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Overall, this is an interesting study. But it seems to lack novelty. The novelties that I could see are
(i) the downsizing of the ensemble in the spin-up of the EnKF, (ii) using Eq. (17) to define asymptotic
filter accuracy. But in both cases, I believe their introduction should be better justified, and their added
value demonstrated. Concerning (i), in my experience whatever divergence the downsizing is meant to
prevent can be addressed flawlessly with an adaptive inflation ensemble Kalman filter (EnKF) such as
the EnKF-N (see below) in the Lorenz 96 context. Concerning (ii), the large majority of authors on
similar topics use the mean root mean square error (RMSE) which is known to also be a measure of
asymptotic filter accuracy in the Lorenz 96 context. I am not sure of the added value of the criterion
based on Eq. (17) in the Lorenz 96 context. In any quick numerical tests that I performed, one implied
the other (i.e., mean RMSE vs Eq. (17)). A configuration where the mean RMSE is proper but would
violate your definition of filter accuracy Eq. (17) would be weird, and I was not able not exhibit any. Can
the authors prove me wrong?

1 Main remarks

• The title is referring to a subject that has already been addressed by several other papers in the
data assimilation and dynamical systems literature. Instead, the paper should point to its novelty,
unless the paper is meant to be a topic overview (see below for a selection of references).

• Similarly, in the abstract the only sentence that may point to some novelty is Therefore, we propose
an ensemble spin-up and downsizing method within data assimilation cycles (see below for a selection
of references).

• I believe that you have to make a disclaimer on the use of localisation. Most of the issues addressed
in the manuscript are fixed by localisation in high-dimensional geophysical systems. I understand
and support why one wants to carry on such an investigation without localisation. But this should
quickly be mentioned once, as a disclaimer.

• Since using Eq. (17) as a filter accuracy criterion seems (to me) like the real novelty of the paper,
you should better explain why you introduce it, how different it is from the criteria of accuracy
used so far in the literature.

• You have to better explain the added value of the ensemble downsizing method, because spinning-
up an ensemble with the Lorenz 96 model rarely poses any problem. Especially if one is using an
adaptive inflation technique, such as Bocquet (2011); Bocquet et al. (2015); Raanes et al. (2019).

• There are merits in considering Eq. (17) rather that say the mean RMSE. But it might be highly
dependent on the chosen multiplicative scheme. If this the case, how to deal with such dependence
on the inflation scheme in this context? This should be discussed.
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2 Related remarks, suggestions, and typos

1. l.17-18: The degree of instability is quantified by the Lyapunov exponents (LE’s), which are defined
as the exponential growth or decay rates of infinitesimal perturbations in the tangent space (Beckman
and Ruler, 1985): This is not an accurate definition of the Lyapunov exponents.

2. l.19-20: For continuous-time dynamical systems, such as ordinary differential equations, one of
the Le’s is zero, corresponding to perturbations parallel to the vector field.: The existence of a
zero Lyapunov exponent comes from the fact that such continuous in time dynamical system is
autonomous, i.e. it does not explicitly depends on time (Haken, 1983). It stems from the time-
translation invariance of the dynamics. It is critical to emphasise this point since many geophysical
systems are not autonomous. Your current statement is wrong in general, and especially for most
dynamics in the geosciences.

3. l.50: Bocquet et al. (2017); Bocquet and Carrassi (2017) are not papers about AUS but about the
(ensemble) Kalman filters and smoothers, even though they are connected.

4. l.53-55: Theoretical analyses for linear systems in (Bocquet et al., 2017; Bocquet and Carrassi,
2017) suggest that the rank of the ETKF covariance is asymptotically bounded by N` due to the
exponential decay of uncertainty in the stable subspace and the slower decay in the neutral subspace
under some conditions.: You seem to downplay the results obtained in Gurumoorthy et al. (2017);
Bocquet et al. (2017); Bocquet and Carrassi (2017). In particular, Bocquet et al. (2017) proved
mathematically in the linear case that the ensemble should be of size N0 ` 1 or greater. They went
much farther than just suggestions or conjectures.

