

1 **Combined effects of low temperature and low light intensity on elemental content**
2 **and macromolecules of coccolithophores**

3

4 **Jinlong Shang^{1,§}, Wenting Ke^{2,§}, Yinrui Wang^{3,§}, Junqin Cai³, Yan Chen³, Xi Liu³,**
5 **Yonghe Han³, Hong Zhang³, Kui Xu⁴, Yong Zhang³**

6

7 ¹College of Life Science and Xinjiang Key Laboratory of Special Species Conservation
8 and Regulatory Biology, Xinjiang Normal University, Urumqi 830054, Xinjiang, China

9 ²School of Primary Education, Wuhan City Polytechnic, Wuhan 430065, China

10 ³College of Environmental and Resource Sciences, College of Carbon Neutral Modem
11 Industry, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian
12 Normal University, Fuzhou 350117, China

13 ⁴Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei
14 Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive
15 Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi
16 435002, China

17

18 Running head: Temperature and light on coccolithophores

19

20 Correspondence to: Wenting Ke (kewenting@whcp.edu.cn); Yong Zhang
21 (yongzhang@fjnu.edu.cn)

22 [§]These authors contributed equally to this work.

23

24 Keywords: coccolithophores, elemental content, low temperature, low light intensity,
25 macromolecules

26 **Abstract**

27 The calcifying coccolithophores *Gephyrocapsa oceanica* and *Emiliania huxleyi* can
28 grow preferentially in deep waters (150–200 m), however, their physiological and
29 biochemical strategies for acclimating to the combined constraints of low temperature
30 and low irradiance remain unclear. In this study, we subjected three coccolithophore
31 strains (*G. oceanica* NIES-1318, *E. huxleyi* PML B92/11 and RCC1266) to low
32 temperature (9°C) and low light intensity (15 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$), and compared their
33 growth rates, particulate inorganic carbon (PIC), particulate organic carbon (POC),
34 nitrogen (PON) and phosphorus (POP) contents, as well as carbohydrate and lipid levels,
35 with those under standard cultivation (21°C, 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$). The results
36 revealed that low temperature and low light intensity acted synergistically to decrease
37 growth rate, POC contents and the POC : PON and POC : POP ratios, whereas did not
38 significantly affect POP content in any of the strains. While increased light intensity
39 enhanced PIC and PON contents at high temperature, it reduced them at low
40 temperature. Low light intensity was identified as the primary factor leading to reduced
41 carbohydrate and lipid level. Collectively, these findings indicate that to acclimate to
42 low-temperature and low-light conditions, coccolithophores prioritized reducing the
43 metabolic cost of carbohydrate and lipid biosynthesis, thereby allocating more
44 resources to phosphorus metabolism—a physiological adjustment that can significantly
45 influence biogeochemical cycles in the deep ocean.

46

47

48

49

50

51 1 Introduction

52 Coccolithophores are a type of unicellular eukaryotic calcifying algae and widely
53 distributed throughout the global oceans (Hernández-Almeida et al., 2020). They fix
54 CO₂ into organic carbon via photosynthesis, and produce CaCO₃ (coccoliths) through
55 calcification which releases CO₂ into the surrounding environment, enhances particle
56 settling and facilitates the burial of carbon at depths (Skeffington et al., 2022). Hence,
57 coccolithophores make significant contributions to biological organic carbon pump and
58 the carbonate counter pump (Li et al., 2024). Their comparatively low requirements of
59 nitrogen and phosphorus enable dominance in oligotrophic provinces, e.g., sectors of
60 the North Atlantic and Southern Ocean (Malinverno et al., 2003; Rigual Hernández et
61 al., 2020), and bloom-forming species such as *Gephyrocapsa oceanica* and *Emiliania*
62 *huxleyi* can restructure local ecosystem function (Poulton et al., 2014). Notably,
63 coccolithophores are capable of carrying out photosynthesis near or below the base of
64 the euphotic zone (150–200 m)—e.g., in the north-eastern Caribbean and South Pacific
65 Gyre with low temperature (< 12°C) and low irradiance level (< 20 µmol photons m⁻²
66 s⁻¹), and occupying resource niches that contribute to the stability of deep-water
67 primary production (Jordan and Winter, 2000; Beaufort et al., 2007). Despite their
68 ecological prominence, to our knowledge, the physiological and biochemical strategies
69 enabling coccolithophores to tolerate the simultaneous constraints of low-temperature
70 and low-irradiance conditions prevalent in deeper waters remain poorly resolved.

71 Prior work has identified several low-temperature acclimate strategies of
72 coccolithophores. Under decreasing temperature conditions, *G. oceanica* increased
73 cellular particulate organic carbon (POC) and nitrogen (PON) content, and decreased
74 cellular chlorophyll *a* and alkenone contents (Torres-Romero et al., 2024). The
75 biochemical mechanisms for high POC and PON contents in low temperature condition

76 could be that coccolithophores can decrease enzymatic turnover rates or productivity
77 through decreasing the activity of thermally sensitive enzymes, whereas increase the
78 abundances of these enzymes to compensate partly for the lower efficiency (Petrou et
79 al., 2016). For example, the abundances of carboxylating enzyme Ribulose-1,5-
80 bisphosphate carboxylase/oxygenase (Rubisco) were 2–3 folds higher in phytoplankton
81 collected from the Southern Ocean than from the temperate oceans (Sage, 2002; Young
82 et al., 2015). In addition, the coccolithophore *G. oceanica* and *E. huxleyi* can produce
83 unsaturated long chain alkenones (C37–C39) (Conte et al., 1998), and increase the
84 unsaturation of alkenones to regulate the microstructure of membrane lipids, which
85 enhances the stability of the membrane under low temperature conditions (Conte et al.,
86 2006). These studies elucidate the mechanisms of coccolithophore adaptation to low
87 temperatures in physiological and biochemical levels (Dedman et al., 2023; Torres-
88 Romero et al., 2024). However, there is limited work studying the biogeochemical
89 effects of coccolithophores under low temperature conditions, such as the response of
90 carbon (C) : nitrogen (N) : phosphorus (P) ratios and their impacts on deep-sea
91 ecosystems.

92 Coccolithophores have unique features in their response to low light conditions.
93 Recently, Shen et al. (2025) purified a photosystem I (PSI)–fucoxanthin chlorophyll
94 a/c–binding protein (PSI-FCPI) supercomplex from the coccolithophore *Emiliania*
95 *huxleyi* (Eh). This monomeric supercomplex contains 12 PSI core subunits, a specific
96 lumenal linker protein (EhLP), and 38 peripheral Eh-FCPI antennae, which constitutes
97 the largest PS–antenna supercomplex known so far. High levels of chlorophyll c and
98 fucoxanthin allow fast kinetics and the absorption of blue-green light, suitable for the
99 deep ocean–dwelling coccolithophore (Shen et al., 2025). In low light intensity,
100 coccolithophore increases the functional absorption cross–section, quantum efficiency,

101 Chl α and carotenoid contents to increase the absorption of light (Zhang and Gao, 2021).
102 Furthermore, it is hypothesized that the refractive index of coccoliths (approximately
103 1.65) is higher than that of seawater (approximately 1.33) (Horváth and Varjú, 2004).
104 This structure acts as a micro-lens, focusing incoming blue-green light onto the
105 chloroplasts and increasing the local light intensity (Young et al., 1999). This light-
106 concentrating effect can enhance photosynthetic efficiency, particularly in the deep
107 ocean (Tricias et al., 2025). However, to our knowledge, a limited number of studies
108 have examined the variation in physiological and biochemical characteristics across
109 different coccolithophore strains in response to low light intensity.

110 While most research on the combined influences of temperature and light intensity
111 on coccolithophores has focused on range of 10–24°C and 60–480 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$
112 (Feng et al., 2008; Jin et al., 2019; Zhang et al., 2020), few have examined the extreme
113 conditions of low-temperature and low-light intensity simultaneously. In this study, we
114 exposed three coccolithophore strains to low temperature (9°C) and low light (15 μmol
115 $\text{photons m}^{-2} \text{ s}^{-1}$) conditions, comparing their growth rates, particulate organic carbon
116 (POC), nitrogen (PON) and phosphorus (POP), carbohydrate and lipid contents to those
117 under standard cultivation (21°C and 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$). This study aims to
118 investigate the physiological and biochemical responses of coccolithophores to low-
119 temperature and low-light intensity, and tries to assess the consequences for the deep-
120 sea carbon cycle.

