfall. The yellow bars indicate observed historical hurricane 

economic damage, and the coloured diamonds indicate predicted historical hurricane economic damage. Note that the 

optimal risk variables and their optimal weight are given in panel c). 
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6 A damage-based hurricane scale 455 

The Saffir–Simpson scale is an effective communication tool and a key component of early-warning dissemination (Camelo 

and Mayo, 2021; Oliver-Smith, 2020; Wehner and Kossin, 2024), but, being based on vmax alone, does not correspond 

adequately with historical damage ranking (Fig. 4, Fig. 5). Based on our analyses, we devised a damage-based hurricane 

categorisation, termed the ‘Hurricane Predictive Damage Scale’ (HPDS). We intend this novel scale to complement the 

Saffir–Simpson scale, as well as published work (e.g., Bloemendaal et al., 2021; Pilkington and Mahmoud, 2016), and 460 

provide a scale based on financial loss that may be used by stakeholders in financial industries (e.g., (re-)insurance, banking 

and energy) to predict damage. A key application of this scale is in the (re-)insurance sector, for which there is significant 

value in knowing where a forecast TC may rank compared with historical events, and an indirect public benefit that results 

from greater recovery benefit from a more efficient (re-)insurance sector. 

Table 3 shows the historical frequency proportions of landfalling hurricanes in each Saffir–Simpson category. Since 1900, 465 

39% of landfalling hurricanes have been category 1, with only 12% and 3% being category 4 and 5, respectively (Table 3). 

We applied the same observed relative proportions in each Saffir–Simpson category to the averaged historical loss data since 

1979 (Delforge et al., 2025; Grinsted et al., 2019; Muller et al., 2025; National Oceanographic and Atmospheric 

Administration, 2024; Weinkle et al., 2018) to derive historical loss categories (Table 3), which form our TCDPS. A cyclone 

that caused loss less than U.S.$ 1.3 bn would be a ‘loss category 1’ event, and a cyclone causing loss greater than U.S.$ 470 

119.5 bn a ‘loss category 5’ event. 

 

 

 

 475 
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Table 3. Percentage of landfalling historical storms within each Saffir–Simpson category, since 1900 from Hurricane 

Research Division (2025). Loss category thresholds define our proposed TCDPS to complement the Saffir–Simpson scale. 480 

Using our skilful hurricane loss prediction model, based on hazard, exposure and vulnerability attributes, we determined the 

TCDPS loss category derived from our model’s predicted loss for each historical hurricane (Fig. 10c and Fig. 11). The ranks 

of the most damaging hurricanes (Katrina, Harvey, and Andrew) are correctly predicted as being ‘loss category 5’. The next 

most historically damaging storms (from hurricanes Ian to Wilma) are represented as ‘loss category 4’ events, each causing 

between U.S.$ 115-42 bn (Fig. 11). Hurricane Sandy (2012), which has been notably under-categorised by the Saffir–485 

Simpson scale (category 1) and the ‘Tropical Cyclone Severity Scale’ of (Bloemendaal et al., 2021) (category 2), is now 

Saffir–Simpson 

category 
Frequency % of all TCs 

vmax threshold 

(kt) 

TCDPS loss 

category threshold  

(U.S.$ bn)  

1 84 38.9 64-83 0-1.3 

2 54 25.0 83-96 1.3-5.3 

3 46 21.3 96-113 5.3-29.5 

4 26 12.0 113-136 29.5-119.5 

5 6 2.8 136+ 119.5+ 
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predicted to be a ‘loss category 4’ storm. Combining hazard, exposure and vulnerability quantities has provided a more 

skilful damage-based categorisation for this case, and many other cases, than is possible based only on hazard information.  

However, the most damaging hurricane that is misrepresented by the TCDPS scheme is Hurricane Charley (2004), whose 

observed damage (U.S.$ 40.1 bn) is underpredicted by our model (Fig. 9c). Charley should be ‘loss category 4’ (Fig. 4 and 490 

Table 3), but its predicted damage (~U.S.$ 20 bn) falls in ‘loss category 3’. Additionally, Hurricane Allison (2001) is 

ascribed ‘loss category 1’, which stands out as a poor model prediction (Fig. 11). 

 

 

Figure 11. Predicted ‘loss category’ of each historical landfalling hurricane, using the optimal prediction model (Fig. 10c) 495 

and the TCDPS (Table 3). 

