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Abstract 11 

Abrupt changes in climatic conditions and land management can cause permanent shifts in soil 12 

hydraulic response to climatic inputs, impacting soil functions and established soil–climate interactions. 13 

To quantify the resilience of soil water content dynamics after abrupt changes in environmental 14 

conditions, we present a model framework combining a neural network with seasonal trend analysis 15 

(STL). Using data from a series of lysimeters from the TERrestrial ENvironmental Observatories 16 

(TERENO) - SOILCan lysimeter network, we identified changes in soil water content responses after 17 

an extremely hot and dry summer in Germany in 2018. The model incorporates meteorological variables 18 

decomposed into seasonal and long-term components along with a categorical indicator of current 19 

moisture conditions. It is trained on data from a reference site with stable soil water content response 20 

and applied to lysimeters from multiple origins exposed to contrasting climates. By analysing annual 21 

residual patterns—particularly mean bias over time—soil water content state dynamics is classified as 22 

‘stable’, ‘resilient’, or ‘changed’, reflecting whether the system maintains, recovers, or diverges from 23 

its original state. We found that soils preserve the response function to environmental forcing under 24 

typical conditions but exhibit structural change when relocated to new environments, even when soil 25 

texture remains constant. The proposed method offers a scalable and non-invasive tool for tracking 26 

changes in the response of soil water content to climatic change and provides early indicators of changes 27 

in essential soil functions and soil health status. 28 
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1. Introduction 29 

Soil water content plays a fundamental role in hydrological processes and land–atmosphere interactions, 30 

governing the exchange of water and energy at the Earth’s surface (Seneviratne et al., 2010; Sun et al., 31 

2025). It regulates key hydrological functions, including infiltration, runoff generation, 32 

evapotranspiration, and groundwater recharge. Through these processes, soil water content influences 33 

water availability, ecosystem productivity, and climatic conditions across local to global scales (Bogena 34 

et al., 2015; Fatichi et al., 2020). Soil water content status and related soil environmental conditions 35 

change with short- and long-term atmospheric processes. This response of soil water content to 36 

atmospheric conditions, which we define as ‘soil water content response function’, determines, for 37 

example, if anaerobic conditions are inhibited after heavy rainfall (by fast percolation to deeper soil 38 

layers) and if enough water remains available after dry periods for plant growth, temperature regulation, 39 

and chemical reactions. In short, the soil water content response function is a dominant factor of the 40 

soil health status. This response function is shaped by soil formation processes and reflects adaptation 41 

to the dominant climatic conditions (Kuzyakov and Zamanian, 2019; Sainju et al., 2022; Al-Shammary 42 

et al., 2025). Accordingly, a change in the response function after extreme climatic events is likely to 43 

imply a change in soil health.  44 

In the core of this study is the question how changes in the soil water content response function, and 45 

thus in soil properties and health, can be detected. The standard approach to determine the response 46 

function is to apply physically based models, for example by inverse modelling of soil water content 47 

dynamics under varying boundary conditions (Šimůnek et al., 2016). These models require detailed 48 

knowledge of soil hydraulic properties and extensive calibration, limiting their generalization beyond 49 

the spatial scale and the local conditions used in the calibration process (Or, 2020; Lehmann et al., 2020; 50 

O. & Orth, 2021). Additionally, such approaches are typically destructive, limiting the options of 51 

conducting a time series analysis. Moreover, these models typically assume static soil characteristics, 52 

failing to adequately represent structural changes in soil properties — such as compaction, degradation, 53 

or organic matter loss — that can substantially alter hydraulic behaviour over time (Fatichi et al., 2020; 54 

Melsen & Guse, 2021; Wankmüller et al., 2024). Most of the models also neglect or oversimplify the 55 
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hysteretic nature of the soil water retention curve, as well as seasonal changes in soil hydraulic 56 

properties that can substantially alter infiltration, drainage, and plant water availability (Aqel et al., 57 

2024; Hannes et al., 2016; Herbrich & Gerke, 2017). Therefore, we used a non-invasive approach based 58 

on neural networks as discussed below. 59 

In recent years, artificial intelligence (AI), particularly neural networks, has emerged as a promising 60 

alternative for modelling complex hydrological processes (Reichstein et al., 2019). These data-driven 61 

models have demonstrated the capacity to learn nonlinear relationships directly from observational 62 

datasets without relying heavily on explicit physical equations (Kratzert et al., 2019; Mosavi et al., 63 

2018; Shen et al., 2018). Within soil hydrology, neural networks have been used to characterise 64 

hysteretic soil–water behaviour from training data, improving the representation of wetting–drying 65 

cycles without explicit hysteresis parameterisation (Aqel et al., 2024). They have also been applied to 66 

soil-moisture time-series modelling using Long Short-Term Memory (LSTM) networks with recurrent 67 

architectures suited to capture long-range temporal dependencies (Liu et al., 2023; O. & Orth, 2021). 68 

Across diverse hydro-climatic regimes, LSTM have been shown to effectively learn nonlinear 69 

relationships between climatic inputs and soil water content, often matching or surpassing traditional 70 

physically based approaches and demonstrating strong generalisation (Kratzert et al., 2019; J. Liu et al., 71 

2022, 2023; O. & Orth, 2021).  72 

Independent of the chosen modelling approach, these models ignore that the soil water content response 73 

function (i.e., the variations in soil water content following changes in atmospheric conditions) can 74 

change at larger time scale. Experimental studies have shown that extreme events such as drought can 75 

induce persistent shifts in soil water content dynamics, potentially leading to alternative stable states 76 

(Robinson et al., 2016). Moreover, changes in land use — such as forest conversion to agriculture or 77 

bare land — alter soil hydraulic properties, with effects on infiltration, water retention, and saturated 78 

hydraulic conductivity (Fu et al., 2021; Robinson et al., 2022). Considering that texture remains 79 

constant at time scales of decades, the changes in the response function are likely to be related to 80 

changes in soil structure primarily.  81 
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Soil systems are subject to temporal change, yet models are often trained on historical datasets without 82 

evaluating whether the system dynamics remain stable throughout the training period (Montanari et al., 83 

2013; Vaze et al., 2010). As a result, models may be applied to prediction settings where underlying 84 

soil–climate interactions differ from those on which the model was trained. For example, a recent study 85 

comparing different crop models using the TERENO-SOILCan set-up showed that predicting 86 

agronomic and environmental variables under different climatic conditions to those represented in the 87 

training datasets resulted in significant discrepancies between simulations and observations (Groh et 88 

al., 2022). This underscores the critical need to assess whether site-specific representations of soil–89 

water behaviour remain valid over time (Hrachowitz et al., 2013) and highlight the need for more 90 

adaptable modelling approaches under evolving environmental conditions (Blöschl et al., 2019; Milly 91 

et al., 2008). Considering these limitations, none of the discussed approaches can capture the change in 92 

the soil water content response function. A recent modelling framework by Jarvis et al. (2024) takes a 93 

major conceptual step forward by explicitly representing soil-structure dynamics and their feedback on 94 

hydraulic behaviour. However, as the authors emphasize, such process-based models still depend on 95 

detailed observational data to constrain temporal changes in structure and hydraulic properties. 96 

