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Abstract. Accurate quantification of GHG emissions from agricultural soils based on key environmental and management factors, is crucial for developing 5 

effective mitigation strategies. This study applies a machine learning approach using data from multiple montane grasslands in central Europe to model the 

spatial and temporal dynamics of N2O emissions, using meteorological, soil, and management data. The primary aim is to advance predictive modelling of 

N2O emissions from grassland soils for spatial upscaling and scenario analysis. Specifically, we assess whether a generic model can accurately estimate N₂O 

emissions from an independent site excluded from training.  

We collected data from five fertilized grasslands across southern Germany, northern Switzerland and northern Austria (122 soil-site-treatment-year 10 

combinations), and trained a long short-term memory (LSTM) algorithm to model the influence of drivers within 5 subsequent days on N2O emissions. The 

dataset includes daily N2O emission measurements along with key emission drivers such as soil moisture and temperature in 10 cm soil depth, daily 

precipitation, occurrence of fertilization events (zero or one flag), as well as soil characteristics such as pH and bulk density. 

The trained LSTM model showed strong predictive performance (RMSE of 18 𝜇𝑔𝑚−2ℎ−1, and Relative RMSE of 270%) when evaluated on a test set that 

included both data from an independent soil and withheld years from training procedures. The model accurately captured N2O dynamics, including the 15 

magnitude and timing of emission peaks driven by slurry application and environmental factors. Compared to the performance of established process-based 

biogeochemical models the LSTM model yielded similar RMSE and bias values for most site-years. These results demonstrate that LSTM-based models can 

reliably predict N₂O emissions at independent sites with similar environmental and soil characteristics and represent a promising alternative to process-based 

models for predicting soil N2O emissions. 

1 Introduction  20 

Greenhouse gas (GHG) emissions significantly contribute to global warming, with agricultural activities accounting for approximately 12% of global 

anthropogenic GHG emissions (Chataut et al., 2023). The greenhouse gases emitted from soils are mainly methane (CH4), nitrous oxide (N2O) and carbon 

dioxide (CO2), which are increasing due to high-energy-intensive agricultural production systems and the production and use of mineral and organic fertilizers 

(Chataut et al., 2023). Today, agricultural activities are responsible for approx. two-thirds of total anthropogenic N2O emissions and its high global warming 

potential makes it the third-most important greenhouse gas for global warming (Schulz et al.,2021; Fuchs et al., 2020). Thus, agricultural mitigation strategies 25 

play an important role in reducing N2O emissions, which requires understanding the effects of management adoption (Fuchs et al., 2018). 

The production of N2O in the soil is driven by microbial processes — predominately denitrification and nitrification — which are influenced by both 

environmental conditions and management practices (Wang et al., 2021; Butterbach-Bahl et al., 2013). Key soil and environmental conditions regulating these 

processes include soil moisture, temperature, texture, nitrogen content, pH, and organic matter content, while fertilization, tillage, and irrigation represent the 

most important management practices (Wang et al., 2021; Butterbach-Bahl et al., 2013). The Pearson correlation between daily N2O emissions and individual 30 

input drivers might be low (between -0.11 to 0.16 for our dataset), and it’s the interaction of drivers such as precipitation and temperature, as well as 

management practices that result in highly dynamic, variable and site-specific emission patterns (Wang et al., 2021). Thus, the complex influences of different 

drivers on emissions need to be simulated via high-performance models. This is especially relevant as direct measurement over large areas and long periods 

is impractical (Butterbach-bahl et al., 2013; Giltrap et al., 2010).  

Modelling approaches for estimating N₂O emissions from agricultural systems include emission factors, statistical models, and process-based models 35 

(Butterbach-Bahl et al., 2013). Emission factors, i.e., a fixed proportion of applied nitrogen that is emitted as N₂O, are widely used for national inventory 
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reporting. However, they are unable to reflect the variability of soil and climate conditions that are relevant for N2O emissions at the field scale or with a time 

resolution higher than yearly (Giltrap et al., 2010). In contrast, process-based models such as LandscapeDNDC (Haas et al. 2013) or Daycent (Parton et al., 

1998) simulate the interactions between soil processes, climatic drivers and management. To this end, these models use a large set of parameters, which need 

to be parameterized based on calibration and validation datasets. As a consequence, uncertainty of model results due to parameterization is inevitable and the 40 

performance of such models heavily depends on the number and quality of calibration and validation datasets.  

Given these limitations, machine learning (ML) offers a promising alternative or complementary approach to process-based modelling. ML models are trained 

on previous measurements and do not require a deep understanding or a definition of the underlying processes and parameters. However, implementing a 

high-accuracy ML model comes with challenges, such as the need for large, high-quality datasets and expert knowledge about the used algorithms, along with 

lower interpretability than process-based models. While implementing the right ML model requires effort, once a generic model is built, applying it to new 45 

data is highly time-efficient. 

Building an ML model for estimating N2O emissions requires considering short-term fluctuations and peaks in N2O emissions in response to temporal 

dynamics in soil moisture and temperature, such as dry‒wet transitions, water logging, as well as management activities (Butterbach-Bahl et al., 2013). 

Therefore, estimating daily values of N2O emissions can be improved by considering the changes in drivers over several days prior to the emission event, 

which is addressed in this study. Long short-term memory network or LSTM (Hochreiter and Schmidhuber, 1997) is a machine learning model that detects 50 

the dynamic relationships in sequential data. It has previously been used for different applications such as flood forecasting (Le et al., 2019), stock market 

prediction (Chhajer et al., 2022), and predicting water table depth in agricultural areas (Zhang et al., 2018), and therefore is a promising method for modelling 

soil N2O emissions.  

In this study, we developed an LSTM model to simulate the daily N2O emissions of grasslands in central Europe, with the three main objectives:  

1) to train an LSTM model using data from multiple soils and climates to simulate daily N2O emissions at alpine grasslands  55 

2) to test the model performance on an independent grassland soil not used for model training to assess the general applicability of the model to alpine 

grasslands without site-specific parametrization 

3) to assess the relative importance of different environmental and management variables for predicting N2O emissions 

2 Materials and methods 

Daily and growing season N2O emission data were collected from multiyear field experiments of 5 grassland sites representing a variety of soils at different 60 

elevations and thus climate conditions in Central Europe: South Germany (Fendt, Rottenbuch and Graswang), North Austria (Neustift) and North Switzerland 

(Chamau). Table 1 shows the characteristics of these grasslands, all of which are managed with organic fertilizer (manure and slurry), cutting and no grazing. 

While N2O emissions were highest at Chamau, lowest N2O emissions were observed at the Neustift site. The collected dataset for training the LSTM model 

includes high-resolution daily measurements of soil N2O emissions, soil physical and chemical properties (Table 2), as well as daily meteorology 

 65 

Table 1 Summary of the properties of grasslands used in this study (Kiese et al., 2018; Soltani et al., 2018; Gilgen & Buchmann, 2009; Roth, 2006; 

Hörtnagel et al., 2014). The total annual N2O is averaged over different years of data availability for each grassland. 

