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Abstract. Floods, droughts and changes in water availability are related to temporal variations in streamflow. Understanding
how streamflow responds to variability in climate is an important aspect of regions’ hydrological resilience, particularly under
climate change. Streamflow elasticities (€) (or sensitivities) to climate describe observed percentage changes in river flow
conditions per percentage change (or unit change) of a climate driver. Drawing on data from over 8,000 catchments, this study
provides a pan-European quantification of elasticities of annual mean and extreme streamflow to annual and seasonal
precipitation, and streamflow sensitivities to temperature. Results indicate that elasticities exhibit distinct regional patterns
across Europe. As expected, annual mean, maximum, and minimum flows generally increase with higher and decrease with
lower annual mean precipitation. A 1% change in precipitation typically leads to an amplified flow response of >1% in mean
flows (& = 1.2), an even stronger amplification in maximum flows (§ = 1.3), and a dampened response of <1% in minimum
flows (¢ = 0.9). Temperature has a limited influence on annual streamflow, and its effects vary in sign (illustrated by both
positive and negative sensitivities), but are relatively similar for mean, maximum and minimum flows. To reveal the underlying
physical processes shaping regional differences in elasticities to precipitation, we use a random forest model with 20 climate
and catchment factors. Results indicate that elasticities are not modulated by a single dominating factor but arise through
complex combinations of catchment properties, likely including influences that are not well captured with the existing metrics,
such as anthropogenic influences. This research advances understanding of hydrological resilience of mean and extreme flows
to climate change. The regional and continental patterns of amplified and dampened streamflow response to climate can

support water management and disaster risk mitigation across Europe.

1 Introduction

Understanding controls on streamflow variability is crucial for water resource management, disaster risk management, food
security, energy production, ecosystems, and the economy. Despite the high confidence that mean and extreme streamflow
will change with climate change, the magnitude and even the sign of change remains uncertain in many regions (Caretta et al.,

2022). Projections of future streamflow conditions integrate projected climate scenarios with catchment responses to these
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scenarios (Eisner et al., 2017; Samaniego et al., 2017, 2019). Isolating the sensitivity of streamflow to climate perturbations
can constrain the uncertainties in this component of earth-system projections by serving as a validation metric
(Sankarasubramanian et al., 2001). More broadly, such sensitivity estimates help identify locations that are inherently more

sensitive to climate variability.

Precipitation and temperature are two key controls on streamflow (Fu et al., 2007; Sankarasubramanian et al., 2001; Vano et
al., 2012, 2015), and their effects on streamflow can be quantified using streamflow elasticities or sensitivities. Streamflow
elasticities describe the percentage change of a streamflow variable (e.g. annual mean streamflow) per percentage change of
a climate variable (e.g. annual mean precipitation) (Schaake, 1990). Similarly, streamflow sensitivities describe the percentage
change of streamflow per unit change of the climate variable (e.g. °C), which is commonly applied for temperature. With the
climate becoming more extreme (Seneviratne et al., 2021), elasticities and sensitivities help to identify how streamflow will
respond to such conditions. Streamflow elasticities to precipitation and sensitivities to temperature can vary widely across
different climates and catchment characteristics, highlighting the need to investigate spatial patterns that emerge for a wider

range of climates and hydrological settings (Anderson et al., 2024; Némec and Schaake, 1982).

Several studies report positive streamflow elasticities to precipitation and mainly negative streamflow sensitivities to
temperature of mean annual flows across the USA, with substantial regional differences (Anderson et al., 2024; Awasthi et al.,
2024; Vano et al., 2012, 2015). Streamflow elasticities of precipitation tend to vary strongly with the flow percentile and over
different seasons, highlighting that the typically-used annual mean values alone give an incomplete image (Anderson et al.,
2024). Chiew et al. (2006) studied 500 catchments spread across the globe and found precipitation elasticities ranging from
1.0 to 3.0, whereby catchments with a lower runoff ratio are more responsive to precipitation variations. However, they focus
on elasticities of annual mean flows to annual mean precipitation only and have a limited spatial coverage. Potter et al. (2011)
found that in Australia the streamflow elasticity to precipitation during the Millennium Drought was related to the precipitation.
Alternatively, the Budyko framework has been used to assess the relative importance of changes in precipitation, potential
evaporation, and other factors influencing precipitation partitioning (e.g. climate seasonality, soils, vegetation, topography) to
streamflow at the global scale (Berghuijs et al., 2017). For Europe, there are regional (Andréassian et al., 2016; Weiler et al.,
2025) and local (Dallan et al., 2025) elasticity studies, but a pan-European overview is lacking. This could reveal the gradients
and variability occurring across Europe and help unravel characteristics that shape the elasticities. While several studies link
elasticities to catchment characteristics these links remain uncertain and generally only explore a small number of climatic and
hydrological catchment properties that may shape elasticity values (Anderson et al., 2024; Chiew, 2006; Sankarasubramanian

et al., 2001; Tang et al., 2019; Zheng et al., 2009).

