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11 Abstract

12 Abrupt changes in climatic conditions and land management can cause permanent shifts in soil
13 hydraulic response to climatic inputs, impacting soil functions and established soil-climate interactions.
14  To quantify the resilience of soil water content dynamics after abrupt changes in environmental
15  conditions, we present a model framework combining a neural network with seasonal trend analysis
16  (STL). Using data from a series of lysimeters from the TERrestrial ENvironmental Observatories
17  (TERENO) - SOILCan lysimeter network, we identified changes in soil water content responses after
18  anextremely hot and dry summer in Germany in 2018. The model incorporates meteorological variables
19  decomposed into seasonal and long-term components along with a categorical indicator of current
20  moisture conditions. It is trained on data from a reference site with stable soil water content response
21  and applied to lysimeters from multiple origins exposed to contrasting climates. By analysing annual
22 residual patterns—particularly mean bias over time—soil water content state dynamics is classified as
23 ‘stable’, ‘resilient’, or ‘changed’, reflecting whether the system maintains, recovers, or diverges from
24 its original state. We found that soils preserve the response function to environmental forcing under
25  typical conditions but exhibit structural change when relocated to new environments, even when soil
26  texture remains constant. The proposed method offers a scalable and non-invasive tool for tracking
27  changes in the response of soil water content to climatic change and provides early indicators of changes

28 in essential soil functions and soil health status.
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29 1. Introduction

30  Soil water content plays a fundamental role in hydrological processes and land—atmosphere interactions,
31  governing the exchange of water and energy at the Earth’s surface (Seneviratne et al., 2010; Sun et al.,
32 2025). It regulates key hydrological functions, including infiltration, runoff generation,
33 evapotranspiration, and groundwater recharge. Through these processes, soil water content influences
34  water availability, ecosystem productivity, and climatic conditions across local to global scales (Bogena
35 et al., 2015; Fatichi et al., 2020). Soil water content status and related soil environmental conditions
36  change with short- and long-term atmospheric processes. This response of soil water content to
37  atmospheric conditions, which we define as ‘soil water content response function’, determines, for
38  example, if anaerobic conditions are inhibited after heavy rainfall (by fast percolation to deeper soil
39 layers) and if enough water remains available after dry periods for plant growth, temperature regulation,
40 and chemical reactions. In short, the soil water content response function is a dominant factor of the
41  soil health status. This response function is shaped by soil formation processes and reflects adaptation
42 to the dominant climatic conditions (Kuzyakov and Zamanian, 2019; Sainju et al., 2022; Al-Shammary
43 etal., 2025). Accordingly, a change in the response function after extreme climatic events is likely to

44 imply a change in soil health.

45  In the core of this study is the question how changes in the soil water content response function, and
46 thus in soil properties and health, can be detected. The standard approach to determine the response
47  function is to apply physically based models, for example by inverse modelling of soil water content
48  dynamics under varying boundary conditions (Simdnek et al., 2016). These models require detailed
49  knowledge of soil hydraulic properties and extensive calibration, limiting their generalization beyond
50 the spatial scale and the local conditions used in the calibration process (Or, 2020; Lehmann et al., 2020;
51  O. & Orth, 2021). Additionally, such approaches are typically destructive, limiting the options of
52  conducting a time series analysis. Moreover, these models typically assume static soil characteristics,
53 failing to adequately represent structural changes in soil properties — such as compaction, degradation,
54  or organic matter loss — that can substantially alter hydraulic behaviour over time (Fatichi et al., 2020;

55  Melsen & Guse, 2021; Wankmiiller et al., 2024). Most of the models also neglect or oversimplify the
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56  hysteretic nature of the soil water retention curve, as well as seasonal changes in soil hydraulic
57  properties that can substantially alter infiltration, drainage, and plant water availability (Agel et al.,
58  2024; Hannes et al., 2016; Herbrich & Gerke, 2017). Therefore, we used a non-invasive approach based

59 on neural networks as discussed below.

60 In recent years, artificial intelligence (Al), particularly neural networks, has emerged as a promising
61  alternative for modelling complex hydrological processes (Reichstein et al., 2019). These data-driven
62  models have demonstrated the capacity to learn nonlinear relationships directly from observational
63  datasets without relying heavily on explicit physical equations (Kratzert et al., 2019; Mosavi et al.,
64  2018; Shen et al., 2018). Within soil hydrology, neural networks have been used to characterise
65  hysteretic soil-water behaviour from training data, improving the representation of wetting—drying
66  cycles without explicit hysteresis parameterisation (Agel et al., 2024). They have also been applied to
67  soil-moisture time-series modelling using Long Short-Term Memory (LSTM) networks with recurrent
68  architectures suited to capture long-range temporal dependencies (Liu et al., 2023; O. & Orth, 2021).
69  Across diverse hydro-climatic regimes, LSTM have been shown to effectively learn nonlinear
70  relationships between climatic inputs and soil water content, often matching or surpassing traditional
71  physically based approaches and demonstrating strong generalisation (Kratzert et al., 2019; J. Liu et al.,

72 2022,2023; O. & Orth, 2021).

73  Independent of the chosen modelling approach, these models ignore that the soil water content response
74  function (i.e., the variations in soil water content following changes in atmospheric conditions) can
75  change at larger time scale. Experimental studies have shown that extreme events such as drought can
76  induce persistent shifts in soil water content dynamics, potentially leading to alternative stable states
77  (Robinson et al., 2016). Moreover, changes in land use — such as forest conversion to agriculture or
78 bare land — alter soil hydraulic properties, with effects on infiltration, water retention, and saturated
79  hydraulic conductivity (Fu et al., 2021; Robinson et al., 2022). Considering that texture remains
80  constant at time scales of decades, the changes in the response function are likely to be related to

81  changes in soil structure primarily.
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82  Soil systems are subject to temporal change, yet models are often trained on historical datasets without
83  evaluating whether the system dynamics remain stable throughout the training period (Montanari et al.,
84  2013; Vaze et al., 2010). As a result, models may be applied to prediction settings where underlying
85  soil-climate interactions differ from those on which the model was trained. For example, a recent study
86  comparing different crop models using the TERENO-SOILCan set-up showed that predicting
87  agronomic and environmental variables under different climatic conditions to those represented in the
88  training datasets resulted in significant discrepancies between simulations and observations (Groh et
89  al, 2022). This underscores the critical need to assess whether site-specific representations of soil—
90  water behaviour remain valid over time (Hrachowitz et al., 2013) and highlight the need for more
91  adaptable modelling approaches under evolving environmental conditions (Bloschl et al., 2019; Milly
92  etal., 2008). Considering these limitations, none of the discussed approaches can capture the change in
93  the soil water content response function. A recent modelling framework by Jarvis et al. (2024) takes a
94  major conceptual step forward by explicitly representing soil-structure dynamics and their feedback on
95  hydraulic behaviour. However, as the authors emphasize, such process-based models still depend on
96  detailed observational data to constrain temporal changes in structure and hydraulic properties.
97
98  To address this gap, the present study introduces a framework based on neural networks and seasonal
99  trend decomposition. Specifically, we quantify the change in the response function after the 2018
100  drought in summer, which was a Europe-wide event, but in Germany was particularly characterized by
101  anextreme combination of high temperatures and low precipitation (Xoplaki et al., 2025). The response
102  of soil water content on this drought will be analysed for a set of lysimeters. As shown in Fig. 1 for one
103  of the study sites, the monthly water deficit (potential evapotranspiration minus precipitation) peaked