 

Grassland Elevation Annual N2O Annual precipitation Avg annual air temperature pH BD Dataset size 

 (m asl) (kg h-1 y-1) (mm) (°C)  (gr cm-3)  

Chamau Switzerland (CH‐CHA) 393 5.28 1179 9.8 6.5 0.94 1740 

Fendt Germany (DE-Fen) 595 2.83 962 9.3 4.8-6.5 0.8-1.1 8195 

Rottenbuch Germany (DE-RbW) 769 1.69 1047 8.6 4.8-5.7 0.7-0.95 8690 

Graswang Germany (DE-Gwg) 864 2.55 1464 7 5.1-6-6 0.52-0.78 8708 

Neustift Austria (AT-NEU) 970 0.03 852 6.5 5.7 1.2 259 
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2.1 Site descriptions 

German Terrestrial Environmental Observatories (TERENO) Pre-Alpine 70 

The Tereno Pre-Alpine observatory includes three grassland sites, Graswang (DE-Gwg), Rottenbuch (DE-RbW), and Fendt (DE-Fen), at elevations of 864, 

769, and 595 m asl, which are located in the Bavarian Prealps in southern Germany (Kiese et al., 2018; Soltani et al., 2018). Automatic chamber 

measurements of N2O emission along with a wide range of other measurements such as soil moisture and temperature are conducted by the Karlsruhe 

Institute of Technology (KIT). The automatic chamber measurements are carried out on 36 lysimeters, i.e., soil cores with 1.0 m2 surface and a depth of 

1.4 m (Kiese et al., 2018). A subset of 18 out of 36 soil cores are translocated from the high-elevation site Graswang and the medium-elevation site 75 

Rottenbuch to the lower altitude sites (space-for-time-approach), referred to as Graswang in Fendt, Graswang in Rottenbuch or Rottenbuch in Fendt 

translocations to investigate the soils under climate change scenarios (Kiese et al., 2018). The lysimeter setup for these grasslands is shown in Fig. A1 of 

appendix A. Experiments on each lysimeter follow intensive or extensive management treatments, where extensive management includes up to three cuts 

and two manure applications, and intensive management includes up to six cuts and five slurry applications per year (Kiese et al., 2018). From each soil and 

treatment three replicates are considered, for instance, there are three Graswang in Fendt soil core replicates which are intensively managed as shown in Fig. 80 

A1. Notably, at the time of this study, sub-daily (up to 6 flux rates per day) data from 24 of the lysimeters being all lysimeters operated in Fendt (Fig. A1 a) 

and Graswang (Fig. A1 c), which are aggregated into daily are used according to availability of data for different years between 2014 and 2020. The soil 

properties of different replicates (N=3: L1-L3) are shown in Table 2.  

Switzerland FLUXNET Chamau  

Chamau (CH‐CHA) is a permanent grassland site that was established by ETH Zurich in 2005 (Feigenwinter et al., 2023) and is part of the FLUXNET 85 

initiative. This site is located in the Reuss River valley on the Swiss Plateau, approximately 30 km south of the city of Zurich, Switzerland, at an elevation 

of 393 m asl. Half-hourly eddy-covariance measurements of N2O and CH4 started at this site in 2012 (Merbold et al., 2014). Moreover, a N2O mitigation 

experiment, from 2015 to 2020, was conducted by separating two parcels at north and south of the site, continuing slurry fertilization on the control parcel 

in south and oversowing the north parcel with a clover seed mixture without fertilization (Fuchs et al., 2018). The measurements from the control parcel 

aggregated into daily values are used in this study, which represent an intensively managed site with cutting 4–5 times a year followed by liquid slurry 90 

application plus one slurry application in spring each year (Feigenwinter et al., 2023; Hörtnagl et al., 2025). 

Austria Neustift 

The Neustift grassland (AT-NEU) is an intensively managed meadow in the middle of a flat valley at the bottom of the Stubai valley in the Austrian alps, at 

an elevation of 970 m a.s.l (Hörtnagl & Wohlfahrt, 2014). The N2O and CH4 emissions at this site were measured between April 2010 and February 2012, 

and the management consisted of three cuts and one solid manure and slurry application in autumn each year, which was considered an intensively managed 95 

site (Hörtnagl & Wohlfahrt, 2014; Hörtnagel et al., 2018). At this site, fluxes were calculated via virtual disjunct eddy-covariance, providing half-hourly 

flux measurements (Hörtnagl & Wohlfahrt, 2014), which are aggregated to daily values for this study. 
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Soil Climate (Grassland) Replicate-Management Clay 0-10 cm  (%) Silt 0-10 cm(%) Sand 0-10 cm (%) SOC 0_10 cm (%) Nt 0_10 cm (%) C/N 0_10 cm pH 0_10 cm Bulk density 0_10 cm  (gr cm-3) Dataset assignment Data availability years Dataset size

Graswang L1-Intensive 55 42 3 11.4 1.2 9.48 6.40 0.52 Train 2020 277

Graswang L2-Intensive 38 43 19 8.7 0.81 10.74 5.43 0.73 Train 2020 273

Graswang L3-Intensive 59 35 6 7.9 0.83 9.53 6.02 0.68 Train 2020 269

Graswang L1-Intensive 61 36 3 10.9 1.15 9.43 6.56 0.55 Train 2014-2020 908

Graswang L2-Intensive 37 44 19 7.5 0.73 10.27 5.35 0.78 Train 2014-2020 1190

Graswang L3-Intensive 61 35 4 8.5 0.9 9.44 6.12 0.66 Train 2014-2020 1239

Graswang L1-Extensive 57 40 3 11.3 1.195 9.42 6.40 0.52 Train 2014-2020 1327

Graswang L2-Extensive 58 38 5 7.7 0.81 9.51 6.12 0.53 Train 2014-2020 1232

Graswang L3-Extensive 38 43 20 8.0 0.82 9.76 5.10 0.77 Train 2014-2020 1142

Fendt L1-Intensive 25 40 35 5.2 0.52 9.92 5.87 0.93 Train 2014-2020 1216

Fendt L2-Intensive 30 43 27 4.5 0.45 9.89 4.87 1.01 Train 2014-2020 1129

Fendt L3-Intensive 33 46 21 6.4 0.68 9.35 5.16 0.78 Train 2014-2020 1379

Chamau Chamau Intensive 19 45 36 3.2 0.33 9.79 6.50 0.94 Train/Test 2013, 2014, 2016, 2019,2020/ 2015 1420/ 320

Neustift Neustift Intensive 4 43 53 3.0 0.28 10.71 5.70 1.20 Train 2010-2011 259

Rottenbuch L1-Extensive(2014-2018), Intensive(2019-2020) 40 41 19 7.0 0.725 9.66 5.73 0.69 Test 2014-2020 1320

