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Abstract. The ensemble Kalman filter (EnKF) is widely used for state estimation in chaotic dynamical systems, including
the atmosphere and ocean. However, the required ensemble size for accurate state estimation remains unclear. In this study,
we define filter accuracy based on its time-asymptotic performance relative to the observation noise. We then investigate the
minimum ensemble size, m*, required to achieve this accuracy, linking it to the degrees of instability in the chaotic dynamics.
Since the well-defined characteristic numbers of dynamical systems called the Lyapunov exponents (LEs) quantify the time-
asymptotic exponential growth or decay rates of infinitesimal perturbations, we define the degrees of instability /N, by the
number of positive LEs. In the EnKF, capturing such instabilities with limited ensemble is crucial for achieving long-term
filter accuracy. Therefore, we propose an ensemble spin-up and downsizing method within data assimilation cycles. Numerical
experiments applying the EnKF to the Lorenz 96 model show that the minimum ensemble size required for filter accuracy
is estimated by m* = N4 + 1. This study provides a practical estimate for the minimum ensemble size based on a priori

information about the target dynamics, along with a method to achieve long-term accuracy.

1 Introduction

Many geophysical systems, including the motions of the atmosphere and ocean, are modeled as dissipative dynamical systems
whose trajectories converge to compact attractors. These dynamics often exhibit chaotic behavior, characterized by sensitivity
to initial conditions, which renders long-term forecasts unreliable (Kalnay, 2002). Therefore, quantifying the degree of instability
in chaotic dynamics is essential. One approach to characterizing instability is through tangent-linear approximations of dynamical
systems, known as Lyapunov analysis. The degree of instability is quantified by the Lyapunov exponents (LEs), which are
defined as the exponential growth or decay rates of infinitesimal perturbations in the tangent space (Eckmann and Ruelle,
1985). For continuous-time dynamical systems, such as ordinary differential equations, one of the LEs is zero, corresponding
to perturbations parallel to the vector field. At each point on the attractor, the tangent space is decomposed into unstable,
neutral, and stable subspaces, spanned by basis vectors with positive, zero, and negative exponential rates in the infinite time
limit. We focus on the dimensions of these subspaces. The numbers of positive and non-negative LEs, denoted by N and Ny,
respectively, represent the degrees of freedom of unstable and unstable-neutral perturbations in the tangent space, respectively.

By definition, it follows that No > N,..
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We consider Bayesian data assimilation for state estimation in chaotic dynamical systems, where noisy observations are
obtained at discrete time steps. The ensemble Kalman filter (EnKF) is widely used for this purpose. It estimates uncertainty
in the forecast using an ensemble of state vectors and updates the mean and covariance via Bayes’ rule. We focus on a
deterministic version, the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001). The ensemble covariance, CY,
characterizes forecast uncertainty through its eigenpairs, with the eigenvalues quantifying the magnitude of variability and the
eigenvectors specifying the principal directions along which this variability occurs. In the analysis step, corrections are applied
more strongly in directions with higher forecast uncertainty. In general, the rank of the ensemble covariance C is less than the
ensemble size m, i.e., rank(C;) < m — 1. Moreover, in geophysical applications, m is limited because each ensemble member
incurs a high computational cost. Therefore, it is crucial to estimate uncertain directions with a limited ensemble. If the ETKF
underestimates an unstable direction, the state estimation error is not sufficiently corrected and grows to the size of the attractor.
This phenomenon is called filter divergence and must be avoided. To mitigate this problem, covariance inflation techniques
artificially increase the ensemble spread to compensate for the underestimation of uncertainty, thereby helping to prevent filter
divergence.