 97 

To address this gap, the present study introduces a framework based on neural networks and seasonal 98 

trend decomposition. Specifically, we quantify the change in the response function after the 2018 99 

drought in summer, which was a Europe-wide event, but in Germany was particularly characterized by 100 

an extreme combination of high temperatures and low precipitation (Xoplaki et al., 2025). The response 101 

of soil water content on this drought will be analysed for a set of lysimeters. As shown in Fig. 1 for one 102 

of the study sites, the monthly water deficit (potential evapotranspiration minus precipitation) peaked 103 

in summer 2018 indicating the strong drought in this period. 104 
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 105 
Figure 1 Variations in climatic conditions at Selhausen (SE) expressed as difference between potential 106 

evapotranspiration (PET) and precipitation (P) cumulated over the precedent 30 days (one month). The extreme 107 

summer 2018 is manifested by a maximum monthly deficit of ~150 mm. Details on the calculation of PET are 108 

provided in section 2.1.1. 109 

The general objective of this study is thus to introduce a model framework to quantitatively detect 110 

changes in the soil water content response function and to classify the response as ‘stable’, ‘resilient’, 111 

or ‘changed’.  112 

In principle, it would be possible to develop a quantitative framework to detect changes in the response 113 

function exclusively based on experimental data of time series (without modelling) as for example by 114 

the application of wavelet analysis (Ehrhardt et al., 2025). In this study, however, we pursue a different 115 

approach based on predictive modelling, in which  the temporal evolution of differences between 116 

measurements and predictions serves as an indicator of  changes in the response function, yields both, 117 

accurate predictions of soil water content dynamics (not in the focus of this study) and detection of 118 

changes in the relationship between climate and soil water content dynamics.  119 

2. Material and Methods 120 

We developed a data-driven modelling framework that combines time-series decomposition of climatic 121 

inputs with a feed-forward neural network to predict the daily soil water content (Fig. 2).  122 
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 123 
Figure 2 Schematic overview of the modelling framework for daily soil water content prediction. Input features 124 

include the analysis of a climatic variable (top left), its long-term trend component (bottom left), and the 125 

categorical soil water content state (‘wet’, ‘moderate’, ‘dry’; top middle). These features, derived from observed 126 

data, are used to train a feed-forward neural network (centre), which outputs daily predictions of volumetric 127 

water content (right). The model thus captures temporal soil water content dynamics based on structured climate 128 

signals and categorical conditions. 129 

The approach explicitly incorporates precipitation, potential evapotranspiration, and their difference 130 

(climatic water balance) as primary inputs. Each of these climate drivers was decomposed into seasonal 131 

variations and long-term trend components using Seasonal-Trend decomposition (STL) and was 132 

included as a separate feature in the model (Boergens et al., 2024; Cleveland et al., 1990). The input 133 

features also included a categorical moisture class (type) that reflects the expected current soil water 134 

condition (‘wet’, ‘moderate’, ‘dry’). This design reflects the understanding that changes in climate - 135 

such as shifts in rainfall and evaporative demand - substantially affect soil water availability and fluxes 136 

(Vereecken et al., 2022). The methodology is detailed in the following sections, which consists of five 137 

key steps: selecting study sites and datasets collected in contrasting hydro-climatic conditions 138 

(subsection 2.1), preprocessing the data and extracting meaningful signals features including STL 139 

(subsection 2.2), constructing and training a neural network model on a reference dataset (subsection 140 

2.3), generating soil water content predictions for independent (non-training) sites using the trained 141 
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model (subsection 2.4), evaluating the model’s performance with statistical metrics (subsection 2.5), 142 

and physical consistency checks (subsection 2.6).  143 

2.1 Study Sites and Data Selection 144 

2.1.1 Lysimeter Network TERENO SOILCan 145 

The study was conducted using lysimeter data from the TERENO-SOILCan lysimeter network in 146 

Germany (Pütz et al., 2016) with a focus on two locations: Bad Lauchstädt (BL) and Selhausen (SE) 147 

(Fig. 3). These sites were selected for their contrasting climatic regimes and the specific set-up of 148 

lysimeters, providing a natural experiment on how climate variability influences soil hydrological 149 

behaviour for a variety of soils. The TERENO-SOILCan lysimeters were moved between and within 150 

observatories according to a modified space-for-time approach, to expose them to different climates 151 

(Groh et al. 2020). This allows us to compare the ecosystem response of the same soil, but under 152 

different climatic conditions. Selhausen is characterized by a humid, Atlantic-influenced climate 153 

(annual precipitation around 720 mm and mean air temperature around 10 °C), whereas Bad Lauchstädt 154 

represents a drier, more continental climate (annual precipitation roughly 487 mm and mean air 155 

temperature approximately 8.8 °C); both climate descriptions are based on Pütz et al. (2016). Long-156 

term observations confirm that Bad Lauchstädt experiences significantly lower rainfall and higher 157 

evaporative demand than Selhausen, yielding a higher aridity index (ratio of potential 158 

evapotranspiration to precipitation) and more pronounced dry spells in the growing season. By 159 

including both, a wetter site Selhausen and a drier site Bad Lauchstädt, the model is evaluated under 160 

distinctly different moisture regimes, which is critical for testing the generality of the approach and to 161 

separate between climatic and soil type effects. For each lysimeter station (Bad Lauchstädt and 162 

Selhausen), 12 lysimeters (1 m2 surface area, 1.5 m depth) arranged in hexagons with 6 lysimeters 163 

around a service well were included in the analysis to monitor soil water content along with 164 

meteorological variables. In this study, lysimeters are not used for drainage or storage estimates, but 165 

rather as instruments providing long-term, high-resolution time series of soil water content and matric 166 

potential under field conditions. The lysimeters contain undisturbed soil columns collected at four 167 

different locations (see Fig. 3a), each with three replicates (Pütz et al., 2016) and were managed as 168 
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arable land under crop rotation. While fertilization practices differed regionally until spring 2019, the 169 

overall management concept was comparable, ensuring that differences in water dynamics can be 170 

attributed to changes in the climate and soil rather than the management (Pütz et al., 2016).  171 

 172 
Figure 3 Overview of the study area with site locations, topsoil texture, and soil origin. (a) The TERENO-173 

SOILCan network contains lysimeters from four climatic regions (different symbols and colours in map). Our 174 

analysis focuses on the TERENO–SOILCan sites Selhausen (SE) and Bad Lauchstädt (BL), located in the 175 

Eifel/lower rhine valley and Harz/central German lowland observatory of TERENO, respectively, because at both 176 

sites lysimeter clusters were built (represented by shaded areas and hexagons), collecting large soil columns from 177 

four distinct source regions (i.e., Dedelow (DD), Bad Laucstädt (BL), Sauerbach (SB), and Selhausen (SE)). (b) 178 

The analysed soil horizons (10 cm depth) cover two textural classes, shown in the USDA soil texture triangle, 179 

assigned to four different soil types and a range of soil organic carbon contents (SOC) (numbers in the legend). 180 

