REVIEW 2 (our reply in black)

In this paper the authors use a neural network trained on meteorological variables, a seasonal
trend analysis, and categorical definitions of soil conditions to quantify and evaluate soil water
response across soil types and climate regions after an extremely hot summer in Germany.

Overall, | found the study and content of this paper compelling as well as the author’s motivations
for incorporating increasingly available remotely sensed products into soil stability analyses.
However, | would like to see more discussion of the evaluation of the developed model and
reasoning behind decisions, such as using Nash-Sutcliffe efficiency.

We thank the reviewer for this helpful comment. We clarify that in this study Nash-Sutcliffe
efficiency (NSE) is not used as an optimization target or as a metric we aim to improve through
model tuning. NSE was selected because it is a widely used, dimensionless performance metric
in hydrological modelling that is sensitive to both magnitude and timing errors and therefore
provides a convenient measure for comparing dynamic agreement across lysimeters.

In this study, NSE is used as a general indicator of how similar the soil-moisture dynamics at a
tested lysimeter are to the reference soil-climate response function used for model training.
Lower NSE values indicate reduced dynamic agreement but are not interpreted as diagnostic of
a specific type or mechanism of change.

The detection and classification of changes in the soil water content response function are based
on the temporal evolution of mean bias, which quantifies whether the tested system
progressively drifts closer to or farther from the trained reference response over time.
Accordingly, NSE characterizes overall dynamic agreement, while mean bias captures the
direction and progression of change.

We have added this clarification to Section 2.5 of the revised manuscript (after line 365).

“In this study, NSE is used to characterize the overall level of dynamic agreement between
predicted and observed soil water content, while the detection and classification of temporal
changes in the soil water content response function are based exclusively on the year-by-year
evolution of mean bias.”

Further, as the authors identify, performance struggles at the site on which the model was not
trained. This paper could be made far more robust through the reverse analysis—training the
modelin wetter conditions—to see how comparable the results are. Or training the model on both
a wet- and dry-regime lysimeter simultaneously.

We explored reverse-regime training in preliminary analyses across multiple lysimeters to test
whether the conclusions depend on the chosen training regime. In these tests, the model was
trained under wetter conditions, and the overall conclusions remained unchanged. In the figure
below, we present a reverse-regime comparison for the relocated soil shown in Figure 7 of the
manuscript, representing a soil transferred from its original site to a wetter climatic regime. When
the model is trained on a wet-regime reference lysimeter, the agreement between observed and
simulated water content under wet climatic forcing improves, as shown by comparison of the
time-series predictions in Figure R1 (a) with those in Figure 7(a) in the main manuscript. However,
the temporal evolution of mean bias remains consistent with the original analysis, as evidenced



by the similar bias patterns in Figure R1(b) and Figure 7(b). As a result, the interpretation and
classification of the site remain unchanged: the site continues to exhibit persistent drift relative
to the reference response and is therefore classified as “changed”. In other words, training on a
wetter regime improves water-content prediction in a wet climate, but it does not alter the
outcome of the change-detection framework.

We agree that training the model on one wet-regime and one dry-regime reference lysimeter
would, in principle, further improve predictive performance across contrasting climatic
conditions. However, the objective of this study is not to maximize prediction accuracy, but to
detect deviations from a reference soil-climate response function. For this purpose, the training
lysimeter must provide a clear and stable reference response. In practice, we assess this stability
by examining the soil-water retention curve (SWRC), ensuring that the training site exhibits a well-
defined relationship between matric potential and water content, and avoiding cases where a
wide range of water content occurs at the same matric potential. Training on a lysimeter that
contains multiple overlapping SWRC regimes would lead the model to learn a blended reference
response, reducing the interpretability of deviations as change signals. To avoid capturing more
internal variability than required for change detection, we therefore deliberately train the model
on a single lysimeter exhibiting a stable and well-defined hydraulic response.
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Figure R1 Analysis of soil water content dynamics (2015-2023) for the relocated Bad Lauchstadt-origin soil lysimeter
tested at Selhausen under reverse-regime training. Reverse-regime training denotes training the model on a wet-regime
reference lysimeter instead of the dry-regime reference used in the main analysis. (a) Comparison of measured (blue)
and simulated (orange) daily water content values when the model is trained on a wet-regime reference lysimeter,
showing improved agreement under wet climatic conditions. (b) Mean Bias (MB) started slightly negative in 2015,
increased towards positive values in 2019-2020, and subsequently exhibited interannual fluctuations in later years,
displaying a temporal pattern comparable to the original analysis. (c) Soil-water retention curves (SWRCs) from the
wet-regime training site (grey) and from the relocated Bad Lauchstadt lysimeter for selected years with low MB (2015,
2016) and high MB (2019, 2020) show that the inferred hydraulic response and site classification remain consistent with
the original training approach.