121

122 **2 Materials and methods**

123 **2.1 Strains and culture conditions**

124 *Gephyrocapsa oceanica* strain NIES-1318 was originally isolated from the coastal
125 water around Japan, and obtained from the center for collections of marine bacteria and

126 algae, Xiamen University, China. *Emiliana huxleyi* strain PML B92/11 was isolated
127 from the coastal waters off Bergen, Norway, and obtained from the Plymouth algal
128 culture collection, UK. *Emiliana huxleyi* strain RCC1266 was isolated from shelf
129 waters around Ireland, and obtained from the Roscoff algal culture collection, France
130 (Jin et al., 2019; Zhang et al., 2021).

131 In the control treatment, cells were maintained in 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ of
132 photosynthetically active radiation (PAR, high light intensity, HL) (measured using a
133 PAR Detector, PMA 2132 from solar light company) under a 16 h: 8 h light : dark cycle
134 (light period: 06:00 to 22:00 h) at 21.0 $^{\circ}\text{C}$ (high temperature, HT) in semicontinuous
135 cultures. To simulate deep-sea temperature and light intensity, experimental treatments
136 included low temperature (LT: 9.0 $^{\circ}\text{C}$), low light intensity (LL: 15 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$)
137 and combination of low temperature and low light intensity (LTLL: 9.0 $^{\circ}\text{C}$ and 15
138 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$) (Jordan and Winter, 2000; Beaufort et al., 2007). Therefore, there
139 were four treatments in this study: (1) 9.0 $^{\circ}\text{C}$ and 15 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (LTLL), (2)
140 9.0 $^{\circ}\text{C}$ and 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (LTHL), (3) 21.0 $^{\circ}\text{C}$ and 15 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$
141 (HTLL), (4) 21.0 $^{\circ}\text{C}$ and 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (HTHL, control), and three replicates
142 for each treatment.

143 Three strains were cultured in natural seawater obtained from the Pingtan Island,
144 Southeast China. The seawater was first filtered using a membrane filter (0.45 μm pore
145 size, CN-CA, Chuangwei), sterilized at 121 $^{\circ}\text{C}$ for 20 minutes, and enriched with 64
146 $\mu\text{mol L}^{-1}$ NO_3^- , 4 $\mu\text{mol L}^{-1}$ PO_4^{3-} , f/8 concentrations for trace metal and vitamin
147 solutions (Guillard and Ryther 1962). Then enriched seawater was aerated with sterile
148 ambient air (PVDF 0.22 μm pore size, Simplepure, Haining) with about 400 μatm
149 partial pressure of CO_2 for 24 hours, and sterilized by gentle pressure filtration (0.22
150 μm pore size, Polycap 75 AS, Whatman) and carefully pumped into autoclaved 500 mL

151 and 2000 mL polycarbonate (PC) bottles.

152 Three strains were cultured at 21.0 °C and 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ with an initial
153 cell concentration of about 3000 cells mL^{-1} and cultures were diluted every 3 days and
154 maintained in exponential growth for 9 days with a minimum of 10 generations. After
155 that, the cells of the same initial concentrations as above were transferred from 21.0 °C
156 and 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (HTHL) to 21.0 °C and 15 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (HTLL)
157 and to 9.0 °C and 150 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (LTHL), and then from 9.0 °C and 150 μmol
158 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ to 9.0 °C and 15 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (LTLL). Cultures were diluted
159 every 3 or 4 days, and maintained in exponential growth for 15 or 16 days under the
160 HTLL and LTHL treatments, and for 32 days for *G. oceanica* strain and for 20 days for
161 two *E. huxleyi* strains under the LTLL treatment, which were dependent on cell division
162 rates per day of each strain (Figure S1). Culture bottles were mixed three times per day
163 at 09:00 h, 14:00 h and 18:00 h. In the last day of the incubation under each treatment,
164 subsamples were taken for measurements of cellular contents of total particulate carbon
165 (TPC), particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP),
166 carbohydrate, lipid and chlorophyll (Chl) *a*.

167

168 **2.2 Cell density measurement**

169 After mixing, 2 mL samples for cell concentration measurement were taken daily at
170 14:00 h, and fixed with 10 μL Lugol's solution (a mixture of potassium iodide, iodine
171 and sodium acetate). Then 1 mL samples were added into the counting chamber
172 (Sedgwick–Rafter, S52, Graticules), and cell concentration was quantified by cell
173 counting using a biological microscope (E100, Nikon Eclipse). Growth rate (μ) was
174 calculated according to the equation: $\mu = (\ln N_1 - \ln N_0) / d$, where N_0 and N_1 were cell
175 concentrations at the beginning and the end of a growth interval, and d was the duration

176 of the growth period in days (Wang et al., 2024).

177

178 **2.3 Element content measurements**

179 Samples for determinations of TPC (300 mL), POC and PON (300
180 mL) contents were gently filtered onto GF/F filters (pre-combusted at 450 °C for 5
181 hours) at 15:00 hour under each treatment. TPC, POC and POP samples were stored in
182 the dark at –20 °C. For POC measurements, samples were fumed with HCl for 12 hours
183 to remove inorganic carbon. Then POC and TPC samples were dried at 60 °C for 12
184 hours and analyzed using an Elemental CHNS analyser (Vario EL cube, GmbH,
185 Germany). Cellular particulate inorganic carbon (PIC) content was calculated as the
186 difference between TPC and POC (Fabry and Balch, 2010). To remove dissolved
187 inorganic phosphorus from the GF/F filters, POP samples were rinsed three times with
188 5 mL 0.17 mol L^{−1} Na₂SO₄. After that, 2 mL 0.017 mol L^{−1} MgSO₄ solution was added
189 onto filters. Then POP samples were dried at 90 °C for 12 hours and combusted at 500
190 °C for 6 hours to remove POC, then cooled and extracted by hydrolysis with 0.2 mol
191 L^{−1} HCl (Solórzano and Sharp 1980). Phosphorus concentrations were determined
192 using the ammonium molybdate method using adenosine–5-triphosphate disodium
193 trihydrate (ATP007, Bioshop) as a standard.

194

195 **2.4 Chlorophyll *a*, carbohydrate and lipid analyses**

196 After mixing, samples for analyses of chlorophyll (Chl) *a* (100 mL), carbohydrate (500
197 mL) and lipid (300 mL) were obtained by filtering onto pre-combusted GF/F filters (at
198 450 °C for 5 hours) at 15:00 hour under each treatment. Five milliliters of 90% acetone
199 was used to extract the Chl *a* at 4 °C for 24 hours. Then samples were centrifuged at
200 8000 rpm for 10 min at 4 °C and the absorbances of the supernatant were determined

201 between 600–800 nm using a UV spectrophotometer (P5, Shanghai Mepada
202 Instruments Ltd., China). Chl *a* concentration ($\mu\text{g L}^{-1}$) of sample was calculated as
203 follows (Ritchie 2006).

204 $\text{Chl } a = 11.93 \times (A_{664} - A_{750}) - 1.93 \times (A_{647} - A_{750})$

205 where A_{647} , A_{664} and A_{750} were the absorbance values of supernatant at 647, 664 and
206 750 nm.

207 Carbohydrate samples were pretreated with 12.00 mol L^{-1} of sulfuric acid (H_2SO_4)
208 in the dark for 1 hour, and then diluted by Milli-Q water to a final H_2SO_4 concentration
209 of 1.20 mol L^{-1} . Then samples were sonicated for 5 min, vortexed for 30 s and boiled
210 at 90.0 °C for 3 hours (Pakulski and Benner, 1992). The concentration of
211 monosaccharide was determined at 490 nm by phenol–sulfuric reaction with glucose as
212 standard (Masuko et al., 2005).

213 Lipid samples were extracted with 2 mL dimethyl sulfoxide–methanol ($v : v = 1 : 9$),
214 sonicated for 15 min, boiled at 60 °C for 30 min. Then samples were centrifuged (5 min,
215 6000×g), and the oil-containing supernatants were transferred to a new tube (A, wight
216 W_A) (Xu et al., 2020). The residue samples were treated with 4 mL ether–n–hexane ($v :$
217 $v = 1 : 1$) for 1.5 h at 4 °C. Then samples were centrifuged again and the supernatants
218 were transferred to tube A again. The lipid-containing phase was dried using a nitrogen
219 blower and then tube A was weighed (wight W_B) again. The lipid content was calculated
220 as the difference between W_B and W_A .