To investigate the effects of climate on soil water dynamics, daily time series of precipitation (P), 181 

potential evapotranspiration (PET), matric potential, and volumetric soil water content (used as the 182 

target variable) were compiled. P at Selhausen was measured at the on-site SOILCan weather station, 183 

while for Bad Lauchstädt it was taken from the nearest long-term monitoring station operated by the 184 

Deutscher Wetterdienst (Leipzig/Halle, ID 2932; DWD Climate Data Center, 2025). PET was 185 

calculated with the FAO-56 Penman–Monteith model (Allen et al., 2006), using measured 186 

meteorological variables (air temperature, air pressure, relative humidity, radiation, and wind speed) 187 

according to SOILCan protocols (Pütz et al., 2016; Groh et al., 2020). In this context, the reference 188 

evapotranspiration (ETo) calculated with the Penman–Monteith model for a clipped grass surface (FAO-189 
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56) is used as a proxy for potential evapotranspiration (PET), representing the site-independent 190 

atmospheric evaporative demand. Soil matric potential was measured using MPS-1 sensors (Decagon 191 

Devices Inc., Pullman, WA, USA), and volumetric soil water content was measured with time-domain 192 

reflectometry probes (CS610, Campbell Scientific, North Logan, UT, USA). The observational record 193 

spans the period from 2015 to 2023 and includes measurements taken at a depth of 10 cm (deeper soil 194 

layers were not analysed; Pütz et al., 2016).  195 

2.1.2 Definition of Reference Site for Model Framework 196 

For model development, a single lysimeter moved from Dedelow to the Bad Lauchstädt lysimeter 197 

station (see Fig. 3a and 3b) was selected as the training dataset. This lysimeter was chosen due to its 198 

stable soil water content dynamics and minimal temporal drift in water retention properties over the 199 

observation period (see Fig. 4a). This lysimeter served as the reference dataset for developing the 200 

predictive model because it allows the definition of soil water content response function for the seasonal 201 

climatic conditions. The 23 remaining lysimeters at the Bad Lauchstädt and Selhausen site were used 202 

as independent test datasets (a contrasting example is shown in Fig. 4b) to evaluate model generalization 203 

and detect potential shifts in soil hydraulic behaviour across sites and years. 204 

 205 
Figure 4 Soil water retention curves using data collected between 2015 and 2023 at 10 cm depth. Matric potential 206 

is plotted against volumetric water content, with data colour-coded by period: 2015–2016 (blue), 2017–2020 207 

(green), and 2021–2023 (red). (a) Training lysimeter (moved from Dedelow to Bad Lauchstädt). (b) Test lysimeter 208 

(original soil from Selhausen in lysimeter station at Selhausen). 209 
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2.2 Data Preprocessing and Feature Engineering 210 

All raw data were aggregated or resampled to a daily time step to support time-series analysis and 211 

modelling. Any misaligned or duplicated timestamps were corrected to ensure consistency. 212 

2.2.1 Seasonal-Trend decomposition 213 

After cleaning and aligning the data, the climatic variables used as inputs in the modelling were selected. 214 

In addition to raw P and PET data, the daily climatic water balance (WB) was included as an explicit 215 

input. This variable reflects the net difference between P and PET, serving as a proxy for wetting or 216 

drying conditions. Positive values indicate potential moisture accumulation (e.g., during rainfall-217 

dominated periods), while negative values reflect high evaporative demand and drying conditions (e.g., 218 

during hot, dry days). Including the WB helps the model to distinguish humid periods from dry ones. 219 

By providing WB alongside P and PET, the model can learn both the individual and combined effects 220 

of P and evaporative demand on soil water content dynamics (Brocca et al., 2010; Uber et al., 2018). 221 

For example, it can infer that 10 mm of P during a high-PET summer day (low positive or negative WB) 222 

is less likely to increase soil water content than the same P on a cool, low-PET Day (high positive WB). 223 

To provide the model with structured representations of climate variability, each climatic time series 224 

was decomposed into additive components using STL based on LOESS with LOESS as acronym for 225 

‘Locally Estimated Scatterplot Smoothing’ (Cleveland et al., 1990). STL is a non-parametric method 226 

that separates a time series into three interpretable parts: a seasonal component representing repeating 227 

seasonal patterns (such as wetting and drying cycles), a trend component capturing gradual long-term 228 

changes (such as climate shifts), and a residual component containing short-term irregularities and high-229 

frequency noise (Cleveland et al., 1990). This decomposition was applied independently to the P, PET, 230 

and WB time series. Only the seasonal and trend components were retained as input features, as they 231 

contain meaningful patterns relevant to soil water content dynamics. The residual component, which 232 

lacks systematic structure, was excluded from further analysis. STL was configured with a cycle length 233 

of 180 days, representing the semi-annual wet–dry phases at the study sites. A LOESS smoother with 234 

a 90-day window was then applied to the de-seasonalized series to extract the trend component. This 235 
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configuration was chosen to capture gradual, long-term changes in the climatic variables while reducing 236 

short-term fluctuations. Note, that near the ends of the time series the absence of future values causes 237 

the smoothing window to become asymmetric. As a result, the estimated trend becomes more sensitive 238 

to recent variability. This limitation does not affect the outcome of the analysis, as both the input 239 

features and the target variable (water content) are equally influenced by it. Each of the extracted 240 

seasonal and trend components from P, PET, and WB was included as input to the neural network 241 

alongside the original raw values. This allowed the model to learn structured seasonal behaviour—such 242 

as distinguishing the rising phase of spring wetting up of the soil profile from the declining phase of a 243 

summer dry-down—and to account for long-term shifts, such as gradual drying or changes in mean 244 

climate conditions. 245 

2.2.2 Wetness classification 246 

In addition to the continuous climate-related features, a categorical input was included to describe the 247 

soil’s moisture condition as either ‘dry’, ‘moderate’, or ‘wet’. These categories were defined using the 248 

soil water content time series from the training site, with thresholds based on quantiles of the full 249 

distribution. Specifically, values below the 30th percentile were labelled as ‘dry’, between the 30th and 250 

70th percentiles as ‘moderate’, and above the 70th percentile as ‘wet’. These categories were then 251 

encoded numerically prior to modelling, using values of 30 for ‘dry’, 20 for ‘moderate’, and 1 for ‘wet’. 252 

This encoding allowed the categorical feature to be treated as ordinal variable and integrated into the 253 

neural network input layer alongside the other features. There are two reasons to include this feature. 254 

Firstly, the soil’s current moisture condition can strongly influence its response to P and PET (Western 255 

& Grayson, 1998). For example, under dry conditions, more water can be absorbed by the soil due to 256 

its high storage capacity. In contrast, when soils are already wet or near saturation, infiltration capacity 257 

is reduced, and additional rainfall is more likely to result in runoff  (Tromp‐van Meerveld & McDonnell, 258 

2006; Zehe & Blöschl, 2004). The second reason is the motivation to use remote sensing data in similar 259 

follow up studies, which are not yet accurate enough for modelling purposes but allow a general 260 

classification of the wetness status. Because (i) corresponding information on soil matric potential 261 
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cannot be deduced at larger scale from remote sensing data and (ii) hysteresis in the soil water retention 262 

curve may lead to ambiguous thresholds, we focus here on soil water content measurements. 263 