Rottenbuch L2-Extensive(2014-2018), Intensive(2019-2020) 24 42 34 4.3 0.44 9.75 5.34 0.95 Test 2014-2020 1452

Rottenbuch L3-Extensive(2014-2018), Intensive(2019-2020) 23 53 24 5.8 0.63 9.19 5.43 0.81 Test 2014-2020 1478

Rottenbuch L1-Intensive 24 43 33 4.4 0.47 9.32 4.84 0.93 Test 2014-2020 1554

Rottenbuch L2-Intensive 36 40 24 6.2 0.63 9.84 5.39 0.70 Test 2014-2021 1532

Rottenbuch L3-Intensive 28 49 23 5.9 0.65 9.08 5.18 0.80 Test 2014-2022 1354

Fendt L1-Extensive(2014-2018), Intensive(2019-2020) 27 42 30 5.5 0.57 9.72 5.72 0.86 Test 2014-2020 1755

Fendt L2-Extensive(2014-2018), Intensive(2019-2020) 31 42 28 4.4 0.45 9.69 4.90 0.96 Test 2014-2020 1399

Fendt L3-Extensive(2014-2018), Intensive(2019-2020) 34 45 21 6.4 0.69 9.32 5.26 0.81 Test 2014-2020 1317

Graswang L1-Extensive 60 35 5 8.5 0.87 9.72 6.07 0.65 Test 2020 284

Graswang L2-Extensive 58 39 0 3 11.1 1.13 9.86 6.45 0.55 Test 2020 284

Graswang L3-Extensive 37 44 19 8.1 0.75 10.80 5.20 0.80 Test 2020 283

Graswang

Fendt

Fendt

Graswang

 100 

Table 2 Soil properties of the different soils in various climates used in this study (Kiese et al., 2018; Soltani et al., 2018; Gilgen & Buchmann, 2009; Roth, 

2006; Hörtnagel et al., 2014). All soil properties refer to measurements in 0-10 cm depth.  

2.2 Input variables and model setup 

In this study we model the average daily N2O emissions based on the temporal and static drivers available in the collected dataset. The temporal drivers 

used by the model are the daily averages of soil moisture and temperature at 10 cm soil depth, total precipitation, and the occurrence of a fertilization event. 105 

The model also incorporates static inputs, such as soil pH and bulk density, to represent the soil’s chemical and physical properties across the different sites. 

Each individual data point of the problem can be expressed as Eq. 1: 

 

{
 
 

 
 
𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡−4 𝑆𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑡−4 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡−4 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡−4
𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡−3 𝑆𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑡−3 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡−3 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡−3
𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡−2 𝑆𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑡−2 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡−2 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡−2
𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡−1 𝑆𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑡−1 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡−1 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡−1
𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡 𝑆𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑡 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡 }

 
 

 
 

, {pH, BD}            {N2Ot}                                                                                          (1) 

 110 

 

 

The indices indicate the values of the features at different days in which day t is the current day. The average daily N2O emissions at day t is the target of the 

machine learning model. 

2.3 Dataset structure and pre-processing 115 

The availability of a diverse dataset that includes translocated soil cores among German grassland, also using data from Switzerland and Austria gives this 

study the opportunity to cover a variety of soils in different climates (Table 2), which is key in creating a generic model capable to transfer results across sites.  

At German sites, replicates sampled from individual grassland often exhibit varying soil properties, as they are taken from different sections of expansive 

grassland areas. Therefore, for training the model the data from each replicated lysimeter was used separately so that the model could learn the role of soil 

properties in more detail. Splitting the dataset to training and test sets is not done by random shuffling, but according to the objective of the study a different 120 

approach is taken. We split the dataset based on year and management technique and completely exclude the Rottenbuch soils from the model development 

process to consider it as an independent soil to assess the transferability of the model. For the training set, the following prerequisites are considered: 1) 

include treatments with a variety of soil properties, N2O emission patterns and climates; 2) include soils with intensive treatment to ensure that the model has 

enough data points with fertilization events to learn the role of fertilizer under different conditions; and 3) the data from Neustift was only used for training, 

as a grassland with highest altitude and lowest emissions. The training set includes around 13000 data sequences in total. 125 

Temporal Static Target 
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On the other hand, for the test set, 3 important criteria are considered according to the goals of the study: 1) Firstly, from the Chamau soil some years are used 

for training, and 1 year data used as a test set to show the ability of the model in gap-filling this site for unseen years; 2) secondly, from Fendt and Graswang 

soils, some of the lysimeters with extensive management are used for testing, 3) Finally, all the available data from the Rottenbuch site is held back for use 

as an independent test soil. The test set includes around 15000 data sequence. 130 

 

Along with properly splitting the dataset, data cleansing and pre-processing is crucial for training the ML model. In this study the quality checked measured 

data from which the gaps were excluded are used. In addition, scaling the data prior to training ensures faster convergence and improves model performance 

by preventing features with larger magnitudes from disproportionately influencing the learning process. The input drivers are all scaled via the Scikit-learn 

library robust scaler (Pedregosa et al., 2011) shown in Eq. 1. The choice of using robust scaler is made after investigating other options such as standardization 135 

and normalization (min–max scaler) for all or individual drivers according to their distribution. The robust scaler transforms each feature by removing the 

median and scaling it according to the interquartile range, making it robust to outliers. For each variable 𝑥, the scaled value 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is computed via Eq. 2: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑀𝑒𝑑𝑖𝑎𝑛(𝑥)

𝑄3(𝑥)−𝑄1(𝑥)
                                                                                                                                                                                                                                                     

(2) 

Moreover, the target value (daily N2O emission) is log transformed via natural logarithm (ln) for model setup, as its original values show a right-skewed 140 

distribution as shown in Fig. 1 for the training set. Therefore, the output of the model is generated at log scale and is subsequently needs to be back 

transformed to the actual emission scale via the exponential function.  

 

 

 145 

 

 

 

 

 150 

 

 

 

 

 155 

 

Figure 1 Histogram of (a) original and (b) log-transformed daily N2O-N emissions values at the training set used in this study. Max N2O emission value 

equals to 1155 𝜇𝑔𝑚−2ℎ−1, min value equals to 0.09 𝜇𝑔𝑚−2ℎ−1and average equals to 17.5 𝜇𝑔𝑚−2ℎ−1 among the 13000 training datapoints. 

N2O -N (µgm-2h-1) 

(a) N2O-N values present in the training set 
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(b) Log-transformed N2O-N values present in the training set 
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2.4 Model development and training procedure 

To build a model based on LSTM neural networks with high performance in simulating daily N2O emissions, different aspects such as the architecture of the 160 

neural network, scaling and transforming the data, selecting a proper loss function for training and hyperparameter tuning should be considered. In this section, 

the methods used in this study for model development are explained. 