Finally, we note that interpreting persistent bias drift as evidence of changes in the soil water
content response function assumes that climatic forcing is correctly represented in the model.
Under the lysimeter conditions of this experiment, where precipitation and atmospheric demand
are directly measured and the water balance is well constrained, such persistent deviations are



most plausibly linked to changes in soil hydraulic behaviour, although other unobserved factors
may also contribute.

Specific comments

e InLine 75, Id like to see additional citations to back up the claim of ‘experimental studies’,
implying multiple, showing these shifts in soil water content dynamics following extreme
events. Or rephrase.

Experimental evidence is listed in Robinson et al., 2019 (DOI: 10.1111/gcb.14626). We stated this
explicitly in the revised manuscript: “Experimental studies have shown that extreme events such
as drought can induce persistent shifts in soil water content dynamics, potentially leading to
alternative stable states (see Robinson et al., 2016; Reinsch et al., 2024, Quintana et al., 2023
and the section on illustrative examples in Robinson et al., 2019,).”

e Clarifying question, beginning at the end of Line 79, are you stating that soil texture
remains constant through land-use changes? Or in your modeling approach? Or
something else?

In this statement, we do not refer to a modelling assumption, nor do we imply that soil texture
changes through land-use transitions over the time scales considered. Instead, we refer to a well-
established physical property of soils: the particle-size distribution (soil texture) that changes
only over much larger time scales (at least decades to centuries for clay translocations and much
longer for weathering), whereas soil structure and pore organization may evolve over years to
decades due to biological activity, management, compaction, or climatic stress.

Therefore, in the context of this study, changes in the soil-water response function are interpreted
as arising primarily from structural and hydraulic modifications rather than from changes in
textural composition. We have revised the sentence to make this physical interpretation explicit.

“Considering that texture remains constant at time scales of decades, the changes in the
response function are likely to be related to changes in soil structure and associated hydraulic
properties driven by structural reorganization, wettability effects, root activity, or land-use
changes rather than to textural change.”

e Line 118: While the authors state that predictive modeling providing accurate predictions
of soil water dynamics is "not the focus in this study,” | do think that claim requires
substantial citations. Alternatively, they could discuss their choice to use the NSE
classification here as well as add more information about the pros and cons of the NSE
method as this is missing and needed, when the strength of the paper relies on NSE
performing as described. Additionally, this sentence (Line 115-119) is quite unwieldy, and
itisn’t clear what point the authors are trying to make.

We agree that the original sentence was unwieldy and did not clearly convey the role of predictive
modelling in our study. We have rewritten this passage to clarify that, although the model
produces predictions of soil water content, the primary objective is not prediction accuracy itself,
but to use deviations between observed and simulated behaviour to detect changes in the soil-
climate response function.

Specifically, we replaced Lines 115-119 with the following text:

“In this study, we adopt a predictive modelling approach in which deviations between observed
and simulated soil water content over time are used to identify changes in the soil-climate
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response function. While the model also produces predictions of soil water content, prediction
accuracy is not the objective; instead, model-data deviations are used to detect temporal drift in
soil water response behaviour. The overall level of dynamic agreement is summarized using
Nash-Sutcliffe efficiency, while the detection and classification of changes rely on the temporal
evolution of mean bias, as described in Section 2.5.”

