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13 Abstract: Agricultural drought threatens China’s food and ecological security, and accurate spatio-
14 temporal monitoring is key for disaster mitigation. Soil moisture is critical for drought assessment,
15  but the accuracy of existing remote sensing-based SM products in China remains to be improved.
16  This study develops a framework that synergistically integrates a spatiotemporally adaptive gap-
17 filling algorithm with a machine learning-based downscaling approach, generating a seamless 0.05¢
18  monthly SM dataset for China from 2003 to 2023. The methodology harnesses the complementary
19  strengths of random forest modeling and spatiotemporal reconstruction techniques to effectively
20  fuse multi-source satellite observations, achieving dual improvements in SM data accuracy and
21 spatial coverage. Using this dataset, the standardized soil moisture index was applied to characterize
22 the spatio-temporal evolution of agricultural drought. Results demonstrate that (1) The downscaled
23 SM dataset achieves significant improvements in both spatial resolution and accuracy, showing a
24 2.3-34.4% reduction in ubRMSE and 1.2-52.7% improvement in correlation coefficients compared
25  to benchmark datasets. (2) Drought characterization based on the downscaled SM dataset and SSI
26 accurately identified the extent of agricultural drought, showing a significant spatiotemporal
27  consistency with agricultural disaster area. (3) Agricultural drought intensified significantly across
28  China during the study period, characterized by northward migration of drought center and spatially
29  heterogeneous aridification patterns — decreasing severity from northwest to southeast while
30 increasing from northeast to southwest. High-frequency drought zones were predominantly
31  clustered in ecologically vulnerable regions, particularly the agro-pastoral ecotone of northern
32  China. (4) Distinct intra-annual drought dynamics emerged, with a southwest-to-northeast
33 expansion dominating from January to June, followed by bidirectional propagation from the Yellow
34  River-Huaihe River Basin (YRB-HRB) to northwestern and southeastern regions from June to
35  December. This study provides high-accuracy data support for agricultural drought monitoring and
36  offers scientific insights for developing regional differentiated drought mitigation strategies, which
37  are of great significance for ensuring national food security.

38  Keywords: Drought monitoring, Soil moisture, Spatiotemporal analysis, China

39 l.Introduction

40 Drought, recognized as one of the most widespread and economically devastating natural disasters
41 globally, is characterized by its prolonged duration, extensive spatial coverage, and severe impacts on
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42 agricultural productivity and national economic stability (Yang et al., 2021). China, with its vast
43 agricultural sector, remains particularly susceptible to recurrent droughts. Annually, approximately 3x107
44 hm? of cropland in China are affected by drought, leading to grain yield losses estimated at 3—5x10" kg
45 per year, which positions drought as one of most impactful natural disasters on agricultural production
46 (Liu et al., 2021; Wang, 2010). Therefore, accurate monitoring of agricultural drought is essential for
47 mitigating crop yield reduction and ensuring national food security.

48 Agricultural drought assessment primarily relies on three categories of indicators: meteorological
49 indices, soil moisture indices, and crop physiological-ecological indices (Sridhar et al., 2008; Bodner et
50 al., 2015). Meteorological indices, predominantly derived from precipitation data, are effective
51  detecting climatic anomalies. However, their poor correlation with actual crop water stress, largely
52  due to their limited representation of land-atmosphere interactions, restricts their utility for
53  agricultural drought assessment (Aiguo, 2011). While crop physiological-ecological indices directly
54 quantify plant water status, their operational implementation is constrained by heavy reliance on
55  intensive field measurements, posing challenges for generating spatially consistent and temporally
56  continuous datasets (Hansen and Jones, 2000; White et al., 2012). In contrast, soil moisture (SM)
57  indices are more directly linked to crop water availability, as root-zone soil water content directly
58  governs plant water uptake. Therefore, SM is widely recognized as a key variable for quantifying
59  agricultural drought severity (Dai, 2011).

60 SM can primarily be estimated through two approaches: in-situ observations and remote sensing
61  retrievals (Ochsner et al., 2013). While in-situ observations provide high accuracy measurements at
62  specific sites, their sparse and uneven spatial distribution hinders comprehensive characterization
63  ofregional SM heterogeneity. Remote sensing retrievals have emerged as a dominant methodology
64  for large-scale SM monitoring, owing to their unparalleled advantages in spatial coverage continuity
65  andtemporal observation persistence. Among various remote sensing modalities, microwave remote
66  sensing, especially passive microwave techniques, has been widely utilized for acquiring SM data
67  at both global and regional scales (Ding et al., 2024). This is attributed to their sensitivity to soil
68  permittivity, all-day and all-weather operational capability, and moderate penetration through
69  vegetation canopies and soil layers (Konings et al., 2019). For instance, the Advanced Microwave
70 Scanning Radiometer- Earth Observing System (AMSR-E) generated global SM retrievals from
71 2002 to 2011 through multi-frequency C/X-band observations (6.9-10.7 GHz) with dual-
72 polarization channels. Its successor, the Advanced Microwave Scanning Radiometer 2 (AMSR2),
73 launched in 2012, continues to provide similar observations (Imaoka et al., 2010). Concurrently, the
74 Soil Moisture and Ocean Salinity Mission (SMOS) has delivered continuous L-band (1.4 GHz)
75  radiometric measurements since 2010, which are particularly valuable for SM estimation due to
76  their reduced sensitivity to vegetation opacity. More recently, the Soil Moisture Active Passive
77  (SMAP) mission, launched in 2015, combines L-band passive and active microwave observations
78  (though the active component failed), further enhancing the quality and resolution of global SM
79  products. However, passive microwave systems fundamentally detect the weak thermal emission
80  (brightness temperature) from the land surface (Meng et al., 2024). This inherent characteristic
81  necessitates large antenna sizes to achieve sufficient signal-to-noise ratio, consequently leading to
82  observations with coarse spatial resolution (typically ranging from dozens of kilometers). This
83  coarse resolution severely limits their applicability for agricultural drought monitoring, as fine-scale
84  or file-scale SM information is crucial for accurate assessments and localized assessments (Piles et
85  al, 2014). To address this inherent limitation, various spatial downscaling technologies have been