2.4.1 LSTM model architecture 

Long short-term memory (LSTM) is a type of recurrent neural networks (RNN) that learns long-term dependencies in sequential data and is often used in 

speech recognition and time series processing (Hochreiter and Schmidhuber, 1997). As discussed in previous sections, simulation of daily N2O emissions 165 

from soil is more accurate if the role and changes in environmental conditions over several days are simulated using a sequential model. In this study, two 

different network architectures shown in Fig. 2 were implemented using the Keras library in Python (Chollet et al., 2015). Each architecture is investigated 

further with various configurations and hyperparameters to find the optimum model. 

The first architecture, Model A, firstly processed the temporal inputs (Eq. 1) via a set of LSTM layers. Subsequently, several dense layers that receive the 

output of the LSTM layers as well as a set of static inputs (pH and bulk density) are added to be processed by the model. 170 

In contrast, the second architecture, Model B, initially processes the static inputs via dense layers, then uses the processed information as an initial input to a 

set of LSTM layer (initializing the hidden state of first LSTM layer) and includes the temporal inputs at this stage.  

The models in this study are built with an attention mechanism. Attention in LSTM refers to a mechanism that allows the model to dynamically focus on 

specific parts of the input sequence when generating each output, improving performance by weighting relevant hidden states (Bahdanau et al., 2015).  

 175 

 

Figure 2 Two basic architectures of the LSTM tested in this study. 

2.4.2 Loss function 

The loss function used during training quantifies the error between the model’s predictions and the actual target values, guiding the optimization process to 

minimize this error. For the current imbalanced dataset, a custom loss function is used to highlight the importance of catching high peaks of N2O emissions 180 

which is formulated in Eqs. (3) and (4) as: 

 

𝑙𝑜𝑠𝑠 = 𝑎𝑏𝑠(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑),            (3) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠 ∗ 𝑒𝑙𝑜𝑠𝑠_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑙𝑜𝑠𝑠,          

  (4) 185 
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With ytrue and ypred representing the observed and predicted daily N2O fluxes, respectively. This loss function is significantly penalizing the model for high 

errors in peak values and showed a better performance comparing to the mean squared error (MSE), mean absolute error (MAE) as well as weighted mean 

squared (WMSE) error. In addition, loss_coefficient is a hyperparameter controlling the exponential weight further, with potential values shown in Table 3. 

2.4.3 Hyperparameter tuning 190 

Hyperparameter tuning is a key step in developing machine learning models, as it helps identifying the best-performing configuration for a given problem. 

Hyperparameters influence the model’s complexity, learning ability, and performance. The main hyperparameters used in this study and their tested ranges 

are shown in Table 3. In this study, Hyperband algorithm (Li et al., 2018) was used at initial stages to optimize the hyperparameters of the LSTM model, 

followed by manual adjustments based on dataset characteristics to improve the model’s ability in capturing fluctuations and rare high peaks more accurately. 

 195 

 

 

 

 

 200 

Table 3 Ranges of hyperparameters of the model considered for hyperparameter tuning in this study. 

2.4.4 Feature importance in LSTM 

This study applies the permutation feature importance (PFI) method, which calculates the contribution of each feature to the model’s estimation of N2O 

emissions. This technique shuffles the value of an individual feature in the dataset, calls the model and observes the degradation of the model performance, 

which is now producing results with this feature having shuffled values. Therefore, we define the relative importance metric of each feature as the degree of 205 

increase in the mean squared error (MSE) in comparison to the MSE in the original model, formulated in Eq. 5: 

 

Relative importance feature m = MSE PFI feature m - MSE original model                                                                                                                  (5) 

 

2.6. Post-processing and statistical analysis 210 

To assess model performance, we used the RMSE and relative RMSE, which is defined as the RMSE divided by the mean value of the target variable in 

percentage. In addition, for the analysis of the results time series plots for daily emissions as well as cumulative plots for yearly cumulative emissions are 

created in Matplotlib, Python. 

To report the results of different grassland systems in Germany, the model’s daily N2O estimations of individual soil replicates are generated and are finally 

aggregated on replicates of same treatment.  215 

Hyperparameter Values 

Learning rate [1e-2, 1e-3] 

Activation functions for dense layers [Tanh, Relu, Leaky relu, Linear] 

Activation functions for LSTM layers [Tanh, Relu] 

Number of neurons 20-65 

LSTM layers recurrent L2 regularization [1e-4,1e-3,1e-2] 

LSTM layers kernel L2 regularization [1e-4,1e-3,1e-2] 

Dense layers L2 regularization [1e-4,1e-3,1e-2,1e-1] 

Dropout [0.01,0.05,0.1, 0.2,0.5] 

Number of LSTM Layers 3-5 

Number of dense layers 2-3 

Loss function loss_coefficient [1,1.2, 1.5] 
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3 Results 

3.1 Comparison of model architectures 

In this study, two architectures of LSTM were explored as shown in Fig. 2 and architecture A (Fig. 2 a) demonstrated superior performance in capturing 

general N₂O emission patterns compared to Architecture B (Fig. 2 b). Consequently, the final model is built on architecture A, consisting of an input layer, 

three LSTM layers, an attention layer, the concatenate layer to add static drivers, a dense layer, a drop out layer and an output layer. The model receives a 220 

five-day sequence of temporal drivers, alongside with two static drivers as shown in Eq. 1.  

Table 4 compares the RMSE of some of the experiments conducted in this study to identify the optimal model configuration, in which different subsets of 

soil properties or length of input sequences (5 or 10 days) were tested. For each experiment the hyperparameter tuning is done extensively to obtain an 

optimum model fitting to the input. In the current dataset, Bulk density (BD) showed strong negative Pearson correlation of -0.9 to both soil organic carbon 

(SOC) and clay. While all these variables are key drivers of N₂O emissions, only bulk density was included in the model due to slightly better performance in 225 

capturing emission peaks. Adding correlated features reduces model’s accuracy, likely due to confusing the model with redundant features which do not 

provide extra information.  

The results presented in next section correspond to the best-performing model in catching low and high emissions as well as cumulative emissions (index 1 

in Table 4). 

 230 

Index Architecture Input soil properties Test RMSE (μgm−2h−1) Test relative RMSE Sequence length 

1 A BD, pH 18 270% 5 

2 A BD, pH 23 350% 10 

3 B BD, pH 22 340% 5 

4 A pH, SOC 19 290% 5 

5 A SOC, BD, Clay, pH 20 307% 5 

 

Table 4 Model specifications of 5 experiments compared in this study. The models are compared on the basis of the RMSE, the inputs they receive, and the 

length of the input sequence of days, while the temporal drivers are the same.  

3.2 Model performance 

The best model performed well in modelling daily emissions in the training set, with an RMSE of 34 𝜇𝑔𝑚−2ℎ−1and a relative RMSE of 200%. The model is 235 

also able to successfully estimate daily N2O emissions in the test set, with an RMSE of 18 𝜇𝑔𝑚−2ℎ−1, a relative RMSE of 270% and total bias of -12%. 

