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Abstract. Floods, droughts and changes in water availability are related to temporal variations in streamflow. Understanding 

how streamflow responds to variability in climate is an important aspect of regions’ hydrological resilience, particularly under 10 

climate change. Streamflow elasticities (𝜀) (or sensitivities) to climate describe observed percentage changes in river flow 

conditions per percentage change (or unit change) of a climate driver. Drawing on data from over 8,000 catchments, this study 

provides a pan-European quantification of elasticities of annual mean and extreme streamflow to annual and seasonal 

precipitation, and streamflow sensitivities to temperature. Results indicate that elasticities exhibit distinct regional patterns 

across Europe. As expected, annual mean, maximum, and minimum flows generally increase with higher and decrease with 15 

lower annual mean precipitation. A 1% change in precipitation typically leads to an amplified flow response of >1% in mean 

flows (𝜀̃ = 1.2), an even stronger amplification in maximum flows (𝜀̃ = 1.3), and a dampened response of <1% in minimum 

flows (𝜀̃ = 0.9). Temperature has a limited influence on annual streamflow, and its effects vary in sign (illustrated by both 

positive and negative sensitivities), but are relatively similar for mean, maximum and minimum flows. To reveal the underlying 

physical processes shaping regional differences in elasticities to precipitation, we use a random forest model with 20 climate 20 

and catchment factors. Results indicate that elasticities are not modulated by a single dominating factor but arise through 

complex combinations of catchment properties, likely including influences that are not well captured with the existing metrics, 

such as anthropogenic influences. This research advances understanding of hydrological resilience of mean and extreme flows 

to climate change. The regional and continental patterns of amplified and dampened streamflow response to climate can 

support water management and disaster risk mitigation across Europe. 25 

1 Introduction 

Understanding controls on streamflow variability is crucial for water resource management, disaster risk management, food 

security, energy production, ecosystems, and the economy. Despite the high confidence that mean and extreme streamflow 

will change with climate change, the magnitude and even the sign of change remains uncertain in many regions (Caretta et al., 

2022). Projections of future streamflow conditions integrate projected climate scenarios with catchment responses to these 30 
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scenarios (Eisner et al., 2017; Samaniego et al., 2017, 2019). Isolating the sensitivity of streamflow to climate perturbations 

can constrain the uncertainties in this component of earth-system projections by serving as a validation metric 

(Sankarasubramanian et al., 2001). More broadly, such sensitivity estimates help identify locations that are inherently more 

sensitive to climate variability. 

 35 

Precipitation and temperature are two key controls on streamflow (Fu et al., 2007; Sankarasubramanian et al., 2001; Vano et 

al., 2012, 2015), and their effects on streamflow can be quantified using streamflow elasticities or sensitivities. Streamflow 

elasticities describe the percentage change of a streamflow variable (e.g. annual mean streamflow) per percentage change of 

a climate variable (e.g. annual mean precipitation) (Schaake, 1990). Similarly, streamflow sensitivities describe the percentage 

change of streamflow per unit change of the climate variable (e.g. °C), which is commonly applied for temperature. With the 40 

climate becoming more extreme (Seneviratne et al., 2021), elasticities and sensitivities help to identify how streamflow will 

respond to such conditions. Streamflow elasticities to precipitation and sensitivities to temperature can vary widely across 

different climates and catchment characteristics, highlighting the need to investigate spatial patterns that emerge for a wider 

range of climates and hydrological settings (Anderson et al., 2024; Němec and Schaake, 1982).  

 45 

Several studies report positive streamflow elasticities to precipitation and mainly negative streamflow sensitivities to 

temperature of mean annual flows across the USA, with substantial regional differences (Anderson et al., 2024; Awasthi et al., 

2024; Vano et al., 2012, 2015). Streamflow elasticities of precipitation tend to vary strongly with the flow percentile and over 

different seasons, highlighting that the typically-used annual mean values alone give an incomplete image (Anderson et al., 

2024). Chiew et al. (2006) studied 500 catchments spread across the globe and found precipitation elasticities ranging from 50 

1.0 to 3.0, whereby catchments with a lower runoff ratio are more responsive to precipitation variations. However, they focus 

on elasticities of annual mean flows to annual mean precipitation only and have a limited spatial coverage. Potter et al. (2011) 

found that in Australia the streamflow elasticity to precipitation during the Millennium Drought was related to the precipitation. 

Alternatively, the Budyko framework has been used to assess the relative importance of changes in precipitation, potential 

evaporation, and other factors influencing precipitation partitioning (e.g. climate seasonality, soils, vegetation, topography) to 55 

streamflow at the global scale (Berghuijs et al., 2017). For Europe, there are regional (Andréassian et al., 2016; Weiler et al., 

2025) and local (Dallan et al., 2025) elasticity studies, but a pan-European overview is lacking. This could reveal the gradients 

and variability occurring across Europe and help unravel characteristics that shape the elasticities. While several studies link 

elasticities to catchment characteristics these links remain uncertain and generally only explore a small number of climatic and 

hydrological catchment properties that may shape elasticity values (Anderson et al., 2024; Chiew, 2006; Sankarasubramanian 60 

et al., 2001; Tang et al., 2019; Zheng et al., 2009). 