2



https://doi.org/10.5194/egusphere-2025-5122
Preprint. Discussion started: 24 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

86  developed to enhance the spatial resolution of passive microwave SM products, typically to finer
87  resolutions ranging from 25 to 50 km. These approaches are typically classified into three main
88  categories: empirical methods, semi-empirical methods, and physical methods (Fuentes et al., 2022;
89  Songetal., 2024; Zhong et al., 2024).
90 Empirical downscaling methods primarily rely on observed data and prior knowledge to
91  establish statistical relationships between SM and scale factors. Common techniques include
92  polynomial regression, geographically weighted regression (GWR) and spatial interpolation (Yao
93  etal, 2013; Dong et al., 2020; Mohseni et al., 2023). Although these methods are computationally
94  efficient and straightforward to implement, their lack of explicit physical constraints and the
95  subjectivity in selecting or parameterizing the statistical relationships often limit their robustness
96  and transferability across different regions or conditions. In contrast to empirical methods, semi-
97  empirical approaches attempt to integrate simplified physical principles into empirical frameworks
98 by incorporating process-based constraints. A prominent example is the Disaggregation based on
99  Physical and Theoretical Scale Change (DISPATCH) method, which synergizes physical insights
100  with statistical formulations to enhance interpretability while maintaining operational efficiency
101  (Malbéteau et al., 2016). Physically based downscaling techniques, compared to empirical and semi-
102  empirical methods, offer a more explicit representation of the interactions between surface variables
103  and microwave signals. These methods typically involve the assimilation of coarse-resolution SM
104  data into land surface or hydrological models augmented with high-resolution ancillary inputs
105  (Merlin et al., 2012). Despite their strong mechanistic fidelity, the accuracy of these models can be
106  significantly impacted by structural uncertainties and inaccuracies in input parameters (Peng et al.,
107 2017).
108 Despite advancements in SM downscaling methodologies and the proliferation of global SM
109  products, their application in agricultural drought monitoring across China remains hindered by
110  several critical limitations (Liu et al., 2022; Song et al., 2022). Firstly, many downscaling algorithms
111 are developed with specific surface characteristics or climatic regimes in mind, leading to strong
112 regional dependencies that restrict their generalizability across China's diverse agro-ecological
113  landscapes. Secondly, the spatio-temporal continuity of existing downscaled SM products is
114  frequently compromised by orbital gaps, cloud contamination, and retrieval uncertainties, resulting
115  insignificant data discontinuities that undermine their operational utility. Thirdly, several global or
116  continental SM datasets exhibit limited accuracy over China, further constraining their reliability
117  for timely and precise drought monitoring. To address these limitations, we developed a novel
118  integrative framework that synergizes multi-source satellite observations (AMSR-E/2, SMOS,
119  MODIS) with in-situ measurements. This framework incorporates a spatiotemporally adaptive gap-
120  filling algorithm to ensure data continuity and a robust machine learning-based downscaling model
121 to generate seamless 0.05° resolution monthly SM data spanning 2003-2023. We further used
122  standardized soil moisture indices (SSI) to achieve accurate mapping from SM dynamics to
123 agricultural drought characterization, and examined the spatiotemporal dynamics of agricultural
124 drought in China. This research is anticipated to provides crucial scientific support for national
125  drought risk assessment, inform adaptive agricultural management, and aid in developing effective
126 drought mitigation strategies for China.
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127  2.Materials and methods

128  2.1. Study area

129 China, has an area of 9.6x10° km? and is in eastern Asia, encompassing a latitudinal range from
130  6°19'N to 53°33'N and a longitudinal span from 73°33'E to 135°05'E. Its terrain exhibits a
131  prominent west-to-east gradient of declining elevation, forming a distinct three-tiered topographic
132 hierarchy that profoundly influences regional climate and hydrology. Climatically, China
133  encompasses subtropical monsoonal, temperate continental, and alpine regimes, with precipitation
134  patterns decreasing systematically from southeast to northwest. Given China’s vast geographical
135  expanse and topographic complexity, pronounced spatial variations in temperature, precipitation,
136  and SM exist across its diverse regions. To elucidate the agricultural drought characteristics across
137  China, the study area was divided into nine river basins. This classification is guided by the spatial
138  structure of river networks and informed by key geographic and climatic factors, including
139  topography, precipitation patterns, and regional climate regimes. The delimited basins include the
140  Song-Liao River Basin (SLRB), the Hai River Basin (HRB), the Yellow River Basin (YRB), the
141  Huai River Basin (HRYB), the Yangtze River Basin (CRB), the Pearl River Basin (PRB), the
142 Southeast Rivers Basin (SERB), the Southwest Rivers Basin (SWRB), and the Inland River Basin
143 (NWRB). The spatial distribution of the nine basins is shown in Fig. 1.
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144
145 Fig. 1. Overview of the study area and nine major river basins in China, overlaid with in-situ SM
146  distribution