221

222 **2.5 Data Analysis**

223 A two-way analysis of variance (ANOVA) was used to determine the main effect of
224 temperature and light intensity and their interactions for all variables in this study. A
225 Tukey post hoc test was performed to identify significant differences between two

226 levels of each treatment. A Shapiro–Wilk test was conducted to analyze the normality
227 of residuals, and a Levene test was conducted to test for homogeneity of variances. The
228 significant difference between treatments was set as $p \leq 0.05$. Data analysis and
229 visualizations were made using R v.3.6.1 (R Core Team 2018) and packages ggplot2
230 v.3.2.0.

231

232 **3 Results**

233 **3.1 Growth rate and cellular Chl *a* content**

234 Low temperature and low light intensity acted synergistically to decrease growth rates
235 of three strains, which can be seen by comparing growth rates in high temperature and
236 high light intensity (HTHL) condition with those in high temperature and low light
237 intensity (HTLL), low temperature and high light intensity (LTHL) and low temperature
238 and low light intensity (LTLL) conditions (Figure 1a, b, c). Compared to HTHL, growth
239 rates of *G. oceanica* NIES–1318 decreased by $34.28\% \pm 2.80\%$ in HTLL, by 47.93%
240 $\pm 0.70\%$ in LTHL, and by $81.39\% \pm 2.64\%$ in LTLL (Tukey, all $p < 0.01$) (Figure 1a).
241 Similarly, compared to HTHL, growth rates of *E. huxleyi* PML B92/11 decreased by
242 $37.54\% \pm 1.15\%$ in HTLL, by $52.49\% \pm 0.94\%$ in LTHL, and by $63.18\% \pm 2.65\%$
243 in LTLL (Tukey, all $p < 0.01$) (Figure 1b). As to *E. huxleyi* RCC1266, compared to
244 HTHL, growth rates decreased by $32.86\% \pm 3.47\%$ in HTLL, by $47.96\% \pm 1.66\%$
245 in LTHL, and by $64.01\% \pm 2.62\%$ in LTLL (Tukey, all $p < 0.01$) (Figure 1c).

246 The effect of light intensity on cellular Chl *a* content depends on temperature. At
247 high temperature (HT), compared to high light (HL) intensity, low light (LL) intensity
248 increased the Chl *a* content of *E. huxleyi* PML B92/11 by $44.60\% \pm 10.97\%$ (Tukey,
249 $p < 0.01$) (Figure 1e), and did not significantly affect the Chl *a* contents of *G. oceanica*

250 NIES–1318 and *E. huxleyi* RCC1266 (Figure 1d, f). At low temperature (LT), compared
251 to HL intensity, LL intensity did not significantly increase the Chl α contents of three
252 strains (Tukey, all $p > 0.2$) (Figure 1d, e, f).

253

254 **3.2 Cellular PIC, POC, PON and POP contents**

255 The effect of light intensity on cellular PIC, POC and PON contents depends on
256 temperature, which can be seen by comparing the PIC, POC and PON contents in the
257 high temperature (HT) regimes with their paired low temperature (LT) regimes (Figure
258 2a, b, c). At HT, compared to HL intensity, low light (LL) intensity decreased the PIC
259 contents by $38.17\% \pm 5.30\%$ for *G. oceanica* NIES–1318 (Tukey, $p < 0.01$) (Figure
260 2a), by $28.96\% \pm 19.16\%$ for *E. huxleyi* PML B92/11 (Tukey, $p = 0.11$) (Figure 2b),
261 by $23.18\% \pm 7.15\%$ for *E. huxleyi* RCC1266 (Tukey, $p = 0.04$) (Figure 2c). However,
262 at LT, compared to HL intensity, LL intensity increased the PIC contents by $60.15\% \pm$
263 11.16% for *G. oceanica* NIES–1318 (Tukey, $p < 0.01$) (Figure 2a), by $31.20\% \pm 14.85\%$
264 for *E. huxleyi* PML B92/11 (Tukey, $p = 0.79$) (Figure 2b), by $109.18\% \pm 32.21\%$ for
265 *E. huxleyi* RCC1266 (Tukey, $p = 0.04$) (Figure 2c).

266 At HT, compared to HL intensity, low light (LL) intensity decreased the POC
267 contents by $28.78\% \pm 4.26\%$ for *G. oceanica* NIES–1318 ($p < 0.01$) (Figure 2d), by
268 $38.53\% \pm 7.13\%$ for *E. huxleyi* PML B92/11 ($p < 0.01$) (Figure 2e), and by 31.72%
269 $\pm 6.29\%$ for *E. huxleyi* RCC1266 ($p < 0.01$) (Figure 2f). At LT, compared to HL
270 intensity, LL intensity did not significantly affect the POC contents of three strains (all
271 $p > 0.5$) (Figure 2d, e, f). The response of PON contents to low temperature and low
272 light conditions was similar to that of PIC contents. At HT, compared to HL intensity,

273 LL intensity decreased the PON contents by $9.23\% \pm 10.02\%$ for *G. oceanica* NIES–
274 1318 ($p > 0.50$) (Figure 2g), by $18.65\% \pm 4.16\%$ for *E. huxleyi* PML B92/11 ($p < 0.01$)
275 (Figure 2h), and by $18.87\% \pm 1.51\%$ for *E. huxleyi* RCC1266 ($p = 0.21$) (Figure 2i).
276 However, at LT, compared to HL intensity, LL intensity increased the PON contents by
277 $30.72\% \pm 15.64\%$ for *G. oceanica* NIES–1318 ($p = 0.12$) (Figure 2g), by $29.16\% \pm$
278 10.93% for *E. huxleyi* PML B92/11 ($p = 0.03$) (Figure 2h), and by $49.74\% \pm 31.57\%$
279 for *E. huxleyi* RCC1266 ($p = 0.12$) (Figure 2i). Interestingly, compared to HTLL, low
280 temperature and low light intensity did not significantly affect the POP contents of three
281 strains (all $p > 0.05$) (Figure 2j,k,l).

282

283 **3.3 PIC : POC, POC : PON, POC: POP and PON : POP ratios**

284 The effects of temperature and light intensity on the PIC : POC ratio are strain–specific
285 (Figure 3a,b,c). As to *G. oceanica* NIES–1318, compared to HTLL, PIC : POC ratio
286 didn't be affected significantly in HTLL and LTHL, whereas increased by $63.15\% \pm$
287 13.29% in LTLL ($p < 0.01$) (Figure 3a). As to *E. huxleyi* PML B92/11, compared to
288 HTLL, PIC : POC ratio didn't be affected significantly in HTLL, LTHL and LTLL
289 (Figure 3b) (all $p > 0.20$). As to *E. huxleyi* RCC1266, compared to HTLL, PIC : POC
290 ratio didn't be affected significantly in HTLL and LTLL, and decreased by $63.38\% \pm$
291 6.62% in LTHL ($p < 0.01$) (Figure 3c).

292 Low temperature and low light intensity acted synergistically to decrease the POC :
293 PON ratios and POC : POP ratios of three strains, which can be seen by comparing the
294 POC : PON and POC : POP ratios under the HTLL treatment with HTLL, LTHL and
295 LTLL treatments (Figure 3d–i). Compared to HTLL, POC : PON ratio of *G. oceanica*
296 NIES–1318 decreased by $20.97\% \pm 9.33\%$ in HTLL ($p = 0.07$), by $34.72\% \pm 4.93\%$

297 in LTHL ($p < 0.01$), and by $56.21\% \pm 6.32\%$ in LTLL ($p < 0.01$) (Figure 3d). As to *E.*
298 *huxleyi* PML B92/11, compared to HTHL, POC : PON ratio decreased by $24.69\% \pm$
299 1.76% in HTLL, by $20.42\% \pm 2.49\%$ in LTHL, and by $45.61\% \pm 7.37\%$ in LTLL
300 (all $p < 0.05$) (Figure 3e). As to *E. huxleyi* RCC1266, compared to HTHL, POC : PON
301 ratio decreased by $16.00\% \pm 3.81\%$ in HTLL ($p = 0.13$), by $14.66\% \pm 3.16\%$ in
302 LTHL ($p = 0.18$), and by $51.87\% \pm 9.43\%$ in LTLL ($p < 0.01$) (Figure 3f). At HT,
303 compared to HL intensity, low light intensity decreased the POC : POP ratios by 24.46%
304 $\pm 14.33\%$ for *G. oceanica* NIES-1318 ($p = 0.06$) (Figure 3g), by $33.05\% \pm 5.27\%$
305 for *E. huxleyi* PML B92/11 ($p < 0.01$) (Figure 3h), and by $24.50\% \pm 8.83\%$ for *E.*
306 *huxleyi* RCC1266 ($p < 0.01$) (Figure 3i). At LT, compared to HL intensity, low light
307 intensity did not significantly affect the POC : POP ratios of three strains (Figure 3g, h,
308 i). Please note that compared to HTHL, POC : POP ratios of three strains decreased by
309 $52.11\%-59.61\%$ in LTHL and LTLL (all $p < 0.01$).