Another choice for the model framework that must be discussed is the choice of percentile thresholds. 264 

From a soil hydrological point of view, it would make sense that the thresholds defining the three classes 265 

‘wet’, ‘moderate’ and ‘dry’ are chosen individually for each lysimeter (a wet clay soil may have very 266 

different water content values than a sandy soil). However, from a methodological point of view, we 267 

prefer to ensure that the model does not require a long time series to determine quantiles of soil water 268 

content data and that the model can be run solely based on the training site’s distribution. Accordingly, 269 

the same percentile thresholds, derived from the training site, were applied to label daily water content 270 

values at the prediction sites. Note, that the application of the same percentile thresholds for all sites is 271 

not relevant for the detection of changes in the soil water content response function. Very similar results 272 

will be obtained for a site-specific percentile definition as shown in the supplementary material (section 273 

S1). After constructing all the above features, each daily input to the model consisted of (i) raw climate 274 

variables (P, PET, and WB), (ii) the STL-derived seasonal and trend components for each of those 275 

variables (six variables), and (iii) the categorical moisture label. All ten features were aligned by date 276 

to ensure consistency across inputs. This combination of raw values, decomposed temporal signals, and 277 

qualitative soil condition provides the model with a detailed daily representation of both external 278 

climatic forcing and internal system state.  279 

2.3 Neural Network Architecture and Training 280 

To model daily volumetric soil water contents, a feed-forward neural network was implemented. The 281 

architecture consisted of three hidden layers: two dense layers with 12 neurons each using ReLU 282 

activation functions (Rectified Linear Unit), followed by a batch normalization layer, and a third dense 283 

layer with 6 neurons. ReLU was chosen for its ability to introduce non-linearity while maintaining 284 

computational efficiency and avoiding vanishing gradient problems during training (Lu et al., 2020; 285 

Montesinos López et al., 2022). Batch normalization was applied to stabilize learning by reducing 286 

internal covariate shift, which improves convergence speed and training stability (Montesinos López et 287 
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al., 2022). The output layer consisted of a single neuron with a linear activation function, which is 288 

standard for continuous regression tasks such as predicting soil water content.  289 

The network was trained using input features derived from daily observations at the reference lysimeter 290 

at the Bad Lauchstädt site, covering the period 2015–2023. Prior to training, all continuous input 291 

features were standardized to have a mean of zero and a standard deviation of one using z-score 292 

normalization. The standardization parameters (mean and standard deviation) were computed solely 293 

from the training dataset and applied unchanged to the validation sets at the training site, as well as to 294 

the prediction sites, ensuring consistency across all data splits. The target variable, volumetric soil water 295 

content, was preserved in its original physical units (m3 m-3), allowing for direct interpretation of the 296 

model outputs and associated errors in hydrologically meaningful terms. The model was compiled with 297 

the Adam optimizer, which adaptively adjusts learning rates and is widely used for its computational 298 

efficiency and stable convergence. Mean squared error (MSE) was used as the loss function due to its 299 

sensitivity to large deviations, making it suitable for continuous regression tasks. To monitor 300 

generalization, 30% of the data was withheld as a validation set and excluded from updating the weights 301 

between the nodes during training. The training procedure was initially set to proceed for a maximum 302 

of 1000 epochs. To prevent overfitting, an early stopping criterion was implemented based on validation 303 

loss. Specifically, training was terminated if no improvement in validation performance was observed 304 

over a predefined number of consecutive epochs (patience threshold). The model parameters from the 305 

epoch exhibiting the lowest validation loss were retained for final evaluation. 306 

2.4 Testing the Neural Network  307 

After training, the model was applied to the remaining 23 lysimeters across both Selhausen and Bad 308 

Lauchstädt, none of which were included in the training phase. All test inputs were processed using the 309 

same structure and normalization parameters derived from the training data. As outlined in Section 2.1, 310 

the experimental setup includes four soil types, each installed with three replicates at both sites (see Fig. 311 

3). While the lysimeters at the Bad Lauchstädt lysimeter station share the same climatic setting as the 312 

training site, the lysimeters at Selhausen represent a more humid region. Accordingly, the raw data and 313 

seasonal trend data of the Selhausen climate were used as input for the prediction of soil water content 314 
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in lysimeters located at Selhausen. This configuration allows to evaluate (i) whether the soil water 315 

content response function determined for the training remains valid for different climates and soil types, 316 

and (ii) to detect potential temporal or structural changes in soil hydraulic behaviour. The evaluation 317 

and classification procedures are described in the following two subsections. 318 

2.5 Detection of Change in Soil Water Content Response Function Based on Error 319 

Metrics 320 

As explained in the introduction, we use error metrics to detect changes in the soil water content 321 

response function. While we use the Nash-Sutcliffe -Efficiency (NSE, see eq. 5) as a general descriptor 322 

of model error, we investigate temporal changes in model performance based on the Mean Bias (MB) 323 

that was calculated on an annual basis from 2015 to 2023. This year-by-year assessment does not rely 324 

on predefined change points and enables the detection of gradual or abrupt shifts in model performance 325 

directly from the data. MB measures the average signed difference between predicted and observed 326 

values, providing an estimate of systematic overestimation or underestimation over time (Moriasi et al., 327 

2007; Liu et al., 2011) and is defined as: 328 

𝑀𝐵 =
1

𝑁
∑ (𝜃𝑖 − 𝜃𝑖)𝑁

𝑖=1      (1) 329 

where 𝜃𝑖 is the predicted volumetric water content at day i, 𝜃𝑖 is the corresponding observation and 𝑁 330 

defines the number of available observations–prediction pairs. Although, the calculation uses daily 331 

values, MB is aggregated over yearly intervals to produce a single value per year, capturing annual 332 

patterns in prediction bias. Volumetric water contents (m³ m⁻³) were multiplied by 100 prior to 333 

calculation, and MB is therefore reported in percentage (%). Positive MB values indicate systematic 334 

overestimation by the model, while negative values reflect underestimation. The annual assessment of 335 

MB allowed us to evaluate whether the soil water content response function remains consistent across 336 

time or shows temporal dynamics.  337 

To classify the soil water content dynamics with respect to the resilience after the extreme summer 338 

2018, we check if the deviation of the predictions based on a stable response function (developed with 339 

the training data) changes over the years. When the deviation in the first year (2015; i.e., before the 340 
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drought) is different from the deviation in the year 2023, we consider that the soil water content response 341 

function has changed (it is still possible that the response function may recover in the future) and the 342 

soil water content dynamics is classified accordingly as ‘changed’. When the deviations at beginning 343 

and end are similar, but there was a period between 2018 and 2022 with a different deviation level, we 344 

conclude that the soil water content response function changed reversibly over time but recovered 345 

within the observation window and the lysimeter is classified as ‘resilient’. The soil water content 346 

response is considered as ‘stable’ when the deviations remain similar during the entire observation 347 

period. As threshold we chose 1.52%, that equals the 3-fold of the standard deviation of the nine yearly 348 

