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Abstract. The ensemble Kalman filter (EnKF) is widely used for state estimation in chaotic dynamical systems, including

the atmosphere and ocean. However, the required ensemble size for accurate state estimation remains unclear. In this study,

we define filter accuracy based on its time-asymptotic performance relative to the observation noise. We then investigate the

minimum ensemble size, m∗, required to achieve this accuracy, linking it to the degrees of instability in the chaotic dynamics.

Since the well-defined characteristic numbers of dynamical systems called the Lyapunov exponents (LEs) quantify the time-5

asymptotic exponential growth or decay rates of infinitesimal perturbations, we define the degrees of instability N+ by the

number of positive LEs. In the EnKF, capturing such instabilities with limited ensemble is crucial for achieving long-term

filter accuracy. Therefore, we propose an ensemble spin-up and downsizing method within data assimilation cycles. Numerical

experiments applying the EnKF to the Lorenz 96 model show that the minimum ensemble size required for filter accuracy

is estimated by m∗ = N+ + 1. This study provides a practical estimate for the minimum ensemble size based on a priori10

information about the target dynamics, along with a method to achieve long-term accuracy.

1 Introduction

Many geophysical systems, including the motions of the atmosphere and ocean, are modeled as dissipative dynamical systems

whose trajectories converge to compact attractors. These dynamics often exhibit chaotic behavior, characterized by sensitivity

to initial conditions, which renders long-term forecasts unreliable (Kalnay, 2002). Therefore, quantifying the degree of instability15

in chaotic dynamics is essential. One approach to characterizing instability is through tangent-linear approximations of dynamical

systems, known as Lyapunov analysis. The degree of instability is quantified by the Lyapunov exponents (LEs), which are

defined as the exponential growth or decay rates of infinitesimal perturbations in the tangent space (Eckmann and Ruelle,

1985). For continuous-time dynamical systems, such as ordinary differential equations, one of the LEs is zero, corresponding

to perturbations parallel to the vector field. At each point on the attractor, the tangent space is decomposed into unstable,20

neutral, and stable subspaces, spanned by basis vectors with positive, zero, and negative exponential rates in the infinite time

limit. We focus on the dimensions of these subspaces. The numbers of positive and non-negative LEs, denoted by N+ and N0,

respectively, represent the degrees of freedom of unstable and unstable-neutral perturbations in the tangent space, respectively.

By definition, it follows that N0 ≥N+.
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We consider Bayesian data assimilation for state estimation in chaotic dynamical systems, where noisy observations are25

obtained at discrete time steps. The ensemble Kalman filter (EnKF) is widely used for this purpose. It estimates uncertainty

in the forecast using an ensemble of state vectors and updates the mean and covariance via Bayes’ rule. We focus on a

deterministic version, the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001). The ensemble covariance, Ct,

characterizes forecast uncertainty through its eigenpairs, with the eigenvalues quantifying the magnitude of variability and the

eigenvectors specifying the principal directions along which this variability occurs. In the analysis step, corrections are applied30

more strongly in directions with higher forecast uncertainty. In general, the rank of the ensemble covariance Ct is less than the

ensemble size m, i.e., rank(Ct)≤m−1. Moreover, in geophysical applications, m is limited because each ensemble member

incurs a high computational cost. Therefore, it is crucial to estimate uncertain directions with a limited ensemble. If the ETKF

underestimates an unstable direction, the state estimation error is not sufficiently corrected and grows to the size of the attractor.

This phenomenon is called filter divergence and must be avoided. To mitigate this problem, covariance inflation techniques35

artificially increase the ensemble spread to compensate for the underestimation of uncertainty, thereby helping to prevent filter

divergence.