Mathematical studies often focus on the long-term behavior of the analysis error. The key objective is to demonstrate that
the mean squared error remains of order 2 when the observation noise level r is sufficiently small compared with the attractor
size. This property is referred to as filter accuracy. Establishing filter accuracy ensures that filter divergence does not occur.
Takeda and Sakajo (2024) analyzed the ETKF for dissipative dynamical systems and proved filter accuracy under the large-
ensemble condition m > N, + 1, provided that sufficient inflation is applied. Because the required ensemble size, N, + 1, is
impractical for most high-dimensional applications, it is important to identify a more relaxed lower bound m > m™* depending
on the system. Under more idealized assumptions, Gonzalez-Tokman and Hunt (2013) investigated the lower bound of m for
the ETKF. They proved that for discrete-time dynamical systems, if m > N, the analysis error is bounded by the order of the
observation noise. The proof relies on the following assumptions: the noise is sufficiently small; the initial ensemble is close to
the true state and concentrated on the unstable subspace. Their analysis has two limitations: (i) it applies only to discrete-time
systems without zero LEs; and (ii) the assumptions on the initial ensemble are not practically verifiable. Nevertheless, their
study suggests that the minimum ensemble size is m* = Ny + 1. Related studies (Trevisan and Uboldi, 2004; Trevisan et al.,
2010; Trevisan and Palatella, 2011; Bocquet et al., 2017; Bocquet and Carrassi, 2017) investigated the use of the unstable
subspace in data assimilation, known as Assimilation in Unstable Subspace (AUS). These works mainly consider systems with
zero LEs and argue that correcting the state in the /Ny-dimensional unstable-neutral subspace is crucial for filter performance.
We review results directly related to the ETKF. Theoretical analyses for linear systems in (Bocquet et al., 2017; Bocquet and
Carrassi, 2017) suggest that the rank of the ETKF covariance is asymptotically bounded by N due to the exponential decay
of uncertainty in the stable subspace and the slower decay in the neutral subspace under some conditions. They also present
numerical results for the ETKF applied to the Lorenz 96 model (Lorenz, 1996) with 40 variables over a finite-time interval. In
this experiment, uncertainty in the neutral direction does not sufficiently decay without assimilating observations. As a result,
the rank of the covariance should be larger than Ny (i.e., m > Ny + 1 is required) so that the time-averaged analysis error

remains small within the finite-time interval. Similar findings are reported in Carrassi et al. (2022) using the Quasi-Geostrophic
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model (Reinhold and Pierrehumbert, 1982) and the Modular Arbitrary-Order Ocean-Atmosphere Model (De Cruz et al., 2016).
Based on these results, the minimum ensemble size is estimated as m* = Ny + 1 when focusing on the time-averaged analysis
error within a finite-time interval. However, these results do not address the time-asymptotic accuracy of the ETKF.

In this study, we focus on the asymptotic accuracy of the ETKF relative to the order of the observation noise. In this setting,
uncertainty in the neutral direction will decay in the long-time limit. Hence, we conjecture that the minimum ensemble size for

asymptotic accuracy of the ETKF is
m* =N, +1, (1)