Many of these elasticity studies are model-based (Berghuijs et al., 2017; Sankarasubramanian et al., 2001; Vano et al., 2012,

2015), which makes the results strongly dependent on the choice of model and underlying assumptions (Sankarasubramanian
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et al., 2001; Vano et al., 2012). In rainfall-runoff models, the constraining parameters cannot be measured directly (due to
spatial variability) and are hard to derive from field observations, resulting in more uncertainty in parameter estimates and
model performance (Peters-Lidard et al., 2017). Further, model-based elasticity studies necessitate an initial validation process
using observations. In contrast, calculating elasticities directly with observed data, only requires the modelling assumption of
linearity and, therefore, allows the data to strongly shape the relationship between the two variables of interest based on past
data (Andréassian et al., 2016). This nonparametric observation-based approach is particularly advantageous for large-scale
regional analyses, as it is model-independent, simple to apply, and transferable across many catchments (Chiew, 2006). Newly
published large-scale datasets like the CARAVAN dataset (Kratzert et al., 2023) and the European streamflow dataset

EStreams (do Nascimento et al., 2024) provide the opportunity to study observation-based elasticities at a large scale.

Given the lack of a pan-European overview of sensitivities of mean and extreme flows to climate, and the limited understanding
of what shapes spatial differences in these streamflow sensitivities, here, we quantify streamflow elasticities to precipitation
and streamflow sensitivities to temperature across Europe for mean and extreme flows. As reduced streamflow sensitivities to
climate fluctuations can also be understood as a measure of catchment resilience (Botter et al., 2013; Zhang et al., 2022), we
can combine the calculated elasticities of maximum and minimum flows to precipitation to assess whether a catchment is
resilient in one of the two flow extremes, in both or in none. Further, we assess what shapes regional differences in these
elasticities. We make use of the European streamflow dataset EStreams (do Nascimento et al., 2024), which allows us to

analyse the elasticities of thousands of catchments across different climates and landscapes in Europe.

2 Methods
2.1 Data

We analyse a wide range of European catchments using streamflow, catchment-aggregated hydro-climatic and landscape
variables from the EStreams Version 1.3 dataset (do Nascimento et al., 2024). We filter the catchments to have a minimum of
15 years of valid data. Further, we filter the catchments based on a visual inspection of hydrographs (e.g. repeating value,
frequent gaps, magnitude shift, binary pattern) and by omitting catchments with runoff coefficients larger than 1.5 (because
they indicate implausible runoff relative to precipitation) or with more than 61 suspicious days (2 months) in a year. This
reduces the number of catchments from 17,130 to 8,305. The mean catchment area of the selected catchments is 4066.75 km?
(range: 0.56 km? to 1,366,923.26 km?). As the meteorological data starts in 1951, we also use the timeseries of streamflow
only starting from this date. For annual data we aggregate monthly data to hydrological years, defined here as running from
November of the previous year (n-1) to October of the current year (n). The annual maximum flow is based on the 1-day
maximum, and the annual minimum flow is based on the 7-day minimum in each hydrological year. A comparison of the

annual 1-day minimum and annual 7-day minimum yielded very similar results. We choose the 7-day minimum, calculated
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from a 7-day moving average to reduce short-term disturbances (Laaha et al., 2017). Colour schemes used for the maps in this

study are from Crameri (2018) and Kovesi (2015).

2.2 Estimating sensitivity of mean and extreme annual flows to climate

Precipitation is commonly regarded as the dominant factor explaining streamflow variations at the annual scale, due to its
substantial contribution to streamflow (Fu et al., 2007; Sankarasubramanian et al., 2001). As a secondary climate driver for
streamflow, we choose temperature, which has been described as a key control of streamflow and its variability (Fu et al.,
2007; Vano et al., 2012, 2015). Despite resulting in less intuitive sensitivity units (°C™!), we choose temperature over potential
evapotranspiration, which is also given in the EStreams dataset (using the Hargreaves formulation), for two reasons. First, the
estimates for potential evapotranspiration can lead to a range of different values depending on the calculation used (Fisher et
al., 2011), whereas temperature is a more direct measure that closely links to net radiation which are the two main variables
on which potential evapotranspiration is usually based (Vano et al., 2012). Second, future climate scenarios are mostly
expressed in changes of temperature (Vano et al., 2012, 2015), which makes the results of this study more relatable to future

scenarios compared to future estimates of potential evapotranspiration.

Considering the collinearity of precipitation and temperature, we analyse how streamflow in each catchment varies with both
variables simultaneously (Figure 1). In a first step, we normalize streamflow and precipitation timeseries per catchment with
their long-term mean (of overlapping years) (Figure 1a). We do this for annual mean (Qmean), annual maximum (QOmax) and
annual minimum (Qmin) streamflow. For precipitation, we use annual mean precipitation (Pmean). For temperature, we use
absolute annual mean temperature instead of normalized ones because 0 °C is an arbitrary reference point rather than a physical
absence, unlike 0 mm of precipitation, which represents a true lack of precipitation. In a second step (Figure 1b), we calculate

the streamflow elasticity to precipitation sg per catchment expressing the percentage change in streamflow for a 1% change

in precipitation (blue slope), and the streamflow sensitivity to temperature . ? expressing the percentage change in streamflow

for a 1° C change in temperature (orange slope) using this function for a multiple linear regression:
QW =ag+ef PO+ T +u(t), (1

where Q(t) describes the normalized annual streamflow of a single stream at time 7, which can represent the annual mean
flow, the annual 1-day maximum flow, or the annual 7-day minimum flow. The variable P(t) describes the average normalized
annual precipitation of the upstream catchment belonging to the streamflow gauging location, the term «, is the intercept and
the term u describes the unexplained variability. We apply a bi-variate approach, as this has been shown to give more robust
estimates (Andréassian et al., 2016). However, we also test an alternative approach to check the robustness of the results,