Mathematical studies often focus on the long-term behavior of the analysis error. The key objective is to demonstrate that

the mean squared error remains of order r2 when the observation noise level r is sufficiently small compared with the attractor

size. This property is referred to as filter accuracy. Establishing filter accuracy ensures that filter divergence does not occur.40

Takeda and Sakajo (2024) analyzed the ETKF for dissipative dynamical systems and proved filter accuracy under the large-

ensemble condition m≥Nx + 1, provided that sufficient inflation is applied. Because the required ensemble size, Nx + 1, is

impractical for most high-dimensional applications, it is important to identify a more relaxed lower bound m≥m∗ depending

on the system. Under more idealized assumptions, González-Tokman and Hunt (2013) investigated the lower bound of m for

the ETKF. They proved that for discrete-time dynamical systems, if m≥N+, the analysis error is bounded by the order of the45

observation noise. The proof relies on the following assumptions: the noise is sufficiently small; the initial ensemble is close to

the true state and concentrated on the unstable subspace. Their analysis has two limitations: (i) it applies only to discrete-time

systems without zero LEs; and (ii) the assumptions on the initial ensemble are not practically verifiable. Nevertheless, their

study suggests that the minimum ensemble size is m∗ = N+ + 1. Related studies (Trevisan and Uboldi, 2004; Trevisan et al.,

2010; Trevisan and Palatella, 2011; Bocquet et al., 2017; Bocquet and Carrassi, 2017) investigated the use of the unstable50

subspace in data assimilation, known as Assimilation in Unstable Subspace (AUS). These works mainly consider systems with

zero LEs and argue that correcting the state in the N0-dimensional unstable-neutral subspace is crucial for filter performance.

We review results directly related to the ETKF. Theoretical analyses for linear systems in (Bocquet et al., 2017; Bocquet and

Carrassi, 2017) suggest that the rank of the ETKF covariance is asymptotically bounded by N+ due to the exponential decay

of uncertainty in the stable subspace and the slower decay in the neutral subspace under some conditions. They also present55

numerical results for the ETKF applied to the Lorenz 96 model (Lorenz, 1996) with 40 variables over a finite-time interval. In

this experiment, uncertainty in the neutral direction does not sufficiently decay without assimilating observations. As a result,

the rank of the covariance should be larger than N0 (i.e., m≥N0 + 1 is required) so that the time-averaged analysis error

remains small within the finite-time interval. Similar findings are reported in Carrassi et al. (2022) using the Quasi-Geostrophic
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model (Reinhold and Pierrehumbert, 1982) and the Modular Arbitrary-Order Ocean-Atmosphere Model (De Cruz et al., 2016).60

Based on these results, the minimum ensemble size is estimated as m∗ = N0 +1 when focusing on the time-averaged analysis

error within a finite-time interval. However, these results do not address the time-asymptotic accuracy of the ETKF.

In this study, we focus on the asymptotic accuracy of the ETKF relative to the order of the observation noise. In this setting,

uncertainty in the neutral direction will decay in the long-time limit. Hence, we conjecture that the minimum ensemble size for

asymptotic accuracy of the ETKF is65

m∗ = N+ + 1, (1)

where only the unstable directions are tracked by the forecast ensemble covariance. In the numerical experiments presented

in this study, we use dynamical systems with a single zero LE (i.e., N0 = N+ + 1). In general, it holds that N+ + 1≤N0

for continuous-time dynamical systems. For this case, we still conjecture that the minimum ensemble size is m∗ = N+ + 1.

Therefore, we use N+ rather than N0 to represent the minimum ensemble size throughout the paper. To verify our conjecture,70

we conduct numerical experiments with the ETKF applied to the Lorenz 96 model with 40 variables. We estimate the minimum

ensemble size m∗ so that the asymptotic analysis error is bounded by the order of the observation noise when an appropriate

multiplicative inflation factor is chosen. We then compare this value with the dimension of the unstable subspace N+, computed

via Lyapunov analysis. In our experiments, we also introduce an ensemble downsizing method for the ETKF: we begin with

a sufficiently large ensemble size, m = Nx + 1, and reduce it to a smaller size after a fixed spin-up time. This procedure is75

designed to generate a small but accurate ensemble, with its mean close to the true state and its perturbations aligned with

the unstable subspace. Although our target model is the same as that in (Bocquet and Carrassi, 2017), our objective differs

in that we focus on asymptotic accuracy and its dependence on the order of the observation noise. Numerical studies from