where only the unstable directions are tracked by the forecast ensemble covariance. In the numerical experiments presented
in this study, we use dynamical systems with a single zero LE (i.e., Ng = N4 + 1). In general, it holds that Ny +1 < Ny
for continuous-time dynamical systems. For this case, we still conjecture that the minimum ensemble size is m* = Ny + 1.
Therefore, we use IV, rather than Ny to represent the minimum ensemble size throughout the paper. To verify our conjecture,
we conduct numerical experiments with the ETKF applied to the Lorenz 96 model with 40 variables. We estimate the minimum
ensemble size m* so that the asymptotic analysis error is bounded by the order of the observation noise when an appropriate
multiplicative inflation factor is chosen. We then compare this value with the dimension of the unstable subspace N_, computed
via Lyapunov analysis. In our experiments, we also introduce an ensemble downsizing method for the ETKF: we begin with
a sufficiently large ensemble size, m = N, + 1, and reduce it to a smaller size after a fixed spin-up time. This procedure is
designed to generate a small but accurate ensemble, with its mean close to the true state and its perturbations aligned with
the unstable subspace. Although our target model is the same as that in (Bocquet and Carrassi, 2017), our objective differs
in that we focus on asymptotic accuracy and its dependence on the order of the observation noise. Numerical studies from
this perspective are important because they define and clarify the ensemble size below which filter divergence of the ETKF
cannot be avoided, even when accurate observations and appropriate inflation are used. Moreover, the error bound by order of
observation noise enables further mathematical analysis of the ETKF. Our approach is applicable when the LEs of the target
dynamical system can be estimated, and it offers practical guidance for selecting ensemble size in high-dimensional ETKF
applications.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the basics of Lyapunov analysis. In Sect. 3,
we define the ETKF with the ensemble downsizing method. In Sect. 4, we present the numerical results with the Lorenz 96
model, combining Lyapunov analysis and the ETKF. In Sect. 5, we summarize our results and outline future directions. We also
discuss the consistency between our findings and those of Bocquet and Carrassi (2017) in estimating the minimum ensemble

size, highlighting differences in objectives.
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2 Characterizing the degrees of instability in dynamics
2.1 The Lyapunov exponents and their computation

Let N, € N, we consider the dynamics governed by

d

Sel) = @), t>0 @

with z(0) = &g € R™=, where f : RV — RM= is a smooth vector field. To study the instability of the dynamics, we examine
the evolution of a perturbation §x(t) € R+, defined as the difference between two trajectories separated by dzo € RN= at

t = 0. Assuming dx(¢) is sufficiently small and smooth, its evolution is approximated by the linearization of Eq. (2):
d
Zow(t) = Jp(@(t) da(t), >0 3)

with d(0) = dxo, where J¢(a(t)) denotes the Jacobian matrix of f at = x(t). Eq. (3) is referred to as the tangent linear
model. Let ®(¢,zq) € RV=*Nz denote the fundamental matrix solution to Eq. (3) with ®(0, () = I, . The unique solution is

then
ox(t) = D(t,x9) 0o, t>0. 4)

The matrix ®(t,x() encodes the deformation and amplification of infinitesimally small perturbations. For the singular values

o1 (D(t,x0)) > 02(P(t,20)) > -+ > on, (P(t,20)) > 0 of (¢, x0), we define
1
/\j(t,a:0)=¥logaj(<1>(t,w0)) eR, j5=1,....,N,. ®))

For each j, the singular vector v; € RN= associated with o, exponentially grows or decays at rate A; over [0,¢] under the

tangent linear model, i.e.,
o ()] = 1@t o) vy]| = " [|v; ],

where ||-]| is the Euclidean norm. Thus, the deformation of the initial perturbation dx is expressed as exponential growth/decay

along the directions v;. Taking the limit ¢ — oo, we obtain the asymptotic rates
)\j(iL‘()):tlim )\j(t,iL'o) eR, j5=1,....,N,, (6)
—00

known as the Lyapunov exponents (LEs). The existence of these limits is guaranteed by Oseledets’ Multiplicative Ergodic
Theorem (Oseledets, 1968; Barreira and Pesin, 2002). If the dynamics Eq. (2) is ergodic, the LEs are uniquely determined
regardless of x( in an invariant subset of R+, For continuous-time dynamics of the form Eq. (2), one exponent is always
zero, \; = 0, corresponding to a perturbation parallel to the vector field dx(t) = f(x(t)). If the dynamics admits a positive
exponent A\; > 0, there exists at least one unstable direction in which perturbations grow exponentially, i.e., the dynamics is

chaotic. According to Sect. 1, we define the following dimension to quantify the degrees of freedom of unstable perturbations:

Ny =#{je{l,....,N,}| ) >0}. @)
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See (Kuptsov and Parlitz, 2012; Carrassi et al., 2022) for a more comprehensive introduction to LEs and their associated
vectors.