In addition, Section 2.5 now provides the definition of Nash-Sutcliffe efficiency and explains its
role as a measure of dynamic agreement, as well as its complementary use with mean bias to
identify the direction and progression of change. This revision clarifies the intended role of
predictive modelling in the study and the rationale for using NSE in the change-detection
framework.

e Figure 4: Considering the study focuses on the summer of 2018, would highlighting that
data be evocative rather than the other groupings? It is not clear why the different time
periods have been selected as they are not all the same length. Is this arbitrary or is it
related to the mean bias results? Regardless, | think some minor explanation is needed.
If the purpose of Figure 4 is only to motivate the selection of a particular lysemeter, the
spread of values in the contrasting lysimeter is more than enough, without the additional
colors).

The time periods shown in Figure 4 were not selected arbitrarily. They were chosen to reflect the
hypothesis that the summer drought of 2018 acted as a trigger for changes in soil-water response
dynamics. We do not expect such changes to occur instantaneously or to be confined to a single
year; rather, if a shift in hydraulic behaviour is induced by an extreme event, the soil may require
multiple seasons to adapt to a new dynamic regime or to recover toward its original state. The
selected periods therefore represent pre-event, transition, and post-event phases, allowing
visualization of how soil-water behaviour evolves before and after the 2018 drought.

We agree that highlighting the summer of 2018 is evocative given its central role in this study.
However, the purpose of Figure 4 is to motivate the selection of a reference training lysimeter by
illustrating differences in stability versus variability of soil-water response across time. For this
reason, we chose groupings that reflect dynamic phases rather than fixed-length calendar
windows.

e Line 252: This may be a naive comment, but is there a reasoning behind the numerical
values chosen to represent each categorical condition? For example, why is ‘wet’ 1 rather
than 107?

There is no numerical reasoning behind assigning “wet = 1” rather than “wet = 10”. The number
does not represent how wet the soil is in a physical sense. It simply labels which water-content
situation the soil is in at a given time step.

In the current implementation, this label enters the neural network as a numerical input. We
therefore acknowledge that the chosen numeric values can influence how the model internally
weights this feature. However, no physical meaning, ordering, or quantitative distance between
regimes is intended, regardless of the specific numeric spacing used. The values are arbitrary
identifiers applied consistently to distinguish discrete water-content situations, and no
intermediate values occur in the data.



e Relatedly, on what basis are you defining wet, moderate, and dry using the 30th and 70th
percentiles? Why not 25th and 75th? Is this arbitrary? Further, have you considered
looking at ‘extremely’ wet or dry categories? Considering you call 2018 an ‘extreme’ year
throughout the manuscript, I'd be curious to know how incorporating the 95th or 99th
percentiles for drying and wetting would be reflected.

The thresholds defining wet, moderate, and dry water-content situations were not chosen
arbitrarily but were selected through exploratory testing on the dataset analysed in this study. We
evaluated several percentile combinations and found that the 30th and 70th percentiles provided
a clear separation of water-content regimes while maintaining a sufficient number of
observations in each class for stable model training and evaluation.

Using narrower or more extreme thresholds (for example the 25th/75th or 95th/99th percentiles)
substantially reduces the number of data points in the extreme classes. This leads to sparsely
populated categories and increases the risk of overfitting to rare events rather than capturing
general system dynamics. For this reason, we chose broader regime classes and allow the model
to resolve variability within wet and dry ranges through the continuous input features, rather than
introducing additional discrete “extreme” categories

We have added a brief clarification in the manuscript to explain that the chosen percentile
thresholds are specific to the dataset analysed in this study and were selected to balance regime
separation and data availability.

Line 250-251:

“These thresholds were selected to provide clear regime separation while ensuring sufficient
observations per class for robust model training.”

e In the mean bias aggregation, did you also look at a seasonal (wet v dry season) mean
bias, or only annual? | would be curious if the response function is stable across seasons
as well (to ensure there isn’t variability between wet and dry that are cancelling each other
out, for instance). This seems to be most evident in Figure 7, where the predicted water
content does not capture both the driest and wettest water content periods. In later years
the mean bias improves, but the prediction only appears to have a slightly better fit.

In the present study, mean bias was evaluated on an annual basis. During preliminary analyses,
we examined separating bias into wet- and dry-season subsets to test whether seasonal
variability could influence the interpretation of bias evolution.