this perspective are important because they define and clarify the ensemble size below which filter divergence of the ETKF

cannot be avoided, even when accurate observations and appropriate inflation are used. Moreover, the error bound by order of80

observation noise enables further mathematical analysis of the ETKF. Our approach is applicable when the LEs of the target

dynamical system can be estimated, and it offers practical guidance for selecting ensemble size in high-dimensional ETKF

applications.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the basics of Lyapunov analysis. In Sect. 3,

we define the ETKF with the ensemble downsizing method. In Sect. 4, we present the numerical results with the Lorenz 9685

model, combining Lyapunov analysis and the ETKF. In Sect. 5, we summarize our results and outline future directions. We also

discuss the consistency between our findings and those of Bocquet and Carrassi (2017) in estimating the minimum ensemble

size, highlighting differences in objectives.
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2 Characterizing the degrees of instability in dynamics

2.1 The Lyapunov exponents and their computation90

Let Nx ∈ N, we consider the dynamics governed by

d

dt
x(t) = f(x(t)), t > 0 (2)

with x(0) = x0 ∈ RNx , where f : RNx → RNx is a smooth vector field. To study the instability of the dynamics, we examine

the evolution of a perturbation δx(t) ∈ RNx , defined as the difference between two trajectories separated by δx0 ∈ RNx at

t = 0. Assuming δx(t) is sufficiently small and smooth, its evolution is approximated by the linearization of Eq. (2):95

d

dt
δx(t) = Jf (x(t))δx(t), t > 0 (3)

with δx(0) = δx0, where Jf (x(t)) denotes the Jacobian matrix of f at x = x(t). Eq. (3) is referred to as the tangent linear

model. Let Φ(t,x0) ∈ RNx×Nx denote the fundamental matrix solution to Eq. (3) with Φ(0,x0) = INx
. The unique solution is

then

δx(t) = Φ(t,x0)δx0, t≥ 0. (4)100

The matrix Φ(t,x0) encodes the deformation and amplification of infinitesimally small perturbations. For the singular values

σ1(Φ(t,x0))≥ σ2(Φ(t,x0))≥ ·· · ≥ σNx(Φ(t,x0)) > 0 of Φ(t,x0), we define

λj(t,x0) =
1
t
logσj(Φ(t,x0)) ∈ R, j = 1, . . . ,Nx. (5)

For each j, the singular vector vj ∈ RNx associated with σj exponentially grows or decays at rate λj over [0, t] under the

tangent linear model, i.e.,105

∥vj(t)∥= ∥Φ(t,x0)vj∥= eλjt∥vj∥,

where ∥·∥ is the Euclidean norm. Thus, the deformation of the initial perturbation δx0 is expressed as exponential growth/decay

along the directions vj . Taking the limit t→∞, we obtain the asymptotic rates

λj(x0) = lim
t→∞

λj(t,x0) ∈ R, j = 1, . . . ,Nx, (6)

known as the Lyapunov exponents (LEs). The existence of these limits is guaranteed by Oseledets’ Multiplicative Ergodic110

Theorem (Oseledets, 1968; Barreira and Pesin, 2002). If the dynamics Eq. (2) is ergodic, the LEs are uniquely determined

regardless of x0 in an invariant subset of RNx . For continuous-time dynamics of the form Eq. (2), one exponent is always

zero, λj = 0, corresponding to a perturbation parallel to the vector field δx(t) = f(x(t)). If the dynamics admits a positive

exponent λ1 > 0, there exists at least one unstable direction in which perturbations grow exponentially, i.e., the dynamics is

chaotic. According to Sect. 1, we define the following dimension to quantify the degrees of freedom of unstable perturbations:115

N+ = #{j ∈ {1, . . . ,Nx} | λj > 0}. (7)
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See (Kuptsov and Parlitz, 2012; Carrassi et al., 2022) for a more comprehensive introduction to LEs and their associated

vectors.