We estimate the LEs numerically using the standard algorithm based on QR decomposition, as detailed in Algorithm 1
(Sandri, 1996; von Bremen et al., 1997). To implement this algorithm, we require a vector field f : RN= — RN=_ jts Jacobian
Jg : RN=*Ne an initial state o € R+, an ODE integrator IntegrateODE, a time step size At > 0 and a number of iterations

n € N. For the ODE integrator, we use the fourth-order Runge-Kutta method.

Algorithm 1 Computing LEs using QR decomposition (Sandri, 1996; von Bremen et al., 1997)

Require: f, J¢, o, IntegrateODE, At, n
Ensure: S = (z,V),F(S)=(f(x),Js(x)V)
1: S« (iL‘o,INm)

2 LE —0€eR"

3: fori=1tondo

4: S« IntegrateODE(F, S, At)
5 Q,R+— QR(S)

6: S—@Q

7. LE «— LE +log(diag(|R|))
8: end for

9:

return LE/(nAt)

2.2 The Lorenz 96 model

For a number of variables N, € N, external forcing F' € R and the state variable x = (z!,...,2™=)T € RV« the Lorenz 96
model (Lorenz, 1996) is given by

da’ i+l _ i—2y,i-1 ;

E:(w - )" —a'+F, i=1,...,N, 8)

Nz+1

with 27! = 2Ne=1 20 = 2Ne and o = z!. This is a spatio-temporal chaotic model on a one-dimensional periodic domain

and often used to data assimilation algorithms. We use this model to show examples of chaotic dynamics with various degrees
of instability by changing the parameter F'.
3 The ensemble Kalman filter with the ensemble downsizing method

3.1 The filtering problem and the ensemble transform Kalman filter

We consider a discrete-time filtering problem for the dynamics Eq. (2) with noisy observations. Let ¢,, = n7, n=0,1,2,...,

denote the observation times with a fixed interval 7 > 0. We define the flow map ¥, : RV= — RN+ such that ¥, (zo) = z(7),
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where x(t) is the solution to Eq. (2) with z(0) = . This yields the discrete-time dynamical system

1385 x, =V(xz, 1), n=12,..., &)
where ¥ = U, and x,, = x(t,,). The observations are obtained at each ¢,, as
y,=Hx,+mn,, n=12,.., (10)

where H € RNv*Nz is the observation matrix, and 17,, ~ A/(0, R) is a Gaussian observation noise with a symmetric positive
definite covariance matrix R € RVv*Nv_ To estimate the state x,, from the observations {y,,...,,, }, we employ the ensemble
140 Kalman filter (EnKF) (Evensen, 2009), which approximates the mean and covariance of the filtering distribution with an
ensemble of state vectors. The EnKF consists of the forecast and analysis steps. In the forecast step, each ensemble member

evolves according to the model dynamics as
2 =w(23M), k=1...m, an

where m € N is the ensemble size, and the superscripts f and a denote forecast and analysis, respectively. In the analysis step,
145 the ensemble is updated using Bayes’ rule restricted to the Gaussian setting. We employ a particular analysis scheme called
the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001). The ETKF updates the mean and perturbation part of the

ensemble as
fzszl‘FKn (yn_Hf£)7 (12)
ve=vIT,, (13)

150 where Z/ = L3 ol ®), V= [a:fl(l) fffl,...,mfl(m) —® ] eRNexm K, =C/H"(HCIH" + R)~! is the Kalman

gain, C{ = V./(V.f)T /(m —1) is the forecast covariance, and T}, € R™*™ is a transform matrix defined as

-1/2
1
T, = (1m + (V{)THTR—le‘) : (14)
m—1
where the matrix square root is chosen to be symmetric positive definite. Finally, the analysis ensemble members are reconstructed
as
155 ) =52 42K k=1 m, (15)

where v2*) denotes the k-th column of V.