computing the linear regression in a hierarchical manner, starting with conducting a linear regression of precipitation and
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streamflow, followed by a linear regression of temperature with the residuals resulting from the previous step. This method

and the corresponding results are described further in the Supplementary Material (S1).
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130  Figure 1: Methodology to estimate the streamflow elasticity (blue slope) to precipitation and the streamflow sensitivity (orange slope)
to temperature. The normalized timeseries streamflow and precipitation and the absolute timeseries of temperature (a) are plotted
against each other (b). The resulting regression plane has a slope parallel to the precipitation axis (blue) that expresses streamflow
elasticity to precipitation and a slope parallel to the temperature axis (orange) that expresses streamflow sensitivity to temperature.

Streamflow elasticities to precipitation can shift depending on the temporal scales over which they are calculated, but for

135 Europe, elasticities remain stable or grow when considering timescales longer than a year (Zhang et al., 2022). Here, we focus
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on the annual and the seasonal (6-months) scale. For the seasonal scale we analyse how sensitive the annual streamflow is to
the seasonal climate variable, where the warm season ranges from May to October and the cold season from November to
April. We expect the seasonal analysis to enhance the understanding of annual elasticities, especially in regions with strongly
seasonal streamflow. This is particularly relevant given that, in Europe, different seasons have experienced distinct trends in

precipitation and temperature (Moberg et al., 2006).

As a description of how much linear trends of precipitation and temperature explain annual variabilities of annual streamflow,
we calculate the R? value. We calculate the R? three times: for the multiple linear regression model using both precipitation
and temperature, using precipitation only and using temperature only. We consider precipitation elasticities and temperature

sensitivities statistically significant only when their p-value is below 0.05.

2.3 Seasonal dominance

To analyse the elasticities of annual streamflow to seasonal precipitation more in depth, we calculate which catchments are
more dominated by the elasticities of cold-season precipitation or warm-season precipitation. For this purpose, we calculate

the seasonal dominance (s) as:

s=( lec| —o.s)xz, )

lecl+lewl

Where ¢, is the cold-season elasticity and €, the warm-season elasticity to precipitation. A s-value of +1 would indicate that
the streamflow is completely dominated by the cold-season elasticity and a value of -1 would indicate that the streamflow is
completely dominated by the warm-season elasticity. For this analysis, we exclude catchments that have elasticities smaller
than -0.5 in either of the season, which means that we exclude 120, 323 or 392 catchments for the analysis of mean, maximum,
and minimum flows. We further exclude the catchments that have nan values in either of the two seasons. This leads to the

exclusion of 780, 780 and 835 catchments for the analysis of mean, maximum and minimum flows.

2.4 Catchment characteristics shaping elasticities

When analysing annual elasticities across a very wide climate range (e.g. global), differences in magnitude tend to be climate
dominated (Chiew et al., 2006) but the influence of landscape and soil, though recognised, remains underexplored and requires
further study across distinct catchment characteristics (Gong et al., 2022; De Lavenne et al., 2022). If we focus on a somewhat
narrower climate range, like the European scale in this study, we can compare mapped differences in long-term water balance
behaviour to catchment attributes (e.g. soil type, vegetation) to test to what extent these seem to shape the streamflow
elasticities to precipitation. We focus on precipitation only, as this describes much more of the variability of streamflow (R?
values in S5). For this purpose, we select 20 different variables from the EStreams dataset describing the climate, soil

properties, land cover, topography, human modification and hydrological signatures (Table 1). For comparative purposes with
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other studies, we conduct the same analysis including the baseflow index as well (see S7), but do not include it in the main
analysis as it is a hydrograph description instead of an external driver in itself and in that sense very similar to the elasticity
itself. We modify two of the variables given in the EStreams dataset: the lake volume and the reservoir volume. Both variables
are given as absolute volumes. To make them more comparable across catchments of different sizes and weather conditions,

we divide the volume by the mean of annual streamflow sums to get a specific lake volume.

Table 1: Overview of attributes from the EStreams dataset used in the random forest model with their corresponding attribute class
and unit adapted from (do Nascimento et al., 2024)

Attribute class | Attribute Description Unit
Aridity Ratio between PET and precipitation. -
Climate Snow fraction Fraction of precipitation falling on days colder than 0°C. -
Precipitation seasonality Seasonality and timing of precipitation. -
Depth to bedrock Depth to bedrock. m
Gravel fraction Gravel fraction of soil material. %
Soil property Sand fraction Sand fraction of soil material. %
Soil organic carbon Fraction of organic material. %
Depth available for roots Depth available for roots. cm
Bulk density Bulk density. g/em?
Vegetation Leaf Area Index Mean LAI over the catchment area and over time. -
Topography Slope degree Mean terrain slope. °
Elongation ratio Ratio between diameter of a circle with basin area and the | -

maximum length of the basin.

Area Catchment surface area. km?
Stream density Ratio of lengths of streams and the catchment area. 1000
km/km?
Human Agricultural land cover Fraction of agricultural land cover aggregated over the | -
influence catchment and over time.
Artificial land cover Fraction of artificial land cover aggregated over the | -

catchment and over time.