Having relative RMSE higher than 1 is a known effect of the imbalanced dataset. Figure 3 Shows the scatter plots of model performance on the training set, 

the test set.  

The model successfully captures the temporal fluctuations and magnitude of N2O emissions at the test sites in various instances, although the accuracy varies 

between soils as shown in Fig. 4. For most sites, the general emission pattern is simulated with a high degree of accuracy. However, in some cases, there is 240 

evidence of over- or underestimation of the magnitude of N2O emissions. For example, at Chamau and Fendt, the model predicted the overall variability of 

the emissions well, indicating that Chamau experiences higher peaks than other sites; however, in some cases the peak values were not accurately simulated 

(Fig. 4 a, b and c). At Graswang, the model tended to underestimate fluxes (Fig 4. d). 

To assess the generalisability of the model, the Rottenbuch soils (at the Fendt climate) were excluded from the training set and considered as independent test 

soils. These soils showed variable emissions across years, with peak fluxes exceeding 150 μg m⁻² h⁻¹ during warmer periods, particularly following fertilization 245 

events in 2015 and 2016 (Fig. 4 h and i), for which the model captures the patterns in most cases. On the other hand, fertilization during warmer periods in 

2017 and 2019 did not result in elevated fluxes, and the model shows significant errors for estimating this behaviour in several cases (Fig. 4 j and k). In 

general, the results show that N2O emissions are generally lower during colder seasons, and even fertilization during cold conditions does not lead to highly 

elevated fluxes; a pattern which is captured well by the model in most cases.  

Figure 5 shows the comparison between observed and modelled annual cumulative emissions achieved by aggregating the daily fluxes. The results show that 250 

the model creates an accurate estimation of annual emissions for some soils and in different years with a slight error rate, such as Rottenbuch in Fendt 2015 
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intensive and Rottenbuch in Fendt 2015, 2016, 2017 extensive. But, higher overestimation on annual total emissions are evident for soils such as Rottenbuch 

in Fendt 2016, 2017, 2020 intensive as well as Chamau (Fig. 5 a and b).  

 

  255 

Figure 3 Hexbin plots with density colour bar comparing observed (x-axis) with simulated (y-axis) daily N2O fluxes on a natural log (ln) scale for (a) the 

training set and (b) the whole test set, (c) the subset of test set which consists of the independent test soils of Rottenbuch in Fendt. Hexagon colours show 

the number of predictions falling into them, appearing as lighter (yellow) colours for bins with more data points and darker colours (blue) with less data 

points.  

3.4 Permutation feature importance (PFI) 260 

Three configurations of PFI analysis were performed on the test set to provide a comprehensive assessment of the relative importance of individual drivers. 

In the first configuration, PFI was applied on the entire test dataset. This analysis revealed that soil temperature at a depth of 10 cm was the most influential 

feature, followed by soil pH and fertilization (Fig. 6 a) while all other input features also show a high relative importance. In the second configuration, PFI 

was applied to individual sites in the test set in order to investigate the the importance of different drivers at site-scale N2O dynamics. The results indicate 

that at most sites all temporal drivers were the highly important features for N₂O dynamics (Fig. 6 b-f). However, at the Graswang site BD and pH show a 265 

very high importance, together with soil temperature (Fig. 6 d), due to high variability in soil properties within the soil cores of this grassland which affect 

their N2O emission (Table 2). Compared to the soil lysimeter systems in Germany including a diverse set of soils with variability in pH and BD, there is 

only one soil type included at the Chamau site which explains the zero relative importance of these variables at Chamau in Fig. 6 b. 

In an additional analysis, we studied the varying importance of features across the five-time steps individually, shown in Fig. 7, which further highlights the 

role of dynamic environmental conditions in driving emissions and reinforces the need to incorporate temporal variability in emission modeling 270 

frameworks. 

Ln N2O-N (µgm-2h-1) observed 

 (a)  Training set 

Ln N2O-N (µgm-2h-1) observed 

 (b)  Test set 

Ln N2O-N (µgm-2h-1) observed 

 (c)  Independent soils subset of test set 
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Figure 4 Time series of observed and modelled N2O fluxes in different soils at different climates and years for the test set including RMSE, relative RMSE 

and bias for individual soils. Note that the axis scales differ between panels to enable visibility of the data and visualize the differences between N2O 
emission rates at different sites in the experiment. 275 

 

 

 

 

 280 

 

 

Figure 5 Cumulative observed and modelled annual N2O emissions across multiple years for different sites representing various soils in climates: (a) all 
soils combined (b) enlarged version showing only the German soils including the independent test soil, Rottenbuch in Fendt. 
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 285 

Figure 6 Relative feature importance (x-axis) of drivers (y-axis) in the test set based on MSE calculated by PFI for the complete test set and individual sites. 

 

Figure 7 PFI feature importance at individual days, in which t index indicates the current day. 
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4 Discussion 

In this study, a long short-term memory (LSTM) neural network was employed to model daily N₂O emissions from grasslands in Central Europe, based on 290 

soil properties as well as key environmental and management drivers over a 5-days window.  

Our study makes a novel contribution to simulating soil N2O emission from grassland soils using ML approaches. This is achieved by building a 

comprehensive problem setup, collecting a large and diverse dataset of 28,000 data points which encompasses a wide range of soil properties and climatic 

conditions (Table 1 and 2), incorporating an independent test site, and accounting for the role of environmental changes on N2O emissions within several 

days in a sequential setup modelled by the LSTM. By contrast, recent studies (Table 5) which used ML to model GHG emissions have generally relied on 295 

smaller datasets from single sites and many of them used classical machine learning approaches with non-sequential data.  

Adjuik et al. (2022) used data of variable cropping systems, sites and fertilization amendments to estimate CO2 emissions using minimal predictors. However, 

train and test set split were performed randomly on the whole dataset meaning that there was no independent test site available for evaluation. Similarly, Jiang 

et al. (2023) collected a diverse global dataset, using 52 studies of CH4 and N2O from paddy fields, and applied an ensemble model combining classical ML 

approaches to simulate daily emissions of a single site (3 years paddy field experiment in Kushan, China) on 558 datapoints (Jiang et al., 2023).  In another 300 

study, Saha et al. (2021) used a classical ML approach to model sub-daily N2O emissions from two fertilised maize systems in the US, including an independent 

test site located 2 km from the training sites, but with a significantly smaller dataset and less variability in climatic conditions.  

In only one other study, LSTM was used to simulate CO₂ and N₂O emissions for a single site in Quebec, Canada by Hamrani et al., 2020, and was compared 

with a set of ML algorithms in 3 categories: classical ML, shallow learning and other deep learning algorithms. This study demonstrated that only the LSTM 

model was able to provide a good prediction of N2O fluxes, and was also more accurate than the process-based Root Zone Water Quality Model (Hamrani et 305 

al., 2020).  