310 The effect of light intensity on the PON : POP ratio depends on temperature, which
311 can be seen by comparing the PON : POP ratio in the HT regimes with their paired LT
312 regimes (Figure 3j, k, l). Compared to HL intensity, at HT, low light (LL) intensity did
313 not significantly decrease the PON : POP ratios of three strains, whereas at LT, it
314 increased the PON : POP ratios by $52.88\%-57.29\%$ (Figure 3j,k,l) (both $p < 0.05$ for
315 *G. oceanica* NIES-1318 and *E. huxleyi* PML B92/11; $p = 0.08$ for *E. huxleyi* RCC1266).

316

317 **3.4 Cellular carbohydrate and lipid contents**

318 Cellular carbohydrate and lipid contents were mainly affected by light intensity, which
319 can be seen by comparing the carbohydrate and lipid contents in the HL intensity with
320 their paired LL intensity (Figure 4). Compared to HL intensity, in LL intensity, the

321 carbohydrate contents were significantly lower for three strains regardless of levels of
322 temperature for the range used here (Figure 4a,b,c). Compared to HL intensity, at HT,
323 low light intensity decreased the carbohydrate contents by 79.76%–82.75% of three
324 strains (all $p < 0.01$), and at LT, it decreased the carbohydrate contents by 84.77%–
325 87.72% (all $p < 0.01$) (Figure 4a,b,c). Similarly, compared to HL intensity, at HT, low
326 light intensity decreased the lipid contents by 63.34%–68.70% of three strains (all $p <$
327 0.01), and at LT, it decreased the lipid contents by 75.77%–85.10% (all $p < 0.01$) (Figure
328 4d,e,f).

329

330 **4 Discussion**

331 We propose that under extreme low temperature and low light intensity (LTLL),
332 coccolithophores slow their metabolism, leading to reductions in growth rate, POC,
333 POP, carbohydrate and lipid contents. Our results reveal a specific acclimation strategy:
334 energy conservation is prioritized through the initial reduction of carbohydrate and lipid
335 content, followed by a decrease in growth rate (Figure 4). Furthermore, carbohydrates
336 and lipids were primarily light-dependent, while PON (proxy for protein) was
337 temperature-dependent. Analysis of POC : PON : POP ratios showed that POC
338 decreased more steeply than PON, and more steeply than POP only at high temperature
339 (Figure 3). Notably, at low temperature, POC and POP were light-insensitive, whereas
340 PON was inhibited by high light intensity. Collectively, these results indicate that
341 coccolithophores acclimate to LTLL conditions by precisely regulating their
342 biomolecular composition, elemental stoichiometry and growth (Zhang et al., 2021).

343 Compared to LTLL condition, in low temperature and high light intensity (LTHL),
344 both carbohydrates and lipids increased threefold, whereas the POC content did not
345 increase significantly. This indicates that proteins have decreased, which is also

346 corroborated by the reduction in PON content (Figures 2, 4). The reasons could be that
347 at 9 °C, the overall cellular metabolism is certainly slow. At this point, 150 µmol
348 photons m⁻² s⁻¹ of PAR is excessive (Jin et al., 2019). The cell stores the excess energy
349 in the form of carbohydrates and lipids, which also serves as a protective mechanism
350 (Zhang et al., 2021). Typically, the contents of POC, PIC and PON exhibit an optimal
351 light intensity response curve (Zhang et al., 2015). Under high temperature conditions,
352 high light increases POC and PON; however, under low temperature conditions, it
353 reduces the PON content (Figure 2). This also implies that low temperature lowers the
354 optimal light intensity for PON synthesis, and reduces the coccolithophore's tolerance
355 to high light (Gafar et al., 2018). In addition, under low temperature, the Calvin cycle
356 is slow, leading to slow carbon fixation, which requires less energy and then lower Chl
357 *a* content (Figure 1). Especially, under high light conditions, cells are more prone to
358 downregulate the content of light-harvesting antenna proteins, thereby reducing the
359 absorption of excess light by these antenna proteins, making an important contribution
360 to decreased PON (McKew et al., 2013). The significant lower Chl *a* content in high
361 temperature and high light intensity (HTHL) than that in high temperature and low light
362 intensity (HTLL) was only found for *E. huxleyi* PML B92/11, which suggests that the
363 response of Chl *a* content to increasing light intensity varies between species or strains
364 (Figure 1e).

365 Previous studies reported unchanged or increased POC contents at 14 °C than 18 °C
366 (Borchard et al., 2011), at 15 °C than 18 °C or 20 °C (Tong et al., 2019; Torres-Romero
367 et al., 2024), and at 20 °C than 24 °C (Feng et al., 2008). These findings are inconsistent
368 with our results which shows decreased POC contents at 9 °C than 21 °C (Figure 2).
369 One key reason is that the inhibitory effect of 9 °C on the photosynthetic carbon fixation
370 efficiency and growth rate of algae is significantly larger than that of 14 °C or 15 °C

371 (Shen et al., 2025). In addition, the variation in POC and POP contents between strains
372 may have been masked by the large gradients of temperature or light intensity used in
373 this study.

374 Interestingly, the combination of low temperature and low light did not significantly
375 affect the POP content in coccolithophores (Figure 2j–l). The possible reasons are as
376 follows: while low light intensity directly limits photosynthetic efficiency, low
377 temperature simultaneously suppresses the respiratory rate, leading to a synchronous
378 reduction in adenosine triphosphate (ATP) synthesis and overall energy consumption
379 (Jin et al., 2019; Strzepek et al., 2019). This effect helps maintain a dynamic balance
380 between phosphorus consumption (e.g. for ATP synthesis) and supply (e.g. phosphorus
381 uptake) (Dyhrman, 2016). Meanwhile, low temperature and low light inhibit
382 energy-intensive processes such as carbohydrate or lipid synthesis and cell division
383 (Figures 4, 1). Under these conditions, coccolithophores prioritize phosphorus
384 allocation to critical biomolecules. For instance, phosphorus is preferentially allocated
385 to nucleic acids (DNA or RNA) and membrane phospholipids, while investment in non-
386 essential metabolic pathways (e.g., secondary metabolite synthesis) is reduced (Shemi
387 et al., 2016). This strategy allows the cells to maintain the core components of POP
388 unchanged even when overall metabolism slows down (Shemi et al., 2016). From an
389 ecological perspective, the stability of POP under low temperature and low light
390 conditions enables coccolithophores to maintain ecological competitiveness in high-
391 latitude regions or deep-water layers (Perrin et al., 2016). This adaptability may be one
392 of the key factors that allowed them to survive multiple glacial-interglacial cycles
393 throughout geological history (Tangunan et al., 2021).

394 While calcification is known to be energy-dependent and enhanced by high light
395 intensity at warm temperatures (Triccas et al., 2025), we observed a counterintuitive

396 result under cold stress: high light intensity reduced the PIC content (Figure 2a–c). This
397 challenges the conventional view that cells under energy limitation (low light) should
398 reduce calcification (Zhang et al., 2015). We propose several mechanisms: low
399 temperature (LT) reduces the repair capacity of photosynthetic structures, and then
400 photoinhibition at LT is more likely to damage cellular membranes, disrupting ion
401 transport (Ca^{2+} or HCO_3^-) and homeostasis critical for calcification (Strzepek et al.,
402 2019; Triccas et al., 2025). Alternatively, under low temperature and low light intensity,
403 more coccoliths might act as micro–lenses to concentrate light on chloroplasts, making
404 them beneficial (Young et al., 1999). Ecologically, high PIC contents may defend
405 against grazers and a high PIC : POC ratio could promote sinking, and enhance carbon
406 sequestration in the deep sea (Poulton et al., 2014; Rigual–Hernández et al., 2020).
407 Notably, PIC content showed significant strain–specific variation under the same
408 treatment, e.g. high temperature and high light intensity, highlighting how such
409 diversity allows coccolithophores to colonize diverse marine habitats from sunlit
410 surfaces to the deep sea (Rigual–Hernández et al., 2018).