 

Many of these elasticity studies are model-based (Berghuijs et al., 2017; Sankarasubramanian et al., 2001; Vano et al., 2012, 

2015), which makes the results strongly dependent on the choice of model and underlying assumptions (Sankarasubramanian 

https://doi.org/10.5194/egusphere-2025-5139
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

et al., 2001; Vano et al., 2012). In rainfall-runoff models, the constraining parameters cannot be measured directly (due to 65 

spatial variability) and are hard to derive from field observations, resulting in more uncertainty in parameter estimates and 

model performance (Peters-Lidard et al., 2017). Further, model-based elasticity studies necessitate an initial validation process 

using observations. In contrast, calculating elasticities directly with observed data, only requires the modelling assumption of 

linearity and, therefore, allows the data to strongly shape the relationship between the two variables of interest based on past 

data (Andréassian et al., 2016). This nonparametric observation-based approach is particularly advantageous for large-scale 70 

regional analyses, as it is model-independent, simple to apply, and transferable across many catchments (Chiew, 2006). Newly 

published large-scale datasets like the CARAVAN dataset (Kratzert et al., 2023) and the European streamflow dataset 

EStreams (do Nascimento et al., 2024) provide the opportunity to study observation-based elasticities at a large scale. 

 

Given the lack of a pan-European overview of sensitivities of mean and extreme flows to climate, and the limited understanding 75 

of what shapes spatial differences in these streamflow sensitivities, here, we quantify streamflow elasticities to precipitation 

and streamflow sensitivities to temperature across Europe for mean and extreme flows. As reduced streamflow sensitivities to 

climate fluctuations can also be understood as a measure of catchment resilience (Botter et al., 2013; Zhang et al., 2022), we 

can combine the calculated elasticities of maximum and minimum flows to precipitation to assess whether a catchment is 

resilient in one of the two flow extremes, in both or in none. Further, we assess what shapes regional differences in these 80 

elasticities. We make use of the European streamflow dataset EStreams (do Nascimento et al., 2024), which allows us to 

analyse the elasticities of thousands of catchments across different climates and landscapes in Europe. 

2 Methods 

2.1 Data 

We analyse a wide range of European catchments using streamflow, catchment-aggregated hydro-climatic and landscape 85 

variables from the EStreams Version 1.3 dataset (do Nascimento et al., 2024). We filter the catchments to have a minimum of 

15 years of valid data. Further, we filter the catchments based on a visual inspection of hydrographs (e.g. repeating value, 

frequent gaps, magnitude shift, binary pattern) and by omitting catchments with runoff coefficients larger than 1.5 (because 

they indicate implausible runoff relative to precipitation) or with more than 61 suspicious days (2 months) in a year. This 

reduces the number of catchments from 17,130 to 8,305. The mean catchment area of the selected catchments is 4066.75 km2 90 

(range: 0.56 km2 to 1,366,923.26 km2). As the meteorological data starts in 1951, we also use the timeseries of streamflow 

only starting from this date. For annual data we aggregate monthly data to hydrological years, defined here as running from 

November of the previous year (n-1) to October of the current year (n). The annual maximum flow is based on the 1-day 

maximum, and the annual minimum flow is based on the 7-day minimum in each hydrological year. A comparison of the 

annual 1-day minimum and annual 7-day minimum yielded very similar results. We choose the 7-day minimum, calculated 95 
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from a 7-day moving average to reduce short-term disturbances (Laaha et al., 2017). Colour schemes used for the maps in this 

study are from Crameri (2018) and Kovesi (2015). 

2.2 Estimating sensitivity of mean and extreme annual flows to climate 

Precipitation is commonly regarded as the dominant factor explaining streamflow variations at the annual scale, due to its 

substantial contribution to streamflow (Fu et al., 2007; Sankarasubramanian et al., 2001). As a secondary climate driver for 100 

streamflow, we choose temperature, which has been described as a key control of streamflow and its variability (Fu et al., 

2007; Vano et al., 2012, 2015). Despite resulting in less intuitive sensitivity units (ºC-1), we choose temperature over potential 

evapotranspiration, which is also given in the EStreams dataset (using the Hargreaves formulation), for two reasons. First, the 

estimates for potential evapotranspiration can lead to a range of different values depending on the calculation used (Fisher et 

al., 2011), whereas temperature is a more direct measure that closely links to net radiation which are the two main variables 105 

on which potential evapotranspiration is usually based (Vano et al., 2012). Second, future climate scenarios are mostly 

expressed in changes of temperature (Vano et al., 2012, 2015), which makes the results of this study more relatable to future 

scenarios compared to future estimates of potential evapotranspiration. 

 

Considering the collinearity of precipitation and temperature, we analyse how streamflow in each catchment varies with both 110 

variables simultaneously (Figure 1). In a first step, we normalize streamflow and precipitation timeseries per catchment with 

their long-term mean (of overlapping years) (Figure 1a). We do this for annual mean (Qmean), annual maximum (Qmax) and 

annual minimum (Qmin) streamflow. For precipitation, we use annual mean precipitation (Pmean). For temperature, we use 

absolute annual mean temperature instead of normalized ones because 0 °C is an arbitrary reference point rather than a physical 

absence, unlike 0 mm of precipitation, which represents a true lack of precipitation. In a second step (Figure 1b), we calculate 115 

the streamflow elasticity to precipitation 𝜀!
" per catchment expressing the percentage change in streamflow for a 1% change 

in precipitation (blue slope), and the streamflow sensitivity to temperature 𝜁#
" expressing the percentage change in streamflow 

for a 1º C change in temperature (orange slope) using this function for a multiple linear regression:  

𝑄-(𝑡) = 𝛼$ + 𝜀!
" ∙ 𝑃-(𝑡) + 𝜁#

" ∙ 𝑇(𝑡) + 𝑢(𝑡) ,         (1) 

where 𝑄-(𝑡) describes the normalized annual streamflow of a single stream at time t, which can represent the annual mean 120 

flow, the annual 1-day maximum flow, or the annual 7-day minimum flow. The variable 𝑃-(𝑡) describes the average normalized 

annual precipitation of the upstream catchment belonging to the streamflow gauging location, the term 𝛼$ is the intercept and 

the term 𝑢 describes the unexplained variability. We apply a bi-variate approach, as this has been shown to give more robust 

estimates (Andréassian et al., 2016). However, we also test an alternative approach to check the robustness of the results, 

computing the linear regression in a hierarchical manner, starting with conducting a linear regression of precipitation and 125 
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streamflow, followed by a linear regression of temperature with the residuals resulting from the previous step. This method 

and the corresponding results are described further in the Supplementary Material (S1). 

