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Concerning the review on Reick and Torres Mendonca

“On the foundation of the a-(3-v approach to climate-carbon feed-
backs” submitted to ESD.

February 5, 2026

We thank the reviewer for the detailed suggestions to improve the submitted paper, which
we consider as very helpful. In particular we are very grateful for letting us know that
some key elements of our study need further clarification. Since all other remarks require
only “technical” changes (some more explanations on the mathematics used; further hints
to follow mathematical derivations; improvements in wording) that can easily be dealt
with, we concentrate in this reply only on those key elements, namely on a clarification
“what linearity in this context actually means, and how it is or not related to system
memory/inertia” (the reviewer’s third and “most important” point).!

Linearity

The question of linearity refers to Egs. (11) and (23) in the manuscript, which are very
similar in form but have fundamentally different interpretations. Eq. (11) is the variant
most often found in studies, reading?

ACL+0 = ﬁACA + ’)/AT. (11)

In the literature, this equation is understood as a “linearization”®, meaning that it is the
result of a Taylor expansion of ACy .o into AC, and AT, retaining only the terms of first
order in AC'y and AT. In this expansion, § and  are the respective partial derivatives
of ACL o evaluated at ACy = 0, AT = 0, i.e. at the preindustrial point where the
scenario sets in. Being evaluated at this point, § and v are constants, meaning that
their values are independent of ACy and AT. The consequence of this constancy is that
each of the two right-hand-side terms of (11) contributing to ACL,o doubles, triples,
quadruples etc. if the value of AC'y or AT doubles, triples, quadruples etc., i.e. the value
of these terms depends linearly on the respective value of AC, or AT. This is why in
the literature the a-p-v formalism is understood to be a linear formalism.

Next it is explained why Eq. (23) of the manuscript is not a linear equation. It may
be noted that (as we show in the manuscript), Eq. (23) is justified in applications to
transient scenario simulations, while Eq. (11) is not. Eq. (23) reads

 ACL0(ACy,0) AC1.06(0,AT)
ACL.0(AC, AT) = Ao, A+ 7

= B(ACA(H) + (AT (1), (23)

AT

"'We use the notation introduced in the reviewed manuscript.

2 Actually, Eq. (11) consists of two equations, the other one, being equally fundamental to the a-£-y
formalism, is AT = aAC . But we don’t consider this second equation here in order to keep focused on
the issue of linearity. Nevertheless, all considerations in this reply apply also to that equation.

3See e.g. https://en.wikipedia.org/wiki/Linearization



To understand these equations it is worth to give some additional explanations (also
found in the manuscript): The first line is obtained by starting from carbon con-
servation under the additional assumption that the response in land and ocean car-
bon ACLio(AC4, AT) is an additive combination of the biogeochemical response
ACL1o(ACA, AT = 0) and the radiative response ACp o(ACy = 0,AT) so that
ACL1o(ACH, AT) = ACL10(ACH,0) + ACL0(0, AT'). The first line of (23) then fol-
lows by plugging into the first term the identity 1 = AC4/AC},, and similarly into the
second term 1 = AT/AT. Next one defines the ratios appearing in that first line as /3
and v, which gives on the way to the second line the intermediate equation

ACL+o(ACA, AT) =B(ACA)AC, +v(AT)AT

R1-1
where B(AC,) ::ACLJFZ(CAAOA’O) and v(AT) := ACL+Z(T()’AT). ( )
Note that here g and ~ are not constants as above, but introduced as functions of their
respective arguments ACy and AT. Applying this equation to scenario simulations, ACy
and AT are time dependent. To make this time dependence explicit, one had e.g. to write
ACL1o(ACH(t), AT (t)) instead of ACL1o(AC,, AT), which would be rather clumsy.
Therefore it is shorter to write instead ACL (). Proceeding similarly with the other
terms in Eq. (R1-1) one obtains

ACLyo(t) = B(E)ACA(t) + (AT (1), (R1-2)

Except for having made explicit here also the time dependence at the left hand side, this
is our Eq. (23) of the manuscript. And in this form it looks very similar to Eq. (11). But
in contrast to Eq. (11) it is not obtained by a linearization, and in fact this equation is
not linear. This is seen best by its intermediate form (R1-1): When doubling, tripling,
quadrupling etc. ACYy, the first right hand side term is not doubling, tripling, quadrupling
as well because also the factor 5(AC4) changes when AC4 changes. Similarly the second
term doesn’t behave linearly when changing AT. So the reason why Eq. (23) is in
contrast to Eq. (11) not a linear equation is that now  and ~ aren’t constants. And
this is also why Eq. (23) can’t be understood as a linearization. Nevertheless, as shown
in the manuscript, the whole a-8-y formalism can be derived by this equation, so that a
linearization is not needed.

The role of system memory

Now, how does memory enter the picture and how is it related to linearity /non-lifiearity
of the response? In the following we first make a bit more explicit what is explained on
this issue in the main text of the manuscript. Then we have a look at this issue from
the more general viewpoint underlying the derivation of the vanishing of the sensitivities
presented in Appendix B of the manuscript.