411 Three coccolithophore strains were found to be capable of calcification in the deep–
412 sea environment characterized by low temperature and limited light (Figure 2). This
413 implies that significant carbon export may occur in deeper waters (Malinverno et al.,
414 2003; Rigual–Hernández et al., 2018). Calcification activities in the deep sea exert
415 distinct influences on the marine carbon chemical system compared to those in surface
416 waters, necessitating a re–evaluation of their impacts (Rigual–Hernández et al., 2020).
417 Neglecting the contribution of deep–sea coccolithophores may lead to a severe
418 underestimation of global marine carbonate production (Rigual–Hernández et al., 2018).
419 On the other hand, studying the survival and adaptation capabilities of phytoplankton,
420 represented by coccolithophores, under low temperature and low light conditions can

421 enhance our understanding of the environmental tolerance limits of photosynthetic
422 organisms (Rigual-Hernández et al., 2018; Chauhan et al., 2024). This provides
423 important insights into the adaptive strategies of life under extreme conditions (Rigual-
424 Hernández et al., 2018). In summary, research on the adaptive features of
425 coccolithophores to the deep sea's cold and dark environment reveals that critical forces
426 driving global ecosystems persist even in the seemingly barren deep ocean (Perrin et
427 al., 2016).

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446 **References**

447 Beaufort, L., Couapel, M., Buchet, N., and Claustre, H.: Calcite production by
448 coccolithophores in the South East Pacific Ocean: from desert to jungle,
449 *Biogeosciences Discuss.*, 4, 3267–3299, doi: 10.5194/bgd-4-3267-2007, 2007.

450 Borchard, C., Borges, A. V., Händel, N., and Engel, A.: Biogeochemical response of
451 *Emiliania huxleyi* (PML B92/11) to elevated CO₂ and temperature under
452 phosphorus limitation: A chemostat study, *J. Exp. Mar. Biol. Ecol.*, 410, 61–71,
453 <https://doi.org/10.1016/j.jembe.2011.10.004>, 2011.

454 Chauhan, N., Barton, S., Zarkogiannis, S., and Rickaby, R. E. M.: Light quality induces
455 a shift in coccospHERE morphology in *Scyphosphaera apsteinii*, *J. Plankton. Res.*,
456 46, 383–386, doi: 10.1093/plankt/fbae032, 2024.

457 Conte, M. H., Sicre, M. A., Röhlemann, C., Weber, J. C., Schulte, S., Schulz-Bull, D.,
458 and Blanz, T.: Global temperature calibration of the alkenone unsaturation index
459 (U₃₇^K) in surface waters and comparison with surface sediments, *Geochem.,*
460 *Geophys., Geosys.*, 7, Q02005, doi: 10.1029/2005GC001054, 2006.

461 Conte, M. H., Thompson, A., Lesley, D., and Harris, R. P.: Genetic and physiological
462 influences on the alkenone/alkenoate versus growth temperature relationship in
463 *Emiliania huxleyi* and *Gephyrocapsa oceanica*, *Geochim. Cosmochim. Ac.*, 62,
464 51–68, doi: 10.1016/S0016-7037(97)00327-X, 1998.

465 Dedman, C. J., Barton, S., Fournier, M., and Richaby, R. E. M.: The cellular response
466 to ocean warming in *Emiliania huxleyi*, *Front. Microbiol.*, 14, 1177349, doi:
467 10.3389/fmicb.2023.1177349, 2023.

468 Dyhrman, S. T.: Nutrients and their acquisition: phosphorus physiology in microalgae,
469 in: *The physiology of microalgae*, edited by: Borowitzka, M. A., Beardall, J., and

470 Raven, J. A., Springer, Heidelberg, Germany, 155–183,
471 <https://doi.org/10.1007/978-3-319-24945-2>, 2016.

472 Fabry, V. J., and Balch, W. M.: Direct measurements of calcification rates in planktonic
473 organisms, in: Guide to best practices for ocean acidification research and data
474 reporting, edited by Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J. P.,
475 Luxembourg, Publications Office of the European Union, 201–212,
476 <https://doi.org/10.2777/66906>, 2010.

477 Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F., Rose, J. M., and Hutchins, D. A.:
478 Interactive effects of increased pCO₂, temperature and irradiance on the marine
479 coccolithophore *Emiliania huxleyi* (Prymnesiophyceae), Eur. J. Phycol., 43, 87–
480 98, <https://doi.org/10.1080/09670260701664674>, 2008.

481 Gafar, N. A., Eyre, B. D., and Schulz, K. G.: A conceptual model for projecting
482 coccolithophorid growth, calcification and photosynthetic carbon fixation rates in
483 response to global ocean change, Front. Mar. Sci., 4, 433, doi:
484 10.3389/fmars.2017.00433, 2018.

485 Guillard, R. R. L., and Ryther, J. H.: Studies of marine planktonic diatoms. I. *Cyclotella*
486 *nana* Hustedt and *Detonula confervacea* Cleve. Can. J. Microbiol., 8, 229–239,
487 doi:10.1139/m62-029, 1962.

488 Hernández-Almeida, I., Krumhardt K. M., Zhang H., and Stoll H. M.: Estimation of
489 physiological factors controlling carbon isotope fractionation in coccolithophores
490 in photic zone and core-top samples, Geochem. Geophys. Geosy., 21,
491 e2020GC009272, doi: 10.1029/2020GC009272, 2020.

492 Horváth, G., and Varjú, D.: Polarized light in animal vision: polarization patterns in
493 nature, Springer, Berlin, 319–324, <https://doi.org/10.1007/978-3-662-09387-0>, 2004.

494 Jin, P., Liu, N., and Gao, K.: Physiological responses of a coccolithophore to multiple

495 environmental drivers, Mar. Pollut. Bull., 146, 225–235,
496 doi:10.1016/j.marpolbul.2019.06.032, 2019.

497 Jordan, R. W., and Winter, A.: Assemblages of coccolithophorids and other living
498 microplankton off the coast of Puerto Rico during January–May 1995, Mar.
499 Micropaleontol., 39, 113–130, doi: 10.1016/S0377-8398(00)00017-7, 2000.

500 Li, S., Zhu, J., Jin, X., Feng, Y., Jiao, N., and Zhang, W.: Multifaceted contributions of
501 coccolithophores to ocean carbon export, Ocean-Land-Atmos. Res., 3,
502 Article0049, doi: 10.34133/olar.0049, 2024.

503 Malinverno, E., Ziveri, P., and Corselli, C.: Coccolithophorid distribution in the Ionian
504 Sea and its relationship to eastern Mediterranean circulation during late fall to
505 early winter 1997, J. Geophys. Res., 108(C9), 8115, doi: 10.1029/2002JC001346,
506 2003.

507 Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., and Lee, Y. C.:
508 Carbohydrate analysis by a phenolsulfuric acid method in microplate format, Anal.
509 Biochem., 339, 69–72. doi:10.1016/j.ab.2004.12.001, 2005.

510 McKew, B. A., Lefebvre, S. C., Achterberg, E. P., Metodieva, G., Raines, C. A.,
511 Metodiev, M. V., and Geider, R. J.: Plasticity in the proteome of *Emiliania huxleyi*
512 CCMP 1516 to extremes of light is highly targeted, New Phytol., 200, 61–73, doi:
513 10.1111/nph.12352, 2013.

514 Pakulski, J. D., and Benner, R: An improved method for the hydrolysis and MBTH
515 analysis of dissolved and particulate carbohydrates in seawater, Mar. Chem., 40,
516 143–160, doi:10.1016/0304-4203(92)90020-B, 1992.

517 Perrin, L., Probert, I., Langer, G., and Aloisi, G.: Growth of the coccolithophore
518 *Emiliania huxleyi* in light- and nutrient-limited batch reactors: relevance for the
519 BIOSOPE deep ecological niche of coccolithophores, Biogeosciences, 13, 5983–

520 6001, doi: 10.5194/bg-13-5983-2016, 2016.

521 Petrou, K., Kranz, S. A., Trimborn, S., Hassler, C. S., Ameijeiras, S. B., Sackett, O.,
522 Ralph, P. J., and Davidson, A. T.: Southern Ocean phytoplankton physiology in a
523 changing climate, *J. Plant Physiol.*, 203, 135–150, doi:
524 10.1016/j.jplph.2016.05.004, 2016.