147  2.2.Data
148  2.2.1.SM data
149 To generate a continuous monthly SM dataset across China for the period 2002-2023, we

150  integrated satellite- and ground-based observations. We used Level-3 monthly products from
151  AMSR-E on-board the Aqua satellite (July 2002—September 2011) and AMSR2 on-board the
152 GCOM-W1 satellite (July 2012-December 2023). Both datasets have a spatial resolution of 25 km
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153  and are expressed in volumetric units (m*m?). To bridge the observational gap between AMSR-E
154  and AMSR2, we used the SMOS-IC V105 daily product (July 2011-December 2012), which was
155  aggregated to a monthly scale. This product helps to fill the data gap during the transition period
156  between the two main satellite datasets.

157 For validation, we utilized in situ SM measurements obtained from the common application
158  support platform for land observation satellite, China’s national meteorological stations and China’s
159  agrometeorological and ecological observation network (January 2003—December 2023). Hourly 0—
160 10 cm depth observations were averaged across the four time points closest to satellite overpasses
161  to derive monthly values, with outliers excluded through rigorous quality control.

162 Two widely used reconstructed SM products were adopted as baseline datasets for accuracy
163 comparison: (1) PI (Zhang et al., 2023): Developed by integrating multiple datasets and machine
164  learning, this dataset delivers global daily SM data at a 1-km resolution (2000-2020), showing an
165  unbiased root mean square error (ubRMSE) ranging from 0.033-0.048 m3/m? with independent SM
166  networks. (2) PII (Meng et al., 2021): Produced using a reconstruction model-based downscaling
167  technique that integrates SM data from various passive microwave products, this dataset provides
168  monthly SM estimates at a 0.25° resolution across China (2002-2018), with an ubRMSE ranging
169  from 0.036 to 0.048 m*/m?* when compared to in situ measurements.

170  2.2.2. Auxiliary data

171 The multi-source geospatial datasets utilized in the SM downscaling model are summarized in
172 Table 1, with detailed descriptions of data sources and spatiotemporal resolutions. MODIS monthly
173 products (2003-2023), including land surface temperature (LST), leaf area index (LAI), and
174  normalized difference vegetation index (NDVI), were obtained from National Aeronautics and
175  Space Administration at a 0.05° resolution. These vegetation and land surface parameters were
176 processed by averaging daytime and nighttime observations, removing outliers via first-order
177  differencing, and interpolating missing values using Savitzky-Golay filtering to ensure temporal
178  continuity (Kandasamy et al., 2013). Meteorological parameters (2m temperature, total evaporation,
179  total precipitation, and surface net solar radiation) were obtained from the European Centre for
180  Medium-Range Weather Forecasts (ECMWF) at a 0.1° spatial resolution and monthly temporal
181  resolution (2003-2023). Topographic data comprised elevation from the Shuttle Radar Topography
182  Mission (SRTM) 1 km digital elevation model (DEM), resampled to 0.05°, and slope derived
183  through a 3x3 neighborhood gradient algorithm. Land cover data is the MODIS Collection 6 global
184  land cover product. This dataset provides annual land cover maps at 500 m spatial resolution based
185  on the 17-class International Geosphere Biosphere Program classification scheme.

186 For validation, provincial-scale agricultural drought indicators (2003-2023) — including crop
187  disaster areas and crop coverage - were extracted from the China National Statistical Yearbook and
188  normalized against regional arable land statistics.

189 Table 1 Overview of the datasets used in this study.
. Spatial Spatial/tempora
Datsets Satellite . Dates Notes
coverage | resolution

AMSR-EL3  Aqua Global 0.25°,1 monthy 2002 -2011 SM
AMSR-2L3  GCOM-W1 Global 0.25°,1 monthy 2012 -2023 SM
SMOS-IC SMOS Global 0.25°,1 monthy 2011 -2012 SM
MYDI11C3 Aqua Global 0.05°,1 monthy 2003 - 2023 LST
MYD13C2 Aqua Global 0.05°,1 monthy 2003 - 2023 NDVI
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MYD15 Aqua Global 0.05°,1 monthy 2003 -2023 LAI

MCD12Q1 MODIS Global 500 m, yearly 2003 -2023 Land cover
ECMWF - Global 0.1°,1 monthy 2003 -2023  Auxiliary data
SRTM - Global Resample 0.05° 2003 - 2023 DEM,Slope
Station - China site data, daily 2003 - 2023 SM

Validation - China - 2003 — 2023  Agricultural

Data - - - - drought indicators
PI - Global 0.1°, daily 2000 -2020 benchmark dataset
PII - China 0.05°, monthy 2002 - 2018  benchmark dataset