Finally, we compared the success rates of both the Saffir–Simpson categories and ‘loss categories’ based on our predicted 

losses (Fig. 10c) with observed ‘loss categories’ (i.e., TCDPS categories derived from observed damage). We found 74 

storms (70%) of landfalling hurricanes (with an available economic loss estimate from 1979) are correctly classified by the 

TCDPS (Table 4). However, 28 storms (26%) are misrepresented by ±1 ‘loss category’ and 4 (4%) are misrepresented by ±2 500 

‘loss categories’ (Table 4). Overall, these results markedly outperform using landfall vmax and therefore the Saffir–Simpson 

scale to represent damage, for which the ‘loss categories’ of just over half (55%) of events are correctly represented, and 

31%, 12% and 2% are misrepresented by ±1, ±2 and ±3 ‘loss categories’, respectively (Table 4). 
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Table 4. Quantified differences between Saffir–Simpson category or predicted ‘loss category’ using our model (Fig. 10c) 505 

and the observed ‘loss category’ from the TCDPS (i.e., derived from observed damage). 

 

 

7 Summary and discussion 

Hurricanes have historically been among the most destructive natural hazards globally. It is critical to understand hurricane 510 

risk, which is determined by various hazard, exposure, and vulnerability attributes, for effective mitigation of their impacts. 

This study explores statistical relationships between historical North Atlantic hurricane economic damage and hazard, 

exposure and vulnerability data, with two aims. First, to determine whether the inclusion of socioeconomic information into 

a predictive model for economic damage from U.S. landfalls yields significant additional skill than only using hazard 

information. Second, to devise a damage-based hurricane classification scheme to improve both the representation of 515 

Difference from observed ‘loss category’ Saffir–Simpson category Predicted ‘loss category’ 

0 (i.e., correct prediction) 58 (55%) 74 (70%) 

±1 33 (31%) 28 (26%) 

±2 15 (12%) 4 (4%) 

±3 5 (2%) 0 (0%) 
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historical damage events and the rapid assessment of damage potential for forecast events, complementing existing 

classifications, such as the Saffir–Simpson scale, which is important for public communication.  

For historical hurricanes, we derived storm-centred hazard, exposure and vulnerability quantities, and limited our analysis to 

cases for which observed loss estimates are available and storm radius is either observed or could be skilfully estimated 

statistically from other observed size information. Variables found to significantly influence a given storm’s loss include 520 

storm intensity (wind, central pressure), inland flooding and coastal flooding from surge, storm size, the coverage and 

density of buildings, population and financial exposure impacted, and the vulnerability associated with the affected region 

(storm footprint). A statistical model, based on a random forest approach, was developed to predict hurricane damage, which 

outperforms other hazard-only methods to represent storm damage potential. Finally, a new ‘Hurricane Predictive Damage 

Scale’ was derived to categorise tropical storms based on their economic consequences (i.e., loss and damage) and is 525 

intended for use by stakeholders concerned with hurricane risk, including governmental agencies coordinating hurricane 

response and the (re-)insurance sector. 

7.1 Key results and limitations 

7.1.1 Integrating hazard, exposure, and vulnerability data predicts historical hurricane damage more skilfully than 

hazard data alone 530 

Although economic damage generally increases landfall wind speed (and with Saffir–Simpson landfall category), hurricane 

wind intensity has limited skill (ρ = 0.67) in predicting economic damage, with a large RMSE across all storms, a finding 

which substantiates previous research (Klotzbach et al., 2020; Klotzbach et al., 2022a). Landfall cp is a more skilful single 

predictor yet using both intensity quantities to predict damage results in many erroneous predictions, especially for the more 

damaging events. A range of hazard, exposure and vulnerability hurricane quantities at landfall have strong correlations with 535 

historical damage (r > 0.5), providing evidence that these should be combined to represent and predict hurricane damage. By 

using a weighted-rank-sum approach to optimally combine this hazard, exposure and vulnerability information yields 

markedly more skilful predictions of damage, with very high correlation between loss observations and predictions (ρ = to 

0.89 across all storms). This increase in skill is particularly evident in the improved predicted damage rank of the most 

impactful historical cases, resulting in a very skilful financial damage prediction for each past storm, with a significantly 540 

reduced RMSE of U.S.$ 7.0 bn. This is a notable improvement from using landfall vmax and cp to predict financial damage, 

which yielded RMSE of U.S.$ 35.6 bn and U.S.$ 26.4 bn respectively. 
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Our optimal prediction model was derived by determining the weighted sum of normalised ranks of landfall cp, maximum 

rainfall accumulation, and the percentage of total GHSL building density damage within R64 and within 12 hours of landfall. 