Mean area equipped for | 10/5-year resolution total area equipped for irrigation. km?

irrigation

Reservoir volume relative to | Ratio between total upstream reservoir volume and annual | a

annual flow sum flow sum
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Hydrology Lake volume relative to | Ratio between total upstream lake volume and annual flow | a

annual flow sum sum

From the characteristics in the EStreams dataset, we choose those that can be physically connected to elasticities and reduce
the parameters by testing for collinearity (spearman p>0.8) and multicollinearity (VIF>12). For the elasticities of mean,
maximum and minimum annual streamflow to annual precipitation, we train a random forest model using scikit-learn v1.3.0
(Pedregosa et al., 2011) on a subset of the data (80%) and then test it on the remaining unseen data (20%) using a random seed
of 42 to initiate the model. Based on the parameter optimization of GridSearchCV from scikit-learn we choose the parameters
shown in Table 2 for the three models for the elasticities of annual mean, maximum and minimum flow to annual mean

precipitation. Model performance is evaluated using the coefficient of determination (R?) and the root mean squared error
(RMSE).

Table 2: Optimal parameter values using the GridSearchCV from scikit-learn to model the target variables elasticities of mean,
maximum and minimum annual streamflow.

Target variable: Elasticity of

Parameter
Mean annual streamflow Maximum annual streamflow | Minimum annual streamflow
Number of trees 500 500 500
Maximum depth None 20 20
Minimum sample split 2 2 2
Minimum sample leaf | | 2

3 Results and discussion
3.1 Elasticities of annual mean and extreme streamflow to annual precipitation

Elasticity of annual mean, maximum, and minimum flows to mean annual precipitation is almost always positive and varies
systematically across Europe (Figure 2). Annual mean and maximum flows tend to be amplified compared to precipitation
changes (§p > 1), whereas annual minimum flows typically are dampened compared to precipitation changes (€p < 1) (Figure
2a). The mean elasticities tend to be slightly exceeding the medians and can be used to compare elasticities to other studies
that also used means to summarise the range of values. The observed range (mean + standard deviation) of elasticities of annual
mean flows to precipitation (1.20 + 0.53) is broadly consistent with those reported in a previous study for approximately 80
European catchments (Chiew et al., 2006), a global study (approx. 1.45 + 0.40) (Zhang et al., 2022) and studies in the USA
(Anderson et al., 2024; Awasthi et al., 2024). The elasticities identified in our study tend to be slightly higher than previously

reported values for France derived using a range of different methods (Andréassian et al., 2016). The range of elasticities of
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maximum flows (1.38 & 0.95) is comparable to those previously reported across the entire contiguous USA, while the range

of elasticities of minimum flows (1.01 £ 0.95) is narrower than previously reported in the USA (Anderson et al., 2024).

The degree of spatial consistency of elasticity values varies between mean, maximum, and minimum flows. Elasticities of
mean and maximum flows tend to be more uniform across neighbouring catchments, suggesting that large-scale drivers, such
as climate, shape them. In contrast, elasticities of minimum flows show stronger heterogeneity in space, which could indicate

that the response is more dominated by smaller-scale drivers, such as landscape properties and anthropogenic influences.
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Figure 2: Frequency distribution (a) and spatial distributions (b-d) of annual mean (b), maximum (c), and minimum (d) streamflow
elasticity to the annual mean precipitation.

The regional patterns of elasticities in mean and maximum flows are comparable. Both annual mean and maximum flows are
relatively sensitive to annual mean precipitation in the southern parts of the Continental Zone (Carpathians, Germany, Czechia,
and Slovakia) and western parts of the Maritime South and Mediterranean (Spain and France) (see S2 for a map of the
environmental zones). These are regions that tend to have smaller depth to bedrock (see S6), typically associated with limited
groundwater and soil moisture storage capacities in thin soils or fractured bedrock which could indicate lower storage buffering
at annual time scales. Annual mean and maximum flows are less sensitive to annual mean precipitation in northern parts of the
Continental Zone (Poland), the eastern Atlantic North (Denmark), the Boreal North (Norway), the Boreal South (Alps), and
southern parts of the Maritime South (eastern Spain). Regions with lower elasticity values exhibit a higher proportion of
statistically insignificant elasticities. However, the fact that low elasticities are regionally consistent suggests that elasticity
values are actually low and reflect that precipitation is a weak driver of annual streamflow variations in those regions. These
regions of low elasticities also coincide to some extent with larger depths to bedrock. There also seems to be a strong spatial
overlap with wetlands and, specifically, with peatlands (Tegetmeyer et al., 2025), which can attenuate precipitation peaks
under certain conditions due to their high water-holding capacity and the slow release of water (Karimi et al., 2023). The lower

streamflow elasticities in the Alps could also be related to the presence of fractured bedrock, enhanced permeability and deep
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infiltration that could contribute to lower contributions of recent rainfall in their streams (Jasechko et al., 2016). In addition,

the higher snow fraction in this region could decouple annual precipitation from annual streamflow.