As is stated by the reviewer, computing seasonal bias removes the risk that opposite errors in wet
and dry periods cancel each other. However, in our dataset, seasonal subdivision reduced the
number of observations per subset and led to unstable bias estimates. To address this, we
performed an additional trial using three-year seasonal bias aggregation, which increased data
density per subset. This three-year seasonal bias followed the same overall trend as the annual
bias, confirming that the detected drift is not an artifact of yearly aggregation. Nevertheless,
because the available time series spans only about ten years, three-year aggregation yields very
few bias points and does not provide sufficient temporal resolution to identify when changes
occur. We therefore retained annual mean bias as the primary evaluation metric, while explicitly
considering the potential for wet—dry error compensation raised by the reviewer.

Regarding the reviewer’s interpretation of Figure 7, we agree that early years show limitations in
reproducing both the wettest and driest conditions (Figure 7a). However, the improvement in
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mean bias in later years is not only a numerical artifact: it corresponds to a clearer reduction of
systematic offset between observed and simulated water content across the time series (Figure
7a), which is summarized by the upward shift of mean bias toward zero in Figure 7b. In other
words, Figure 7b reflects a real reduction in systematic mismatch visible in Figure 7a, even though
event-scale discrepancies remain.

Finally, we note that for two out of the twenty-four samples, the evolution of annual bias does not
perfectly follow the shift in the soil-water retention curve shape. This occurs in cases where the
model exhibits opposite-sign errors in wet and dry periods (for example, underestimation in one
regime and overestimation in the other), so that these errors partially cancel in the aggregated
annual bias, as highlighted by the reviewer. These cases illustrate a limitation of using aggregated
bias metrics alone and reinforce the need to interpret bias together with predicted and observed
time-series behaviour and the corresponding SWRC evolution.

We have added this clarification to Section 2.5 of the revised manuscript (after line 337)

“Deviations between predicted and observed water content can differ in sign across moisture
conditions and event types, such that opposite errors may partially cancel when averaged over a
full year. Therefore, mean bias is interpreted as an indicator of long-term temporal drift in model-
observation differences, while soil water retention curves are used here (see next section) to
verify the physical consistency and direction of detected changes; in cases where retention
measurements are not available, robustness of bias trends can alternatively be assessed by
repeating the analysis using different temporal aggregation periods.”

e Line 423: How do you conclude that this is a result for coarse soil rather than
all/many/some compositions of topsoil? When you say ‘this coarse soil’ are you simply
referring to that translocated lysimeter? Or making a statement about coarse soils in
general? If the latter, | don’t think this is adequately supported.

We refer here specifically to the coarse-textured soil included in our lysimeter dataset, not to
coarse soilsin general. The number of soil types examined in this study is not sufficient to support
broad generalization across all coarse-textured soils. Our statement is therefore limited to the
soils investigated in the TERENO-SOILCan lysimeter network. We attribute the observed
behaviour to soil texture rather than site-specific topsoil composition because the same
response pattern was observed for this soil when exposed to two contrasting climatic conditions.
To avoid misunderstanding, we willadd a sentence in the manuscript clarifying that these findings
apply only to the study soils and are not intended as a general statement about coarse soils.

Lines 423:“ This indicates that for the coarse-textured soil included in this study (i) the effect of
changing climatic conditions was rather small (very good NSE classification for both sites), but
(i) that these coarse-textured topsoils do not show identical response to the extreme yeatr, as
each lysimeter reacts slightly differently, which may indicate small differences in hydraulic
properties.”

e |I'd recommend reviewing the language in section 3.2 for clarity, when discussing
transposed soil and ‘changed’ climate states. For example in line 447 the use of
‘unchanged climate’ is confusing. Perhaps consider consistent language such as
‘original’ climate, rather than (un)changed to avoid confusion.

We have revised the wording in Section 3.2 to use consistent terminology, replacing
references to “(un)changed climate” with “original climatic conditions” and “new climatic



conditions” when discussing soil translocation. Where relevant, we further specify these as
“wetter” or “drier” climatic conditions to improve clarity and avoid ambiguity. The example
sentence suggested by the reviewer has been adopted accordingly.