5. l.62: However, these results do not address the time-asymptotic accuracy of the ETKF : On the
contrary, Bocquet et al. (2017); Bocquet and Carrassi (2017); Grudzien et al. (2018a,b) are mainly
focused on the time-asymptotic accuracy of the EnKF (and smoother as well). In particular, they
use the mean RMSE which is a measure of asymptotic accuracy in an ergodic dynamics context.
Bocquet et al. (2017) even demonstrate an analytic formula for the asymptotic (forecast or analysis)
error covariance matrix of rank N0 in the linear case. Your statement seems to be wrong. What
am I missing?

6. Hence, we conjecture that the minimum ensemble size for asymptotic accuracy of the ETKF is
m˚ “ N` ` 1, where only the unstable directions are tracked by the forecast ensemble covariance.
That has already been conjectured and in some cases proven, see e.g., Gurumoorthy et al. (2017);
Bocquet et al. (2017); Bocquet and Carrassi (2017); Grudzien et al. (2018a,b). Your statement
implies that you are the first to make such conjecture.

7. l.78: Although our target model is the same as that in (Bocquet and Carrassi, 2017), our objective
differs in that we focus on asymptotic accuracy and its dependence on the order of the observation
noise: Bocquet and Carrassi (2017) also focus on asymptotic accuracy and they also report on the
dependence onto the observation noise. So at this stage, I do not see any difference in both their
objective and their focus.

8. l.93: f should be bold.

9. l.97: Eq.(3) should be Equation (3).

10. l.112: . . . regardless of x0 in an invariant subset of RNx : is a verb missing here? I believe that I
understand the sentence, but I am not so sure.

11. l.117-118: See (Kuptsov and Parlitz, 2012; Carrassi et al., 2022) for a more comprehensive intro-
duction to LEs and their associated vectors. A very solid reference, especially because it was written
by theoreticians of the geofluids, is Legras and Vautard (1996).

12. l.128: . . . used to . . . : used for?

13. p.6: Please use bold symbol for matrices (as you did for vectors) since this is the widely adopted
convention for data assimilation papers, especially with journals connected to the geosciences.

14. Algorithm 2: To be rigorous, you need to tell that the SVD algorithm returns singular values and
vectors by decreasing order.
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15. l.195: In this section, we assimilate observations every nobs “ 5 integration steps.: This is a bit
awkward. Why don’t you just write that the time interval is 0.05 which is the standard value used
in such experiments.

16. We set r “ 10´1: The very often used value is r “ 1. Why this specific choice? I tested numerically
the EnKF-N with r “ 1 and m “ 15, and I found it to achieve filter accuracy as defined by Eq. (17).

17. p.11, Fig. 2: You would obtain very similar results for the mean RMSE, questioning the relevance
(or added value) of the criterion Eq. (17).

18. This property guarantees that the squared analysis error remains of order r2: This seems like a
tautology.

19. The dashed line indicates the order of r2: I don’t see the dashed line in the figure.

20. l.12, Figure 3: I used the EnKF-N and and have no issues spinning-up the ETKF with r “ 0.1 and
m “ 15. So what would be the point of Fig. 3? What is the corresponding mean RMSE which is
very common in such study? I obtain with the EnKF-N 0.017 for the mean RMSE (one single run,
not tuning at all).

21. p.10: I am not sure to see the point of the experiments of Fig. 4, i.e with r “ 10´4. With the
EnKF-N, I obtain in the same setup a mean RMSE of 0.46 ˆ 10´4 which is on par with your best
run (α “ 1.5).

22. p.11: What is the point of the experiments with F “ 16? You could justify them.

23. Figures 2 and 6: some of the y-axis labels are missing.

24. l.226: We proposed an ensemble downsizing method for the EnKF to generate an ensemble aligned
with the unstable subspace of the dynamics: Fine, but what is the added value of such scheme?
Using an adaptive multiplicative inflation EnKF such as the EnKF-N does the job even without
tuning the inflation.

25. l.227-228: . . . we verified our conjecture that the minimum ensemble size for asymptotic accuracy is
m˚ “ N` `1, where N` is the number of positive LEs: This conjecture has been already formulated
and verified in the literature, and in some cases mathematically proven. If you meant that your
statement specifically applies to the criterion Eq. (17), you have to be clearer and additionally
explained why Eq. (17) would be different from using the mean RMSE as a filter accuracy indicator.
I even believe that in the context of the Lorenz 96 model, one implies the other. And the few
numerical tests that I performed in support of this review concur.
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