As mentioned in Sect. 1, the forecast ensemble is corrected more strongly in directions with higher uncertainty, as represented
by the forecast covariance C. However, the rank of C is at most m — 1 with m ensemble members. As well as this rank
deficiency, the ensemble covariance suffers from the underestimation of variance due to the limited ensemble size. To mitigate

160 these issues, we employ multiplicative covariance inflation:

vi—av/, (16)
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where o > 1 is the inflation factor.
We define filter accuracy as follows. Assume R = 21 N, with small r > 0. The EnKF achieves filter accuracy if there exists
a constant ¢ > 0, independent of 7, such that
limsupE[||z, —Z%|*] < cr? (17)
n—oo
for sufficiently small r, where the expectation is taken over the observation noise and the initial ensemble. This property

guarantees that the squared analysis error remains of order 2.
3.2 The ensemble downsizing method

To generate an ensemble with its mean close to the true state and its perturbations aligned with the unstable subspace, we
introduce an ensemble downsizing method. We begin with a sufficiently large ensemble size, mg, and reduce it to a smaller
size, m, at a fixed spin-up time, n = Ngpinup. We call the period before n = Nypinup the ensemble spin-up period. In the
ensemble downsizing method, we apply the singular value decomposition (SVD) to the ensemble perturbation, V' € RN=>mo,

and retain only the leading m modes. This procedure is detailed in Algorithm 2.

Algorithm 2 The ensemble downsizing method by the singular value decomposition

Require: X € RN=X™0 1 < my
Ensure: X =+ V

1: U,X,_«—SVD(V)

2: V—U[,1:m|X[1l:m,1:m]

3: return T+ V

The resulting ETKF with the multiplicative covariance inflation Eq. (16) and the ensemble downsizing method is summarized

in Algorithm 3. See (Tippett et al., 2003) for an efficient implementation of the analysis step.

4 Numerical results

To verify our conjecture that the minimum ensemble size for asymptotic accuracy of the ETKF is m* = N + 1, we perform
numerical experiments with the Lorenz 96 model. Throughout this section, we set N, =40, H = Iy, and R = 21 N, » Where
r > 0 is a parameter representing the standard deviation of the observation noise. We consider two settings for the external
forcing: F' =8 and F' = 16. For each setting, we compute the LEs and estimate N using Algorithm 1. Then, we apply the
ETKF with the ensemble downsizing method (Algorithm 3) to the Lorenz 96 model. We summarize the common parameters
for the ETKF experiments in Table 1. The initial ensemble X is defined as Xy = (wgk) ), with zc(()k) ~ N(x9,25I, ), where
2 € RM= is uniformly sampled from the true trajectory.

To evaluate the filter accuracy of the ETKF, we use the squared error (SE) as in Eq. (17). To approximate the expectation E,

we compute parallel simulations for n,..4s random seeds to generate the observation noises. Then, we take the maximum after
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Algorithm 3 The ETKF with multiplicative covariance inflation and ensemble downsizing

Require: U, H, R, (y,))0_1, Xo € RY=*™0 o > 1, Nypinup < N, m < mo,
Ensure: X = (o)1,
1: X — Xo
2: m' —mg
3: forn=1to N do
4:  # Forecast step
5. fork=1tom’ do
6 k) \p(ma(k))
7:  end for
oY L
9 Vf(_[wf(l)_§f7.__7wf(7rt’)_5f}
10:  # Covariance inflation
1m: vieav?
122 ¢ —vHiVvHT/(m -1)
13:  # Analysis step
14 K<—C/H (HC'H" + R)™*
15 =z =z + Ky, - Hz')
16: T(;(Im,+m/lil(vf)THTR—lHVf)fl/Q
7. V*eVIT
18: X—z*4+V°
19: Xn+— X

20:  # Ensemble downsizing

21:  if n = Ngpinup then

22: X « EnsembleDownsizing(X,m)
23: m' —m

24:  endif

25: end for

26: return (X,)2_;
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Table 1. Common parameters for the ETKF experiments.