MB values computed for the training site. The classification of the time series was thus expressed 349 

formally as: 350 

‘changed’:  |𝑀𝐵2023 − 𝑀𝐵2015| > 1.52%       (2) 351 

‘resilient’: |𝑀𝐵2023 − 𝑀𝐵2015| ≤ 1.52% ⋀  |𝑀𝐵20𝑥𝑥 − 𝑀𝐵2015| > 1.52%   (3) 352 

‘stable’: |𝑀𝐵2023 − 𝑀𝐵2015| ≤ 1.52% ⋀  |𝑀𝐵20𝑥𝑥 − 𝑀𝐵2015| ≤ 1.52%   (4) 353 

with the logical operator ∧ and the mean bias of a specific year with MB20xx, that shows the largest 354 

difference |MByear-MB2015| for the time period between 2018 and 2022 (starting with dry year 2018). 355 

As general information on the different response function, we calculated the NSE coefficient (Moriasi 356 

et al., 2007; Nash & Sutcliffe, 1970). The NSE is a standard metric for hydrological model skill, with 357 

NSE = 1 indicating perfect agreement and NSE ≤ 0 stating that the model predictions are no better than 358 

using the mean of the observations. Mathematically, it is defined as: 359 

𝑁𝑆𝐸 = 1 −
∑ (𝜃𝑖−𝜃̂𝑖))2𝑁

𝑖=1

∑ (𝜃𝑖−𝜃̅))2𝑁
𝑖=1

     (5) 360 

where 𝜃𝑖 is the predicted volumetric water content at day i, 𝜃𝑖 is the corresponding observed value, 𝜃̅ is 361 

the mean observed volumetric water content over the evaluation period, and 𝑁 denotes the total number 362 

of valid data points used in the calculation. Following Moriasi et al. (2015), model performance was 363 

classified as very good for NSE > 0.80, good for 0.70 < NSE ≤ 0.80, satisfactory for 0.50 < NSE ≤ 0.70, 364 

and unsatisfactory for NSE ≤ 0.50. Lower NSE values were interpreted as indicators of deviations from 365 
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the soil hydraulic behaviour represented in the training data, potentially due to differences in soil 366 

properties or climate-induced structural changes. 367 

2.6 Interpretation of Change in Response Function in Soil Physical Terms 368 

The dynamics of MB (see above) was also used to assess changes in soil water retention curves 369 

(SWRCs), which were plotted for each test lysimeter on a yearly basis. As stated in eq. (1), a positive 370 

MB value corresponds to measured values that are smaller than the predictions. Because the predictions 371 

are based on the model trained for a specific lysimeter, we expect for a positive MB that the water 372 

content for the same environmental conditions (as manifested in the matric potential) is smaller in the 373 

test lysimeter compared to the lysimeter used for training (SWRC is shifted to the left). Analogously, 374 

for a consistently negative MB we expect that the test site retained more water at a given matric potential 375 

than the training site and the SWRC is shifted to the right. For a ‘resilient’ soil, the soil water retention 376 

curve will be shifted over time and will shift back close to the original position at the end of the 377 

observation period. Finally, for a soil with ‘changed’ response function, the water retention curve is 378 

drifting over time as well but without returning to its original position. In some cases, the temporal 379 

evolution of MB may not exactly follow the apparent shift of the SWRC, as additional vertical or slope 380 

changes could occur due to variations in porosity or pore-size distribution. These effects cannot be 381 

identified within the current framework but may contribute to deviations between MB dynamics and 382 

the apparent SWRC shift. 383 

3. Results 384 

Following the methodological framework described in Section 2.3-2.6, we present the results of model 385 

predictions across the test lysimeters to assess the resilience of the soil water content response function 386 

for the different lysimeters. We organize the section in four subsections according to the four different 387 

origins of the soil in the lysimeters (see Fig.3b) to discuss effects of soil origin and climatic conditions 388 

on the response function. In the last subsection (3.5) the results are summarized to allow direct 389 

comparison of all 24 lysimeters. Note, that all model results presented below are based on the soil water 390 

content classification (‘wet’, ‘moderate’, ‘dry’) as deduced from the lysimeter used for model training. 391 
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The corresponding figures using specific classification for each lysimeter are shown in supplementary 392 

information Fig. S4-S7.  393 

3.1 Lysimeters with Same Soil as Used in Model Training (Dedelow Soils) 394 

The neural network was trained to capture the soil water content response function of one lysimeter 395 

with sandy loam topsoil (Luvisol) extracted from Dedelow and translocated to the dry climatic region 396 

in Bad Lauchstädt (see Fig. S1 in supplementary material). The NSE of the training and validation of 397 

that specific lysimeter was very high with 0.91 indicating good model performance. The application of 398 

this response function to the other two lysimeters from Dedelow that were translocated to Bad 399 

Lauchstädt resulted in relatively high NSE values (0.79 and 0.84). However, the lower soil water 400 

contents observed during the summer of 2018 were not adequately captured as shown in Fig. 5a. More 401 

specifically, the time series show that predictions and observations matched closely in 2015, while after 402 

the dry summer of 2018 the model systematically overestimated water content in 2019 and 2020, before 403 

the agreement improved again towards the end of the period.  404 

 405 
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Figure 5 Analysis of soil water content dynamics (2015–2023) for a Dedelow-origin lysimeter tested at Bad 406 

Lauchstädt. Panel (a) shows the time series of observed (blue) and predicted (orange) water content, with close 407 

agreement in 2015, clear overestimation in 2019–2020 (predictions above observations), and improved 408 

agreement again towards the end of the period. Panel (b) presents the temporal evolution of mean bias (MB), 409 

remaining near zero until 2017, increasing to about 2–3 % in 2019–2020, and decreasing again to approximately 410 

zero in 2022. Such soil water content response was classified as ‘resilient’. Panel (c) displays soil water retention 411 

curves from the training site (grey) and from selected years representing different MB conditions, with low-MB 412 

years (2015, 2022) and high-MB years (2019, 2020). The curves are close to the training site in 2015, show a 413 

shift to lower water contents in 2019–2020, and in 2022 return to the training site data. 414 

These changes are reflected in the MB development (Fig. 5b), with values increasing from near zero in 415 

2015 to about 2–3% in 2019–2020 and then decreasing again towards 2022. The retention curves 416 

confirm this interpretation (Fig. 5c). The year with low MB (2015) produced a SWRC close to the 417 

measured curve of the training site, the years with high MB (2019–2020) were shifted to lower water 418 

contents, and the later year with reduced MB (2022) returned to the measured SWRC of the training 419 

site. Taken together, the time series, MB trend, and SWRCs show that the soil response was disturbed 420 

after 2018 but later recovered, defining this lysimeter as ‘resilient’. The same finding holds for the 421 

simulations for the lysimeters translocated to Selhausen (less dry climate) with high NSE between 0.80–422 

0.82. This indicates, that for this coarse soil (i) the effect of changing climatic conditions was rather 423 

small (very good NSE classification for both sites) but (ii) that also these coarse textured topsoils do 424 

not show identical response to the extreme year but each lysimeter reacts slightly different, indicating 425 

slightly different structural properties. 426 

3.2 Lysimeters with Soils Adapted to Climatic Conditions Similar with Those of 427 

the Model Training Site (Bad Lauchstädt soil) 428 

The lysimeters filled with soil from Bad Lauchstädt (Chernozem) represent soils adapted to the climatic 429 

conditions under which the response function was calibrated. In case of dominant effect of climate on 430 

the soil water content response function, we could expect similar results as for the training lysimeter. 431 