 

 
Figure 1: Methodology to estimate the streamflow elasticity (blue slope) to precipitation and the streamflow sensitivity (orange slope) 130 
to temperature. The normalized timeseries streamflow and precipitation and the absolute timeseries of temperature (a) are plotted 
against each other (b). The resulting regression plane has a slope parallel to the precipitation axis (blue) that expresses streamflow 
elasticity to precipitation and a slope parallel to the temperature axis (orange) that expresses streamflow sensitivity to temperature. 

Streamflow elasticities to precipitation can shift depending on the temporal scales over which they are calculated, but for 

Europe, elasticities remain stable or grow when considering timescales longer than a year (Zhang et al., 2022). Here, we focus 135 
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on the annual and the seasonal (6-months) scale. For the seasonal scale we analyse how sensitive the annual streamflow is to 

the seasonal climate variable, where the warm season ranges from May to October and the cold season from November to 

April. We expect the seasonal analysis to enhance the understanding of annual elasticities, especially in regions with strongly 

seasonal streamflow. This is particularly relevant given that, in Europe, different seasons have experienced distinct trends in 

precipitation and temperature (Moberg et al., 2006). 140 

 

As a description of how much linear trends of precipitation and temperature explain annual variabilities of annual streamflow, 

we calculate the R2 value. We calculate the R2 three times: for the multiple linear regression model using both precipitation 

and temperature, using precipitation only and using temperature only. We consider precipitation elasticities and temperature 

sensitivities statistically significant only when their p-value is below 0.05. 145 

2.3 Seasonal dominance 

To analyse the elasticities of annual streamflow to seasonal precipitation more in depth, we calculate which catchments are 

more dominated by the elasticities of cold-season precipitation or warm-season precipitation. For this purpose, we calculate 

the seasonal dominance (s) as: 

𝑠 = 7 |&!|
|&!|'|&"|

− 0.5: × 2 ,           (2) 150 

Where 𝜀( is the cold-season elasticity and 𝜀) the warm-season elasticity to precipitation. A s-value of +1 would indicate that 

the streamflow is completely dominated by the cold-season elasticity and a value of -1 would indicate that the streamflow is 

completely dominated by the warm-season elasticity. For this analysis, we exclude catchments that have elasticities smaller 

than -0.5 in either of the season, which means that we exclude 120, 323 or 392 catchments for the analysis of mean, maximum, 

and minimum flows. We further exclude the catchments that have nan values in either of the two seasons. This leads to the 155 

exclusion of 780, 780 and 835 catchments for the analysis of mean, maximum and minimum flows. 

2.4 Catchment characteristics shaping elasticities 

When analysing annual elasticities across a very wide climate range (e.g. global), differences in magnitude tend to be climate 

dominated (Chiew et al., 2006) but the influence of landscape and soil, though recognised, remains underexplored and requires 

further study across distinct catchment characteristics  (Gong et al., 2022; De Lavenne et al., 2022). If we focus on a somewhat 160 

narrower climate range, like the European scale in this study, we can compare mapped differences in long-term water balance 

behaviour to catchment attributes (e.g. soil type, vegetation) to test to what extent these seem to shape the streamflow 

elasticities to precipitation. We focus on precipitation only, as this describes much more of the variability of streamflow (R2 

values in S5). For this purpose, we select 20 different variables from the EStreams dataset describing the climate, soil 

properties, land cover, topography, human modification and hydrological signatures (Table 1). For comparative purposes with 165 
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other studies, we conduct the same analysis including the baseflow index as well (see S7), but do not include it in the main 

analysis as it is a hydrograph description instead of an external driver in itself and in that sense very similar to the elasticity 

itself. We modify two of the variables given in the EStreams dataset: the lake volume and the reservoir volume. Both variables 

are given as absolute volumes. To make them more comparable across catchments of different sizes and weather conditions, 

we divide the volume by the mean of annual streamflow sums to get a specific lake volume.  170 

 
Table 1: Overview of attributes from the EStreams dataset used in the random forest model with their corresponding attribute class 
and unit adapted from (do Nascimento et al., 2024) 

Attribute class Attribute Description Unit 

Climate 

Aridity Ratio between PET and precipitation. - 

Snow fraction Fraction of precipitation falling on days colder than 0°C. - 

Precipitation seasonality Seasonality and timing of precipitation. - 

Soil property 

Depth to bedrock Depth to bedrock. m 

Gravel fraction Gravel fraction of soil material. % 

Sand fraction Sand fraction of soil material. % 

Soil organic carbon Fraction of organic material. % 

Depth available for roots Depth available for roots. cm 

Bulk density Bulk density. g/cm3 

Vegetation Leaf Area Index Mean LAI over the catchment area and over time.  - 

Topography Slope degree Mean terrain slope. ° 

Elongation ratio Ratio between diameter of a circle with basin area and the 

maximum length of the basin. 

- 

Area Catchment surface area. km2 

Stream density Ratio of lengths of streams and the catchment area. 1000 

km/km2 

Human 

influence 

Agricultural land cover Fraction of agricultural land cover aggregated over the 

catchment and over time. 