Elasticities of minimum flows (Figure 2d) are distinctively different from those of mean and maximum flows (Figure 2b-c).
They tend to have stronger storage-induced annual memory than mean or maximum flows (Berghuijs et al., 2025a), making
them more dependent on longer-term storage variations and partly decoupling them from annual precipitation changes.
Catchments with larger subsurface storage capacities can often buffer more of the precipitation variability over annual
timescales (Van Loon et al., 2024), leading to lower annual elasticities. This is, for example, consistent with lower elasticities
in areas of deeper bedrock (e.g. Poland and Denmark). In places where minimum flows occur during winter (e.g. the Alps),
these flows result from long periods of below-zero temperatures (Floriancic et al., 2021; Laaha and Bloschl, 2006), which
makes them temperature controlled, and thus precipitation elasticities are low. In addition, precipitation in the Alps is summer-

dominated (see precipitation seasonality in S6), further decoupling annual precipitation amounts from low flows.

Note that the elasticities estimated here at the annual scale may differ when using multi-year aggregation periods. This is
particularly relevant for minimum flows, which tend to retain a stronger memory of preceding conditions than mean or
maximum flows (Berghuijs et al., 2025a). Consequently, minimum-flow elasticities at longer aggregation timescales may be

higher than mean or maximum flows.

For all three streamflow elasticities there are very few (statistically insignificant) negative values, similar to Anderson et al.
(2024) and Fu et al. (2007). Several of the corresponding hydrographs are characterised with a long period (over a year) of
zero flow, which can lead to the negative elasticities if these periods of zero values occur in years with above-average
precipitation. Some of these long periods of zero values in hydrographs that rarely reach zero values may arise from
measurement errors. However, some hydrographs do not display any obvious measurement errors (but there may be some).
For these cases without obvious measurement errors, possible causes of negative elasticities could be anthropogenic influences

such as the regulation of reservoirs (Bai et al., 2024).

Streamflow elasticities of annual maximum flows to precipitation follow a similar spatial and frequency distribution to the
ones of annual mean flows (Figure 2b and c). This similarity could be the result of wetter (drier) years leading to a wetter
(drier) landscape that produces larger (smaller) maximum flows. Alternatively, the mean precipitation of a hydrological year
could be positively correlated with maximum precipitation. In that case, elasticities of maximum flows may reflect the
sensitivity to maximum precipitation rather than mean precipitation. While the correlation between annual mean and maximum
precipitation is on average moderate (mean spearman p = 0.42), the correlation strength between mean and maximum
precipitation only weakly affects the elasticities of maximum flow (p = 0.14) (see more details in S3). This indicates that in

some regions of Europe with summer-dominated rainfall the correlation of maximum and mean precipitation may contribute
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to higher elasticities. However, across the scale of Europe, the mechanism of wetter (drier) years leading to a generally wetter
(drier) landscape that produces larger (smaller) maximum flows might play a more dominant role. This would be consistent
with earlier work (Berghuijs et al., 2019; Bloschl et al., 2017) that emphasizes few annual maximum flows result from annual

maximum precipitation but instead often arise through sub-extreme precipitation falling on an already-wet landscape.

3.01 | max flow
25 { min flow
2.0
1.5 ,.-_'-"": H
1.0 T

0.5

elasticity of extreme flow
)

001,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
elasticity of mean flow

Figure 3: Relationship of annual elasticities of mean flow elasticity of maximum flow (blue) and minimum flow (orange) to annual
precipitation. Precipitation elasticities of mean flows are binned in groups of 2%. The error bars display the standard error of the
mean for each bin. The bins are based on the order of the elasticities of mean flow, which is why these lowest (highest) elasticities of
mean flow are not necessarily the lowest (highest) elasticities of extreme flow. The spearman correlations coefficients are of the data
without binning.

Catchments with higher (lower) elasticities of mean annual flows are also places where extreme annual flows are more (less)
sensitive to mean precipitation (Figure 3). This indicates that a catchment’s elasticity to precipitation is linked across mean
and extreme flows. For most catchments, elasticities of maximum flows exceed those of mean flows, while the minimum flows
tend to be less sensitive, especially for the catchments where elasticities of mean flow exceed 1.7. The higher elasticities for
maximum compared to mean flows are consistent with the observation that the response of streamflow tends to be non-linear
(responses are not always proportional to the rainfall input) and nonstationary (responses can vary with ambient conditions,
for example, soil moisture conditions) (Berghuijs et al., 2019; Bloschl et al., 2017; Tromp-Van Meerveld and McDonnell,
2006). Annual means are the total result of a wide range of events, whereas annual maxima capture “extreme” conditions.
Consequently, such nonlinearity and nonstationarity will likely have a larger effect for extremes than means and are thus also
associated with larger elasticities. This is also reflected in annual flood regimes being typically more variable than annual flow

regimes (Bloschl et al., 2013).

3.2 Elasticities of annual mean and extreme streamflow to seasonal precipitation

We now analyse the annual streamflow response to seasonal precipitation to understand if the precipitation of a particular

season is more important for the annual elasticities. The elasticity of annual streamflow to cold-season (Nov-Apr) precipitation
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(Figure 4a-d) has comparable regional patterns in elasticities of mean and maximum flows. These regional differences are
largely similar elasticities to annual precipitation (Figure 2). However, the catchment dampens mean and maximum flows
compared to cold-season precipitation variability, while annual precipitation variability was amplified in the flow signal.
Catchments typically dampen variations of annual minimum flows compared to cold season precipitation as well and their
elasticities are generally much lower than for mean and maximum flows. Similar to streamflow elasticities to annual
precipitation, elasticities of minimum flows to cold-season precipitation are spatially more heterogeneous than for mean and

maximum flows. Cold-season elasticity to precipitation has similar regions of higher elasticities as the annual elasticities.