104  in summer 2018 indicating the strong drought in this period.
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106 Figure 1 Variations in climatic conditions at Selhausen (SE) expressed as difference between potential
107 evapotranspiration (PET) and precipitation (P) cumulated over the precedent 30 days (one month). The extreme
108  summer 2018 is manifested by a maximum monthly deficit of ~150 mm. Details on the calculation of PET are
109  provided in section 2.1.1.

110  The general objective of this study is thus to introduce a model framework to quantitatively detect
111  changes in the soil water content response function and to classify the response as ‘stable’, ‘resilient’,

112 or ‘changed’.

113 In principle, it would be possible to develop a quantitative framework to detect changes in the response
114  function exclusively based on experimental data of time series (without modelling) as for example by
115  the application of wavelet analysis (Ehrhardt et al., 2025). In this study, however, we pursue a different
116  approach based on predictive modelling, in which the temporal evolution of differences between
117  measurements and predictions serves as an indicator of changes in the response function, yields both,
118  accurate predictions of soil water content dynamics (not in the focus of this study) and detection of

119  changes in the relationship between climate and soil water content dynamics.

120 2. Material and Methods

121 We developed a data-driven modelling framework that combines time-series decomposition of climatic

122 inputs with a feed-forward neural network to predict the daily soil water content (Fig. 2).
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124  Figure 2 Schematic overview of the modelling framework for daily soil water content prediction. Input features
125 include the analysis of a climatic variable (top left), its long-term trend component (bottom left), and the
126 categorical soil water content state (‘wet’, ‘moderate’, ‘dry’; top middle). These features, derived from observed
127 data, are used to train a feed-forward neural network (centre), which outputs daily predictions of volumetric
128 water content (right). The model thus captures temporal soil water content dynamics based on structured climate

129  signals and categorical conditions.

130  The approach explicitly incorporates precipitation, potential evapotranspiration, and their difference
131  (climatic water balance) as primary inputs. Each of these climate drivers was decomposed into seasonal
132 variations and long-term trend components using Seasonal-Trend decomposition (STL) and was
133 included as a separate feature in the model (Boergens et al., 2024; Cleveland et al., 1990). The input
134  features also included a categorical moisture class (type) that reflects the expected current soil water
135  condition (‘wet’, ‘moderate’, ‘dry’). This design reflects the understanding that changes in climate -
136  such as shifts in rainfall and evaporative demand - substantially affect soil water availability and fluxes
137 (Vereecken et al., 2022). The methodology is detailed in the following sections, which consists of five
138  key steps: selecting study sites and datasets collected in contrasting hydro-climatic conditions
139  (subsection 2.1), preprocessing the data and extracting meaningful signals features including STL
140  (subsection 2.2), constructing and training a neural network model on a reference dataset (subsection

141 2.3), generating soil water content predictions for independent (non-training) sites using the trained
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142 model (subsection 2.4), evaluating the model’s performance with statistical metrics (subsection 2.5),

143 and physical consistency checks (subsection 2.6).

144 2.1 Study Sites and Data Selection

145 2.1.1 Lysimeter Network TERENO SOILCan

146  The study was conducted using lysimeter data from the TERENO-SOILCan lysimeter network in
147  Germany (Piitz et al., 2016) with a focus on two locations: Bad Lauchstidt (BL) and Selhausen (SE)
148  (Fig. 3). These sites were selected for their contrasting climatic regimes and the specific set-up of
149  lysimeters, providing a natural experiment on how climate variability influences soil hydrological
150  behaviour for a variety of soils. The TERENO-SOILCan lysimeters were moved between and within
151  observatories according to a modified space-for-time approach, to expose them to different climates
152 (Groh et al. 2020). This allows us to compare the ecosystem response of the same soil, but under
153 different climatic conditions. Selhausen is characterized by a humid, Atlantic-influenced climate
154  (annual precipitation around 720 mm and mean air temperature around 10 °C), whereas Bad Lauchstédt
155  represents a drier, more continental climate (annual precipitation roughly 487 mm and mean air
156  temperature approximately 8.8 °C); both climate descriptions are based on Piitz et al. (2016). Long-
157  term observations confirm that Bad Lauchstddt experiences significantly lower rainfall and higher
158  evaporative demand than Selhausen, yielding a higher aridity index (ratio of potential
159  evapotranspiration to precipitation) and more pronounced dry spells in the growing season. By
160  including both, a wetter site Selhausen and a drier site Bad Lauchstédt, the model is evaluated under
161  distinctly different moisture regimes, which is critical for testing the generality of the approach and to
162  separate between climatic and soil type effects. For each lysimeter station (Bad Lauchstddt and
163  Selhausen), 12 lysimeters (1 m? surface area, 1.5 m depth) arranged in hexagons with 6 lysimeters
164  around a service well were included in the analysis to monitor soil water content along with
165  meteorological variables. In this study, lysimeters are not used for drainage or storage estimates, but
166  rather as instruments providing long-term, high-resolution time series of soil water content and matric
167  potential under field conditions. The lysimeters contain undisturbed soil columns collected at four
168  different locations (see Fig. 3a), each with three replicates (Piitz et al., 2016) and were managed as

7
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169  arable land under crop rotation. While fertilization practices differed regionally until spring 2019, the
170  overall management concept was comparable, ensuring that differences in water dynamics can be

171  attributed to changes in the climate and soil rather than the management (Piitz et al., 2016).
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173 Figure 3 Overview of the study area with site locations, topsoil texture, and soil origin. (a) The TERENO-

174  SOILCan network contains lysimeters from four climatic regions (different symbols and colours in map). Our
175 analysis focuses on the TERENO-SOILCan sites Selhausen (SE) and Bad Lauchstdidt (BL), located in the
176 Eifel/lower rhine valley and Harz/central German lowland observatory of TERENO, respectively, because at both
177  sites lysimeter clusters were built (represented by shaded areas and hexagons), collecting large soil columns from
178  four distinct source regions (i.e., Dedelow (DD), Bad Laucstdidt (BL), Sauerbach (SB), and Selhausen (SE)). (b)
179 The analysed soil horizons (10 cm depth) cover two textural classes, shown in the USDA soil texture triangle,

180 assigned to four different soil types and a range of soil organic carbon contents (SOC) (numbers in the legend).