- 

Artificial land cover Fraction of artificial land cover aggregated over the 

catchment and over time. 

- 

Mean area equipped for 

irrigation 

10/5-year resolution total area equipped for irrigation. km2 

Reservoir volume relative to 

annual flow sum 

Ratio between total upstream reservoir volume and annual 

flow sum 

a 

https://doi.org/10.5194/egusphere-2025-5139
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



8 
 

Hydrology  Lake volume relative to 

annual flow sum 

Ratio between total upstream lake volume and annual flow 

sum 

a 

 

From the characteristics in the EStreams dataset, we choose those that can be physically connected to elasticities and reduce 175 

the parameters by testing for collinearity (spearman r>0.8) and multicollinearity (VIF>12). For the elasticities of mean, 

maximum and minimum annual streamflow to annual precipitation, we train a random forest model using scikit-learn v1.3.0 

(Pedregosa et al., 2011) on a subset of the data (80%) and then test it on the remaining unseen data (20%) using a random seed 

of 42 to initiate the model. Based on the parameter optimization of GridSearchCV from scikit-learn we choose the parameters 

shown in Table 2 for the three models for the elasticities of annual mean, maximum and minimum flow to annual mean 180 

precipitation. Model performance is evaluated using the coefficient of determination (R2) and the root mean squared error 

(RMSE). 

 
Table 2: Optimal parameter values using the GridSearchCV from scikit-learn to model the target variables elasticities of mean, 
maximum and minimum annual streamflow. 185 

Parameter 
Target variable: Elasticity of 

Mean annual streamflow Maximum annual streamflow Minimum annual streamflow 

Number of trees 500 500 500 

Maximum depth None 20 20 

Minimum sample split 2 2 2 

Minimum sample leaf 1 1 2 

3 Results and discussion 

3.1 Elasticities of annual mean and extreme streamflow to annual precipitation 

Elasticity of annual mean, maximum, and minimum flows to mean annual precipitation is almost always positive and varies 

systematically across Europe (Figure 2). Annual mean and maximum flows tend to be amplified compared to precipitation 

changes (ε*= > 1), whereas annual minimum flows typically are dampened compared to precipitation changes (ε*= ≤ 1) (Figure 190 

2a). The mean elasticities tend to be slightly exceeding the medians and can be used to compare elasticities to other studies 

that also used means to summarise the range of values. The observed range (mean ± standard deviation) of elasticities of annual 

mean flows to precipitation (1.20 ± 0.53) is broadly consistent with those reported in a previous study for approximately 80 

European catchments (Chiew et al., 2006), a global study (approx. 1.45 ± 0.40) (Zhang et al., 2022) and studies in the USA 

(Anderson et al., 2024; Awasthi et al., 2024). The elasticities identified in our study tend to be slightly higher than previously 195 

reported values for France derived using a range of different methods (Andréassian et al., 2016). The range of elasticities of 
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maximum flows (1.38 ± 0.95) is comparable to those previously reported across the entire contiguous USA, while the range 

of elasticities of minimum flows (1.01 ± 0.95) is narrower than previously reported in the USA (Anderson et al., 2024). 

 

The degree of spatial consistency of elasticity values varies between mean, maximum, and minimum flows. Elasticities of 200 

mean and maximum flows tend to be more uniform across neighbouring catchments, suggesting that large-scale drivers, such 

as climate, shape them. In contrast, elasticities of minimum flows show stronger heterogeneity in space, which could indicate 

that the response is more dominated by smaller-scale drivers, such as landscape properties and anthropogenic influences. 

 

 205 
Figure 2: Frequency distribution (a) and spatial distributions (b-d) of annual mean (b), maximum (c), and minimum (d) streamflow 
elasticity to the annual mean precipitation. 

The regional patterns of elasticities in mean and maximum flows are comparable. Both annual mean and maximum flows are 

relatively sensitive to annual mean precipitation in the southern parts of the Continental Zone (Carpathians, Germany, Czechia, 

and Slovakia) and western parts of the Maritime South and Mediterranean (Spain and France) (see S2 for a map of the 210 

environmental zones). These are regions that tend to have smaller depth to bedrock (see S6), typically associated with limited 

groundwater and soil moisture storage capacities in thin soils or fractured bedrock which could indicate lower storage buffering 

at annual time scales. Annual mean and maximum flows are less sensitive to annual mean precipitation in northern parts of the 

Continental Zone (Poland), the eastern Atlantic North (Denmark), the Boreal North (Norway), the Boreal South (Alps), and 

southern parts of the Maritime South (eastern Spain). Regions with lower elasticity values exhibit a higher proportion of 215 

statistically insignificant elasticities. However, the fact that low elasticities are regionally consistent suggests that elasticity 

values are actually low and reflect that precipitation is a weak driver of annual streamflow variations in those regions. These 

regions of low elasticities also coincide to some extent with larger depths to bedrock. There also seems to be a strong spatial 

overlap with wetlands and, specifically, with peatlands (Tegetmeyer et al., 2025), which can attenuate precipitation peaks 

under certain conditions due to their high water-holding capacity and the slow release of water (Karimi et al., 2023). The lower 220 

streamflow elasticities in the Alps could also be related to the presence of fractured bedrock, enhanced permeability and deep 
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infiltration that could contribute to lower contributions of recent rainfall in their streams (Jasechko et al., 2016). In addition, 

the higher snow fraction in this region could decouple annual precipitation from annual streamflow. 