The spatial patterns of elasticities of annual streamflow to warm season (May-Oct) precipitation (Figure 4e-h) are partially
inverse compared to those of the cold season precipitation. This means that regions where cold-season precipitation is amplified
in streamflow, warm-season precipitation is dampened (and vice versa). For example, streamflow in Central Europe tends to
be highly sensitive to summer precipitation, which is consistent with the occurrence of the 2024 Central European floods
during summer (Athanase et al., 2024). We show which catchments are more sensitive to cold- or warm-season precipitation
by mapping seasonal dominance (Figure 4i-k). In most regions, annual mean and maximum streamflow are dominated by cold-
season precipitation. This agrees with a case study in Colorado (USA) (Woodhouse et al., 2016), where cold-season
precipitation explained more of the variability in annual flows than warm-season precipitation. It is also in line with the general
concept that runoff ratios tend to be higher in colder or more humid settings (Budyko, 1974; Merz and Bloschl, 2009). As the
emerging spatial patterns of seasonal dominance of elasticity of mean and maximum flow resemble the pattern of streamflow
seasonality (Berghuijs et al., 2025b), we tested whether the seasonal dominance is just a representation of whether the centre
of mass of the flow type is in phase with our definition of the season (see S4), but this was not the case. Note that the pattern
emerging for mean and maximum flow resembles areas with higher snow fraction (snow fraction > 0.15 see S6). These are
regions where, in the warm season, precipitation falls more likely as rain which contributes faster to streamflow as opposed to
precipitation falling as snow in the cold season. For minimum flows, there is less distinct regional pattern of seasonal
dominance across continental Europe. In the UK there is a clear gradient of warm-season dominated catchments in the
northwest to cold-season dominated in the southeast, which broadly aligns with the spatial patterns of how meteorological

drought propagate to hydrological droughts (Barker et al., 2016).
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Streamflow elasticities to climate can be used as a measure of catchment resilience (Botter et al., 2013; Zhang et al., 2022),
especially when considering the elasticities to both high and low flow conditions per catchment (because these are associated
with potential hazards such as droughts and floods). Here, we categorize the catchments into whether they dampen or amplify
extreme flows (Figure 5). Figure 5 highlights which catchments only have sensitive (amplified) maximum flows, only sensitive
minimum flows, have both extremes being sensitive or have both extremes being resilient (dampened). This means that we
define catchments as being more resilient in their minimum flow response, if the minimum flows are less sensitive to annual

precipitation variations.

Qmax

dampened amplified

dampened amplified

Omin 60°N

50°N

? %‘- 40°N
'..(Eq? .cz!h é >
P
A '_‘:,:; - o
0° 10°E 20°E

Figure 5: Combined elasticity of maximum and minimum flow to precipitation as a measure of resilience. The colour classes split
the elasticities into whether the streamflow response is dampened/resilient (sg < 1), or amplified/sensitive (sg > 1).

Catchments that are resilient in both their low and high flows are common (21.6%) and occur in the northern Continental Zone
(northern Poland), the Alpine South (Northern Italy), and the Alpine North (Norway) and locally in other places. As mentioned
before, the higher resilience could be linked to an increased storage (indicated by deeper depth to bedrock as in northern
Poland) or a higher peat land cover and their sponge functioning (Karimi et al., 2023; Tegetmeyer et al., 2025), but could also
be linked to different seasonality of high and low flows (the Alps). High sensitivities of both minimum and maximum flows
occur more commonly (29.2%) and are concentrated in the Atlantic North and Atlantic Central (western Germany and southern

Denmark), as well as parts of the Continental Zone (Czechia and Austria), but also occur elsewhere. In most of the catchments
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(35.1%), maximum flows are sensitive to precipitation, but minimum flows are resilient, and they commonly occur in the
Continental Zone (large parts of Germany, Austria, southern Poland, and Czechia (in spatial vicinity to catchments that are
sensitive in both extremes)). Catchments that are sensitive in their minimum flows but that have resilient maximum flows are
rare (14.1%) but occur mainly in the Boreal Zone (southern Finland) and the Nemoral Zone (Estonia, Latvia, Lithuania). The
resilience classes of these catchments are partly geographically clustered (as described above) but also show a lot of local

spatial heterogeneity. Therefore, it is relevant to understand what drives both these regional and the more localized differences.

3.3 Temperature sensitivities of annual mean and extreme streamflow

The sensitivities of annual mean, maximum and minimum streamflow to mean annual temperature have spatial patterns (Figure
6a-d) that differ from those of streamflow elasticities to precipitation (Figure 2a-d). In most catchments, streamflow decreases
(increases) with increasing (decreasing) temperatures, as shown by mostly negative temperature sensitivities for mean
(—0.03 £ 0.12), maximum (—0.05 £ 0.18), and minimum flow (—0.06 + 0.27). These negative sensitivities are in line with
increased evaporation at higher temperatures reducing the amount of water reaching the stream, which is expected especially
in energy-limited environments (Budyko, 1974). However, there are also many catchments responding the opposite way
(positive sensitivities), indicating that higher temperatures are associated with more streamflow. The occurrence of both
positive and negative temperature sensitivities has also been reported for mean annual streamflow mainly in snow-affected
catchments as temperature can trigger different processes (e.g. snow occurrence, melt or evaporation) throughout the year
(Berghuijs et al., 2014; Vano et al., 2012, 2015; Weiler et al., 2025). Note that temperature variations explain much less of the
annual variability of streamflow compared to precipitation variations. The performance (R?) of the multiple linear regression
model using only temperature to describe mean streamflow, for example, is on average 0.03, while the performance using only

precipitation is 0.46 (see S5).