181  To investigate the effects of climate on soil water dynamics, daily time series of precipitation (P),
182  potential evapotranspiration (PET), matric potential, and volumetric soil water content (used as the
183  target variable) were compiled. P at Selhausen was measured at the on-site SOILCan weather station,
184  while for Bad Lauchstédt it was taken from the nearest long-term monitoring station operated by the
185  Deutscher Wetterdienst (Leipzig/Halle, ID 2932; DWD Climate Data Center, 2025). PET was
186  calculated with the FAO-56 Penman—Monteith model (Allen et al., 2006), using measured
187  meteorological variables (air temperature, air pressure, relative humidity, radiation, and wind speed)
188  according to SOILCan protocols (Piitz et al., 2016; Groh et al., 2020). In this context, the reference
189  evapotranspiration (ET,) calculated with the Penman—Monteith model for a clipped grass surface (FAO-

8
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56) is used as a proxy for potential evapotranspiration (PET), representing the site-independent
atmospheric evaporative demand. Soil matric potential was measured using MPS-1 sensors (Decagon
Devices Inc., Pullman, WA, USA), and volumetric soil water content was measured with time-domain
reflectometry probes (CS610, Campbell Scientific, North Logan, UT, USA). The observational record
spans the period from 2015 to 2023 and includes measurements taken at a depth of 10 cm (deeper soil

layers were not analysed; Piitz et al., 2016).

2.1.2 Definition of Reference Site for Model Framework

For model development, a single lysimeter moved from Dedelow to the Bad Lauchstddt lysimeter
station (see Fig. 3a and 3b) was selected as the training dataset. This lysimeter was chosen due to its
stable soil water content dynamics and minimal temporal drift in water retention properties over the
observation period (see Fig. 4a). This lysimeter served as the reference dataset for developing the
predictive model because it allows the definition of soil water content response function for the seasonal
climatic conditions. The 23 remaining lysimeters at the Bad Lauchstddt and Selhausen site were used
as independent test datasets (a contrasting example is shown in Fig. 4b) to evaluate model generalization

and detect potential shifts in soil hydraulic behaviour across sites and years.
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Figure 4 Soil water retention curves using data collected between 2015 and 2023 at 10 cm depth. Matric potential
is plotted against volumetric water content, with data colour-coded by period: 2015-2016 (blue), 2017-2020
(green), and 2021-2023 (red). (a) Training lysimeter (moved from Dedelow to Bad Lauchstddt). (b) Test lysimeter

(original soil from Selhausen in lysimeter station at Selhausen).
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210 2.2 Data Preprocessing and Feature Engineering

211 All raw data were aggregated or resampled to a daily time step to support time-series analysis and

212 modelling. Any misaligned or duplicated timestamps were corrected to ensure consistency.
213 2.2.1 Seasonal-Trend decomposition

214 After cleaning and aligning the data, the climatic variables used as inputs in the modelling were selected.
215  In addition to raw P and PET data, the daily climatic water balance (WB) was included as an explicit
216  input. This variable reflects the net difference between P and PET, serving as a proxy for wetting or
217  drying conditions. Positive values indicate potential moisture accumulation (e.g., during rainfall-
218  dominated periods), while negative values reflect high evaporative demand and drying conditions (e.g.,
219  during hot, dry days). Including the WB helps the model to distinguish humid periods from dry ones.
220 By providing WB alongside P and PET, the model can learn both the individual and combined effects
221 of P and evaporative demand on soil water content dynamics (Brocca et al., 2010; Uber et al., 2018).
222 For example, it can infer that 10 mm of P during a high-PET summer day (low positive or negative WB)

223 isless likely to increase soil water content than the same P on a cool, low-PET Day (high positive WB).

224 To provide the model with structured representations of climate variability, each climatic time series
225  was decomposed into additive components using STL based on LOESS with LOESS as acronym for
226  ‘Locally Estimated Scatterplot Smoothing’ (Cleveland et al., 1990). STL is a non-parametric method
227  that separates a time series into three interpretable parts: a seasonal component representing repeating
228  secasonal patterns (such as wetting and drying cycles), a trend component capturing gradual long-term
229  changes (such as climate shifts), and a residual component containing short-term irregularities and high-
230  frequency noise (Cleveland et al., 1990). This decomposition was applied independently to the P, PET,
231  and WB time series. Only the seasonal and trend components were retained as input features, as they
232 contain meaningful patterns relevant to soil water content dynamics. The residual component, which
233 lacks systematic structure, was excluded from further analysis. STL was configured with a cycle length
234 of 180 days, representing the semi-annual wet—dry phases at the study sites. A LOESS smoother with

235  a 90-day window was then applied to the de-seasonalized series to extract the trend component. This

10
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236  configuration was chosen to capture gradual, long-term changes in the climatic variables while reducing
237  short-term fluctuations. Note, that near the ends of the time series the absence of future values causes
238  the smoothing window to become asymmetric. As a result, the estimated trend becomes more sensitive
239  to recent variability. This limitation does not affect the outcome of the analysis, as both the input
240  features and the target variable (water content) are equally influenced by it. Each of the extracted
241 seasonal and trend components from P, PET, and WB was included as input to the neural network
242 alongside the original raw values. This allowed the model to learn structured seasonal behaviour—such
243  as distinguishing the rising phase of spring wetting up of the soil profile from the declining phase of a
244 summer dry-down—and to account for long-term shifts, such as gradual drying or changes in mean

245  climate conditions.
246 2.2.2 Wetness classification

247  In addition to the continuous climate-related features, a categorical input was included to describe the
248  soil’s moisture condition as either ‘dry’, ‘moderate’, or ‘wet’. These categories were defined using the
249  soil water content time series from the training site, with thresholds based on quantiles of the full
250  distribution. Specifically, values below the 30™ percentile were labelled as ‘dry’, between the 30™ and
251 70" percentiles as ‘moderate’, and above the 70™ percentile as ‘wet’. These categories were then
252 encoded numerically prior to modelling, using values of 30 for ‘dry’, 20 for ‘moderate’, and 1 for ‘wet’.
253  This encoding allowed the categorical feature to be treated as ordinal variable and integrated into the
254  neural network input layer alongside the other features. There are two reasons to include this feature.
255  Firstly, the soil’s current moisture condition can strongly influence its response to P and PET (Western
256 & Grayson, 1998). For example, under dry conditions, more water can be absorbed by the soil due to
257  its high storage capacity. In contrast, when soils are already wet or near saturation, infiltration capacity
258  isreduced, and additional rainfall is more likely to result in runoff (Tromp-van Meerveld & McDonnell,
259 2006; Zehe & Bloschl, 2004). The second reason is the motivation to use remote sensing data in similar
260  follow up studies, which are not yet accurate enough for modelling purposes but allow a general

261  classification of the wetness status. Because (i) corresponding information on soil matric potential

11
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262  cannot be deduced at larger scale from remote sensing data and (ii) hysteresis in the soil water retention

263  curve may lead to ambiguous thresholds, we focus here on soil water content measurements.