Parameter  Value Description

At 0.01 Time step size for the model integration

N 72,000 (= 10 x 360 x 20) Total number of integration steps

m 12,13, 14, 15,16, 17, 18 Ensemble size after downsizing

mo 41 (=Nz+1) Ensemble size before downsizing

e’ 1.0,1.1,1.2,1.3,1.4,1.5 Inflation factor

r 10°,107%,...,107* Standard deviation of the observation noise
Nobs 5 (for F = 28), 2 (for F' = 16) Observation interval (integration steps)

Nspinup 720 (for F' = 8), 1800 (for F'=16)  Spin-up period (assimilation steps)

n = N to approximate limsup,,_, ... This leads to

) - 1 Nseeds -
limsupE[||z, —Z%|*] ~ max Z |, — 2 (wi)|)?, (18)
n— 00 n>Noo Nseeds i—1

where T%(w;) is the analysis mean of a sample path with the i-th random seed. We use No, = N/2 and ngeeqs = 10 to
approximate Eq. (18). On the other hand, we use the root mean squared error (RMSE) to visualize the time series of the

analysis error for a sample run.
41 F =8

We first set F' = 8, a typical parameter for which the Lorenz 96 model exhibits chaotic behavior. The LEs are computed using
Algorithm 1 with At =0.001 and n = 10° (Figure 1). In the computation, we define the index of the zero exponent as the
minimizer of ¢ — |\;|. This yields N = 13 and the largest LE A\; ~ 1.67.

In this section, we assimilate observations every nqs = 5 integration steps. We reduce the ensemble size after Nypinup = 720
assimilation steps. For each pair (r,m), we vary the inflation factor « to find the optimal value that minimizes the SE defined
in Eq. (18). The results are shown in Figure 2 with log-log plots of the SE against r for different m. If m is larger than or equal
to N, + 1 = 14, the SE is bounded by the order of 2, indicating that the ETKF achieves filter accuracy. Conversely, if m is
smaller than 14, the SE stays around O(1) even for small 7, indicating that the ETKF does not achieve filter accuracy.

In the following two experiments, we fix the number of integration steps N = 72,0000 and single random seed to generate
the observation noise. We then conduct an experiment to investigate the dependence of the RMSE on the spin-up period
Nypinup- We set 7 = 10~! and m = 15, which avoids filter divergence in the experiment for Figure 2. For Ngpinup = 0 and 720,
we show the time series of the RMSE with various « in Figure 3. From Figure 3 (a), we observe that the RMSE with o > 1.1
remains small even for a longer period when Npin,p = 720. Similarly, in Figure 3 (b), the RMSE with v > 1.2 remains small

for a longer period when Ngpinup = 0. This suggests that filter stability is achieved even without an ensemble spin-up period
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Figure 1. The LEs of the Lorenz 96 model with (J, F') = (40, 8). The zero exponent A14 = 0 is indicated in red.

if a sufficiently large inflation factor is used. In addition, we find that the ensemble spin-up period can reduce the required
inflation factor for filter accuracy.

Figure 4 shows the time series of the RMSE with r = 1074, Ngpinup = 0 and various « for m = 14 (a) and m = 13 (b).
In Figure 4 (a), the RMSE with o = 1.5 decays to a small value. The time required for the RMSE to decay is much longer
than that for the results in Figure 3. A potential explanation for this phenomenon is the slow decay of the uncertainty in the
neutral direction. Since we focus on the time asymptotic accuracy, this phenomenon is not further investigated in this study. In
Figure 4 (b), all RMSE values do not decay and remain large. These results indicate that the minimum ensemble size for filter

accuracy is m* = N4 + 1 = 14 regardless of the ensemble spin-up period.
42 F =16

We set F' =16 and compute the LEs as in the previous section, shown in Figure 5. This yields Ny = 15 and the largest LE
A1 & 3.82. We assimilate observations every n,,s = 2 integration steps in this section. This value of n,pg is the largest integer

with which the approximated error expansion nyps A1 At in the forecast step for F' = 16 does not exceed that with n,s = 5 for