Across flow metrics and temporal scales, we find a considerable number of catchments in the western Iberian Peninsula with
positive streamflow response to temperature, where we would expect higher rates of evapotranspiration and therefore a
negative streamflow response to temperature. However, in energy-limited environments the sensitivity of evapotranspiration
to temperature tends to be smaller (Berghuijs et al., 2017), which makes other factors more dominant in controlling
sensitivities. Declines of mean streamflow with higher temperatures (linked to an increase in evaporative demand), in
particular, in the warm season when evaporation rates are higher, have been reported across Iberia (Martinez-Fernandez et al.,
2013; Vicente-Serrano et al., 2014) and southern Europe (Stahl et al., 2010). Positive temperature sensitivities in Iberia are
likely indirect, possibly resulting from weather patterns or atmospheric circulation patterns (such as the North Atlantic
Oscillation) that are sometimes covarying with annual temperatures (Lorenzo-Lacruz et al., 2011) or from human water

management responses to warmer temperatures.
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Figure 6: Frequency (first column) and spatial distribution (second to fourth column) of the temperature sensitivities of mean
(second column), maximum (third column) and minimum (fourth) streamflow across Europe. The plots show the streamflow
sensitivities to annual temperatures (first row), to cold-season temperature (second row) and to warm-season temperature (third
row).
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For the annual minimum flow response, positive sensitivities occur in the Alps and the Nordic Mountains (Northern
Scandinavia) and Iceland. As mentioned before, in these regions minimum flows usually occur January through March,
whereas in most parts of Europe minimum flows usually occur June through September (Floriancic et al., 2021). In snow-
affected catchments with winter low flows, higher temperatures can increase liquid water availability (rain + snowmelt) during
the low-flow season leading higher low flows (Van Loon and Van Lanen, 2012) and thus, positive temperature sensitivities.
The response of annual mean, maximum, and minimum flow to cold-season temperature (Figure 6e-h) is very similar to the
response to annual temperature (Figure 6i-1). Contrastingly, the response of annual mean and maximum flow to warm-season
temperature exhibits spatial patterns that differ from those to annual temperature sensitivities. In particular, Germany, Austria,
and Switzerland show positive warm-season temperature sensitivities. Such positive sensitivities can, in some highly glaciated

catchments, arise through glacial melt during the warm season (Van Tiel et al., 2021).

3.4 Catchment characteristics shaping elasticities

So far, this study provides empirical evidence of how annual mean and extreme flows in Europe respond to climate without
empirically analysing its causes. Revealing the underlying physical characteristics and processes that drive these elasticities,
builds understanding and potentially improve predictions in a changing climate. Here, we use a random forest model
(Pedregosa et al., 2011) to quantify the role of 20 selected catchment characteristics (spatial distribution of the 16 most
prominent characteristics is shown in S6) in shaping the elasticities of mean, maximum, and minimum annual flow to
precipitation (Figure 7). The importance plot illustrates the relative contribution of each predictor to the model, highlighting

how influence is distributed across all inputs.
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Figure 7: The role of catchment characteristics in shaping elasticities estimated by their feature importance for elasticities of mean
(a), maximum (b) and minimum (c) annual streamflow to annual precipitation. This importance plot illustrates the relative
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contribution of each predictor to the model, highlighting how influence is distributed across all inputs. Thus, the importances of all
features (characteristics) always sums to one, independent of the model fit. The colours of the bars indicate the class (climate, soil
property, land cover, topography, human influence, and hydrological signatures) of the feature and the pattern of the bar shows
whether the correlation of a feature to the elasticity is positive (solid) or negative (striped).

Elasticity cannot be accurately predicted by a single catchment characteristic, and the combination of the 20 characteristics
only predicts about half of the variations in the elasticities of the annual mean (R?: 0.46, MSE: 0.10), maximum (R% 0.51,
MSE: 0.27), and minimum flow (R?: 0.30, MSE: 0.33). Despite using a combination of a wide (and in hydrological modelling
commonly used) range of catchment characteristics, we cannot easily predict elasticities and thereby fully encode the physical
origin of annual streamflow elasticities to precipitation. This underlines the importance of showing the elasticity behaviour

empirically, such as presented in this paper, and not by predictions that do would depend on modelling.

Although spatial distribution and binned scatter plots (Figure 3) of the streamflow elasticities to annual precipitation seemed
to indicate that the elasticities of different flow metrics are connected (e.g. catchments with higher mean flow elasticity also
featured a higher maximum flow elasticity), the feature importance plots show that the higher-ranked features vary among the
different flow metrics. Aridity is among the most prominent characteristics for all three streamflow elasticities (but only ranked

highest for mean and minimum flow elasticities) across this range of European climates.