264  Another choice for the model framework that must be discussed is the choice of percentile thresholds.
265  From asoil hydrological point of view, it would make sense that the thresholds defining the three classes
266  ‘wet’, ‘moderate’ and ‘dry’ are chosen individually for each lysimeter (a wet clay soil may have very
267 different water content values than a sandy soil). However, from a methodological point of view, we
268  prefer to ensure that the model does not require a long time series to determine quantiles of soil water
269  content data and that the model can be run solely based on the training site’s distribution. Accordingly,
270  the same percentile thresholds, derived from the training site, were applied to label daily water content
271  values at the prediction sites. Note, that the application of the same percentile thresholds for all sites is
272 notrelevant for the detection of changes in the soil water content response function. Very similar results
273 will be obtained for a site-specific percentile definition as shown in the supplementary material (section
274 S1). After constructing all the above features, each daily input to the model consisted of (i) raw climate
275  variables (P, PET, and WB), (ii) the STL-derived seasonal and trend components for each of those
276  variables (six variables), and (iii) the categorical moisture label. All ten features were aligned by date
277  toensure consistency across inputs. This combination of raw values, decomposed temporal signals, and
278  qualitative soil condition provides the model with a detailed daily representation of both external

279  climatic forcing and internal system state.

280 2.3 Neural Network Architecture and Training

281 To model daily volumetric soil water contents, a feed-forward neural network was implemented. The
282  architecture consisted of three hidden layers: two dense layers with 12 neurons each using ReLU
283  activation functions (Rectified Linear Unit), followed by a batch normalization layer, and a third dense
284  layer with 6 neurons. ReLU was chosen for its ability to introduce non-linearity while maintaining
285  computational efficiency and avoiding vanishing gradient problems during training (Lu et al., 2020;
286  Montesinos Lopez et al., 2022). Batch normalization was applied to stabilize learning by reducing

287  internal covariate shift, which improves convergence speed and training stability (Montesinos Lopez et

12
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288  al, 2022). The output layer consisted of a single neuron with a linear activation function, which is

289  standard for continuous regression tasks such as predicting soil water content.

290  The network was trained using input features derived from daily observations at the reference lysimeter
291  at the Bad Lauchstddt site, covering the period 2015-2023. Prior to training, all continuous input
292  features were standardized to have a mean of zero and a standard deviation of one using z-score
293  normalization. The standardization parameters (mean and standard deviation) were computed solely
294  from the training dataset and applied unchanged to the validation sets at the training site, as well as to
295  the prediction sites, ensuring consistency across all data splits. The target variable, volumetric soil water
296  content, was preserved in its original physical units (m* m?), allowing for direct interpretation of the
297  model outputs and associated errors in hydrologically meaningful terms. The model was compiled with
298  the Adam optimizer, which adaptively adjusts learning rates and is widely used for its computational
299  efficiency and stable convergence. Mean squared error (MSE) was used as the loss function due to its
300 sensitivity to large deviations, making it suitable for continuous regression tasks. To monitor
301  generalization, 30% of the data was withheld as a validation set and excluded from updating the weights
302  Dbetween the nodes during training. The training procedure was initially set to proceed for a maximum
303  of 1000 epochs. To prevent overfitting, an early stopping criterion was implemented based on validation
304  loss. Specifically, training was terminated if no improvement in validation performance was observed
305  over a predefined number of consecutive epochs (patience threshold). The model parameters from the

306  epoch exhibiting the lowest validation loss were retained for final evaluation.

307 2.4 Testing the Neural Network

308  After training, the model was applied to the remaining 23 lysimeters across both Selhausen and Bad
309  Lauchstddt, none of which were included in the training phase. All test inputs were processed using the
310  same structure and normalization parameters derived from the training data. As outlined in Section 2.1,
311  the experimental setup includes four soil types, each installed with three replicates at both sites (see Fig.
312 3). While the lysimeters at the Bad Lauchstédt lysimeter station share the same climatic setting as the
313  training site, the lysimeters at Selhausen represent a more humid region. Accordingly, the raw data and

314  seasonal trend data of the Selhausen climate were used as input for the prediction of soil water content
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315  in lysimeters located at Selhausen. This configuration allows to evaluate (i) whether the soil water
316  content response function determined for the training remains valid for different climates and soil types,
317  and (ii) to detect potential temporal or structural changes in soil hydraulic behaviour. The evaluation

318  and classification procedures are described in the following two subsections.

319 2.5 Detection of Change in Soil Water Content Response Function Based on Error
320 Metrics

321  As explained in the introduction, we use error metrics to detect changes in the soil water content
322 response function. While we use the Nash-Sutcliffe -Efficiency (NSE, see eq. 5) as a general descriptor
323  of model error, we investigate temporal changes in model performance based on the Mean Bias (MB)
324  that was calculated on an annual basis from 2015 to 2023. This year-by-year assessment does not rely
325  on predefined change points and enables the detection of gradual or abrupt shifts in model performance
326  directly from the data. MB measures the average signed difference between predicted and observed
327  values, providing an estimate of systematic overestimation or underestimation over time (Moriasi et al.,

328 2007; Liu et al., 2011) and is defined as:

1 ~
329 MB = ;Z’Ll(ﬁi -6;) (1)

330  where 8; is the predicted volumetric water content at day i, 6; is the corresponding observation and N
331  defines the number of available observations—prediction pairs. Although, the calculation uses daily
332 values, MB is aggregated over yearly intervals to produce a single value per year, capturing annual
333  patterns in prediction bias. Volumetric water contents (m*> m=) were multiplied by 100 prior to
334  calculation, and MB is therefore reported in percentage (%). Positive MB values indicate systematic
335  overestimation by the model, while negative values reflect underestimation. The annual assessment of
336  MB allowed us to evaluate whether the soil water content response function remains consistent across

337  time or shows temporal dynamics.

338  To classify the soil water content dynamics with respect to the resilience after the extreme summer
339 2018, we check if the deviation of the predictions based on a stable response function (developed with

340 the training data) changes over the years. When the deviation in the first year (2015; i.e., before the
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341  drought) is different from the deviation in the year 2023, we consider that the soil water content response
342  function has changed (it is still possible that the response function may recover in the future) and the
343  soil water content dynamics is classified accordingly as ‘changed’. When the deviations at beginning
344  and end are similar, but there was a period between 2018 and 2022 with a different deviation level, we
345  conclude that the soil water content response function changed reversibly over time but recovered
346  within the observation window and the lysimeter is classified as ‘resilient’. The soil water content
347  response is considered as ‘stable’ when the deviations remain similar during the entire observation
348  period. As threshold we chose 1.52%, that equals the 3-fold of the standard deviation of the nine yearly
349  MB values computed for the training site. The classification of the time series was thus expressed

350  formally as:

351  ‘changed’: |[MByy23 — MBygis| > 1.52% @)
352 ‘resilient’: |M32023 - MB2015| < 152% /\ |MBZOXX - MBZOIS' > 152% (3)
353 ‘stable’: |M32023 - MB2015| < 152% /\ |MBZOXX - MBZOlSl < 152% (4)

354  with the logical operator A and the mean bias of a specific year with MBaoxx, that shows the largest

355  difference [MByca-MBao15| for the time period between 2018 and 2022 (starting with dry year 2018).