For the soil remaining at the original site (Bad Lauchstädt), the model performance was very good 432 

(0.88–0.89). As shown for an example in Fig. 6a, the fit between observed and predicted water content 433 

was consistently close, with a tendency to slightly underestimate in the early years and to mildly 434 

overestimate after 2018, particularly in 2019–2020, before the agreement improved again in later years. 435 
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This is also manifested in the MB values that increased from slightly negative values in 2015 to about 436 

+1.5% in 2019, before decreasing again towards zero (Fig. 6b). The plotted SWRCs support this 437 

interpretation (Fig. 6c), with low MB years (2015 and 2016) showing a slight shift to higher water 438 

contents relative to the measured SWRC of the training site, and high-MB years (2019 and 2020) 439 

displaying a modest shift to lower water contents. Accordingly, the soil water content dynamics was 440 

classified as ‘resilient’.   441 

For the lysimeters transported from Bad Lauchstädt to Selhausen, the performance was more variable 442 

(NSE ranging from 0.50 to 0.84) corresponding to satisfactory to very good classifications, reflecting 443 

the stronger effect of the wetter climate. None of the three lysimeters who stayed in Bad Lauchstädt 444 

were classified as ‘changed’ but two out of three showed a systematic shift and were classified as 445 

‘changed’ when translocated to Selhausen (see Table 1). In short, those examples show that the Bad 446 

Lauchstädt soil remained resilient under unchanged climate at Bad Lauchstädt but changed under the 447 

wetter climate at Selhausen. 448 

 449 
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Figure 6 Analysis of soil water content dynamics (2015–2023) for a Bad Lauchstädt-origin soil lysimeter tested 450 

at Bad Lauchstädt. (a) Comparison of measured (blue) and simulated (orange) daily water content values, 451 

showing high agreement in the early years and temporary overestimation in 2019–2020. (b) Mean Bias (MB) 452 

started slightly negative in 2015, increased to about +1.5 % in 2019, and then decreased again towards 2022. (c) 453 

Soil water retention curves (SWRCs) from the training site (grey) and from the same replicate for selected years 454 

with low MB (2015, 2016) and high MB (2019, 2020) show close agreement in the early years and a shift to lower 455 

water contents in 2019–2020. 456 

3.3 Lysimeters with Soils Adapted to Climatic Conditions comparable with Those 457 

of the Model Training Site (Sauerbach soil)  458 

The findings are similar for the silt loam (Cambisol) from Sauerbach, representing soils adapted to 459 

climatic conditions comparable to those in Bad Lauchstädt. As in case of the soil from Bad Lauchstädt, 460 

soils from Sauerbach show higher NSE values when translocated to Bad Lauchstädt (0.81–0.88, very 461 

good) compared to those transferred to the wetter climate in Selhausen (0.74–0.79, good). This reflects, 462 

that the soil water content response function in the drier climate is not the same as in the wetter climate. 463 

In one illustrative case, the observed water content initially showed wetter dynamics than predicted, but 464 

gradually converged toward the model predictions by 2023, indicating a possible structural adjustment 465 

over time (Fig. 7a).  466 
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 467 
Figure 7 Analysis of soil water content dynamics (2015–2023) for Sauerbach-origin lysimeter relocated to 468 

Selhausen (a) Comparison of observed and predicted daily volumetric water content (NSE = 0.74) After initial 469 

underestimation by the model, the observed and predicted values gradually converged, indicating a possible 470 

structural adjustment.(b) Temporal evolution of the mean bias (MB), which increased from about –5 % in 2015 471 

to values close to zero by 2019–2023, consistent with the improved match between observed and predicted values 472 

shown in panel (a). (c) Soil water retention curves (SWRCs) from the training site (grey) and from selected years 473 

with low MB (2015, 2016) and high MB (2020, 2022) illustrate the same trend, with early years showing higher 474 

water contents at a given matric potential and later years shifting towards to the training curve. 475 

This development is also evident in the MB values (Fig. 7b), which started strongly negative (–5%) in 476 

2015–2016 and steadily increased toward values close to zero by 2023, indicating a progressive 477 

reduction of underestimation. The corresponding SWRCs (Fig. 7c) confirm this trend, with curves from 478 

early years (2015, 2016) showing higher water contents at a given matric potential compared to the 479 

measured SWRC of the training site and later years (2021, 2023) shifting closer to the reference, 480 

suggesting a gradual adjustment of hydraulic behaviour. In the case of soils from Sauerbach, there was 481 

a difference in quantification of resilience with respect to the classification of the soil water content 482 

used as input variable: with the classification based on the training lysimeter (with sandy loam in the 483 
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topsoil), the soil water content dynamics was classified as ‘changed’ for all six lysimeters. But using 484 

the classification based on the soil water content statistics obtained for each lysimeter individually (see 485 

Fig. S6), the large water contents at the beginning were captured and only one lysimeter out of three 486 

was classified ‘changed’. Independent of the water content classification, all lysimeters translocated to 487 

Selhausen were classified as ‘changed’, exhibiting the strongest response to relocation of all soils. 488 

3.4 Lysimeters with Soils Adapted to Climatic Conditions Different from Those of 489 

the Model Training Site (Selhausen) 490 

At last, we discuss the Selhausen silt loam (Luvisol), representing soils adapted to climatic conditions 491 

that were not included in the neural network training. The model performance was better for the 492 

replicates translocated to the drier Bad Lauchstädt climate (NSE = 0.86–0.92, very good), compared to 493 

slightly lower performance at their site of origin under humid Atlantic conditions (0.76–0.86, good to 494 

very good). The classification with respect to resilience helps to explain this, since Selhausen soils at 495 

their origin were mainly assigned to ‘stable’ or ‘resilient’ categories (see Table I), while the same soils 496 

translocated to Bad Lauchstädt showed a more variable pattern. This indicates, that the lower NSE at 497 

Selhausen does not represent a misfit of the model but reflects that the soils follow their own stable soil 498 

water content response function. One replicate at Selhausen (NSE = 0.85) reproduced the seasonal 499 

dynamics well, although differences between observed and predicted values remained visible in the wet 500 

season across several years (Fig. 8a). The MB shifted from negative values in the first years toward 501 

zero after 2019. Note, that an MB value of 0 does not mean that deviations disappeared, but that errors 502 

in wetter and drier phases compensated each other (Fig. 8b). The SWRCs were generally close to the 503 

training reference, but in later years small deviations appeared mainly at the saturated end (Fig. 8c). 504 

Overall, these changes remained below the assumed threshold, supporting a classification of the soil 505 

water content dynamics as ‘stable’. 506 
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 507 
Figure 8 Soil water content dynamics (2015–2023) for a Selhausen-origin lysimeter tested at Selhausen. (a) 508 