525 Poulton, A. J., Stinchcombe, M. C., Achterberg, E. P., Bakker, D. C. E., Dumousseaud,
526 C., Lawson, H. E., Lee, G. A., Richier, S., Suggett, D. J., and Young, J. R.:
527 Coccolithophores on the north–west European shelf: calcification rates and
528 environmental controls, *Biogeosciences*, 11, 3919–3940, doi: 10.5194/bg-11-
529 3919-2014, 2014.

530 R Core Team: The R foundation for statistical computing platform, x86_64-w64-
531 mingw32/x64, available at: <https://cran.r-project.org/bin/windows/base.old/3.5.0/>
532 (28 February 2020), 2018.

533 Rigual–Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H.,
534 Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Balleger, A. M., Fuertes,
535 M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate
536 export in the Southern Ocean, *Biogeosciences*, 17, 245–263, 2020.

537 Rigual–Hernández, A., Flores, J. A., Sierro, F. J., Fuertes, M. A., Cros, L., and Trull, T.
538 W.: Coccolithophore populations and their contribution to carbonate export during
539 an annual cycle in the Australian section of the Antarctic zone, *Biogeosciences*, 15,
540 1843–1862, doi: 10.5194/bg-15-1843-2018, 2018.

541 Ritchie, R. J.: Consistent sets of spectrophotometric chlorophyll equations for acetone,
542 methanol and ethanol solvents, *Photosynth Res.*, 89, 27–41, doi: 10.1007/s11120-
543 006-9065-9, 2006.

544 Sage, R. F.: Variation in the kcat of Rubisco in C3 and C4 plants and some implications

545 for photosynthetic performance at high and low temperature, *J. Experimental*
546 *Botany*, 53: 609–620, doi: 10.1016/j.jplph.2016.05.004, 2016.

547 Shemi, A., Schatz, D., Fredricks, H. F., Van Mooy, B. A. S., Porat, Z., and Vardi, A.:
548 Phosphorus starvation induces membrane remodeling and recycling in *Emiliania*
549 *huxleyi*, *New Phytol.*, 211, 886–898, doi: 10.1111/nph.13940, 2016.

550 Shen, L., Ren, F., Wang, Y. C., Li, Z., Zheng, M., Li, X., Fan, W., Yang, Y., Sang, M.,
551 Liu, C. Han, G., Qin, S., Fan, J., Tian, L., Kuang, T., Shen, J. R., and Wang, W.:
552 Structure and function of a huge photosystem I-fucoxanthin chlorophyll
553 supercomplex from a cocolithophore, *Science*, 389, eadv2132, doi:
554 10.1126/science.adv2132, 2025.

555 Shen, Y., Jiang, R., Chang, J., Cai, L., Zhu, Y., Yin, Y., Shao, L., Wu, M., Zhang, J., and
556 He, P.: The effect of temperature on the photosynthetic carbon fixation efficiency
557 of sessile macroalgae in the mussel farming area of Guoqi Island through stable
558 isotope, *Mar. Environ. Res.*, 209, 107190, doi: 10.1016/j.marenvres.2025.107190,
559 2025.

560 Skeffington, A., Fischer, A., Sviben, S., Brzezinka, M., Górká, M., Bertinetti, L.,
561 Woehle, C., Huettel, B., Graf, A., and Scheffel, A.: A joint proteomic and genomic
562 investigation provides insights into the mechanism of calcification in
563 cocolithophores, *Nature Commun.*, 24, 3749, doi: 10.1038/s41467-023-39336-1

564 Solorzano, L., and Sharp, J. H.: Determination of total dissolved phosphorus and
565 particulate phosphorus in nature waters, *Limnol. Oceanogr.*, 25, 754–758,
566 doi:10.4319/lo.1980.25.4.0754, 1980.

567 Strzepek, R. F., Boyd, P. W., and Sunda, W. G.: Photosynthetic adaptation to low iron,
568 light, and temperature in Southern Ocean phytoplankton, *Proc. Nat. Acad. Sci. U.*
569 *S.*, 116, 4388–4393, doi: 10.1073/pnas.1810886116, 2019.

570 Tangunan, D., Berke, M. A., Cartagena-Sierra, C., Flores, J. A., Gruetzner, J., Jiménez-
571 Espejo, F., LeVay, L. J., Baumann, K. H., Romero, O., Saavedra-Pellitero, M.,
572 Coenen, J. J., Starr, A., Hemming, S. R., Hall, I. R., E and Expedition 361 Science
573 Party: Strong glacial–interglacial variability in upper ocean hydrodynamics,
574 biogeochemistry, and productivity in the southern Indian Ocean, *Commun. Earth*
575 *Environ.*, 2, 80, doi: 10.1038/s43247-021-00148-0, 2021.

576 Tong, S., Hutchins, D. A., and Gao, K.: Physiological and biochemical responses of
577 *Emiliania huxleyi* to ocean acidification and warming are modulated by UV
578 radiation, *Biogeosciences*, 16, 561–572, <https://doi.org/10.5194/bg-16-561-2019>,
579 2019.

580 Torres–Romero, I., Clark, A. J., Wijker, R. S., Jaggi, M., Zhang, H., and Stoll, H. M.:
581 Temperature–dependent carbon isotope fractionation in coccolithophores, *Front.*
582 *Earth Sci.*, 12, 1331179, doi: 10.3389/feart.2024.1331179, 2024.

583 Triccas, A., Chevrier, D. M., Verezhak, M., Ihli, J., Guizar-Sicairos, M., Holler, M.,
584 Scheffel, A., Ozaki, N., Chamard, V., Wood, R., Grünewald, T. A., and Nudelman,
585 F.: Dynamic change of calcium-rich compartments during coccolithophore
586 biomineralization, *Sci. Adv.*, 11, eadv0618, doi: 10.1126/sciadv.adv0618, 2025.

587 Triccas, A., Chevrier, D. M., Verezhak, M., Ihli, J., Guizar-Sicairos, M., Holler, M.,
588 Scheffel, A., Ozaki, N., Chamard, V., Wood, R., Grünewald, T. A., and Nudelman,
589 F.: Dynamic change of calcium-rich compartments during coccolithophore
590 biomineralization, *Sci. Adv.*, 11, eadv0618, doi: 10.1126/sciadv.adv0618, 2025.

591 Wang, D., Gao, X., Wang, X., Yuan, X., Guo, X., Zhang, Y., Xu, K., and Li, Z.: Diverse
592 thermal responses of the growth, photosynthesis, lipid and fatty acids in the
593 terrestrial oil-producing microalga *Vischeria* sp. WL1, *J. Appl. Phycol.*, 36, 29–
594 39, doi:10.1007/s10811-023-03152-3, 2024.

595 Xu, J., Li, T., Li, C. L., Zhu, S. N., Wang, Z. M., and Zeng, E. Y.: Lipid accumulation
596 and eicosapentaenoic acid distribution in response to nitrogen limitation in
597 microalga *Eustigmatos vischeri* JHsu-01 (Eustigmatophyceae), *Algal Res.*, 48,
598 101910, doi: 10.1016/j.algal.2020.101910, 2020.

599 Young, J. N., Goldman, J. A. L., Kranz, S. A., Tortell, P. D., and Morel, F. M. M.: Slow
600 carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic
601 phytoplankton blooms, *New Phytol.*, 205, 172–181, doi: 10.1111/nph.13021, 2015.

602 Young, J. R., Davis, S. A., Bown, P. R., and Mann, S.: Coccolith ultrastructure and
603 biomineralisation, *J. Struct. Biol.*, 126, 195–215, doi: 10.1006/jsbi.1999.4132,
604 1999.

605 Zhang, Y., and Gao, K.: Photosynthesis and calcification of the coccolithophore
606 *Emiliania huxleyi* are more sensitive to changed levels of light and CO₂ under
607 nutrient limitation, *J. Photochem. Photobiol. B: Biol.*, 217, 112145, doi:
608 10.1016/j.jphotobiol.2021.112145, 2021.

609 Zhang, Y., Bach, L. T., Schulz, K. G., and Riebesell, U.: The modulating effect of light
610 intensity on the response of the coccolithophore *Gephyrocapsa oceanica* to ocean
611 acidification, *Limnol. Oceanogr.*, 60, 2145–2157, doi: 10.1002/lno.10161, 2015.

612 Zhang, Y., Collins, S., and Gao, K.: Reduced growth with increased quotas of
613 particulate organic and inorganic carbon in the coccolithophore *Emiliania huxleyi*
614 under future ocean climate change conditions, *Biogeosciences*, 17, 6357–6375,
615 doi:10.5194/bg-17-6357-2020, 2020.