356  As general information on the different response function, we calculated the NSE coefficient (Moriasi
357  etal., 2007; Nash & Sutcliffe, 1970). The NSE is a standard metric for hydrological model skill, with
358  NSE =1 indicating perfect agreement and NSE < 0 stating that the model predictions are no better than

359  using the mean of the observations. Mathematically, it is defined as:

2, (8:-8))?

360 NSE =1=5¥ @=0)

®)

361  where 8; is the predicted volumetric water content at day i, 8; is the corresponding observed value,  is
362 the mean observed volumetric water content over the evaluation period, and N denotes the total number
363  of valid data points used in the calculation. Following Moriasi et al. (2015), model performance was
364  classified as very good for NSE > 0.80, good for 0.70 < NSE < 0.80, satisfactory for 0.50 < NSE <0.70,

365  and unsatisfactory for NSE < 0.50. Lower NSE values were interpreted as indicators of deviations from

15



https://doi.org/10.5194/egusphere-2025-5141
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

366  the soil hydraulic behaviour represented in the training data, potentially due to differences in soil

367  properties or climate-induced structural changes.

368 2.6 Interpretation of Change in Response Function in Soil Physical Terms

369 The dynamics of MB (see above) was also used to assess changes in soil water retention curves
370  (SWRCs), which were plotted for each test lysimeter on a yearly basis. As stated in eq. (1), a positive
371  MB value corresponds to measured values that are smaller than the predictions. Because the predictions
372 are based on the model trained for a specific lysimeter, we expect for a positive MB that the water
373  content for the same environmental conditions (as manifested in the matric potential) is smaller in the
374  test lysimeter compared to the lysimeter used for training (SWRC is shifted to the left). Analogously,
375  fora consistently negative MB we expect that the test site retained more water at a given matric potential
376  than the training site and the SWRC is shifted to the right. For a ‘resilient’ soil, the soil water retention
377  curve will be shifted over time and will shift back close to the original position at the end of the
378  observation period. Finally, for a soil with ‘changed’ response function, the water retention curve is
379  drifting over time as well but without returning to its original position. In some cases, the temporal
380 evolution of MB may not exactly follow the apparent shift of the SWRC, as additional vertical or slope
381  changes could occur due to variations in porosity or pore-size distribution. These effects cannot be
382  identified within the current framework but may contribute to deviations between MB dynamics and

383  the apparent SWRC shift.

384 3. Results

385  Following the methodological framework described in Section 2.3-2.6, we present the results of model
386  predictions across the test lysimeters to assess the resilience of the soil water content response function
387  for the different lysimeters. We organize the section in four subsections according to the four different
388  origins of the soil in the lysimeters (see Fig.3b) to discuss effects of soil origin and climatic conditions
389  on the response function. In the last subsection (3.5) the results are summarized to allow direct
390  comparison of all 24 lysimeters. Note, that all model results presented below are based on the soil water

391  content classification (‘wet’, ‘moderate’, ‘dry’) as deduced from the lysimeter used for model training.
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392  The corresponding figures using specific classification for each lysimeter are shown in supplementary

393  information Fig. S4-S7.

394 3.1 Lysimeters with Same Soil as Used in Model Training (Dedelow Soils)

395  The neural network was trained to capture the soil water content response function of one lysimeter
396  with sandy loam topsoil (Luvisol) extracted from Dedelow and translocated to the dry climatic region
397  in Bad Lauchstédt (see Fig. S1 in supplementary material). The NSE of the training and validation of
398 that specific lysimeter was very high with 0.91 indicating good model performance. The application of
399  this response function to the other two lysimeters from Dedelow that were translocated to Bad
400  Lauchstédt resulted in relatively high NSE values (0.79 and 0.84). However, the lower soil water
401  contents observed during the summer of 2018 were not adequately captured as shown in Fig. 5a. More
402  specifically, the time series show that predictions and observations matched closely in 2015, while after
403  the dry summer of 2018 the model systematically overestimated water content in 2019 and 2020, before

404  the agreement improved again towards the end of the period.
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406 Figure 5 Analysis of soil water content dynamics (2015-2023) for a Dedelow-origin lysimeter tested at Bad
407 Lauchstddt. Panel (a) shows the time series of observed (blue) and predicted (orange) water content, with close
408 agreement in 2015, clear overestimation in 2019-2020 (predictions above observations), and improved
409 agreement again towards the end of the period. Panel (b) presents the temporal evolution of mean bias (MB),
410 remaining near zero until 2017, increasing to about 2-3 % in 2019-2020, and decreasing again to approximately
411 zero in 2022. Such soil water content response was classified as ‘resilient’. Panel (c) displays soil water retention
412 curves from the training site (grey) and from selected years representing different MB conditions, with low-MB
413 years (2015, 2022) and high-MB years (2019, 2020). The curves are close to the training site in 2015, show a

414  shift to lower water contents in 2019-2020, and in 2022 return to the training site data.

415  These changes are reflected in the MB development (Fig. 5b), with values increasing from near zero in
416 2015 to about 2-3% in 20192020 and then decreasing again towards 2022. The retention curves
417  confirm this interpretation (Fig. 5c). The year with low MB (2015) produced a SWRC close to the
418  measured curve of the training site, the years with high MB (2019-2020) were shifted to lower water
419  contents, and the later year with reduced MB (2022) returned to the measured SWRC of the training
420  site. Taken together, the time series, MB trend, and SWRCs show that the soil response was disturbed
421  after 2018 but later recovered, defining this lysimeter as ‘resilient’. The same finding holds for the
422  simulations for the lysimeters translocated to Selhausen (less dry climate) with high NSE between 0.80—
423 0.82. This indicates, that for this coarse soil (i) the effect of changing climatic conditions was rather
424  small (very good NSE classification for both sites) but (ii) that also these coarse textured topsoils do
425  not show identical response to the extreme year but each lysimeter reacts slightly different, indicating

426  slightly different structural properties.