190 3.Method

191 Fig. 2 outlines the three-stage methodological framework designed to derive fine-resolution
192  agricultural drought diagnostics. Stage 1: Gap-filling of passive microwave SM products — A
193  spatiotemporally adaptive gap-filling algorithm was developed to address data gaps in multi-sensor
194  passive microwave SM observations (AMSR-E, SMOS, and AMSR2). This algorithm
195  synergistically couples the enhanced Savitzky-Golay filter for temporal smoothing, GWR for spatial
196  consistency reconstruction, and least squares regression for fitted interpolation and cross-sensor
197  calibration, generating a continuous SM dataset across China from 2003 to 2023. Stage 2: Data-
198  driven SM downscaling — A machine learning-based downscaling model was established by
199  integrating SM-related environmental covariates, including vegetation dynamics, land surface
200  parameters, meteorological parameters and topographic controls. Through iterative feature selection
201  and random forest algorithm, the model produced monthly seamless SM datasets at 0.05° spatial
202  resolution. Stage 3: Agricultural drought mapping — SSI was used to establish robust quantitative
203  links between SM dynamics and agricultural drought patterns, enabling a systematic analysis of the
204 spatio-temporal evolution of drought conditions across China during 2003-2023.
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206 Fig. 2. The overall methodological framework of this study.
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207  3.1. Construction of spatio-temporally seamless SM Product

208  3.1.1. Reconstruction of missing values in passive microwave remote sensing data

209 To reconstruct missing SM pixels by leveraging spatio-temporal information, we implemented
210  a three-step hybrid approach. First, an enhanced Savitzky-Golay filter and the GWR method were
211  used to integrate spatio-temporal information for the preliminary reconstruction of missing SM
212 values. Second, least squares regression was applied to optimize the initial reconstruction, which
213  effectively minimized inter-sensor biases and recovered SM values. Finally, a harmonized SM
214  dataset spanning 2003-2023 was constructed by merging AMSR-E, SMOS, and AMSR2
215  observations, ensuring spatiotemporal continuity across heterogeneous landscapes.

216 (1) enhanced Savitzky-Golay filtering algorithm

217 Due to limitations in retrieval algorithms and atmospheric disturbances such as cloud cover,
218  remotely sensed SM products commonly exhibit spatio-temporal discontinuities. Although monthly
219  SM composites based on valid observations reduce missing data to some extent, substantial gaps
220  still exist. The Savitzky-Golay filter, a local polynomial regression technique based on least-squares
221 fitting within a moving window, has been widely used for reconstructing missing values in time-
222 series data. It fits a high-order polynomial over local windows to smooth the time series and estimate
223  missing values for the preliminary reconstruction of missing SM data (Chen et al., 2021). However,
224 traditional Savitzky-Golay filtering suffers from poor noise suppression beyond the cutoff frequency
225  and generates significant artifacts near data boundaries. To overcome these limitations, we adopted
226  anenhanced Savitzky-Golay filtering method (Schmid et al., 2022). This improved filter introduces
227  two key modifications: (i) a window function is used as the fitting weight to enhance high-frequency
228  noise suppression; and (ii) a convolution kernel based on the sinc function with Gaussian-like
229  windowing is employed to reduce artifacts near data boundaries. For a given pixel time series Y
230  with missing SM values, the reconstructed time series ¥;* can be derived using formula (1).

m
231 yp =2 i X’l/‘c"yf” ¢))
232  where W; denotes the weight of the Gaussian window function, C; represents the modified filter
233 coefficient, m is the half-width of the moving window, and N is the number of convolution terms,
234 equal to the full window size (2m + 1).

235 (2) GWR model

236 GWR constructs localized regression models for each observation point based on its
237  surrounding neighboring values, and has been widely recognized as a robust approach for estimating
238  missing spatial data (Cao et al., 2021). We adopted the GWR approach to reconstruct missing pixels
239  once their locations were identified. By incorporating local spatial relationships and neighboring
240  pixel values into the regression framework, GWR enables the interpolation of missing SM data,
241  effectively filling gaps in the dataset while preserving the spatial heterogeneity of soil moisture
242  patterns. The GWR model estimates the missing SM value y; at location (u;,v;) using the
243  following form:

P
244 yi = Bo(uyr vy) + z Bre(ui, v) xip + & ()
k=1

245  Where x;, represents the SM value of the k™ neighboring pixel within a local spatial window
246 (15x15 pixels centered on the target), B,(u;, v;) is the local intercept, By (u;, v;) denotes the local
247  slope corresponding to the k™ neighbor, and &; is the residual error. Model parameters are
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248  estimated using a weighted least squares method:
249 ,B(ul-, vl-) = (XTW(ui, vi)X)_lXTW(uiy vi)Y 3)

250  Where B(u;,v;) is the vector of locally estimated regression coefficients. W (u;, v;) is the spatial
251  weighting matrix. X and Y denote the explanatory and response variables within the local
252  neighborhood. The weight of each neighboring pixel decreases with increasing distance from the
253  focal cell, reflecting spatial dependence.

254 An in-depth analysis of SM data revealed that spatially adjacent pixels with similar
255  meteorological conditions tend to exhibit consistent SM dynamics, allowing for more reliable
256  estimations based on their collective information (Peng et al., 2017). To ensure higher reconstruction
257  accuracy, we assessed the environmental similarity of pixels within the window and assigned greater
258  weights to similar pixels. Through sensitivity tests conducted on selected similar pixels, we found
259  that setting the parameter M, = 3 during calculations yielded more accurate estimations of the SM
260  values for missing pixels. This optimal value of Mg strikes a balance between incorporating enough
261 similar pixels to capture the underlying spatial patterns and avoiding the inclusion of too many
262  dissimilar ones that could introduce noise. Consequently, the weights were determined using
263  Formulas 4 and 5.