616 Zhang, Y., Li, Z., Schulz, K. G., Hu, Y., Irwin, A. J., and Finkel, Z. V.: Growth-
617 dependent changes in elemental stoichiometry and macromolecular allocation in
618 the coccolithophore *Emiliania huxleyi* under different environmental conditions,
619 *Limnol. Oceanogr.*, 66, 2999–3009, doi: 10.1002/lno.11854, 2021.

620

621

622 *Data availability.* The data are available upon request to the corresponding author

623 (Yong Zhang)

624

625 *Author contributions.* YZ and JS designed the experiment. YW performed the

626 experiment. WK and JS analyzed the data and wrote the first manuscript. All authors

627 improved and reviewed the manuscript. JS, WK and YW contributed equally to this

628 work.

629

630 *Competing interests.* The authors declare that they have no conflict of interest.

631

632 *Financial support.* This study was supported by the National Natural Science

633 Foundation of China (No. 32270397), Natural Science Foundation of Xinjiang Uygur

634 Autonomous Region (No. 202501A54), the Xinjiang Normal University Landmark

635 Achievements Cultivation Project (XJNUZBS2401), the Tianchi Talent Program in

636 Xinjiang Uyghur Autonomous Region, and by Hubei Provincial Department of

637 Education Scientific Research Plan Guidance Project (B2019435), China; Natural

638 Science Foundation of Fujian Province (2023J01290), China; and the “GeoX”

639 Interdisciplinary, Research Funds for the Frontiers Science Center for Critical Earth

640 Material Cycling, Nanjing University (020614380194), China.

641

642

643

644

645 **Figure Legends**

646 **Figure 1.** Under the treatments of low temperature (LT, 9 °C) and low light (LL, 15
647 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), LTHL (9 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), HTLL (21 °C, 15 μmol
648 $\text{photons m}^{-2} \text{s}^{-1}$) and HTHL (21 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), growth rates and cellular
649 contents of chlorophyll *a* of *Gephyrocapsa oceanica* NIES-1318, *Emiliania huxleyi*
650 PML B92/11 and *E. huxleyi* RCC1266. Data are presented as mean \pm standard deviation
651 for three replicates (n = 3). Different letters (a, b, c, d) represent significant differences
652 between treatments (Tukey, $p < 0.05$).

653

654 **Figure 2.** Under the treatments of low temperature (LT, 9 °C) and low light (LL, 15
655 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), LTHL (9 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), HTLL (21 °C, 15 μmol
656 $\text{photons m}^{-2} \text{s}^{-1}$) and HTHL (21 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), cellular contents of
657 particulate inorganic carbon (PIC), particulate organic carbon (POC), particulate
658 organic nitrogen (PON), particulate organic phosphorus (POP) of *Gephyrocapsa*
659 *oceanica* NIES-1318, *Emiliania huxleyi* PML B92/11 and *E. huxleyi* RCC1266. Data
660 are presented as mean \pm standard deviation for three replicates (n = 3). Different letters
661 (a, b, c, d) represent significant differences between treatments (Tukey, $p < 0.05$).

662

663 **Figure 3.** Under the treatments of low temperature (LT, 9 °C) and low light (LL, 15
664 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), LTHL (9 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), HTLL (21 °C, 15 μmol
665 $\text{photons m}^{-2} \text{s}^{-1}$) and HTHL (21 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), the ratios of PIC : POC,
666 POC : PON, POC : POP, PON : POP of *Gephyrocapsa oceanica* NIES-1318, *Emiliania*
667 *huxleyi* PML B92/11 and *E. huxleyi* RCC1266. Data are presented as mean \pm standard
668 deviation for three replicates (n = 3). Different letters (a, b, c, d) represent significant
669 differences between treatments (Tukey, $p < 0.05$).

670

671 **Figure 4.** Under the treatments of low temperature (LT, 9 °C) and low light (LL, 15
672 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), LTHL (9 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), HTLL (21 °C, 15 μmol
673 $\text{photons m}^{-2} \text{s}^{-1}$) and HTHL (21 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), cellular contents of
674 carbohydrate and lipid of *Gephyrocapsa oceanica* NIES-1318, *Emiliania huxleyi* PML
675 B92/11 and *E. huxleyi* RCC1266. Data are presented as mean \pm standard deviation for
676 three replicates (n = 3). Different letters (a, b, c, d) represent significant differences
677 between treatments (Tukey, $p < 0.05$).

678

679 **Figure S1.** Under the treatments of low temperature (LT, 9 °C) and low light (LL, 15
680 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), LTHL (9 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), HTLL (21 °C, 15 μmol
681 $\text{photons m}^{-2} \text{s}^{-1}$) and HTHL (21 °C, 150 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$), growth curves of
682 *Gephyrocapsa oceanica* NIES-1318, *Emiliania huxleyi* PML B92/11 and *E. huxleyi*
683 RCC1266. Data are presented as mean \pm standard deviation for three replicates (n = 3).

684

685

686

687

688

689

690

691

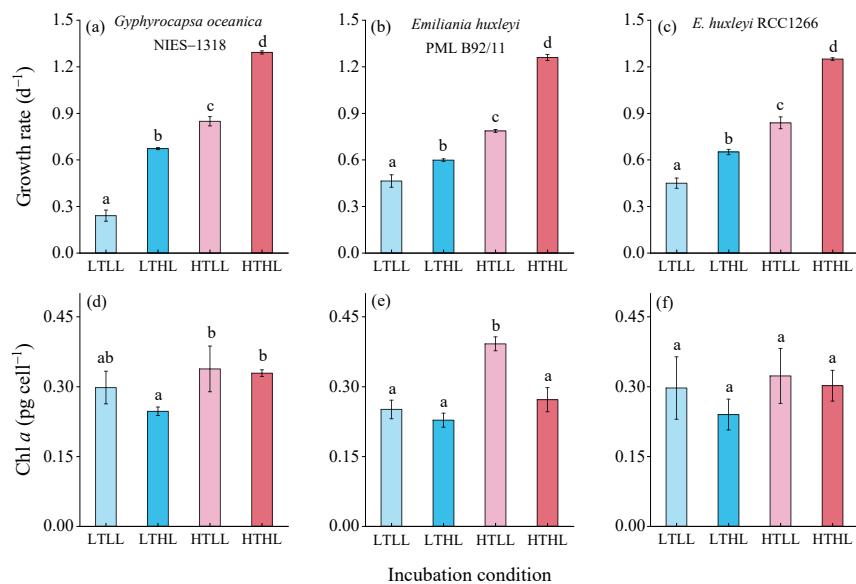
692

693

694

695 **Table 1.** Results of two-way ANOVAs of the impacts of temperature (T), light intensity
 696 (L) and their interaction (T×L) on growth rate (μ), chlorophyll (Chl) *a*, PIC, POC, PON
 697 and POP contents, PIC : POC ratio, POC : PON ratio, POC : POP ratio, PON : POP
 698 ratio, as well as carbohydrate (Carbo) and lipid contents.