427 3.2 Lysimeters with Soils Adapted to Climatic Conditions Similar with Those of
428 the Model Training Site (Bad Lauchstédt soil)

429  The lysimeters filled with soil from Bad Lauchstéddt (Chernozem) represent soils adapted to the climatic
430  conditions under which the response function was calibrated. In case of dominant effect of climate on
431  the soil water content response function, we could expect similar results as for the training lysimeter.
432 For the soil remaining at the original site (Bad Lauchstédt), the model performance was very good
433 (0.88-0.89). As shown for an example in Fig. 6a, the fit between observed and predicted water content
434  was consistently close, with a tendency to slightly underestimate in the early years and to mildly
435  overestimate after 2018, particularly in 2019-2020, before the agreement improved again in later years.
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436  This is also manifested in the MB values that increased from slightly negative values in 2015 to about
437  +1.5% in 2019, before decreasing again towards zero (Fig. 6b). The plotted SWRCs support this
438  interpretation (Fig. 6¢), with low MB years (2015 and 2016) showing a slight shift to higher water
439  contents relative to the measured SWRC of the training site, and high-MB years (2019 and 2020)
440  displaying a modest shift to lower water contents. Accordingly, the soil water content dynamics was

441  classified as ‘resilient’.

442  For the lysimeters transported from Bad Lauchstédt to Selhausen, the performance was more variable
443  (NSE ranging from 0.50 to 0.84) corresponding to satisfactory to very good classifications, reflecting
444  the stronger effect of the wetter climate. None of the three lysimeters who stayed in Bad Lauchstédt
445  were classified as ‘changed’ but two out of three showed a systematic shift and were classified as
446  ‘changed’ when translocated to Selhausen (see Table 1). In short, those examples show that the Bad
447  Lauchstédt soil remained resilient under unchanged climate at Bad Lauchstédt but changed under the

448 wetter climate at Selhausen.
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450 Figure 6 Analysis of soil water content dynamics (2015-2023) for a Bad Lauchstddt-origin soil lysimeter tested
451 at Bad Lauchstidt. (a) Comparison of measured (blue) and simulated (orange) daily water content values,
452  showing high agreement in the early years and temporary overestimation in 2019-2020. (b) Mean Bias (MB)
453 started slightly negative in 2015, increased to about +1.5 % in 2019, and then decreased again towards 2022. (c)
454  Soil water retention curves (SWRCs) from the training site (grey) and from the same replicate for selected years
455 with low MB (2015, 2016) and high MB (2019, 2020) show close agreement in the early years and a shift to lower
456 water contents in 2019-2020.

457 3.3 Lysimeters with Soils Adapted to Climatic Conditions comparable with Those
458 of the Model Training Site (Sauerbach soil)

459  The findings are similar for the silt loam (Cambisol) from Sauerbach, representing soils adapted to
460  climatic conditions comparable to those in Bad Lauchstddt. As in case of the soil from Bad Lauchstidt,
461  soils from Sauerbach show higher NSE values when translocated to Bad Lauchstddt (0.81-0.88, very
462  good) compared to those transferred to the wetter climate in Selhausen (0.74-0.79, good). This reflects,
463  that the soil water content response function in the drier climate is not the same as in the wetter climate.
464  In one illustrative case, the observed water content initially showed wetter dynamics than predicted, but
465  gradually converged toward the model predictions by 2023, indicating a possible structural adjustment

466  over time (Fig. 7a).
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468 Figure 7 Analysis of soil water content dynamics (2015-2023) for Sauerbach-origin lysimeter relocated to
469 Selhausen (a) Comparison of observed and predicted daily volumetric water content (NSE = 0.74) After initial
470 underestimation by the model, the observed and predicted values gradually converged, indicating a possible
471  structural adjustment.(b) Temporal evolution of the mean bias (MB), which increased from about —5 % in 2015
472 to values close to zero by 2019-2023, consistent with the improved match between observed and predicted values
473 shown in panel (a). (c) Soil water retention curves (SWRCs) from the training site (grey) and from selected years
474  with low MB (2015, 2016) and high MB (2020, 2022) illustrate the same trend, with early years showing higher
475 water contents at a given matric potential and later years shifting towards to the training curve.
476  This development is also evident in the MB values (Fig. 7b), which started strongly negative (—5%) in
477  2015-2016 and steadily increased toward values close to zero by 2023, indicating a progressive
478  reduction of underestimation. The corresponding SWRCs (Fig. 7¢) confirm this trend, with curves from
479  early years (2015, 2016) showing higher water contents at a given matric potential compared to the
480 measured SWRC of the training site and later years (2021, 2023) shifting closer to the reference,
481  suggesting a gradual adjustment of hydraulic behaviour. In the case of soils from Sauerbach, there was
482  a difference in quantification of resilience with respect to the classification of the soil water content
483  used as input variable: with the classification based on the training lysimeter (with sandy loam in the
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484  topsoil), the soil water content dynamics was classified as ‘changed’ for all six lysimeters. But using
485  the classification based on the soil water content statistics obtained for each lysimeter individually (see
486  Fig. S6), the large water contents at the beginning were captured and only one lysimeter out of three
487  was classified ‘changed’. Independent of the water content classification, all lysimeters translocated to

488  Selhausen were classified as ‘changed’, exhibiting the strongest response to relocation of all soils.

489 3.4 Lysimeters with Soils Adapted to Climatic Conditions Different from Those of
490 the Model Training Site (Selhausen)

491 At last, we discuss the Selhausen silt loam (Luvisol), representing soils adapted to climatic conditions
492  that were not included in the neural network training. The model performance was better for the
493  replicates translocated to the drier Bad Lauchstidt climate (NSE = 0.86-0.92, very good), compared to
494  slightly lower performance at their site of origin under humid Atlantic conditions (0.76—0.86, good to
495  very good). The classification with respect to resilience helps to explain this, since Selhausen soils at
496  their origin were mainly assigned to ‘stable’ or ‘resilient’ categories (see Table I), while the same soils
497  translocated to Bad Lauchstddt showed a more variable pattern. This indicates, that the lower NSE at
498  Selhausen does not represent a misfit of the model but reflects that the soils follow their own stable soil
499  water content response function. One replicate at Selhausen (NSE = 0.85) reproduced the seasonal
500  dynamics well, although differences between observed and predicted values remained visible in the wet
501  season across several years (Fig. 8a). The MB shifted from negative values in the first years toward
502  zero after 2019. Note, that an MB value of 0 does not mean that deviations disappeared, but that errors
503  in wetter and drier phases compensated each other (Fig. 8b). The SWRCs were generally close to the
504 training reference, but in later years small deviations appeared mainly at the saturated end (Fig. 8c).
505  Overall, these changes remained below the assumed threshold, supporting a classification of the soil

506  water content dynamics as ‘stable’.
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508 Figure 8 Soil water content dynamics (2015-2023) for a Selhausen-origin lysimeter tested at Selhausen. (a)
509 Observed (blue) and predicted (orange) water content show fair agreement, with underestimation of water
510 contents in the wet season. (b) Mean Bias (MB) fluctuated from negative values in the early years to values close
511 to zero after 2019, but these variations remained below the threshold for change. (c) Soil water retention curves
512 (SWRCs) from the training site (grey) and from selected years with low MB (2015, 2016) and higher MB (2019,
513 2020) reflect these minor variations, with the 2019 curve showing the strongest deviation yet remaining close to
514 the training reference, consistent with the stable classification. The apparent cutoff at the wet end in (a) arises