 

Elasticities of minimum flows (Figure 2d) are distinctively different from those of mean and maximum flows (Figure 2b-c). 225 

They tend to have stronger storage-induced annual memory than mean or maximum flows (Berghuijs et al., 2025a), making 

them more dependent on longer-term storage variations and partly decoupling them from annual precipitation changes. 

Catchments with larger subsurface storage capacities can often buffer more of the precipitation variability over annual 

timescales (Van Loon et al., 2024), leading to lower annual elasticities. This is, for example, consistent with lower elasticities 

in areas of deeper bedrock (e.g. Poland and Denmark). In places where minimum flows occur during winter (e.g. the Alps), 230 

these flows result from long periods of below-zero temperatures (Floriancic et al., 2021; Laaha and Blöschl, 2006), which 

makes them temperature controlled, and thus precipitation elasticities are low. In addition, precipitation in the Alps is summer-

dominated (see precipitation seasonality in S6), further decoupling annual precipitation amounts from low flows. 

 

Note that the elasticities estimated here at the annual scale may differ when using multi-year aggregation periods. This is 235 

particularly relevant for minimum flows, which tend to retain a stronger memory of preceding conditions than mean or 

maximum flows (Berghuijs et al., 2025a). Consequently, minimum‑flow elasticities at longer aggregation timescales may be 

higher than mean or maximum flows. 

 

For all three streamflow elasticities there are very few (statistically insignificant) negative values, similar to Anderson et al. 240 

(2024) and Fu et al. (2007). Several of the corresponding hydrographs are characterised with a long period (over a year) of 

zero flow, which can lead to the negative elasticities if these periods of zero values occur in years with above-average 

precipitation. Some of these long periods of zero values in hydrographs that rarely reach zero values may arise from 

measurement errors. However, some hydrographs do not display any obvious measurement errors (but there may be some). 

For these cases without obvious measurement errors, possible causes of negative elasticities could be anthropogenic influences 245 

such as the regulation of reservoirs (Bai et al., 2024). 

 

Streamflow elasticities of annual maximum flows to precipitation follow a similar spatial and frequency distribution to the 

ones of annual mean flows (Figure 2b and c). This similarity could be the result of wetter (drier) years leading to a wetter 

(drier) landscape that produces larger (smaller) maximum flows. Alternatively, the mean precipitation of a hydrological year 250 

could be positively correlated with maximum precipitation. In that case, elasticities of maximum flows may reflect the 

sensitivity to maximum precipitation rather than mean precipitation. While the correlation between annual mean and maximum 

precipitation is on average moderate (mean spearman 𝜌 = 0.42), the correlation strength between mean and maximum 

precipitation only weakly affects the elasticities of maximum flow (𝜌 = 0.14) (see more details in S3). This indicates that in 

some regions of Europe with summer-dominated rainfall the correlation of maximum and mean precipitation may contribute 255 
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to higher elasticities. However, across the scale of Europe, the mechanism of wetter (drier) years leading to a generally wetter 

(drier) landscape that produces larger (smaller) maximum flows might play a more dominant role. This would be consistent 

with earlier work (Berghuijs et al., 2019; Blöschl et al., 2017) that emphasizes few annual maximum flows result from annual 

maximum precipitation but instead often arise through sub-extreme precipitation falling on an already-wet landscape. 

 260 

 
Figure 3: Relationship of annual elasticities of mean flow elasticity of maximum flow (blue) and minimum flow (orange) to annual 
precipitation. Precipitation elasticities of mean flows are binned in groups of 2%. The error bars display the standard error of the 
mean for each bin. The bins are based on the order of the elasticities of mean flow, which is why these lowest (highest) elasticities of 
mean flow are not necessarily the lowest (highest) elasticities of extreme flow. The spearman correlations coefficients are of the data 265 
without binning. 

Catchments with higher (lower) elasticities of mean annual flows are also places where extreme annual flows are more (less) 

sensitive to mean precipitation (Figure 3). This indicates that a catchment’s elasticity to precipitation is linked across mean 

and extreme flows. For most catchments, elasticities of maximum flows exceed those of mean flows, while the minimum flows 

tend to be less sensitive, especially for the catchments where elasticities of mean flow exceed 1.7. The higher elasticities for 270 

maximum compared to mean flows are consistent with the observation that the response of streamflow tends to be non-linear 

(responses are not always proportional to the rainfall input) and nonstationary (responses can vary with ambient conditions, 

for example, soil moisture conditions) (Berghuijs et al., 2019; Blöschl et al., 2017; Tromp-Van Meerveld and McDonnell, 

2006). Annual means are the total result of a wide range of events, whereas annual maxima capture “extreme” conditions. 

Consequently, such nonlinearity and nonstationarity will likely have a larger effect for extremes than means and are thus also 275 

associated with larger elasticities. This is also reflected in annual flood regimes being typically more variable than annual flow 

regimes (Blöschl et al., 2013). 

 

3.2 Elasticities of annual mean and extreme streamflow to seasonal precipitation 

We now analyse the annual streamflow response to seasonal precipitation to understand if the precipitation of a particular 280 

season is more important for the annual elasticities. The elasticity of annual streamflow to cold-season (Nov-Apr) precipitation 
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(Figure 4a-d) has comparable regional patterns in elasticities of mean and maximum flows. These regional differences are 

largely similar elasticities to annual precipitation (Figure 2). However, the catchment dampens mean and maximum flows 

compared to cold-season precipitation variability, while annual precipitation variability was amplified in the flow signal. 