Study Gas Data source Data size Input drivers Land type ML algorithms 

Current study N2O -Germany, Switzerland, Austria 

-10 years 

28000 Soil temperature, soil moisture, precipitation, 

occurrence of fertilization, soil pH, soil BD 

Grassland -LSTM (deep learning) 

 

Adjuik et al., 2022 CO2 Multiple sites from GRACENET 7863 Soil temperature, Air temperature, fertilizer 

amendment class, soil classification, and crop 

type 

Cropland -Random forest 

-Support vector regression  

-Gradient boosting (best) 

Jiang et al., 2023 CH₄, 

N₂O 

-Kunshan, China 

-Three years 

CH4: 552 

N2O: 558 

Soil temperature, soil moisture or Irrigation 

volume, air temperature (maximum, minimum, 

and average), soil redox potential, rainfall, wind 

speed, and radiation 

Paddy fields -Random forest 

-K-nearest neighbours 

-Gradient boosting 

-Linear regression  

-Ensemble model of all (best) 

Jiang et al., 2023 CH4, 

N2O 

-Cumulative fluxes global dataset 

collected from 52 studies 

CH4: ~60 

N2O: ~60 

Soil organic carbon, pH, texture, inorganic 

nitrogen fertilizer application, and non-flooded 

days 

Paddy fields  -Ensemble model of random forest, k-

nearest neighbours, gradient boosting and 

linear regression  

 

Saha et al., 2021 N2O -2 sites in US Midwest 

-Six years 

2246 Soil moisture, air temperature, days after 

fertilization, soil texture, soil carbon, 

precipitation, nitrogen (N) fertilizer rate or 

inorganic N availability in the soil 

Corn rotation  -Random forest model in conjunction with a 

process-based model (SALUS) 

Hamrani et al., 2020 CO2, 

N2O  

-Quebec, Canada 

-Five years 

126 soil temperature,  

soil volumetric water content, air temperature, 

precipitation and humidity, wind speed, surface 

pressure, and crop nitrogen uptake  

Drainage and 

water table 

management 

research site 

-LSTM (deep learning) 

-Random forest (classical ML) 

-Feed-forward neural networks (shallow 

learning) 

Table 5 Review of several studies which applied different ML approaches for modelling soil N2O emissions 

https://doi.org/10.5194/egusphere-2025-5155
Preprint. Discussion started: 19 November 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

4.2 Model performance and role of input drivers 

Analysis of the dataset revealed the interaction between the selected input variables for the model. For instance, even under favourable temperature conditions 

(warmer periods), fertilization alone did not consistently result in immediate N₂O peaks, which suggests that increased nitrogen availability, leads to increased 310 

emissions only when also other environmental conditions such as soil moisture are conducive. Another important aspect about the N₂O emissions is that the 

duration of elevated emissions is influenced by the interplay of environmental variables. For example, Fig. 4 c, h and j show instances of continued changes 

in N₂O emission magnitudes extending over multiple days following fertilization events at different soils in August which is also captured by the LSTM 

model. 

In addition to the emission peaks following fertilization, several high peaks were observed on days with no fertilization, such as in Fendt in Fendt extensive 315 

in June 2016 (Fig. 4 b) as well as Graswang in Graswang extensive in January 2020 (Fig. 4 d). In the first case, the model successfully simulated the peak 

(earlier timing) caused by changes in the soil temperature in conductive soil moisture, but in the latter one the model simulated fluctuations but 

underestimated the magnitudes of the peaks. 

Towards developing the core model, we conducted a series of experiments to assess the impact of varying input sequence length and feature set on model 

performance, in which sequence lengths of 5, 7 and 10 days were tested. While longer sequences have the potential to capture long-term soil processes, their 320 

benefits were not evident in the current dataset, likely due to the dataset's limited occurrence of such events. For example, in the current dataset there are very 

rare cases where the high peaks after fertilizations occur later than 5 days. This suggests that the value of longer sequences may become more apparent when 

they are applied to larger and more diverse datasets. We also tested an expanded feature set to incorporate other important drivers of N₂O emissions such as 

the rate of fertilizer nitrogen (total or inorganic N), which did not improve the results due limited variability across sites and events, offering little additional 

information to improve predictive accuracy. However, if the model is to be applied to sites with more variable fertilizer practices, including explicit N 325 

application rates would likely enhance model performance. 

4.3 Feature importance analysis 

The PFI analysis on the whole test set and individual soils, consistently demonstrate that all input features contribute significantly to model performance 

(Fig. 6). The substantial importance of both soil and meteorological features indicates that the model captured not only the meteorological effects, but also 

the role of soil parameters. Soil temperature, ranks the most important features which aligns with previous studies highlighting its critical role in regulating 330 

microbial processes (Wang et al., 2021; Butterbach-Bahl et al., 2013; Hamrani et al., 2020). Soil temperature might often be unavailable at many sites 

around the world, but in case of high Pearson correlation with maximum air temperature (0.86 in our dataset), the latter can be used as a substitute with 

minimal impact on model performance.  

Fertilization events lead to pronounced short-term peaks in emissions, however, because in our study such events are infrequent, occurring maximum of five 

times per year, their permutation does not result a significant decline on model’s overall performance comparing to more consistently present features. 335 

Nevertheless, fertilization still shows relatively high importance in PFI analysis and Fig. 4 confirms that the model effectively captures the associated 

emission peaks.  

Soil pH and BD also appear as key drivers in the general PFI analyses, likely due to their influence on soil-specific emission patterns. BD serves as a proxy 

for soil porosity and compaction, which are factors known to influence oxygen availability strongly impacting microbial activity and importance of nitrification 

and denitrification processes (Li et al., 2024; Butterbach-Bahl et al., 2013). Moreover, pH values affect the microbial processes as near neutral soil pH values 340 

(6.6 - 8.3) are optimal for denitrification (Šimek et al. 2002), while low soil pH (<5.5) inhibits N2O reductase, the enzyme that converts N2O to N2 during 

denitrification (Samad et al., 2016).  
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Despite their lower rank in Fig. 6 a, soil moisture and precipitation remain influential showing considerable relative importance, suggesting their added 

value for estimating N₂O emissions. Fig. 7 proves that soil moistures at three-days window are among top 10 influential features in model’s estimations. An 

expanded dataset with more variety in emission patterns which are impacted by these two drivers could highlight their roles further. 345 

4.4 Comparison to process-based models 

Previous studies have evaluated N2O dynamics with biogeochemical models using data from laboratory experiments and grassland sites under different 

climatic and soil conditions.  