515  fiom the use of absolute rather than normalized values during training, as discussed in the Supplementary

516  Material (Text S1).

517 3.5 Comparison of All Lysimeters

518 The comparison of the soil water content dynamics of all lysimeters indicate, that climatic shifts
519  between sites - particularly between the continental Bad Lauchstédt and Atlantic-influenced Selhausen
520 - can significantly alter the hydraulic response of the soil, even when texture remains constant. In
521  general, prediction performance at Selhausen was lower, likely because the model was trained under

522  the drier climate of Bad Lauchstédt, and therefore, failed to fully capture the soil-water interactions
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523  emerging under wetter conditions (Fig. 9). The broader NSE range observed at Selhausen location

524  further suggests increased structural variability among replicates.
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526 Figure 9 Spread of Nash—Sutcliffe Efficiency (NSE) values across different soil origins and test locations. Each

527 symbol represents one lysimeter from a given origin (x-axis) evaluated at Bad Lauchstdidt or Selhausen (indicated
528 by colour). The results highlight the influence of climate—soil interactions on model performance. Notably, Bad
529 Lauchstddt-origin soils exhibited strong performance at their origin but a wider and lower range when tested at

530 Selhausen, reflecting increased structural variability or climate-induced divergence in hydraulic response.

531  With respect to resilience of the soil water content response function, we show the temporal evolution
532  of the mean bias for all lysimeters in Fig. 10 and summarize the results in Table 1. In Table 1 we add
533  the general classification type (‘stable’, resilient’ and ‘changed’) and calculate the average of 3
534  lysimeters (same material and same location) for the drift in mean bias value between the year 2015
535  and 2023 and the maximum deviation from year 2015 for the years between 2018 and 2022. The table
536  shows that deviations from a ‘stable’ or ‘resilient’ response function mainly occur when soils from
537  Dedelow, Bad Lauchstidt, and Sauerbach were translocated to Selhausen. Only in case of the soil from
538 Selhausen, the response function remains ‘stable’. It seems, that the soil material ‘trained over decades’

539  to the wetter climate in Selhausen adapts better to the extreme summer 2018.
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gﬁg Figure 10 Temporal evolution of Mean Bias (MB) for three representative lysimeter replicates, each classified
542 into one of three structural response categories: (a) ‘stable’, (b) ‘resilient’, and (c) ‘changed’. Thick dashed lines
543 indicate the mean of the MB trend across all lysimeters within each classification group, with sample size (n)
544  specified in the legend. Shaded areas represent £1 standard deviation. Thin grey lines show individual MB
545 trajectories of the remaining lysimeters in each group. Highlighted blue lines depict selected replicates
546 originating from and/or tested at distinct sites: (a) BL — BL (soil material from Bad Lauchstddt tested at its
547 origin), (b) DD — BL (soil material from Dedelow tested at Bad Lauchstidt), and (c) BL — SE (soil material

548  from Bad Lauchstddt tested at Selhausen). These examples illustrate contrasting temporal patterns in structural

549 response, ranging from sustained stability to progressive divergence from the trained site dynamics.

550 Table 1: Resilience of soil water content response function for the four soil materials translocated to Bad
551 Lauchstddt and Selhausen. The ‘type’ describes the class of response function of the individual lysimeters (S for
552 ‘stable’, R for ‘resilient’ and C for ‘changed’). The ‘drift’ is the average value |[MB2o23-MBoois| of the three
553 lysimeters with the difference in Mean Bias (MB) between years 2023 and 2015. The ‘amplitude’ is the maximum
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554 difference of the Mean Bias between the first year (2015) and the years between 2018 and 2022 (denoted as year

555 20xX).
Located at Bad Lauchstadt Located at Selhausen
Type Drift Amplitude Type Drift Amplitude
Dedelow S,R,C 1.09 1.76 R,C,C 1.72 2.11
Bad Lauchstidt S,S,R 0.94 1.36 R,C,C 2.15 2.99
Sauerbach C,C,C 2.17 3.73 C,C,C 3.38 4.24
Selhausen S,R,C 0.96 2.24 S,S.R 0.47 1.78
556
557 4. Discussion

558  Theresults presented in Section 3 demonstrate that the model can reproduce soil water content dynamics
559  reliably under stable conditions (as indicated by high NSE-values), but it exhibits limitations when soils
560  undergo structural changes or are exposed to a different climate. Several soils showed a shift in the wet
561  range, indicating that differences in soil water content response cannot be explained by texture alone
562  butreflect the combined effects of climatic conditions and structural evolution. Based on these findings,
563  the following discussion evaluates how assumptions of static hydraulic behaviour and response function
564  affect model performance, examines the role of NSE and MB in identifying evolving system dynamics,

565  and reflects on the broader implications for long-term modelling and soil water content monitoring.

566 4.1 Soil-Climate Interactions as Drivers of Hydraulic Response Function

567  The predictive success of data-driven models depends not only on the physical properties of soils but
568 also on the climatic context in which those properties developed and continue to function. The present
569  study shows that soils exhibit the most consistent replicate behaviour when evaluated under climate
570  conditions similar to those of their origin, where gradual climatic changes over time have allowed their
571  structure to adjust naturally. When exposed to faster or contrasting climatic shifts, as in translocated
572  settings, the soil response becomes less predictable and less stable. This can be shown using the table
573  S1 in the supplementary material file, which lists the average trends (difference in MB between year
574 2023 and 2015) and amplitudes (difference in MB between 2015 and the dry years) for three lysimeter

575  replicates: only for the three lysimeters at the original locations Bad Lauchstddt or Selhausen), both
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576  drift and amplitude were below the stability threshold of 1.52% and can classified as ‘stable’ as group
577  of lysimeters.

578  This suggests that the structure and function of the soil system cannot be meaningfully decoupled from
579 its climatic history. Soils may develop pore arrangements, aggregation patterns, and, as a consequence,
580  moisture retention characteristics that reflect long-term adaptation to local hydrological regimes. When
581  these soils are translocated to environments with contrasting P and atmospheric demand (PET), their
582  hydraulic response can shift in ways that are not captured by static texture-based estimates of soil
583  hydraulic properties.