This model includes two hazard attributes representing hurricane intensity (cp and rainfall), with hurricane radius included 545 

implicitly in determining percentage of total GHSL building density damage; includes exposure values of building density 

impacted by each storm; and applies a vulnerability function by determining the percentage of building damage proportional 

to vmax. Important limitations are related to the observational uncertainties in both input predictors and our target loss 

predictand. A key limitation is the lack of complete cyclone size information prior to 2002, which necessitated our statistical 

estimation approach, and this could impact predictive skill for cases during this earlier period in our study’s sample. An 550 

additional data gap exists in the availability of vulnerability information, and in its temporal granularity. Additional 

uncertainty around historical losses required our consideration of multiple datasets and, where required, calculating an 

average loss estimate. 

7.1.2 A damage-based hurricane scale can effectively communicate economic impacts 

We derived a ‘Hurricane Predictive Damage Scale’, in which hurricanes are ascribed a ‘loss category’, to categorise 555 

historical hurricanes by their economic damage and to help communicate the damage potential of forecast storms. This scale 

can complement the Saffir–Simpson scale, as well as published work (e.g., Bloemendaal et al., 2021; Pilkington and 

Mahmoud, 2016), to provide an indication of a historical and forecasted storm's financial loss, that may be more effective for 

decision making, particularly within the (re-)insurance, banking and energy sectors.  Evaluating this scale revealed that our 

model-predicted ‘loss categories’ matched the observed categories determined from loss data in 70% of cases, which 560 

compares favourably with the Saffir–Simpson scale when categories are ranked. 

The damage order of historical storms is much better represented and communicated using this ‘Hurricane Predictive 

Damage Scale’. Notably, among many other cases, Hurricane Sandy (2012), a lower-intensity, larger-size storm, is 

appropriately reclassified in our scheme as a ‘loss category 4’ case, which more appropriately describes its historical damage 

ranking. We anticipate that the TCDPS may be of significant utility within the disaster-response community, including 565 

government agencies, as well as financial sectors, such as (re-)insurance, banking, and energy, for which understanding 

historical and future risk are important, as is the season-to-season requirement of preparing for the potential consequences of 

an impending storm. This study provides a skilful method for determining the damage potential of forecast landfalls, 

notwithstanding the current limitations of numerical weather-prediction models in capturing, for example, the intensification 

rates of TCs (Trabing and Bell, 2020). 570 
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7.2. Outlook 

There are several clear data needs, which our study highlights. First, vulnerability data of higher granularity are needed, both 

spatial (e.g., building year and construction material per unit) and temporal (e.g., data of at least yearly frequency). There is 

potential for the development of novel, higher-resolution datasets using emerging technologies, such as machine learning 

and satellite imagery, to better describe building attributes, and vulnerability more generally. Second, there is a need for TC 575 

size information for historical events. This is a key physical quantity that determines a storm’s directly impacted area, and 

reconstructions of size would be considerably beneficial. TC outer size is not projected to change over this century (Schenkel 

et al., 2023), although supporting evidence from studies of high-resolution climate models, which adequately capture 

intensification and horizontal structure, would help substantiate this projection and evaluate its past and future risk 

implications.  580 

Furthermore, there is potential to refine our approach for application to a variety of sectors and stakeholders, potentially 

developing sector-specific schemes to categorise historical events based on values that are meaningful. We have developed 

an initial scale based on financial damage, which would be most useful to financial industries (e.g., (re-)insurance and 

banking). For other sectors, a scale based on other impact metrics may be more suitable; for example, a scale based on 

population impact may be more suitable for governments and relief charities. There is a broad public need for open-source 585 

tools to provide these varied initial assessments of damage potential, and different tools may need to be developed to suit 

specific sectors. Such tools need to be readily understandable and transparent (input data, methods etc) and physically 

interpretable, reflecting the various ways that TCs cause damage. 

Finally, our predictive model may be a helpful tool for investigating how TC risk may change in a warming climate. 

Applying our method to simulated future tropical cyclones, which may be more intense and induce heavier precipitation 590 

(Knutson et al., 2020), may help quantify the extent to which U.S. hurricane-related losses may change with changes in 

hazard, exposure and vulnerability, and our methodology may be expanded to other TC-prone regions, where necessary data 

are available. This study provides an approach to more skilful quantification of hurricane losses and communication of risk, 

aiding more effective future TC risk management. 
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