We estimate the LEs numerically using the standard algorithm based on QR decomposition, as detailed in Algorithm 1

(Sandri, 1996; von Bremen et al., 1997). To implement this algorithm, we require a vector field f : RNx → RNx , its Jacobian120

Jf : RNx×Nx , an initial state x0 ∈ RNx , an ODE integrator IntegrateODE, a time step size ∆t > 0 and a number of iterations

n ∈ N. For the ODE integrator, we use the fourth-order Runge-Kutta method.

Algorithm 1 Computing LEs using QR decomposition (Sandri, 1996; von Bremen et al., 1997)

Require: f , Jf , x0, IntegrateODE, ∆t, n

Ensure: S = (x,V ),F (S) = (f(x),Jf (x)V )

1: S← (x0, INx)

2: LE← 0 ∈ RNx

3: for i = 1 to n do

4: S← IntegrateODE(F,S,∆t)

5: Q,R←QR(S)

6: S←Q

7: LE← LE + log(diag(|R|))
8: end for

9: return LE/(n∆t)

2.2 The Lorenz 96 model

For a number of variables Nx ∈ N, external forcing F ∈ R and the state variable x = (x1, . . . ,xNx)⊤ ∈ RNx , the Lorenz 96

model (Lorenz, 1996) is given by125

dxi

dt
= (xi+1−xi−2)xi−1−xi + F, i = 1, . . . ,Nx (8)

with x−1 = xNx−1, x0 = xNx and xNx+1 = x1. This is a spatio-temporal chaotic model on a one-dimensional periodic domain

and often used to data assimilation algorithms. We use this model to show examples of chaotic dynamics with various degrees

of instability by changing the parameter F .

3 The ensemble Kalman filter with the ensemble downsizing method130

3.1 The filtering problem and the ensemble transform Kalman filter

We consider a discrete-time filtering problem for the dynamics Eq. (2) with noisy observations. Let tn = nτ , n = 0,1,2, . . . ,

denote the observation times with a fixed interval τ > 0. We define the flow map Ψτ : RNx → RNx such that Ψτ (x0) = x(τ),
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where x(t) is the solution to Eq. (2) with x(0) = x0. This yields the discrete-time dynamical system

xn = Ψ(xn−1), n = 1,2, . . . , (9)135

where Ψ = Ψτ and xn = x(tn). The observations are obtained at each tn as

yn = H xn + ηn, n = 1,2, . . . , (10)

where H ∈ RNy×Nx is the observation matrix, and ηn ∼N (0,R) is a Gaussian observation noise with a symmetric positive

definite covariance matrix R ∈ RNy×Ny . To estimate the state xn from the observations {y1, . . . ,yn}, we employ the ensemble

Kalman filter (EnKF) (Evensen, 2009), which approximates the mean and covariance of the filtering distribution with an140

ensemble of state vectors. The EnKF consists of the forecast and analysis steps. In the forecast step, each ensemble member

evolves according to the model dynamics as

xf(k)
n = Ψ

(
x

a(k)
n−1

)
, k = 1, . . . ,m, (11)

where m ∈ N is the ensemble size, and the superscripts f and a denote forecast and analysis, respectively. In the analysis step,

the ensemble is updated using Bayes’ rule restricted to the Gaussian setting. We employ a particular analysis scheme called145

the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001). The ETKF updates the mean and perturbation part of the

ensemble as

xa
n = xf

n + Kn

(
yn−H xf

n

)
, (12)

V a
n = V f

n Tn, (13)

where xf
n = 1

m

∑m
k=1 x

f(k)
n , V f

n = [xf(1)
n −xf

n, . . . ,x
f(m)
n −xf

n] ∈ RNx×m, Kn = Cf
nH⊤(HCf

nH⊤+ R)−1 is the Kalman150

gain, Cf
n = V f

n (V f
n )⊤/(m− 1) is the forecast covariance, and Tn ∈ Rm×m is a transform matrix defined as

Tn =
(

Im +
1

m− 1
(V f

n )⊤H⊤R−1HV f
n

)−1/2

, (14)

where the matrix square root is chosen to be symmetric positive definite. Finally, the analysis ensemble members are reconstructed

as

xa(k)
n = xa

n + va(k)
n , k = 1, . . . ,m, (15)155

where v
a(k)
n denotes the k-th column of V a

n .