10
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error vs. 1 for different m

10 |
m = 12
X m = 13
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m = 14
s m = 15
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n 10 m = 16
@8 obs. noise leve m=17
- . | V
i 10 m =18
2 .
= —— obs. noise level
107
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1074 10~ 1072 107t 10°
T

Figure 2. Log-log plots of the SE vs. r for different ensemble sizes m after the downsizing. The dashed line indicates the order of 2,

corresponding to the observation noise level. The Lorenz 96 model with ' = 8 (N = 13) is used.

(F)
obs

and /\gF)

F' = 8. Indeed, if we write these quantities for F' as n, , the error expansion with each F' is approximated as

nEAY AL~ 5-1.67-0.01 = 8.35,
nUONIDAL ~ 2.3.82-0.01 = 7.64.

We compute the SE in the same manner as in the previous section with N = 72,000 integration steps and Nypinyp = 1800
assimilation steps, which yields the same integration steps before the ensemble downsizing method. The dependence of the SE
on r for different m is shown in Figure 6. As in the previous section, m > N4 + 1 = 16 gives filter accuracy, while m < 16

does not. Therefore, the minimum ensemble size for filter accuracy is m* = N, +1 = 16.

5 Conclusions

We proposed an ensemble downsizing method for the EnKF to generate an ensemble aligned with the unstable subspace of

the dynamics. Through numerical experiments with the ETKF applied to the Lorenz 96 model, we verified our conjecture that

11
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Figure 3. The time series of the RMSE with » = 10™%, m = 15 and various & = 1.0, ..., 1.5 for Nspinup = 720 (a) and Nepinup = 0 (b).

The dashed line indicates the level r.
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Figure 4. The time series of the RMSE with r = 1074, Nspinup = 0 and various o = 1.0,...,1.5 for m = 14 (a) and m = 13 (b). The dashed

line indicates the level r.
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Figure 5. The LEs of the Lorenz 96 model with (J, F') = (40, 16). The zero exponent A1 = 0 is indicated in red.

the minimum ensemble size for asymptotic accuracy is m* = N + 1, where N, is the number of positive LEs (Figure 1,
5). This estimate of m™ is valid for the multiple external forcing F' in the Lorenz 96 model (Figures 2 and 6), and the filter
remains stable over long integration periods (Figures 3 and 4). Moreover, filter accuracy is achieved even without an ensemble
spin-up period (Figure 4). The ensemble downsizing method offers practical advantages: it mitigates the slow convergence
of uncertainty in the neutral direction when m = m* and can reduce the required inflation factor for filter accuracy. In this
study, the estimate of the minimum ensemble size m* = N, + 1 has been verified only for systems with a single zero LE.
In general, there may exist multiple zero LEs, which can lead to a larger difference between /N, and Ny. Further studies are
needed to verify whether the estimate m* = N, + 1 holds in such cases. Suitable dynamical systems for this purpose include
Hamiltonian systems with multiple zero LEs or the Modular Arbitrary-Order Ocean-Atmosphere Model (De Cruz et al., 2016)

which exhibits many negative LEs close to zero as discussed in (Carrassi et al., 2022).

. Code availability

The code is available at https://github.com/KotaTakeda/enkf_ensemble_downsizing/releases/tag/v1.0.0
and archived on Zenodo: https://doi.org/10.5281/zenodo.17319854.
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Figure 6. Log-log plots of the SE vs. r for different ensemble sizes m after the downsizing. The dashed line indicates the order of 2,

corresponding to the observation noise level. The Lorenz 96 model with F' = 16 (/N4 = 15) is used.
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