Zimmermann et al. (2018) found relative root mean square error (RMSE) values ranging from 140–234% in DayCent, 261–503% in DNDC-9.4, 352–652% 

in DNDC-9.5, and 160–2079% in ECOSSE based on daily data for 4 sites in the Republic of Ireland. Fitton et al. (2014) found relative RMSE values of 350 

143%, 212%, and 423 % for DayCent across 3 grassland sites in United Kingdom. By comparison, the relative RMSE for the LSTM model in our study is in 

average 270% across the full test set. However, for 80% percent of site-years the relative RMSE ranged from 67% to 160%. Only in 2017 for Rottenbuch in 

Fendt soil the RMSE was 467% due to poor model performance in estimating the unusually low emissions following fertilization (Fig. 4j).  

At the Chamau site, Fuchs et al. (2020) validated biogeochemical models, finding relative RMSE values of 168–173% for DayCent, 221% for PaSim, and 

158–161% for APSIM. These values are slightly higher than the RMSE of the LSTM simulations for Chamau in our study (148%). Similarly, Denk et al., 355 

2019 reported the RMSE of the biogeochemichal model LandscapeDNDC for Chamau during summer 2013 as 116.66 𝜇𝑔 𝑚−2ℎ−1 of N2O-N, higher than the 

RMSE of 55 𝜇𝑔 𝑚−2ℎ−1 of our LSTM model during the same period. In addition, in some instances, LDNDC showed a delay of two days in capturing 

emissions peaks after fertilization or rewetting, which is a known issue also reported by Gaillard et al., 2018. In our LSTM model, although timing errors 

occurred in some instances (e.g., peak emissions in June, Fig. 4a–b), but the model generally captured the timing, continuity and magnitude of emission peaks 

correctly in many other cases (Fig. 4) so the delays are not characterized as a general issue in the LSTM simulations 360 

Bias values also varied widely across biogeochemical models. Fitton et al. (2014) found relative biases for DayCent ranging from −84% to +10% for the UK 

grassland sites. Zimmermann et al. (2018) reported relative biases for Irish grassland sites, ranging from −5% to 88% for DayCent, −116% to −71% for 

DNDC-9.4, −48% to 87% for DNDC 9.5, and −1395% to 40% for ECOSSE. At Chamau, Fuchs et al. (2020) reported moderate values of −35% to +15% for 

DayCent, +41% for PaSim and −47% to −43% for APSIM. By comparison, the LSTM model in our study showed bias values ranging from −126% to +30% 

across soils in different years (Fig. 4). The extreme value (−126%) again corresponded to the poor performance in 2017 at Rottenbuch in Fendt soil (Fig. 4j). 365 

However, in other years at the same soil (Fig. 4e–h), bias values were much lower (−1.61% to +10%). 

Overall, the results show that the LSTM model can be promising alternative compared to established process-based biogeochemical models for predicting 

N2O emissions from grassland soils, providing robust performance in RMSE and bias for most site-years, especially in correctly capturing emission magnitude 

and timing. 

4.5 Implications and limitations    370 

The performance of the LSTM model in capturing daily emission of the test set suggests that the model has potential for both gap-filling and predictive 

applications in similar alpine grassland environments, with possible utility for upscaling emissions across comparable regions. However, several limitations 

should be acknowledged. A key challenge with LSTM models lies in their limited interpretability compared with non-recurrent models due to complex 

recurrent structure. Moreover, the dataset exhibits a class imbalance, as it includes infrequent but high-magnitude emission peaks alongside prolonged periods 

of low emissions. This imbalance complicates the model’s ability to learn the drivers of extreme events.  375 

While this and several other studies have demonstrated the promise of machine learning (ML) models for simulating soil greenhouse gas (GHG) emissions, 

the full potential of these approaches remains underexplored. We identify three key directions for future research that could further advance the application 

of ML in this domain. Firstly, expanding the dataset to encompass more geographically and climatically diverse sites, along with a wider range of management 

practices would allow for the development of more generalized N₂O emission models for grasslands across different agroecosystems. Secondly, recent 

advancements in deep learning models for time series forecasting, such as transformer neural networks (Vaswani et al., 2017), could be leveraged in 380 

combination with better explainable AI tools to further enhance the progress in development of the generalized model. Transformers have demonstrated 
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significant potential in time series modelling because of their ability to capture long-range dependencies and handle multivariate data effectively (Zerveas et 

al., 2021). Unlike traditional recurrent models such as LSTM, transformers process entire sequences in parallel, making them highly scalable and efficient 

(Vaswani et al., 2017). Finally, other versions of the machine learning models which are trained with air temperature and precipitation instead of soil 

temperature and moisture could be assessed using a more diverse dataset, enabling N₂O emission predictions even where direct soil measurements are missing. 385 

5 Conclusion 

This study demonstrates the effectiveness of an LSTM model in capturing temporal dynamics of daily N₂O emission data of several grassland sites in Central 

Europe, highlighting the model's suitability for predicting soil N₂O emissions. By collecting a unique dataset from multiple grasslands sites and treatments, 

we developed a generic model capable of accurately predicting emissions across diverse conditions. Notably, the model's performance remained robust when 

tested on independent soil that was not used for training, suggesting good transferability. This model can therefore be used not only as a gap-filling model, 390 

but potentially to regionally upscale emissions to alpine grasslands for which the input measurements are available. Future work should aim to: (1) expand 

the dataset to include a broader and more diverse dataset, both in terms of geographic coverage and input drivers, enhancing the model’s robustness and 

applicability at larger scales; and (2) explore recent advances in deep learning, such as transformer models, to further improve prediction accuracy and model 

interpretability.  

 395 

Appendix A 
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Figure A1 Scheme of lysimeter replicates originated or translocated in different grasslands, Graswang (DE-Gwg), Rottenbuch (DE-RbW), and Fendt (DE-

Fen) within the TERENO Pre-Alpine Observatory in Germany (Kiese et al., 2018). 

DE-Gwg 864m asl 

DE-RbW 769m asl 

DE-Fen 595m asl 

 

Single lysimeter 

Lysimeter unit 

Service unit 

Translocation to lower elevation 

Intensive management Extensive management 
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 420 