As mentioned in Sect. 1, the forecast ensemble is corrected more strongly in directions with higher uncertainty, as represented

by the forecast covariance Cf
n . However, the rank of Cf

n is at most m− 1 with m ensemble members. As well as this rank

deficiency, the ensemble covariance suffers from the underestimation of variance due to the limited ensemble size. To mitigate

these issues, we employ multiplicative covariance inflation:160

V f
n ← αV f

n , (16)

6

https://doi.org/10.5194/egusphere-2025-5144
Preprint. Discussion started: 12 November 2025
c© Author(s) 2025. CC BY 4.0 License.



where α > 1 is the inflation factor.

We define filter accuracy as follows. Assume R = r2INy
with small r > 0. The EnKF achieves filter accuracy if there exists

a constant c > 0, independent of r, such that

limsup
n→∞

E[∥xn−xa
n∥2]≤ cr2 (17)165

for sufficiently small r, where the expectation is taken over the observation noise and the initial ensemble. This property

guarantees that the squared analysis error remains of order r2.

3.2 The ensemble downsizing method

To generate an ensemble with its mean close to the true state and its perturbations aligned with the unstable subspace, we

introduce an ensemble downsizing method. We begin with a sufficiently large ensemble size, m0, and reduce it to a smaller170

size, m, at a fixed spin-up time, n = Nspinup. We call the period before n = Nspinup the ensemble spin-up period. In the

ensemble downsizing method, we apply the singular value decomposition (SVD) to the ensemble perturbation, V ∈ RNx×m0 ,

and retain only the leading m modes. This procedure is detailed in Algorithm 2.

Algorithm 2 The ensemble downsizing method by the singular value decomposition

Require: X ∈ RNx×m0 , m < m0

Ensure: X = x+ V

1: U,Σ,_← SVD(V )

2: V ← U [:,1 : m]Σ[1 : m,1 : m]

3: return x+ V

The resulting ETKF with the multiplicative covariance inflation Eq. (16) and the ensemble downsizing method is summarized

in Algorithm 3. See (Tippett et al., 2003) for an efficient implementation of the analysis step.175

4 Numerical results

To verify our conjecture that the minimum ensemble size for asymptotic accuracy of the ETKF is m∗ = N+ + 1, we perform

numerical experiments with the Lorenz 96 model. Throughout this section, we set Nx = 40, H = INx and R = r2INx , where

r > 0 is a parameter representing the standard deviation of the observation noise. We consider two settings for the external

forcing: F = 8 and F = 16. For each setting, we compute the LEs and estimate N+ using Algorithm 1. Then, we apply the180

ETKF with the ensemble downsizing method (Algorithm 3) to the Lorenz 96 model. We summarize the common parameters

for the ETKF experiments in Table 1. The initial ensemble X0 is defined as X0 = (x(k)
0 )m0

k=1 with x
(k)
0 ∼N(x0,25INx

), where

x0 ∈ RNx is uniformly sampled from the true trajectory.

To evaluate the filter accuracy of the ETKF, we use the squared error (SE) as in Eq. (17). To approximate the expectation E,

we compute parallel simulations for nseeds random seeds to generate the observation noises. Then, we take the maximum after185
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Algorithm 3 The ETKF with multiplicative covariance inflation and ensemble downsizing

Require: Ψ, H , R, (yn)N
n=1, X0 ∈ RNx×m0 , α > 1, Nspinup < N , m < m0,

Ensure: X = (x(k))m′
k=1

1: X←X0

2: m′←m0

3: for n = 1 to N do

4: # Forecast step

5: for k = 1 to m′ do

6: xf(k)←Ψ(xa(k))

7: end for

8: xf ← 1
m′

∑m′
k=1x

f(k)

9: V f ← [xf(1)−xf , . . . ,xf(m′)−xf ]

10: # Covariance inflation

11: V f ← αV f

12: Cf ← V f (V f )⊤/(m′− 1)

13: # Analysis step

14: K← CfH⊤(HCfH⊤+ R)−1

15: xa← xf + K(yn−Hxf )

16: T ← (Im′ + 1
m′−1

(V f )⊤H⊤R−1HV f )−1/2

17: V a← V fT

18: X← xa + V a

19: Xn←X

20: # Ensemble downsizing

21: if n = Nspinup then

22: X← EnsembleDownsizing(X,m)

23: m′←m

24: end if

25: end for

26: return (Xn)N
n=1
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Table 1. Common parameters for the ETKF experiments.