Multiple studies described the relationship of aridity to elasticity of mean flows. The more humid basins were found to have a
significantly lower elasticity to precipitation (Zheng et al., 2009), while in arid regions there is a larger spread of values
(Sankarasubramanian et al., 2001) and uncertainty due to greater inter-annual streamflow variability (Potter et al., 2011). This
could be linked to arid and semi-arid catchments (aridity index (AI) > 1) being more sensitive to precipitation decreases than
to precipitation increases (Tang et al., 2019). Some of these studies also aknowledge that theoretical relationships of elasticity
and humidity can only describe the observed relationship for very humid regions (Al < 0.5) and that additional factors shape
the elasticities (Potter et al., 2011; Sankarasubramanian et al., 2001). In this study, we see that while aridity ranks among the

highest factors, it is not solely dominating the elasticity. Furthermore, we can extend this finding to extreme flows as well.

Precipitation seasonality is the most influential characteristic for maximum flow elasticities to precipitation, and among the
higher-ranked characteristics for the other elasticities. For the maximum flow elasticity, the correlation is positive, indicating
that more summer-dominant (or winter-dominant) precipitation is associated with a higher (or lower) elasticity. For example,
maximum flow elasticities around the Carpathians are among the highest of Europe. Here, maximum flows usually occur
around the end of summer, while precipitation is also summer-dominant. In contrast, the lowest maximum flow elasticities

occur where maximum flows occur in winter or spring while the precipitation seasonality is also summer-dominant.
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Snow fraction is among the most highly ranked characteristics for mean and extreme flow elasticities and is negatively related.
This is in line with Sankarasubramanian et al. (2001), who found elasticities of mean flows to precipitation in the USA to be

lower for catchments with higher snow accumulation.

There are several characteristics beyond climate that are also of importance. The depth to bedrock is also among the higher-
ranked features for maximum flow elasticities, that can affect groundwater storage capacity and response time through the
unsaturated zone. A larger groundwater storage capacity could increase the buffering capacity of precipitation variability at
the annual scale leading to lower elasticities, compared to small depths to bedrock that offer only limited groundwater and soil
moisture storage in thin soils or fractured bedrock. The catchment area is more relevant for the minimum flow elasticity. This
could be due to the longer memories of low flows discussed before, becoming even larger the bigger the catchment is. Several
other factors appear important for specific elasticities but are not consistently showing up as being important for all signatures

(e.g. clay fraction, soil organic carbon, slope degree and artificial land cover).

We show that elasticities to precipitation arise from complex combinations of climate and landscape characteristics, with
important influences that may not be adequately captured by the existing metrics, such as specific landscape properties (e.g.
peatland cover) or anthropogenic impacts. Vegetation may also play a larger role than indicated here, as it is represented only
by the lumped leaf area index, which does not account for differences in root depth, vegetation type or seasonality. The capacity
of vegetation to regulate transpiration rates in response to wetness conditions of previous years can affect the elasticities to
precipitation (Gardiya Weligamage et al., 2025; Zhang et al., 2022). Some metrics, such as land cover, also vary over time,
potentially altering streamflow elasticities, as suggested by earlier studies (Martinez-Fernandez et al., 2013; Moran-Tejeda et
al., 2012). Considering these multiple and dynamic influences, there is a risk of equifinality, where similar elasticity values

arise from different underlying processes, posing a challenge for process-based interpretation.

4 Conclusion

This study presents a pan-European quantification of annual and seasonal streamflow elasticities to precipitation, along with
the streamflow sensitivities to temperature. Our analysis also includes extreme flows, which have rarely been examined at this
scale. Results indicate that the streamflow elasticity to precipitation exhibits distinct regional patterns across Europe and shows
that annual mean, minimum, and maximum flows almost always increase with annual mean precipitation. Mean flows are
typically amplified relative to precipitation changes, with maximum flows being amplified even more. In contrast, minimum
flows are typically less responsive, indicating a higher dampening effect of precipitation variabilities. Streamflow exhibits
both positive and negative sensitivities to temperature depending on the region and flow type, but temperature explains a
significantly smaller portion of the overall variability in annual streamflow. Five key emerging patterns from this analyse are:

First, remarkably insensitive streams in Northern Poland and Baltic States to annual variability in precipitation. Second, highly
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sensitive maximum streamflow in mountainous Central Europe to summer precipitation, making these catchments particularly
vulnerable to extreme summer precipitation events, as occurred during the Central European floods in 2024. Third, mean and
maximum flows in Spain are particular sensitive to winter precipitation. Fourth, the elasticity of low flows seems to be more
localised and less related to precipitation variability. And fifth, elasticities arise through the combination of many catchment
properties with climate appearing to be the strongest control. However, the model explains only about half of the variability,

suggesting that some key drivers remain unaccounted for.

As future temperature changes are projected to exceed historical variability (IPCC, 2021), the role of temperature in shaping
streamflow responses may grow, highlighting the need to revisit sensitivity assessments under ongoing climate change. Our
spatially explicit elasticity estimates reveal where streamflow is most responsive to climate drivers and where hydrological
resilience is higher, providing a valuable basis for assessing regional exposure to climate change and variability. This is
particularly important as climate warms and becomes more erratic. Further, we also identify areas where both maximum and
minimum flows are highly sensitive to precipitation, highlighting vulnerable areas. These findings deepen our understanding
of hydrological resilience of mean and extreme flow to climate drivers. The spatial patterns of amplified and dampened
streamflow responses can support more targeted water resource planning and climate risk management towards less resilient

catchments across Europe.
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