264 D= \/(uz —w)? + (v; — v,)? “
M, My
D, D;
265 W, = w, = 5)
‘ m % + ZT_L & ! m % + Z" %
k=1, J=1D; k=1D, /=1D,

266  Where D is the Euclidean distance between a neighboring pixel and the missing target. j and k
267  denote similar and general neighbors within the window. W; and Wj, are their corresponding
268  weights,and My = 3,M, =1 are the fixed weighting factors for similar and non-similar neighbors,

269  respectively.

270 (3) Optimizing refined reconstruction outcomes of the enhanced Savitzky-Golay Filtering
271  Algorithm and GWR model
272 To further improve the accuracy of SM reconstruction, we integrated the spatio-temporal

273  information derived from the Savitzky-Golay filtering and GWR methods through a weighted least-
274 squares fusion strategy. The final reconstructed SM value T’ was expressed as a linear combination
275  of the GWR and Savitzky-Golay derived values:

276 T' = aTy + BT ©)
277 Where T' denotes the integrated SM estimate. T, and T are the SM values reconstructed using
278  the GWR and Savitzky-Golay methods, respectively. and a« and B are the corresponding
279  weighting coefficients.

280 To estimate the optimal values of @ and S, we selected a subset of valid pixels from each
281  image. These pixels were interpolated using both GWR and Savitzky-Golay methods. Subsequently,
282  the least squares method was applied to fit the data obtained from the two methods, yielding the
283  fitting coefficients (Formula 7).

284 AT(wB) = ) [T, =T/ @

285  where T; isthe valid SM value at pixel i,and T} is the reconstructed value based on the weighted
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286  combination. The optimal coefficients were derived by minimizing AT using the following partial

287 derivatives:

n
0AT (a,
288 # -2 Z(Ti — aT, = BT)T, =0 ®)
i=1
AT (a, B) N
289 —p - -2 Z(Ti —al, — BT)T, =0 ©)
i=1
290 (4) Discrepancy correction of multi-source SM products
291 To mitigate inconsistencies among passive microwave SM products from different satellite

292  missions, we applied a pixel-wise linear regression correction using AMSR-E as the reference
293  dataset. This approach harmonized SMOS and AMSR2 observations, resulting in a temporally
294  consistent and spatially continuous SM dataset spanning 2003—-2023, which was subsequently used
295  for downscaling. The corrected SM value Y™ was calculated as:
296 Y'=puy + (Y —py)Cy (10)
297  where X is the reference dataset (AMSR-E). Y is the original dataset (SMOS or AMSR2). uy
298  and py are the temporal means of X and Y, respectively. The scaling factor Cy is defined as:
299 Cy = pxy0x0y (1D
300  Here, ox and oy are the standard deviations of X and Y, respectively, and pyy is the Pearson
301  correlation coefficient between the two datasets.
302  3.1.2. Downscaling of passive microwave remote sensing data
303 The temperature-vegetation dryness index (TVDI) serves as a robust proxy for SM
304  estimation, with demonstrated efficacy in SM retrieval and downscaling applications. Meng
305  etal. (2021) leveraged the negative correlation between TVDI and SM to develop a spatial
306  weight decomposition (SWD) model based on TVDI, ultimately constructing a fine-
307  resolution SM dataset for China. However, it is important to note that the relationship between
308  TVDI and SM is inherently modulated by local climatic and topographic conditions (Meng
309 et al., 2021). To account for the potential modulating effects of heterogeneous climatic and
310  environmental covariates, including precipitation regimes, thermal gradients, topographic variations,
311  vegetation, and insolation patterns, on the TVDI-SM relationship, we implemented a random forest
312  (RF) algorithm. The RF model was trained using coarse-resolution TVDI observations and
313  corresponding SM measurements across diverse bioclimatic zones to capture non-linear
314  interactions between hydroclimatic drivers and SM dynamics. Subsequently, this optimized
315  model was applied to fine-scale TVDI data integrated with high-resolution climatic and
316  environmental covariates, enabling the generation of spatially enhanced SM estimates
317  through feature-based downscaling.
318 (1) Calculation of the TVDI
319 TVDI derived from the triangular/trapezoidal feature space between LST and NDVI (Fig. 3),
320  serves as a robust SM proxy by capturing soil moisture dynamics through the inverse coupling of
321  thermal and vegetation signals (Meng et al., 2021; Huang et al., 2025). TVDI is mathematically
322 defined as:

Ty — (ay; X NDVI + b,)

TVDI =
323 (ay X NDVI + by) — (a; X NDVI + b,) (12)
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324  where T represents pixel-level LST. a;, b; and a,, b, denote the dry-edge and wet-edge
325  regression coefficients, respectively. TVDI values range from 0 to 1, quantitatively reflecting SM
326  variability across spatial gradients.