The sentence was edited to be:

“In short, these examples show that the Bad Lauchstadt soil remained resilient under its original
climatic conditions at Bad Lauchstadt but changed when exposed to the wetter climatic
conditions at Selhausen.”

e | would caution against describing the differences in climate between the sites as
‘climatic shifts’ (e.g., Line 518). To me this implies a step change in the climate at a given
location, not transposing soil between two sites. The timescale of translocating soil is
more abrupt than most/all climatic natural and/or anthropogenic climate change-forced
shifts.

Thank you, we changed this. Our intention was to describe differences in climatic conditions
between the two study sites rather than temporal climatic shifts at a single location. We have
therefore replaced the term “climatic shifts” with “contrasting climatic conditions between sites”
to avoid ambiguity.

e Were additional training methods explored for this analysis? (e.g., Is one lysometer
enough to train this model? Does fit improve or plateau when trained on multiple
lysimeters? Would training the model on lysimeters from each climate perform better
than one lysimeter from a single climate?)

Additional training strategies were explored in preliminary analyses. In particular, we tested
training the model on a wet-regime reference lysimeter, and an example of these results was
already presented earlier (figure R1). As expected, predictive performance at wetter sites
improved. We therefore agree that training on both a wet-regime and a dry-regime reference
lysimeter would, in principle, improve performance across contrasting climatic conditions.

However, the objective of this study is not to maximize prediction accuracy, but to define a single,
well-characterized soil water content response function that serves as a reference for detecting
change in other lysimeters. Using multiple reference lysimeters would introduce multiple
response functions into the training target and make the definition of a unique baseline response
more difficult.

If two reference lysimeters were to be used, the wet-regime site would need to satisfy the same
selection criteria as the dry-regime reference used here, namely a stable response function with
minimal temporal change in the SWRC. In addition, the wet- and dry-regime reference sites
should ideally occupy distinct volumetric water content ranges. In our dataset, the stable wet-
regime lysimeters exhibit approximately the same volumetric water content range as the dry-
regime reference lysimeter. Consequently, combining both in the training set would risk mixing
response functions rather than defining a clear reference behaviour. For this reason, we retained
a single stable reference lysimeter for model training.

e Line 600: what evidence for the physical soil response do you have? | don’t see how this
could have been determined from the model or information presented prior. Was the
autumn and winter of 2019 comparable to conditions in prior years? Would we
necessarily expect a rapid rebound to previous year’s conditions?



We agree with the reviewer that the mechanistic interpretation of the observed carry-over effect
as a structural change in pore connectivity and aggregation was not directly supported by the
model results or by analyses presented earlier in the manuscript. This statement was based on
qualitative inspection of the soil moisture time series rather than on independent evidence of
physical soil alteration. As this interpretation is not essential to the main objectives of the study,
we have removed the mechanistic explanation from the manuscript to avoid over-interpretation.

Revised manuscript text (Lines 597-602)

“However, a clear carry-over effect was observed: soil water in the upper 10 cm was not fully
replenished during the wet phase of autumn and winter 2019 and only reached comparable,
though slightly lower, values in winter 2020. A comparable multi-year legacy across the full soil
column was reported in the TERENO-SOILCan lysimeter network by Groh et al. (2020).”

Line 650: | would not classify the top 10cm of soil moisture evaluated in this paper as defining
water availability to plants. Most plants have root systems far deeper than 10cm. It seems a
stretch to connect these results to agricultural impacts as surface vegetation was not varied or
evaluated.

We agree that soil moisture at 10 cm depth does not represent full root-zone water availability
and therefore should not be interpreted as a direct measure of plant water supply or agricultural
impact. We have revised the sentence to restrict the statement to near-surface hydraulic
conditions and soil water dynamics, which are directly supported by the measurements in this
study.

“Temporal variations in the water content of the topsoil control near-surface hydraulic
conditions, infiltration, evaporation, and gas exchange, thereby shaping soil water dynamics and
physical soil functioning. Reliable information on soil water content dynamics in response to
atmospheric conditions is thus essential to detect and anticipate critical changes in soil
hydraulic behaviour.”

e 673: ‘extreme climatic events’ seems overly broad, as you’re only focusing on a single
intense drought, you cannot draw conclusions against other extreme events (e.g. extreme
precipitation).