Parameter Value Description

∆t 0.01 Time step size for the model integration

N 72,000 (= 10× 360× 20) Total number of integration steps

m 12, 13, 14, 15, 16, 17, 18 Ensemble size after downsizing

m0 41 (= Nx +1) Ensemble size before downsizing

α 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 Inflation factor

r 100,10−1, . . . ,10−4 Standard deviation of the observation noise

nobs 5 (for F = 8), 2 (for F = 16) Observation interval (integration steps)

Nspinup 720 (for F = 8), 1800 (for F = 16) Spin-up period (assimilation steps)

n = N∞ to approximate limsupn→∞. This leads to

limsup
n→∞

E[∥xn−xa
n∥2]≈ max

n≥N∞

1
nseeds

nseeds∑

i=1

∥xn−xa
n(ωi)∥2, (18)

where xa
n(ωi) is the analysis mean of a sample path with the i-th random seed. We use N∞ = N/2 and nseeds = 10 to

approximate Eq. (18). On the other hand, we use the root mean squared error (RMSE) to visualize the time series of the

analysis error for a sample run.190

4.1 F = 8

We first set F = 8, a typical parameter for which the Lorenz 96 model exhibits chaotic behavior. The LEs are computed using

Algorithm 1 with ∆t = 0.001 and n = 106 (Figure 1). In the computation, we define the index of the zero exponent as the

minimizer of i 7→ |λi|. This yields N+ = 13 and the largest LE λ1 ≈ 1.67.

In this section, we assimilate observations every nobs = 5 integration steps. We reduce the ensemble size after Nspinup = 720195

assimilation steps. For each pair (r,m), we vary the inflation factor α to find the optimal value that minimizes the SE defined

in Eq. (18). The results are shown in Figure 2 with log-log plots of the SE against r for different m. If m is larger than or equal

to N+ + 1 = 14, the SE is bounded by the order of r2, indicating that the ETKF achieves filter accuracy. Conversely, if m is

smaller than 14, the SE stays around O(1) even for small r, indicating that the ETKF does not achieve filter accuracy.

In the following two experiments, we fix the number of integration steps N = 72,0000 and single random seed to generate200

the observation noise. We then conduct an experiment to investigate the dependence of the RMSE on the spin-up period

Nspinup. We set r = 10−1 and m = 15, which avoids filter divergence in the experiment for Figure 2. For Nspinup = 0 and 720,

we show the time series of the RMSE with various α in Figure 3. From Figure 3 (a), we observe that the RMSE with α≥ 1.1

remains small even for a longer period when Nspinup = 720. Similarly, in Figure 3 (b), the RMSE with α≥ 1.2 remains small

for a longer period when Nspinup = 0. This suggests that filter stability is achieved even without an ensemble spin-up period205
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Figure 1. The LEs of the Lorenz 96 model with (J,F ) = (40,8). The zero exponent λ14 = 0 is indicated in red.

if a sufficiently large inflation factor is used. In addition, we find that the ensemble spin-up period can reduce the required

inflation factor for filter accuracy.

Figure 4 shows the time series of the RMSE with r = 10−4, Nspinup = 0 and various α for m = 14 (a) and m = 13 (b).

In Figure 4 (a), the RMSE with α = 1.5 decays to a small value. The time required for the RMSE to decay is much longer

than that for the results in Figure 3. A potential explanation for this phenomenon is the slow decay of the uncertainty in the210

neutral direction. Since we focus on the time asymptotic accuracy, this phenomenon is not further investigated in this study. In

Figure 4 (b), all RMSE values do not decay and remain large. These results indicate that the minimum ensemble size for filter

accuracy is m∗ = N+ + 1 = 14 regardless of the ensemble spin-up period.