Catchments typically dampen variations of annual minimum flows compared to cold season precipitation as well and their 285 

elasticities are generally much lower than for mean and maximum flows. Similar to streamflow elasticities to annual 

precipitation, elasticities of minimum flows to cold-season precipitation are spatially more heterogeneous than for mean and 

maximum flows. Cold-season elasticity to precipitation has similar regions of higher elasticities as the annual elasticities.  

 

The spatial patterns of elasticities of annual streamflow to warm season (May-Oct) precipitation (Figure 4e-h) are partially 290 

inverse compared to those of the cold season precipitation. This means that regions where cold-season precipitation is amplified 

in streamflow, warm-season precipitation is dampened (and vice versa). For example, streamflow in Central Europe tends to 

be highly sensitive to summer precipitation, which is consistent with the occurrence of the 2024 Central European floods 

during summer (Athanase et al., 2024). We show which catchments are more sensitive to cold- or warm-season precipitation 

by mapping seasonal dominance (Figure 4i-k). In most regions, annual mean and maximum streamflow are dominated by cold-295 

season precipitation. This agrees with a case study in Colorado (USA) (Woodhouse et al., 2016), where cold-season 

precipitation explained more of the variability in annual flows than warm-season precipitation. It is also in line with the general 

concept that runoff ratios tend to be higher in colder or more humid settings (Budyko, 1974; Merz and Blöschl, 2009). As the 

emerging spatial patterns of seasonal dominance of elasticity of mean and maximum flow resemble the pattern of streamflow 

seasonality (Berghuijs et al., 2025b), we tested whether the seasonal dominance is just a representation of whether the centre 300 

of mass of the flow type is in phase with our definition of the season (see S4), but this was not the case. Note that the pattern 

emerging for mean and maximum flow resembles areas with higher snow fraction (snow fraction > 0.15 see S6). These are 

regions where, in the warm season, precipitation falls more likely as rain which contributes faster to streamflow as opposed to 

precipitation falling as snow in the cold season. For minimum flows, there is less distinct regional pattern of seasonal 

dominance across continental Europe. In the UK there is a clear gradient of warm-season dominated catchments in the 305 

northwest to cold-season dominated in the southeast, which broadly aligns with the spatial patterns of how meteorological 

drought propagate to hydrological droughts (Barker et al., 2016). 
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Figure 4: Elasticity of mean (second column), maximum (third column) and minimum (right column) annual streamflow to cold- 
(upper row) and warm-season (middle row) precipitation and seasonal dominance of elasticity to seasonal precipitation (bottom 310 
row). 
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Streamflow elasticities to climate can be used as a measure of catchment resilience (Botter et al., 2013; Zhang et al., 2022), 

especially when considering the elasticities to both high and low flow conditions per catchment (because these are associated 

with potential hazards such as droughts and floods). Here, we categorize the catchments into whether they dampen or amplify 

extreme flows (Figure 5). Figure 5 highlights which catchments only have sensitive (amplified) maximum flows, only sensitive 315 

minimum flows, have both extremes being sensitive or have both extremes being resilient (dampened). This means that we 

define catchments as being more resilient in their minimum flow response, if the minimum flows are less sensitive to annual 

precipitation variations. 

 

 320 
Figure 5: Combined elasticity of maximum and minimum flow to precipitation as a measure of resilience. The colour classes split 
the elasticities into whether the streamflow response is dampened/resilient !𝜺𝑷

𝑸 < 𝟏%, or amplified/sensitive !𝜺𝑷
𝑸 > 𝟏%. 

Catchments that are resilient in both their low and high flows are common (21.6%) and occur in the northern Continental Zone 

(northern Poland), the Alpine South (Northern Italy), and the Alpine North (Norway) and locally in other places. As mentioned 

before, the higher resilience could be linked to an increased storage (indicated by deeper depth to bedrock as in northern 325 

Poland) or a higher peat land cover and their sponge functioning (Karimi et al., 2023; Tegetmeyer et al., 2025), but could also 

be linked to different seasonality of high and low flows (the Alps). High sensitivities of both minimum and maximum flows 

occur more commonly (29.2%) and are concentrated in the Atlantic North and Atlantic Central (western Germany and southern 

Denmark), as well as parts of the Continental Zone (Czechia and Austria), but also occur elsewhere. In most of the catchments 
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(35.1%), maximum flows are sensitive to precipitation, but minimum flows are resilient, and they commonly occur in the 330 

Continental Zone (large parts of Germany, Austria, southern Poland, and Czechia (in spatial vicinity to catchments that are 

sensitive in both extremes)). Catchments that are sensitive in their minimum flows but that have resilient maximum flows are 

rare (14.1%) but occur mainly in the Boreal Zone (southern Finland) and the Nemoral Zone (Estonia, Latvia, Lithuania). The 

resilience classes of these catchments are partly geographically clustered (as described above) but also show a lot of local 

spatial heterogeneity. Therefore, it is relevant to understand what drives both these regional and the more localized differences. 335 

3.3 Temperature sensitivities of annual mean and extreme streamflow 

The sensitivities of annual mean, maximum and minimum streamflow to mean annual temperature have spatial patterns (Figure 

6a-d) that differ from those of streamflow elasticities to precipitation (Figure 2a-d). In most catchments, streamflow decreases 

(increases) with increasing (decreasing) temperatures, as shown by mostly negative temperature sensitivities for mean 

(−0.03 ± 0.12), maximum (−0.05 ± 0.18), and minimum flow (−0.06 ± 0.27). These negative sensitivities are in line with 340 

increased evaporation at higher temperatures reducing the amount of water reaching the stream, which is expected especially 

in energy-limited environments (Budyko, 1974). However, there are also many catchments responding the opposite way 

(positive sensitivities), indicating that higher temperatures are associated with more streamflow. The occurrence of both 

positive and negative temperature sensitivities has also been reported for mean annual streamflow mainly in snow-affected 

catchments as temperature can trigger different processes (e.g. snow occurrence, melt or evaporation) throughout the year 345 

(Berghuijs et al., 2014; Vano et al., 2012, 2015; Weiler et al., 2025). Note that temperature variations explain much less of the 

annual variability of streamflow compared to precipitation variations. The performance (R2) of the multiple linear regression 

model using only temperature to describe mean streamflow, for example, is on average 0.03, while the performance using only 

precipitation is 0.46 (see S5). 