We agree that the term “extreme climatic events” was too broad given that this study focuses on
the impact of an intense drought event. We have therefore replaced this wording with “intense
drought” to reflect the specific conditions investigated.

e 675: how areyou defining ‘past’ here? Did you evaluate how unique the 2018 drought was
in these locations/for these soils?

By “past climatic conditions” we refer to the climatic history under which soil structural
properties developed at the original site before translocation. Our intention is to express that
exposure to a broader range of climatic conditions may lead to soil structures that are more
resilient to subsequent drought, and that this inherited behaviour persists after translocation to
a new climatic regime. We have rephrased the sentence accordingly to clarify this meaning and
avoid ambiguity.

We rephrase the sentence to be:



“We argue that soils which developed under a broader range of climatic conditions may possess
soil hydraulic properties that enhance resilience to subsequent drought, and that this inherited
behaviour persists after translocation to a new climatic regime”.

Regarding the uniqueness of the 2018 drought, we cite Xoplaki et al. (2025) as following in our
manuscript: “Total precipitation in central Europe was at the lowest percentiles relative to the
1976-2005 distribution; .... The summer of 2018 in Germany was characterised by the most
extreme combination of high temperatures as one of the warmest years on record and as having
the lowest precipitation since 1881”

Technical corrections

Inconsistent spacing in em-dash usage. There should not be any spaces between words
separated by em-dashes (e.g. use is correct on line 22, but not correct on lines 54, 55, 77,
78.

Thanks, we changed it accordingly
Line 75: possibly missing an ‘a’ or time scale should be plural.
Thanks, we changed it accordingly

Line 101-102: “for a set of lysimeters’ I’m not sure ‘for’ is the correct preposition, perhaps
‘with a set of lysimeters’? Unless I’m misunderstanding the function.

Thanks, we changed it accordingly

Line 114: for clarity, I’'d recommend adding commas around ‘for example’ to set off the
clause.

Thanks, we changed it accordingly
Line 116: appears to be an extra space between ‘which’ and ‘the’
Thanks, we changed it accordingly

Line 160: | would recommend offsetting the place names with commas (e.g., “including
both, a wetter site, Selhausen, and a drier site, Bad Lauchstadt, ...”). Alternatively, you
could use parenthesis.

Thanks, we changed it accordingly

Please align tense, particularly in the methods section, where both present and past
tense alternate quite frequently.

Thanks, we changed it accordingly as much as possible

Line 215 is stating the same information as Line 130. | recognize the authors are re-
introducing the reader to the input variables, but | would recommend restructuring as to
not imply that water balance has not been discussed previously. My suggestion would be
to eitherre-introduce all inputs in this section or, better yet, move this discussion up near
Line 130. Moving the input variable discussion higher up would also reduce a bit of



confusion with the title of subsection 2.2.1 as you aren’t discussing the STD until the
second paragraph. In that same vein, the beginning of the 2.2.1 subsection implies that
the input variables were selected after data cleaning, which does not seem to be the case
(as the input variables were selected for cleaning/alignment).

Thanks, we changed it accordingly as much as possible

Line 298: Should the Adam optimizer be cited?
We will add a citation for it, thanks

Line 322,670: I’'m not sure the 2 hyphen is needed in Nash-Sutcliffe efficiency, nor should
the E be capitalized. It may also be more clear to state: ‘we use the Nash-Sutcliffe
efficiency coefficient (NSE, see eq. 5) as a general descriptor...”

Thanks, we changed it accordingly as much as possible

Line 444: use ‘which’ or ‘that’ rather than ‘who’

Thanks, we changed it accordingly as much as possible

Lines 519, 520: hyphens used instead of em-dashes.

Thanks, we changed it accordingly

Line 615: missing a period.

Thanks, we changed it accordingly

Lines 639, 641: hyphens used instead of em-dashes.

Thanks, we changed it accordingly

Line 669, 672: the preceding bullets end with a period, whereas these two do not.

Thanks, we changed it accordingly

Line 676, 676: include only one does before the (i) and make require plural.

Thanks, we changed it accordingly
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