	Factor	<i>G. oceanica</i>		<i>E. huxleyi</i> PML		<i>E. huxleyi</i> RCC1266	
		NIES-1318	B92/11	F value	p value	F value	p value
μ	T	1950.0	<0.001	1362.4	<0.001	1006.3	<0.001
	L	991.0	<0.001	518.8	<0.001	384.8	<0.001
	T×L	0.16	=0.702	161.5	<0.001	45.60	<0.001
Chl <i>a</i>	T	11.9	=0.009	66.6	<0.001	3.6	=0.094
	L	2.9	=0.128	39.4	<0.001	1.5	=0.261
	T×L	1.5	=0.254	18.3	=0.003	0.2	=0.669
PIC	T	168.6	<0.001	35.6	<0.001	185.2	<0.001
	L	10.2	=0.013	1.4	=0.267	0.7	=0.427
	T×L	103.2	<0.001	6.3	=0.037	14.9	=0.005
POC	T	358.7	<0.001	552.6	<0.001	215.3	<0.001
	L	40.2	<0.001	107.4	<0.001	31.4	<0.001
	T×L	19.8	=0.002	69.4	<0.001	13.2	=0.007
PON	T	34.1	<0.001	289.8	<0.001	33.9	<0.001
	L	0.8	=0.397	1.8	=0.221	0.1	0.793
	T×L	7.5	=0.025	40.2	<0.001	11.3	=0.010
POP	T	5.4	=0.049	15.1	=0.005	9.6	=0.015
	L	1.1	=0.324	4.4	=0.068	0.8	=0.394
	T×L	0.3	=0.618	0.2	=0.673	0.5	=0.516
PIC : POC	T	19.5	=0.002	0.9	=0.360	26.9	=0.001
	L	17.2	=0.003	3.8	=0.086	17.8	=0.003
	T×L	35.4	<0.001	0.9	=0.379	7.3	=0.027
POC : PON	T	50.5	<0.001	25.2	=0.001	30.6	=0.001
	L	18.2	=0.003	36.1	<0.001	34.4	<0.001
	T×L	0.1	=0.917	0.1	=0.961	5.3	=0.050
POC : POP	T	57.0	<0.001	101.8	<0.001	203.7	<0.001
	L	3.7	=0.090	14.1	=0.006	28.2	=0.001
	T×L	5.8	=0.043	17.6	=0.003	8.3	=0.020
PON : POP	T	1.6	=0.245	41.5	<0.001	10.2	=0.013
	L	4.5	=0.067	2.9	=0.128	1.7	=0.223
	T×L	7.6	=0.024	18.3	=0.003	7.8	=0.023
Carbo	T	941.5	<0.001	73.1	<0.001	316.3	<0.001
	L	4773.8	<0.001	262.8	<0.001	1896.6	<0.001
	T×L	370.3	<0.001	26.5	=0.001	105.7	<0.001
Lipid	T	333.3	<0.001	359.6	<0.001	71.7	<0.001



	L	1281.1	<0.001	377.7	<0.001	128.6	<0.001
	T×L	32.1	<0.001	62.3	<0.001	4.6	=0.065
699							
700							
701							
702							
703							
704							
705							
706							
707							
708							
709							
710							
711							
712							
713							
714							
715							
716							
717							
718							
719							
720							
721							
722							

723

724

725

726

727

728 **Figure 1**

729

730

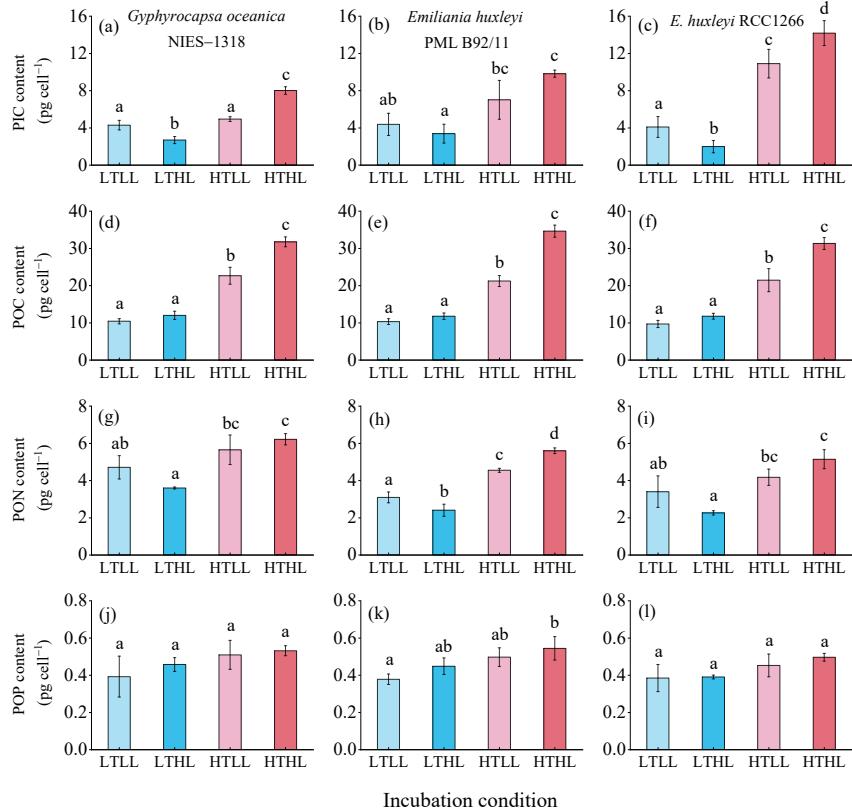
731

732

733

734

735


736

737

738

739

740

741

742

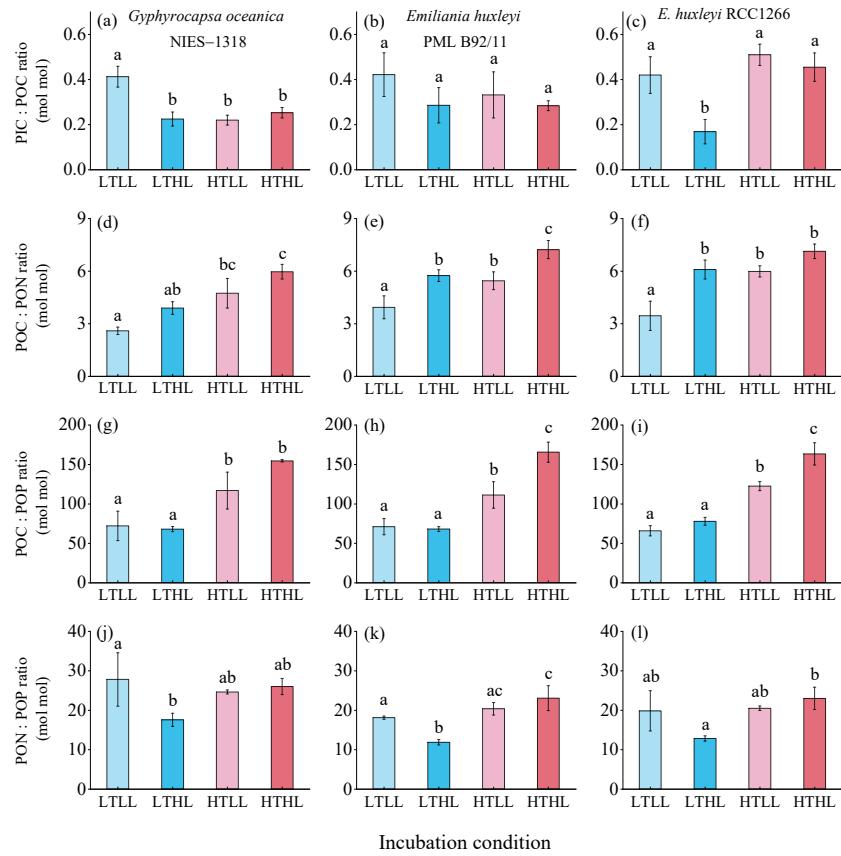
743 **Figure 2**

744

745

746

747


748

749

750

751

752

753

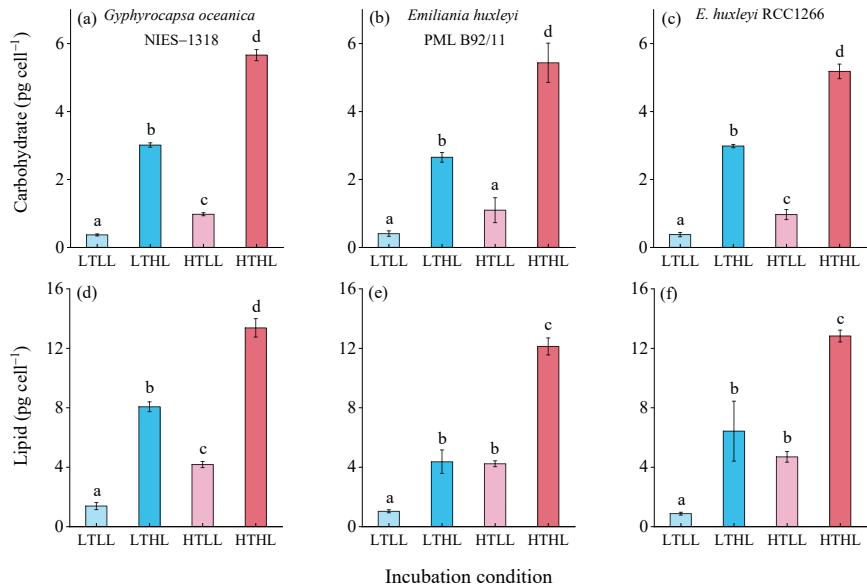
754

755 **Figure 3**

756

757

758


759

760

761

762

763

764

765

766 **Figure 4**

767

768

769

770

771

772

773

774

775