 350 

Across flow metrics and temporal scales, we find a considerable number of catchments in the western Iberian Peninsula with 

positive streamflow response to temperature, where we would expect higher rates of evapotranspiration and therefore a 

negative streamflow response to temperature. However, in energy-limited environments the sensitivity of evapotranspiration 

to temperature tends to be smaller (Berghuijs et al., 2017), which makes other factors more dominant in controlling 

sensitivities. Declines of mean streamflow with higher temperatures (linked to an increase in evaporative demand), in 355 

particular, in the warm season when evaporation rates are higher, have been reported across Iberia (Martínez-Fernández et al., 

2013; Vicente-Serrano et al., 2014) and southern Europe (Stahl et al., 2010). Positive temperature sensitivities in Iberia are 

likely indirect, possibly resulting from weather patterns or atmospheric circulation patterns (such as the North Atlantic 

Oscillation) that are sometimes covarying with annual temperatures (Lorenzo-Lacruz et al., 2011) or from human water 

management responses to warmer temperatures. 360 
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Figure 6: Frequency (first column) and spatial distribution (second to fourth column) of the temperature sensitivities of mean 
(second column), maximum (third column) and minimum (fourth) streamflow across Europe. The plots show the streamflow 
sensitivities to annual temperatures (first row), to cold-season temperature (second row) and to warm-season temperature (third 
row). 365 
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For the annual minimum flow response, positive sensitivities occur in the Alps and the Nordic Mountains (Northern 

Scandinavia) and Iceland. As mentioned before, in these regions minimum flows usually occur January through March, 

whereas in most parts of Europe minimum flows usually occur June through September (Floriancic et al., 2021). In snow-

affected catchments with winter low flows, higher temperatures can increase liquid water availability (rain + snowmelt) during 

the low-flow season leading higher low flows (Van Loon and Van Lanen, 2012) and thus, positive temperature sensitivities. 370 

The response of annual mean, maximum, and minimum flow to cold-season temperature (Figure 6e-h) is very similar to the 

response to annual temperature (Figure 6i-l). Contrastingly, the response of annual mean and maximum flow to warm-season 

temperature exhibits spatial patterns that differ from those to annual temperature sensitivities. In particular, Germany, Austria, 

and Switzerland show positive warm-season temperature sensitivities. Such positive sensitivities can, in some highly glaciated 

catchments, arise through glacial melt during the warm season (Van Tiel et al., 2021). 375 

3.4 Catchment characteristics shaping elasticities 

So far, this study provides empirical evidence of how annual mean and extreme flows in Europe respond to climate without 

empirically analysing its causes. Revealing the underlying physical characteristics and processes that drive these elasticities, 

builds understanding and potentially improve predictions in a changing climate. Here, we use a random forest model 

(Pedregosa et al., 2011) to quantify the role of 20 selected catchment characteristics (spatial distribution of the 16 most 380 

prominent characteristics is shown in S6) in shaping the elasticities of mean, maximum, and minimum annual flow to 

precipitation (Figure 7). The importance plot illustrates the relative contribution of each predictor to the model, highlighting 

how influence is distributed across all inputs. 

 

 385 
Figure 7: The role of catchment characteristics in shaping elasticities estimated by their feature importance for elasticities of mean 
(a), maximum (b) and minimum (c) annual streamflow to annual precipitation. This importance plot illustrates the relative 
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contribution of each predictor to the model, highlighting how influence is distributed across all inputs. Thus, the importances of all 
features (characteristics) always sums to one, independent of the model fit. The colours of the bars indicate the class (climate, soil 
property, land cover, topography, human influence, and hydrological signatures) of the feature and the pattern of the bar shows 390 
whether the correlation of a feature to the elasticity is positive (solid) or negative (striped). 

Elasticity cannot be accurately predicted by a single catchment characteristic, and the combination of the 20 characteristics 

only predicts about half of the variations in the elasticities of the annual mean (R2: 0.46, MSE: 0.10), maximum (R2: 0.51, 

MSE: 0.27), and minimum flow (R2: 0.30, MSE: 0.33). Despite using a combination of a wide (and in hydrological modelling 

commonly used) range of catchment characteristics, we cannot easily predict elasticities and thereby fully encode the physical 395 

origin of annual streamflow elasticities to precipitation. This underlines the importance of showing the elasticity behaviour 

empirically, such as presented in this paper, and not by predictions that do would depend on modelling.  

 

Although spatial distribution and binned scatter plots (Figure 3) of the streamflow elasticities to annual precipitation seemed 

to indicate that the elasticities of different flow metrics are connected (e.g. catchments with higher mean flow elasticity also 400 

featured a higher maximum flow elasticity), the feature importance plots show that the higher-ranked features vary among the 

different flow metrics. Aridity is among the most prominent characteristics for all three streamflow elasticities (but only ranked 

highest for mean and minimum flow elasticities) across this range of European climates. 