Evapei.
g
e
v
EVi¥n TVDI-0, wet edge ¢
FVC :
37 NDVI
328 Fig. 3. LST and NDVI feature space diagram
329 (2) Construction of the RF
330 RF algorithm, an ensemble learning method grounded in bootstrap aggregation (bagging) and

331  randomized feature subspace optimization, was implemented to model the non-linear interactions
332 between SM and its environmental determinants, including TVDI, LAI precipitation, 2m
333  temperature, DEM, slope, evaporation, surface net solar radiation, and land cover (Breiman, 2001).
334  During training, 500 decorrelated decision trees were constructed, each trained on a bootstrapped
335  subset (80% of coarse-resolution data from 2003-2020) with node splits determined by optimal
336  partitioning of a random feature subset. Hyperparameter tuning via grid search identified robust
337  configurations: a minimum of 5 samples per leaf and unlimited tree depth to resolve complex SM-
338  environment couplings (Biau, 2012). The model demonstrated high predictive accuracy, with an
339  out-of-bag (OOB) R?of 0.956 and mean absolute error (MAE) of 0.027 m3m? on validation data.
340  Permutation importance analysis identified TVDI, precipitation, surface net solar radiation, LA,
341  and land cover as dominant predictors.

342 For downscaling, the trained RF ingested high-resolution (0.05°) TVDI and environmental
343  layers, generating fine-scale SM estimates through ensemble averaging. To ensure scale consistency
344  between training (0.25°) and prediction (0.05°) domains, a multi-resolution feature alignment
345  strategy was implemented: high-resolution covariates were aggregated to match the coarse training
346  resolution using spatial averaging prior to model training, while native-resolution data were retained
347  for prediction.

348  3.2. Identification and analysis of agricultural drought

349 (1) mapping of agricultural drought using SSI

350 SSIis recognized as one of the most effective indicators for assessing agricultural drought (Xu
351  etal., 2018). To compute the SSI, pixel-wise time series analysis was conducted on the 20032023
352  China SM dataset. Five probability distribution functions—gamma, normal, log-normal,
353  generalized extreme value, and pearson-lIl—were systematically evaluated for their fit to SM data
354  using the Kolmogorov—Smirnov test (Svensson et al., 2017). The results indicated that the normal
355  distribution provided the best fit for most SM time series across the study area (p > 0.05). The SSI
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356  was calculated as:

SM —
357 SSI = e

(13)

358  Where p and o represent the pixel-specific mean and standard deviation of monthly SM values
359  over the 2003—2023 baseline period. Following world meteorological organization guide lines and
360  regional agricultural vulnerability thresholds (Svoboda et al., 2012), drought severity was classified
361 into five categories (Table 2).

362 Table 2 SSI-based drought severity classification
SSI Range Drought Category
SSI>0 Non dryness
-1.0<SSI<0 Mild dryness
-1.5<8SSI<-1.0 Moderate dryness
-2.0<SSI<-1.5 Severe dryness
SSI<-2.0 Extreme dryness

363 (2) Analysis of drought trends and characteristics

364 Agricultural drought trends across China were quantified using the non-parametric Sen's slope
365  estimator and Mann-Kendall (M—K) test, a robust approach for detecting monotonic trends in
366  climate time series (Han et al., 2023).

367 (i) Sen's slope estimation

368 The Sen's slope estimator determines the median rate of change between all pairwise
369  combinations in a time series, offering resistance to outliers and distribution-free computation. For
370  atime series of n observations (x4, X5, ..., Xp,), the slope is calculated as:

Xj — X;
371 Slope = Median( ; — ), Vi<i<j<n (14)

372  Where x; and x; denote the ith and j*™ observations of the time series, respectively.
373  Median denotes the median function. The estimated slope indicates the average rate of change. A
374 positive slope suggests an increasing trend, a negative slope indicates a decreasing trend, and a slope
375  of zero implies no significant trend.

376 (i) M—K trend test

377 The M—K test is a non-parametric method used to detect monotonic trends in time series data,
378  which does not assume any specific distribution and is insensitive to a few outliers. The null
379 hypothesis assumes that the observationsxy, x5, ..., x,, are independent and identically distributed,
380  while the alternative hypothesis posits the existence of a monotonic trend. The test statistic S is
381  calculated as:

n-1 n
382 S= Z Z sgn(x; — x¢) (15)
k=1 j=k+1

383  where the sign function is defined as:
1 (x-x,>0)
384 sgn(xj—x) =4 0 (x—x,=0) (16)
-1 (x] — X < O)
385  Under the null hypothesis, S approximately follows a normal distribution with mean zero and
386  variance:
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n(n—1)(2n+5)

387 Var(S) =
ar(S) 18 (17)
388  Forn > 10, the standardized test statistic Z is given by:
S—-1
— ($>0)
JJVar(S)
389 Z= 0 (=0 (18)
S+1
— ($<0)
v/ Var($)
390 At a given significance level a, if | Z 1= Z1_q/, the null hypothesis is rejected, indicating a

391 statistically significant trend. A positive Z denotes an increasing trend, while a negative Z indicates
392  adecreasing trend. Specifically, | Z 1> 1.96 and | Z |=> 2.58 correspond to significance levels of
393  95% and 99%, respectively.