Soil Replicate-Management Mean Std Min Max 

Neustift  20.87 6.08 7.94 37.89 
Chamau  43.84 9.02 16.93 54.98 
Fendt in Fendt L1-Intensive 42.04 6.78 17.85 54.97 
Fendt in Fendt L2-Intensive 40.34 6.24 18.22 51.47 
Fendt in Fendt L3-Intensive 41.64 6.99 17.85 54.58 
Fendt in Fendt L1-Extensive (2014-2018), Intensive (2019-2020) 42.96 6.67 17.85 53.90 
Fendt in Fendt L2-Extensive (2014-2018), Intensive (2019-2020) 40.09 7.44 16.09 53.90 
Fendt in Fendt L3-Extensive (2014-2018), Intensive (2019-2020) 43.51 7.86 17.85 54.59 
Graswang in Fendt L1-Intensive 44.44 7.22 17.28 56.14 
Graswang in Fendt L2-Intensive 43.54 6.92 19.37 53.39 
Graswang in Fendt L3-Intensive 46.25 5.90 21.01 53.56 
Graswang in Fendt L1-Extensive 45.76 7.40 19.60 57.05 
Graswang in Fendt L2-Extensive 43.64 7.04 14.90 57.65 
Graswang in Fendt L3-Extensive 40.78 6.74 19.60 54.34 
Rottenbuch in Fendt L1-Intensive 41.59 6.34 16.90 51.03 
Rottenbuch in Fendt L2-Intensive 38.97 6.25 15.56 51.70 
Rottenbuch in Fendt L3-Intensive 43.36 6.58 17.07 52.79 
Rottenbuch in Fendt L1-Extensive (2014-2018), Intensive (2019-2020) 41.68 5.55 17.68 50.20 
Rottenbuch in Fendt L2-Extensive (2014-2018), Intensive (2019-2020) 42.42 7.13 15.94 50.67 
Rottenbuch in Fendt L3-Extensive (2014-2018), Intensive (2019-2020) 44.05 7.26 17.63 53.69 
Graswang in Graswang L1-Intensive 47.15 7.80 13.38 58.15 
Graswang in Graswang L2-Intensive 46.73 5.41 18.37 53.28 
Graswang in Graswang L3-Intensive 48.05 6.20 17.28 55.53 
Graswang in Graswang L1-Extensive 47.89 5.78 16.98 55.85 
Graswang in Graswang L2-Extensive 49.08 6.42 19.37 57.94 
Graswang in Graswang L3-Extensive 47.89 5.63 21.19 55.85 

 

(a) soil moisture statistics of the soils 

Soil Replicate-Management Mean Std Min Max 

Neustift  9.36 6.76 0.31 19.41 
Chamau  12.09 6.46 1.18 25.08 
Fendt in Fendt L1-Intensive 10.80 6.82 0.49 24.40 
Fendt in Fendt L2-Intensive 10.55 6.91 0.25 24.38 
Fendt in Fendt L3-Intensive 11.02 6.86 0.40 24.42 
Fendt in Fendt L1-Extensive (2014-2018), Intensive (2019-2020) 10.87 6.98 0.23 25.09 
Fendt in Fendt L2-Extensive (2014-2018), Intensive (2019-2020) 10.88 6.74 0.56 24.31 
Fendt in Fendt L3-Extensive (2014-2018), Intensive (2019-2020) 10.92 6.91 -0.77 24.82 
Graswang in Fendt L1-Intensive 10.53 6.87 0.63 24.74 
Graswang in Fendt L2-Intensive 10.73 6.74 0.45 24.79 
Graswang in Fendt L3-Intensive 10.86 6.80 -0.44 24.59 
Graswang in Fendt L1-Extensive 10.79 6.86 0.14 24.31 
Graswang in Fendt L2-Extensive 11.42 6.66 1.02 25.14 
Graswang in Fendt L3-Extensive 10.68 6.80 -1.28 24.38 
Rottenbuch in Fendt L1-Intensive 10.83 6.72 -0.36 25.14 
Rottenbuch in Fendt L2-Intensive 11.07 6.97 -0.22 24.96 
Rottenbuch in Fendt L3-Intensive 10.75 6.76 -0.30 24.58 
Rottenbuch in Fendt L1-Extensive (2014-2018), Intensive (2019-2020) 10.48 6.59 -0.26 24.92 
Rottenbuch in Fendt L2-Extensive (2014-2018), Intensive (2019-2020) 11.16 6.56 0.74 24.40 
Rottenbuch in Fendt L3-Extensive (2014-2018), Intensive (2019-2020) 10.82 6.68 -0.36 24.48 
Graswang in Graswang L1-Intensive 9.40 6.93 -1.35 23.06 
Graswang in Graswang L2-Intensive 8.89 6.70 -1.35 22.20 
Graswang in Graswang L3-Intensive 9.31 6.80 -1.21 22.32 
Graswang in Graswang L1-Extensive 9.34 6.64 -0.71 22.64 
Graswang in Graswang L2-Extensive 9.28 6.50 -1.06 22.18 
Graswang in Graswang L3-Extensive 9.45 6.62 -1.43 22.73 

 

(b) soil temperature statics of the soils 
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Soil Replicate-Management Mean Std Min Max 

Neustift  12.54 10.41 0.11 48.86 
Chamau  70.11 114.03 -739.12 1155.83 
Fendt in Fendt L1-Intensive 5.84 13.56 -25.01 248.33 
Fendt in Fendt L2-Intensive 4.52 7.79 -26.17 160.07 
Fendt in Fendt L3-Intensive 11.44 30.64 -25.68 707.50 
Fendt in Fendt L1-Extensive (2014-2018), Intensive (2019-2020) 6.27 19.81 -30.72 357.82 
Fendt in Fendt L2-Extensive (2014-2018), Intensive (2019-2020) 6.13 12.79 -15.00 192.32 
Fendt in Fendt L3-Extensive (2014-2018), Intensive (2019-2020) 14.97 48.18 -24.85 750.38 
Graswang in Fendt L1-Intensive 7.16 35.14 -25.57 960.49 
Graswang in Fendt L2-Intensive 5.77 14.12 -26.52 288.06 
Graswang in Fendt L3-Intensive 6.10 16.39 -20.97 326.71 
Graswang in Fendt L1-Extensive 6.09 17.05 -28.28 428.09 
Graswang in Fendt L2-Extensive 4.88 8.21 -26.73 164.57 
Graswang in Fendt L3-Extensive 3.52 5.80 -27.29 79.14 
Rottenbuch in Fendt L1-Intensive 4.30 10.84 -30.25 226.26 
Rottenbuch in Fendt L2-Intensive 4.40 13.25 -22.33 275.85 
Rottenbuch in Fendt L3-Intensive 6.09 16.04 -10.27 323.24 
Rottenbuch in Fendt L1-Extensive (2014-2018), Intensive (2019-2020) 2.84 4.03 -15.93 52.58 
Rottenbuch in Fendt L2-Extensive (2014-2018), Intensive (2019-2020) 4.09 6.15 -14.12 81.62 
Rottenbuch in Fendt L3-Extensive (2014-2018), Intensive (2019-2020) 5.68 10.92 -13.35 132.58 
Graswang in Graswang L1-Intensive 14.14 36.82 0.22 513.37 
Graswang in Graswang L2-Intensive 11.78 26.53 1.19 230.11 
Graswang in Graswang L3-Intensive 9.01 22.17 -0.48 283.05 
Graswang in Graswang L1-Extensive 11.37 21.43 1.14 222.33 
Graswang in Graswang L2-Extensive 8.33 15.67 0.46 103.26 
Graswang in Graswang L3-Extensive 4.90 5.96 1.12 49.66 

 

(c) N2O statistics of the soils 435 

Table A1 Statistics of the soils in different climates with respect to (a) soil moisture at 0–10 cm depth, (b) soil temperature at 0–10 cm depth, and (c) daily 

N2O emissions. 
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