4.2 F = 16

We set F = 16 and compute the LEs as in the previous section, shown in Figure 5. This yields N+ = 15 and the largest LE215

λ1 ≈ 3.82. We assimilate observations every nobs = 2 integration steps in this section. This value of nobs is the largest integer

with which the approximated error expansion nobsλ1∆t in the forecast step for F = 16 does not exceed that with nobs = 5 for
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Figure 2. Log-log plots of the SE vs. r for different ensemble sizes m after the downsizing. The dashed line indicates the order of r2,

corresponding to the observation noise level. The Lorenz 96 model with F = 8 (N+ = 13) is used.

F = 8. Indeed, if we write these quantities for F as n
(F )
obs and λ

(F )
1 , the error expansion with each F is approximated as

n
(8)
obsλ

(8)
1 ∆t≈ 5 · 1.67 · 0.01 = 8.35,

n
(16)
obs λ

(16)
1 ∆t≈ 2 · 3.82 · 0.01 = 7.64.220

We compute the SE in the same manner as in the previous section with N = 72,000 integration steps and Nspinup = 1800

assimilation steps, which yields the same integration steps before the ensemble downsizing method. The dependence of the SE

on r for different m is shown in Figure 6. As in the previous section, m≥N+ + 1 = 16 gives filter accuracy, while m < 16

does not. Therefore, the minimum ensemble size for filter accuracy is m∗ = N+ + 1 = 16.

5 Conclusions225

We proposed an ensemble downsizing method for the EnKF to generate an ensemble aligned with the unstable subspace of

the dynamics. Through numerical experiments with the ETKF applied to the Lorenz 96 model, we verified our conjecture that
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Figure 3. The time series of the RMSE with r = 10−1, m = 15 and various α = 1.0, . . . ,1.5 for Nspinup = 720 (a) and Nspinup = 0 (b).

The dashed line indicates the level r.
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Figure 4. The time series of the RMSE with r = 10−4, Nspinup = 0 and various α = 1.0, . . . ,1.5 for m = 14 (a) and m = 13 (b). The dashed

line indicates the level r.
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Figure 5. The LEs of the Lorenz 96 model with (J,F ) = (40,16). The zero exponent λ16 = 0 is indicated in red.

the minimum ensemble size for asymptotic accuracy is m∗ = N+ + 1, where N+ is the number of positive LEs (Figure 1,

5). This estimate of m∗ is valid for the multiple external forcing F in the Lorenz 96 model (Figures 2 and 6), and the filter

remains stable over long integration periods (Figures 3 and 4). Moreover, filter accuracy is achieved even without an ensemble230

spin-up period (Figure 4). The ensemble downsizing method offers practical advantages: it mitigates the slow convergence

of uncertainty in the neutral direction when m = m∗ and can reduce the required inflation factor for filter accuracy. In this

study, the estimate of the minimum ensemble size m∗ = N+ + 1 has been verified only for systems with a single zero LE.

In general, there may exist multiple zero LEs, which can lead to a larger difference between N+ and N0. Further studies are

needed to verify whether the estimate m∗ = N+ + 1 holds in such cases. Suitable dynamical systems for this purpose include235

Hamiltonian systems with multiple zero LEs or the Modular Arbitrary-Order Ocean-Atmosphere Model (De Cruz et al., 2016)

which exhibits many negative LEs close to zero as discussed in (Carrassi et al., 2022).

. Code availability

The code is available at https://github.com/KotaTakeda/enkf_ensemble_downsizing/releases/tag/v1.0.0

and archived on Zenodo: https://doi.org/10.5281/zenodo.17319854.240
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Figure 6. Log-log plots of the SE vs. r for different ensemble sizes m after the downsizing. The dashed line indicates the order of r2,

corresponding to the observation noise level. The Lorenz 96 model with F = 16 (N+ = 15) is used.
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