394 4.Result

395  4.1. Evaluation and validation of downscaled SM

396 The downscaled SM product (with a 0.05° resolution) preserved the spatial pattern of the
397  original 0.25° dataset, including the dominant northwest-to-southeast moisture gradient, while
398  significantly enhancing the representation of localized hydrological heterogeneity (Fig. 4). For
399  instance, along the 28.9°N latitudinal transect, the downscaled SM data effectively capture the west-
400  to-east fluctuations and exhibit heightened sensitivity to small-scale variations. Furthermore,
401  exhibits a more detailed texture and sharper gradient transitions, particularly in heterogeneous zones
402  like the cropland-forest ecotone, where it provides a more accurate reflection of soil moisture's
403  spatial heterogeneity. As shown in the zoomed-in area of Fig. 4, critical subgrid features that were
404  previously obscured in passive microwave observations are now resolved with a precision of 0.038
405 m¥m’
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The accuracy of the downscaled SM product was rigorously evaluated across nine major river
basins using the correlation coefficient (R), unbiased root mean square error (ubRMSE), and bias
(Fig. 5). The downscaled SM exhibited strong agreement with in-situ observations, with ubRMSE
values ranging from 0.022 to 0.039 m*m?* and R values from 0.777 to 0.919. More than 92% of
validation points were tightly clustered along the 1:1 line, indicating a high level of accuracy in
capturing ground-based SM variability. However, due to the strong spatial heterogeneity of SM in
the study area, a single ground observation site is insufficient to fully represent the true SM
conditions at the 0.05° grid scale. This scale effect leads to deviations of some validation points
from the 1:1 line, particularly in regions with complex vegetation cover and significant topographic

variation.
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419  Fig. 5. Validation of downscaled SM against in situ measurements across nine major river basins.

0.10

420 Scatterplot points are colored by kernel density estimates, with the red solid line indicating linear
421 regression and the black dashed line representing the 1:1 relationship.

422 A comparative analysis was conducted to further evaluate the performance of the downscaled
423 SM product against the original 0.25°-resolution product (PIII) and two benchmark datasets: Zhang
424 etal., (2023)’s global 1 km-resolution SM product (PI) and Meng et al., (2021)’s 0.05°-resolution
425  SM product (PII). The downscaling algorithm significantly enhanced SM accuracy across all land
426  cover types, reducing the ubRMSE by 5.6-43.4% (e.g., from 0.053 to 0.030 m* m™ in shrublands
427  areas) and improving the R by 4.2-50% (p<0.05, paired t-test) compared to PIII. Notably, our
428  product outperformed PII across all seven land cover classes, achieving significant ubRMSE
429  reductions in complex surfaces: urban (11.9%), shrubland (14.3%), grassland (14.3%), and barren
430  (12.8%) regions. Compared to PI, although our product has a coarser resolution (0.05° vs. 1 km), it
431  demonstrated comparable or even superior accuracy in several areas due to regionally optimized
432  parameters that account for China-specific hydroclimatic drivers. This underscores the critical role
433 of localized algorithm calibration in mitigating biases from generic global models. Overall, the
434 validation results indicate that the developed downscaled SM product offers high accuracy and
435  broad applicability across China, supporting its potential for use in fine-scale agricultural drought
436  monitoring.
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437
438 Fig. 6. Accuracy comparison of the downscaled SM product against three benchmark datasets—PI
439 (Zhang et al., 2023), PII (Meng et al., 2021), and PIII (original coarse-resolution product)—across
440 land cover types and river basins. Left: R, Right: ubRMSE (m*® m). Inner labels represent land cover
441 categories (F: Forests, SH: Shrublands, SA: Savannas, G: Grasslands, U: Urban, C: Croplands, B:
442 Barren).
443  4.2. Evaluation of drought index
444 As the primary victims of agricultural drought, crops serve as a direct and effective indicator

445  for evaluating the accuracy of drought monitoring indices (Raza et al., 2019). In this study, the
446  applicability of the SSI for agricultural drought monitoring was assessed by comparing its temporal
447  dynamics with officially reported crop drought-affected areas across representative provinces
448  (including municipalities and autonomous regions) within China’s nine major river basins (Fig. 7).
449  Temporal analysis revealed significant negative correlations between area-averaged SSI and
450  governmental crop drought-affected areas (Pearson’s R=0.015 to 0.277, p<0.05), with years of
451 widespread drought (e.g., 2006, 2008, 2013, 2018, and 2022 in Hubei province) consistently
452  coinciding with SSI minima (SSI<—2.0). These results demonstrate that the SSI derived from
453  downscaled SM data can effectively capture agricultural drought patterns across China.
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455 Fig. 7. Interannual variability of SSI and officially reported crop drought-affected areas (2003—2023) in
456 selected provinces across nine major river basins in China. The subplot labels (a—i) correspond to the
457 following river basins: (a) CRB, (b) PRB, (¢) SWRB, (d) NWRB, (¢) YRB, (f) SLRB, (g) HRB, (h)
458 HRYB, and (i) SERB. Province-level administrative units spanning multiple basins are denoted by
459 combined letters (e.g., abe= overlap of CRB, PRB and YRB).

460  4.3. SSl-based drought characterization

461 Fig. 8 depicts the spatiotemporal evolution of agricultural drought across China from 2003 to
462 2023, quantified through the annual mean SSI and drought-affected cropland area. Nationally
463  aggregated SSI exhibited a “decline-rise-decline” trajectory (Fig. 8a), with a net decrease of 0.26
464 over the study period (p <0.05), signaling progressive drought intensification. Spatially, Sen’s slope
465  estimation combined with M-K trend tests revealed heterogeneous drying patterns (Fig. 8b):
466  significant SSI declines (p <0.1) dominated the YRB, HRB, NWRB, and southwestern part of YRB,
467  peaking at the HRB-YRB-SLRB tri-junction (-0.056 yr ', p < 0.05). Contrastingly, northeastern part
468  of SLRB and the southwestern part of PRB showed SSI increases (p < 0.05), indicating localized
469  moisture recovery. These trends formed distinct spatial gradients—a weakening northwest-to-
470  southeast drying gradient (from -0.124 yr! in arid zones to 0.053 yr in humid coasts) and an
471  intensifying northeast-to-southwest aridity trend aligned with monsoonal boundary shifts. The tri-
472 junction hotspot’s accelerated drying correlated with compounding drivers: The tri-junction
473  hotspot’s accelerated drying is correlated with compounding drivers: significant groundwater
474 depletion (—2.37 mm/yr from 2002 to 2023), substantial irrigation expansion in the region, and
475  warming rates that exceed national averages (Liang et al., 2024). This spatial heterogeneity
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476  underscores the imperative for regionally adaptive drought management strategies under changing