Observed (blue) and predicted (orange) water content show fair agreement, with underestimation of water 509 

contents in the wet season. (b) Mean Bias (MB) fluctuated from negative values in the early years to values close 510 

to zero after 2019, but these variations remained below the threshold for change. (c) Soil water retention curves 511 

(SWRCs) from the training site (grey) and from selected years with low MB (2015, 2016) and higher MB (2019, 512 

2020) reflect these minor variations, with the 2019 curve showing the strongest deviation yet remaining close to 513 

the training reference, consistent with the stable classification. The apparent cutoff at the wet end in (a) arises 514 

from the use of absolute rather than normalized values during training, as discussed in the Supplementary 515 

Material (Text S1). 516 

3.5 Comparison of All Lysimeters  517 

The comparison of the soil water content dynamics of all lysimeters indicate, that climatic shifts 518 

between sites - particularly between the continental Bad Lauchstädt and Atlantic-influenced Selhausen 519 

- can significantly alter the hydraulic response of the soil, even when texture remains constant. In 520 

general, prediction performance at Selhausen was lower, likely because the model was trained under 521 

the drier climate of Bad Lauchstädt, and therefore, failed to fully capture the soil–water interactions 522 
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emerging under wetter conditions (Fig. 9). The broader NSE range observed at Selhausen location 523 

further suggests increased structural variability among replicates. 524 

 525 
Figure 9 Spread of Nash–Sutcliffe Efficiency (NSE) values across different soil origins and test locations. Each 526 

symbol represents one lysimeter from a given origin (x-axis) evaluated at Bad Lauchstädt or Selhausen (indicated 527 

by colour). The results highlight the influence of climate–soil interactions on model performance. Notably, Bad 528 

Lauchstädt-origin soils exhibited strong performance at their origin but a wider and lower range when tested at 529 

Selhausen, reflecting increased structural variability or climate-induced divergence in hydraulic response. 530 

With respect to resilience of the soil water content response function, we show the temporal evolution 531 

of the mean bias for all lysimeters in Fig. 10 and summarize the results in Table 1. In Table 1 we add 532 

the general classification type (‘stable’, resilient’ and ‘changed’) and calculate the average of 3 533 

lysimeters (same material and same location) for the drift in mean bias value between the year 2015 534 

and 2023 and the maximum deviation from year 2015 for the years between 2018 and 2022. The table 535 

shows that deviations from a ‘stable’ or ‘resilient’ response function mainly occur when soils from 536 

Dedelow, Bad Lauchstädt, and Sauerbach were translocated to Selhausen. Only in case of the soil from 537 

Selhausen, the response function remains ‘stable’. It seems, that the soil material ‘trained over decades’ 538 

to the wetter climate in Selhausen adapts better to the extreme summer 2018.  539 
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 540 
Figure 10 Temporal evolution of Mean Bias (MB) for three representative lysimeter replicates, each classified 541 

into one of three structural response categories: (a) ‘stable’, (b) ‘resilient’, and (c) ‘changed’. Thick dashed lines 542 

indicate the mean of the MB trend across all lysimeters within each classification group, with sample size (n) 543 

specified in the legend. Shaded areas represent ±1 standard deviation. Thin grey lines show individual MB 544 

trajectories of the remaining lysimeters in each group. Highlighted blue lines depict selected replicates 545 

originating from and/or tested at distinct sites: (a) BL → BL (soil material from Bad Lauchstädt tested at its 546 

origin), (b) DD → BL (soil material from Dedelow tested at Bad Lauchstädt), and (c) BL → SE (soil material 547 

from Bad Lauchstädt tested at Selhausen). These examples illustrate contrasting temporal patterns in structural 548 

response, ranging from sustained stability to progressive divergence from the trained site dynamics. 549 

Table 1: Resilience of soil water content response function for the four soil materials translocated to Bad 550 

Lauchstädt and Selhausen. The ‘type’ describes the class of response function of the individual lysimeters (S for 551 

‘stable’, R for ‘resilient’ and C for ‘changed’). The ‘drift’ is the average value |MB2023-MB2015| of the three 552 

lysimeters with the difference in Mean Bias (MB) between years 2023 and 2015. The ‘amplitude’ is the maximum 553 
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difference of the Mean Bias between the first year (2015) and the years between 2018 and 2022 (denoted as year 554 

20xx). 555 

 Located at Bad Lauchstädt Located at Selhausen 

 Type Drift Amplitude Type Drift Amplitude 

Dedelow S,R,C 1.09 1.76 R,C,C 1.72 2.11 

Bad Lauchstädt S,S,R 0.94 1.36 R,C,C 2.15 2.99 

Sauerbach C,C,C 2.17 3.73 C,C,C 3.38 4.24 

Selhausen S,R,C 0.96 2.24 S,S,R 0.47 1.78 

 556 

4. Discussion 557 

The results presented in Section 3 demonstrate that the model can reproduce soil water content dynamics 558 

reliably under stable conditions (as indicated by high NSE-values), but it exhibits limitations when soils 559 

undergo structural changes or are exposed to a different climate. Several soils showed a shift in the wet 560 

range, indicating that differences in soil water content response cannot be explained by texture alone 561 

but reflect the combined effects of climatic conditions and structural evolution.  Based on these findings, 562 

the following discussion evaluates how assumptions of static hydraulic behaviour and response function 563 

affect model performance, examines the role of NSE and MB in identifying evolving system dynamics, 564 

and reflects on the broader implications for long-term modelling and soil water content monitoring. 565 

4.1 Soil–Climate Interactions as Drivers of Hydraulic Response Function 566 

The predictive success of data-driven models depends not only on the physical properties of soils but 567 

also on the climatic context in which those properties developed and continue to function. The present 568 

study shows that soils exhibit the most consistent replicate behaviour when evaluated under climate 569 

conditions similar to those of their origin, where gradual climatic changes over time have allowed their 570 

structure to adjust naturally. When exposed to faster or contrasting climatic shifts, as in translocated 571 

settings, the soil response becomes less predictable and less stable. This can be shown using the table 572 

S1 in the supplementary material file, which lists the average trends (difference in MB between year 573 

2023 and 2015) and amplitudes (difference in MB between 2015 and the dry years) for three lysimeter 574 

replicates: only for the three lysimeters at the original locations Bad Lauchstädt or Selhausen), both 575 
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drift and amplitude were below the stability threshold of 1.52% and can classified as ‘stable’ as group 576 

of lysimeters. 577 

This suggests that the structure and function of the soil system cannot be meaningfully decoupled from 578 

its climatic history. Soils may develop pore arrangements, aggregation patterns, and, as a consequence, 579 

moisture retention characteristics that reflect long-term adaptation to local hydrological regimes. When 580 

these soils are translocated to environments with contrasting P and atmospheric demand (PET), their 581 

hydraulic response can shift in ways that are not captured by static texture-based estimates of soil 582 

hydraulic properties. 583 

Such context-dependent behaviour highlights the limitation of the common assumption that soils with 584 

the same texture will show comparable retention across regions, an assumption often made in the 585 

absence of better descriptors. Experimental evidence collected under natural conditions also indicates 586 

that this description is oversimplified (Hannes et al., 2016; Robinson et al., 2016; Aqel et al., 2024). In 587 