In the main text the relation between memory and linearity is discussed by means
of the simple, single time scale system dX/dt = bF(t) — x/7 (see Eq. (13)). This is a
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system with memory, where 7 is the relaxation time. That the system has memory is
also visible from its solution X (t) = fot ds exp((t — s)/7)F(s), which is mathematically
a convolution where not only the forcing at time ¢ contributes to the response, but also
values of the forcing at earlier times s < t. Taking this system it is shown that when
expanding X into a Taylor series of the forcing F' at F' = 0, the linear term vanishes,
i.e. the sensitivity x := dX/dF|p—¢ is zero and the first non-zero terms are non-linear in
F. What is missing in the main text is a discussion of the converse case, namely what
happens in a system without memory. Using the notation of the single time scale system,
this is the case when X is a function of the forcing F', i.e. the response X depends only
on the wvalue of the forcing, and not, as in the convolution above, on the whole history
of F(t). Hence, taking X (F') and performing a Taylor expansion into F' gives to linear
order X = kF', where k := dX/dF|p—o is the constant sensitivity, analogue to 5 and ~
in Eq. (11), and there is no reason for x to be zero. Looking at a transient scenario, F'
is time dependent and the expansion then reads X(t) = kF(t), i.e. the response X (t)
happens instantly at the same time ¢ of the forcing F'(t). Accordingly, the non-vanishing
of the sensivity and thus the validity of the linearization is equivalent to the assumption
that the response follows the forcing instantly, or, mathematically, that the response is a
function of the forcing and not a functional as in the presence of memory.

The relation between memory and the vanishing of the sensitivities, i.e. of the
linearity /non-linearity of the response is from a more general point of view proved in
Appendix B of the manuscript. There it is explained that generally for not too large
forcing F' the response X of a system to that forcing may be written as

X(t) = /O K(s)F(t —s). (R1-3)

Here, the function K is a characteristic of the considered system that indicates whether
the system has “memory” or not. For the simple single time scale system discussed in
the manuscript, K is given as K (t) = exp(—t/7) (see above).? Let’s now apply formula
(R1-3) to our situation. For the sake of simplicity we consider the biogeochemical carbon
response where X = AC’ngo, which depends only on the forcing F' = AC4°. In this case,

the response reads
t
AC’%ﬂfO(t) = / K(s)AC4(t — s). (R1-4)
0

If the system had no memory, the function K would collapse to a Dirac delta function,
i.e. K =ad(t), where a # 0 is a constant. Hence, the integral would simplify to

ACY 5 (t) = aAC4(t). (R1-5)

Setting a = (3, we would then recover the first term of Eq. (11) (with the only difference
that in Eq. (11) the time dependence of AC} is implicit). Seeing Eq. (R1-5) as a lineariza-
tion of AC%’_EO into AC'y, 8 would then be the linear coefficient, which in this memoryless

4Note that by a change in the integration variable ¢t — s — s one can show that fot K(s)F(t—s) =
[T K (t — 5)F(s).
5The following argument applies also to the radiatively- and fully-coupled responses.



case would be typically different from zero and thus the traditional interpretation of the
framework would be justified.

Nevertheless, we know that in reality the coupled climate-carbon cycle system does
have memory. In this more general case, K is not anymore a delta function, but some
other function that may start at some non-zero value and then slowly decay back to
zero (because forcings at times deeper in the past contribute less to the recent response).
What we show in our manuscript (both for the single timescale system and for a general
system in Appendix B) is that when writing the response in terms of the forcing as in
Eq. (R1-4) that explicitly accounts for the memory, and then expanding this response in
the forcing by a Taylor series, the linear coefficient of the response vanishes, leaving only
the nonlinear terms. Hence, the memory of the system leads to a Taylor expansion with
only nonlinear terms, which cannot be understood as a linearization.

Final remarks

With these remarks we hope to have presented more clearly the problem to base the
a-f-v formalism on the linearization performed to obtain Eq. (11). For completeness
it shall be remarked that while these considerations are mathematically true in general,
in practice the assumption of a linear response may under certain conditions be a very
good approximation of system behaviour even in the presence of memory: this is the
case if the time scale at which the perturbation changes is much slower than the reaction
time of the system.® For the climate system this seems to be the case for the response of
temperature in e.g. 1%-simulations: In the a-S-v formalism this response is characterized
by the a sensitivity. Therefore the associated linear equation AT = aACY is in practice
applicable.” But for 5 this approximation is definitely invalid, and to a lesser extent also
for 7, as was recognized already shortly after Friedlingstein et al. developed their a-3-y
formalism (see references in the manuscript).

What is explained here can surely not be included in full length in the revised manus-
cipt. But we will try to include at least part of it to improve the clarity of the explanations
without deteriorating the readability of the text.

Christian Reick and Guilherme Torres Mendonga

6Mathematically this can as well be demonstrated by the example of a system with single timescale:
Considering its solution AX (t) = bf(;5 ds exp((t —s)/7)F(s) (see Eq. (15)) for the case that the memory
time 7 is so short that the forcing F'(s) under the integral essentially doesn’t change while the exponential
integral kernel drops to zero, the effect of the integral is essentially to evaluate F(s) at time ¢. Hence
one can approximate that solution by writing AX(t) ~ bF(t) [, ds exp((t — s)/7) = TbF(t), where T
and b are constants so that this is a linear relation between response and forcing. — We intend to add
this consideration to the manuscript.

"This is found as second entry to Eq. (11) in the manuscript.
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