584  Such context-dependent behaviour highlights the limitation of the common assumption that soils with
585  the same texture will show comparable retention across regions, an assumption often made in the
586  absence of better descriptors. Experimental evidence collected under natural conditions also indicates
587 that this description is oversimplified (Hannes et al., 2016; Robinson et al., 2016; Agel et al., 2024). In
588  our case, even soils with similar textural composition exhibited different levels of model agreement
589  depending on climate, highlighting that physical similarity (e.g. soil texture) does not guarantee
590 functional equivalence in retention. For example, Selhausen-origin soils achieved higher NSE values
591  when translocated to Bad Lauchstédt, likely because the model was trained under similar dry climatic
592 conditions. However, classification results showed, that these soils retained greater structural stability
593 at their origin, suggesting that predictive success under familiar climatic forcing does not necessarily
594  imply hydraulic consistency. After the 2018 drought, the Selhausen soils translocated to Bad Lauchstédt
595  converged toward similar dynamics across replicates, with MB stabilizing close to zero, indicating that
596 their response functions adjusted consistently to the drier climate (see Fig. S2 in the supplementary
597  material). However, a clear carry-over effect was observed: soil water in the upper 10 cm was not fully
598  replenished during the wet phase of autumn and winter 2019 and only reached comparable, though
599  slightly lower, values in winter 2020. This persistent deficit points to a structural legacy of the drought,
600  where reduced pore connectivity and altered aggregation limited subsequent rewetting. A comparable
601  multi-year legacy across the full soil column was reported in the TERENO-SOILCan lysimeter network

602 by Groh et al. (2020).
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603  All mentioned points underscore the importance of including very broad range of climatic forcing in
604  the assessment of soil model transferability, as demonstrated by Groh et al. 2022. Our results also
605  suggest that future efforts to generalize hydrological models should consider training under a range of
606  climatic conditions to capture the full expression of soil-climate interactions, rather than relying on a
607  single static representation. From a process-based perspective, these findings reflect that climate does
608  not simply modulate soil water content inputs but actively shapes the retention and release behaviour
609  of'the soil pore network through structural evolution or breakdown. While management practices across
610  sites were similar, minor differences in tillage and fertilization cannot be completely excluded and may
611  have influenced soil structure and water retention. Nonetheless, the dominant control remains climatic
612  forcing, which makes this consideration particularly relevant for climate-change experiments: models
613  calibrated under past climatic conditions may not remain valid under the rapid climatic shifts projected
614  for the coming decades. Neglecting this evolving soil-climate feedback could lead to substantial

615  underestimation of future changes in soil hydraulic behaviour and associated ecosystem responses
616 4.2 High Predictive Performance Can Mask System Evolution

617  Although, several lysimeters achieved high predictive performance as expressed by high NSE values
618  (Fig. 9), systematic trends in MB over time suggest that the underlying retention behaviour and soil
619  water content response function may have shifted (Fig. 10 and Table 1). This was most apparent in
620  Dedelow soils translocated to Bad Lauchstédt, where the model maintained high NSE values, but the
621  MB increased across years (see Fig. S3). The corresponding shifts in the soil water retention curves
622  confirmed a gradual change in how the soil retained water, despite the model continuing to predict

623  moisture levels accurately.

624  This suggests that local structural changes can occur without immediate deterioration in model fit. The
625  predictive framework remained effective in capturing the general moisture dynamics, but the
626  relationship between matric potential and water content was no longer consistent with that observed
627  during training. These findings highlight that high model accuracy does not guarantee stability in the
628  hydraulic characteristic, particularly under changing environmental conditions. Identifying such

629  divergence early is critical for maintaining reliable predictions in long-term monitoring.
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630 4.3 Implications for Monitoring, Remote Sensing, and Soil Health

631  The classification outcomes across all lysimeters highlight the role of site memory and structural
632  resilience in maintaining hydraulic behaviour under climatic stress. Soils assessed at their origin were
633 more frequently classified as ‘stable’ or ‘resilient’ (e.g., Selhausen at Selhausen), while those
634  translocated to different locations were more likely to be classified as ‘changed’ (e.g., Sauerbach at Bad
635  Lauchstddt). These patterns indicate that soil structure, once adapted to specific climate regimes, may
636  lose its functional integrity when exposed to new conditions. The presented methods allow us to detect
637  emerging structural shifts that may be relevant for soil health assessment and could be used as indicator

638  for deteriorated soil health status.

639  This has direct implications for long-term monitoring and remote sensing. Our model framework - by
640  avoiding reliance on matric potential data and instead using moisture state categories and decomposed
641  climatic features - is compatible with satellite-derived products. As remote sensing missions
642  increasingly provide continuous global soil water content estimates, the proposed framework could be
643  adapted for large-scale assessment of soil system stability. Furthermore, under scenarios of future
644  climate change, where shifts in precipitation patterns and evaporative demand are expected, models
645  trained on historical data may become progressively outdated. The presented residual-based approach
646  (quantifying MB) enables early detection of such divergence, offering a method for identifying when
647  re-training or reparameterization is needed to maintain predictive reliability under non-stationary

648  conditions.

649 5. Summary and conclusions

650  The temporal variations in the water content of the topsoil define the amount of plant available water
651  and oxygen supply, affecting ecosystem functions and soil health status. Reliable information on soil
652  water content dynamics in response to atmospheric conditions is thus essential to detect and mitigate
653  critical conditions. This response depends on soil hydraulic properties that are traditionally
654  characterized by a time-invariant and unambiguous relationship between matric potential, water

655  content, and hydraulic conductivity as deduced from small-scale lab experiments. In this study, we

29



https://doi.org/10.5194/egusphere-2025-5141
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

656  developed and applied a feed-forward neural network combined with seasonal trend analysis of climatic
657  time series to quantify the soil water content response function after an extreme drought in summer
658 2018 in Germany. By analysing the time series of topsoil water content measured at two lysimeter
659  stations of the TERENO SOILCan network, we summarize the conclusion on the soil water content

660  response function as follows:

661 e 50% of the lysimeters showed changes in soil water content dynamics after the dry summer
662 2018.

663 e The other half showed a resilient behaviour, and the soil water content response function was
664 not permanently changed.

665 e The changes in soil water content response function were manifested as (i) temporal trends in
666 prediction error (mean bias) and (ii) shifts in the soil water characteristics function.

667 e The soil water content response function is adapted to climatic conditions as manifested by (i)
668 smallest changes in lysimeters that were not translocated and (ii) decreased model performance
669 for applications of a response function that was determined for another climate

670 e Good model performance as expressed by high Nash-Shutcliff-Efficiency values does not
671 correspond to stable soil water content response function that was only detected by temporal
672 trends in error metrics

673  The study revealed that extreme climatic events can permanently change the soil hydraulic properties,
674  but the lack of resilience depends on the soil and the climatic conditions. We argue that the response
675  depends on the range of climatic conditions experienced in the past that allowed adaptation of soil
676  structural properties. Because the presented model framework (i) does not aim to predict successfully
677  time series in water content and (ii) does only require categorical water content information (‘stable’,
678  ‘resilient’, ‘changed’), it can be applied to larger scale using remote sensing data that do not provide
679  accurate soil water content values but reliable trends, enabling to detect changes in hydraulic behaviour

680  at the ecosystem scale.
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