our case, even soils with similar textural composition exhibited different levels of model agreement 588 

depending on climate, highlighting that physical similarity (e.g. soil texture) does not guarantee 589 

functional equivalence in retention. For example, Selhausen-origin soils achieved higher NSE values 590 

when translocated to Bad Lauchstädt, likely because the model was trained under similar dry climatic 591 

conditions. However, classification results showed, that these soils retained greater structural stability 592 

at their origin, suggesting that predictive success under familiar climatic forcing does not necessarily 593 

imply hydraulic consistency. After the 2018 drought, the Selhausen soils translocated to Bad Lauchstädt 594 

converged toward similar dynamics across replicates, with MB stabilizing close to zero, indicating that 595 

their response functions adjusted consistently to the drier climate (see Fig. S2 in the supplementary 596 

material). However, a clear carry-over effect was observed: soil water in the upper 10 cm was not fully 597 

replenished during the wet phase of autumn and winter 2019 and only reached comparable, though 598 

slightly lower, values in winter 2020. This persistent deficit points to a structural legacy of the drought, 599 

where reduced pore connectivity and altered aggregation limited subsequent rewetting. A comparable 600 

multi-year legacy across the full soil column was reported in the TERENO-SOILCan lysimeter network 601 

by Groh et al. (2020).  602 
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All mentioned points underscore the importance of including very broad range of climatic forcing in 603 

the assessment of soil model transferability, as demonstrated by Groh et al. 2022. Our results also 604 

suggest that future efforts to generalize hydrological models should consider training under a range of 605 

climatic conditions to capture the full expression of soil–climate interactions, rather than relying on a 606 

single static representation. From a process-based perspective, these findings reflect that climate does 607 

not simply modulate soil water content inputs but actively shapes the retention and release behaviour 608 

of the soil pore network through structural evolution or breakdown. While management practices across 609 

sites were similar, minor differences in tillage and fertilization cannot be completely excluded and may 610 

have influenced soil structure and water retention. Nonetheless, the dominant control remains climatic 611 

forcing, which makes this consideration particularly relevant for climate-change experiments: models 612 

calibrated under past climatic conditions may not remain valid under the rapid climatic shifts projected 613 

for the coming decades. Neglecting this evolving soil–climate feedback could lead to substantial 614 

underestimation of future changes in soil hydraulic behaviour and associated ecosystem responses 615 

4.2 High Predictive Performance Can Mask System Evolution 616 

Although, several lysimeters achieved high predictive performance as expressed by high NSE values 617 

(Fig. 9), systematic trends in MB over time suggest that the underlying retention behaviour and soil 618 

water content response function may have shifted (Fig. 10 and Table 1). This was most apparent in 619 

Dedelow soils translocated to Bad Lauchstädt, where the model maintained high NSE values, but the 620 

MB increased across years (see Fig. S3). The corresponding shifts in the soil water retention curves 621 

confirmed a gradual change in how the soil retained water, despite the model continuing to predict 622 

moisture levels accurately. 623 

This suggests that local structural changes can occur without immediate deterioration in model fit. The 624 

predictive framework remained effective in capturing the general moisture dynamics, but the 625 

relationship between matric potential and water content was no longer consistent with that observed 626 

during training. These findings highlight that high model accuracy does not guarantee stability in the 627 

hydraulic characteristic, particularly under changing environmental conditions. Identifying such 628 

divergence early is critical for maintaining reliable predictions in long-term monitoring. 629 
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4.3 Implications for Monitoring, Remote Sensing, and Soil Health  630 

The classification outcomes across all lysimeters highlight the role of site memory and structural 631 

resilience in maintaining hydraulic behaviour under climatic stress. Soils assessed at their origin were 632 

more frequently classified as ‘stable’ or ‘resilient’ (e.g., Selhausen at Selhausen), while those 633 

translocated to different locations were more likely to be classified as ‘changed’ (e.g., Sauerbach at Bad 634 

Lauchstädt). These patterns indicate that soil structure, once adapted to specific climate regimes, may 635 

lose its functional integrity when exposed to new conditions. The presented methods allow us to detect 636 

emerging structural shifts that may be relevant for soil health assessment and could be used as indicator 637 

for deteriorated soil health status. 638 

This has direct implications for long-term monitoring and remote sensing. Our model framework - by 639 

avoiding reliance on matric potential data and instead using moisture state categories and decomposed 640 

climatic features - is compatible with satellite-derived products. As remote sensing missions 641 

increasingly provide continuous global soil water content estimates, the proposed framework could be 642 

adapted for large-scale assessment of soil system stability. Furthermore, under scenarios of future 643 

climate change, where shifts in precipitation patterns and evaporative demand are expected, models 644 

trained on historical data may become progressively outdated. The presented residual-based approach 645 

(quantifying MB) enables early detection of such divergence, offering a method for identifying when 646 

re-training or reparameterization is needed to maintain predictive reliability under non-stationary 647 

conditions.  648 

5. Summary and conclusions 649 

The temporal variations in the water content of the topsoil define the amount of plant available water 650 

and oxygen supply, affecting ecosystem functions and soil health status. Reliable information on soil 651 

water content dynamics in response to atmospheric conditions is thus essential to detect and mitigate 652 

critical conditions. This response depends on soil hydraulic properties that are traditionally 653 

characterized by a time-invariant and unambiguous relationship between matric potential, water 654 

content, and hydraulic conductivity as deduced from small-scale lab experiments. In this study, we 655 
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developed and applied a feed-forward neural network combined with seasonal trend analysis of climatic 656 

time series to quantify the soil water content response function after an extreme drought in summer 657 

2018 in Germany. By analysing the time series of topsoil water content measured at two lysimeter 658 

stations of the TERENO SOILCan network, we summarize the conclusion on the soil water content 659 

response function as follows: 660 

• 50% of the lysimeters showed changes in soil water content dynamics after the dry summer 661 

2018. 662 

• The other half showed a resilient behaviour, and the soil water content response function was 663 

not permanently changed. 664 

• The changes in soil water content response function were manifested as (i) temporal trends in 665 

prediction error (mean bias) and (ii) shifts in the soil water characteristics function. 666 

• The soil water content response function is adapted to climatic conditions as manifested by (i) 667 

smallest changes in lysimeters that were not translocated and (ii) decreased model performance 668 

for applications of a response function that was determined for another climate  669 

• Good model performance as expressed by high Nash-Shutcliff-Efficiency values does not 670 

correspond to stable soil water content response function that was only detected by temporal 671 

trends in error metrics 672 

The study revealed that extreme climatic events can permanently change the soil hydraulic properties, 673 

but the lack of resilience depends on the soil and the climatic conditions. We argue that the response 674 

depends on the range of climatic conditions experienced in the past that allowed adaptation of soil 675 

structural properties. Because the presented model framework (i) does not aim to predict successfully 676 

time series in water content and (ii) does only require categorical water content information (‘stable’, 677 

‘resilient’, ‘changed’), it can be applied to larger scale using remote sensing data that do not provide 678 

accurate soil water content values but reliable trends, enabling to detect changes in hydraulic behaviour 679 

at the ecosystem scale.  680 
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