 

Multiple studies described the relationship of aridity to elasticity of mean flows. The more humid basins were found to have a 405 

significantly lower elasticity to precipitation (Zheng et al., 2009), while in arid regions there is a larger spread of values 

(Sankarasubramanian et al., 2001) and uncertainty due to greater inter-annual streamflow variability (Potter et al., 2011). This 

could be linked to arid and semi-arid catchments (aridity index (AI) > 1) being more sensitive to precipitation decreases than 

to precipitation increases (Tang et al., 2019). Some of these studies also aknowledge that theoretical relationships of elasticity 

and humidity can only describe the observed relationship for very humid regions (AI < 0.5) and that additional factors shape 410 

the elasticities (Potter et al., 2011; Sankarasubramanian et al., 2001). In this study, we see that while aridity ranks among the 

highest factors, it is not solely dominating the elasticity. Furthermore, we can extend this finding to extreme flows as well. 

 

Precipitation seasonality is the most influential characteristic for maximum flow elasticities to precipitation, and among the 

higher-ranked characteristics for the other elasticities. For the maximum flow elasticity, the correlation is positive, indicating 415 

that more summer-dominant (or winter-dominant) precipitation is associated with a higher (or lower) elasticity. For example, 

maximum flow elasticities around the Carpathians are among the highest of Europe. Here, maximum flows usually occur 

around the end of summer, while precipitation is also summer-dominant. In contrast, the lowest maximum flow elasticities 

occur where maximum flows occur in winter or spring while the precipitation seasonality is also summer-dominant.  

 420 
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Snow fraction is among the most highly ranked characteristics for mean and extreme flow elasticities and is negatively related. 

This is in line with Sankarasubramanian et al. (2001), who found elasticities of mean flows to precipitation in the USA to be 

lower for catchments with higher snow accumulation.  

 

There are several characteristics beyond climate that are also of importance. The depth to bedrock is also among the higher-425 

ranked features for maximum flow elasticities, that can affect groundwater storage capacity and response time through the 

unsaturated zone. A larger groundwater storage capacity could increase the buffering capacity of precipitation variability at 

the annual scale leading to lower elasticities, compared to small depths to bedrock that offer only limited groundwater and soil 

moisture storage in thin soils or fractured bedrock. The catchment area is more relevant for the minimum flow elasticity. This 

could be due to the longer memories of low flows discussed before, becoming even larger the bigger the catchment is. Several 430 

other factors appear important for specific elasticities but are not consistently showing up as being important for all signatures 

(e.g. clay fraction, soil organic carbon, slope degree and artificial land cover). 

 

We show that elasticities to precipitation arise from complex combinations of climate and landscape characteristics, with 

important influences that may not be adequately captured by the existing metrics, such as specific landscape properties (e.g. 435 

peatland cover) or anthropogenic impacts. Vegetation may also play a larger role than indicated here, as it is represented only 

by the lumped leaf area index, which does not account for differences in root depth, vegetation type or seasonality. The capacity 

of vegetation to regulate transpiration rates in response to wetness conditions of previous years can affect the elasticities to 

precipitation (Gardiya Weligamage et al., 2025; Zhang et al., 2022). Some metrics, such as land cover, also vary over time, 

potentially altering streamflow elasticities, as suggested by earlier studies (Martínez-Fernández et al., 2013; Morán-Tejeda et 440 

al., 2012). Considering these multiple and dynamic influences, there is a risk of equifinality, where similar elasticity values 

arise from different underlying processes, posing a challenge for process-based interpretation. 

4 Conclusion 

This study presents a pan-European quantification of annual and seasonal streamflow elasticities to precipitation, along with 

the streamflow sensitivities to temperature. Our analysis also includes extreme flows, which have rarely been examined at this 445 

scale. Results indicate that the streamflow elasticity to precipitation exhibits distinct regional patterns across Europe and shows 

that annual mean, minimum, and maximum flows almost always increase with annual mean precipitation. Mean flows are 

typically amplified relative to precipitation changes, with maximum flows being amplified even more. In contrast, minimum 

flows are typically less responsive, indicating a higher dampening effect of precipitation variabilities. Streamflow exhibits 

both positive and negative sensitivities to temperature depending on the region and flow type, but temperature explains a 450 

significantly smaller portion of the overall variability in annual streamflow. Five key emerging patterns from this analyse are: 

First, remarkably insensitive streams in Northern Poland and Baltic States to annual variability in precipitation. Second, highly 
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sensitive maximum streamflow in mountainous Central Europe to summer precipitation, making these catchments particularly 

vulnerable to extreme summer precipitation events, as occurred during the Central European floods in 2024. Third, mean and 

maximum flows in Spain are particular sensitive to winter precipitation. Fourth, the elasticity of low flows seems to be more 455 

localised and less related to precipitation variability. And fifth, elasticities arise through the combination of many catchment 

properties with climate appearing to be the strongest control. However, the model explains only about half of the variability, 

suggesting that some key drivers remain unaccounted for. 

 

As future temperature changes are projected to exceed historical variability (IPCC, 2021), the role of temperature in shaping 460 

streamflow responses may grow, highlighting the need to revisit sensitivity assessments under ongoing climate change. Our 

spatially explicit elasticity estimates reveal where streamflow is most responsive to climate drivers and where hydrological 

resilience is higher, providing a valuable basis for assessing regional exposure to climate change and variability. This is 

particularly important as climate warms and becomes more erratic. Further, we also identify areas where both maximum and 

minimum flows are highly sensitive to precipitation, highlighting vulnerable areas. These findings deepen our understanding 465 

of hydrological resilience of mean and extreme flow to climate drivers. The spatial patterns of amplified and dampened 

streamflow responses can support more targeted water resource planning and climate risk management towards less resilient 

catchments across Europe. 
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