477  hydroclimatic regimes.
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479 Fig. 8. Spatiotemporal evolution of agricultural drought across China from 2003 to 2023. (a) Interannual

480 variation of annual mean SSI in China, (b) Sen’s slope estimation and Mann—Kendall trend test of SSI,

17



https://doi.org/10.5194/egusphere-2025-5122
Preprint. Discussion started: 24 November 2025 EG U
© Author(s) 2025. CC BY 4.0 License. Sp here

481 (c) interannual variations in drought-affected cropland area categorized by severity levels (mild,
482 moderate, severe, extreme), and (d—e) four characteristic stages of drought evolution.

483 The hierarchical structure of drought severity (Fig. 8c) revealed persistent dominance of mild
484 droughts (43% of total affected area), which expanded significantly at 0.677 x 10° kha/yr (p< 0.05),
485  while severe and extreme droughts collectively accounted for 30% but declined slightly at -0.258 x
486 10°* kha/yr (p< 0.05). The proportional contributions of different drought severity categories
487  followed a 4:3:2:1 ratio (mild: moderate: severe: extreme), reflecting a pyramidal drought severity
488  distribution. Drought evolution from 2003 to 2023 progressed through four distinct phases (Figures
489  8d-e): (1) 2003-2006 (drought intensification phase): Droughts were predominantly concentrated
490  in southern China, particularly in the PRB, SERB, and the northern part of the CRB, exhibiting a
491  spatial pattern of higher drought prevalence in the south than in the north, with weaker severity in
492 the west and stronger severity in the east. (2) 2006-2009 (drought outbreak phase): Annual drought-
493  affected areas exceeded 32.8 x10* km?, with severe and extreme droughts accounting for over 26%,
494 mainly concentrated in northern major grain-producing regions such as SLRB, YRB, and HRB. (3)
495  2009-2016 (drought transition phase): Mild drought area fluctuated downward, while moderate and
496  severe drought areas increased by 12% and 9%, respectively. Extreme droughts remained stable at
497  around 4%, and the drought center shifted toward HRYB agricultural core. (4) 2016-2023 (drought
498 intensification phase): All drought categories increased, with mild droughts expanding most rapidly
499  (accounting for ~51%). Compared to the previous phase, the drought center migrated further
500  northward.

501 The intra-annual variation of the SSI across China (Fig. 9a) exhibits a bimodal seasonal pattern,
502  characterized by two distinct drought peaks in spring (March-May) and late autumn to early winter
503  (October—December). Drought intensity tends to escalate progressively throughout these periods.
504  Monthly mean SSI values range from -0.2 to 0.33, with mild drought conditions dominating
505  nationally. SSI values fall below the drought threshold (SSI<0) in seven months, with the lowest
506  values observed in April (-0.193) and December (-0.172), marking the driest periods of the year. In
507  contrast, during June to September, enhanced summer monsoon precipitation contributes to wetter
508  conditions, as reflected by predominantly positive SSI values and markedly reduced drought
509  frequency. The spatio-temporal distribution of drought demonstrates considerable regional
510  heterogeneity (Fig. 9b). From January to June, drought patterns expand from southwest to northeast,
511  while during the second half of the year, the dry zones extend from the YRB-HRB toward the
512 northwest and southeast. The southern part of the NWRB, SWRB, and northern part of the CRB
513  exhibit a seasonal cycle of “winter—spring drought and summer—autumn wetness,” primarily driven
514 by limited winter—spring precipitation and increased evapotranspiration across highland regions
515  (Zhuetal., 2015). The SLRB experiences frequent large-scale drought events during late autumn to
516  early winter and again in late spring to early summer, with May and November showing the most
517  pronounced dryness. The HRYB, HRB, and YRB are characterized by spring drought dominance.
518  In contrast, droughts in the eastern CRB and SERB mainly occur in summer and autumn, with
519  October exhibiting the lowest SSI values of the year, indicating heightened risk of moderate to
520  severe drought events. The PRB is predominantly affected by drought during late autumn and early
521  winter, with a high likelihood of moderate droughts occurring during this transitional period.
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Fig. 9. Intra-annual variability and spatiotemporal evolution of agricultural drought in China (2003—
2023) based on the SSI. (a) Boxplots of intra-annual variation of multi-year mean SSI across China,
(b) Temporal evolution of spatial patterns of agricultural drought in China.

Fig. 10 illustrates the spatial distribution of annual agricultural drought frequency across China
from 2003 to 2023. Approximately 92% of the territory experienced agricultural drought events
during this period, with drought frequencies ranging from 32% to 52%, indicating a high
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529  spatiotemporal prevalence of agricultural droughts in China. The spatial distribution of agricultural
530  droughts exhibits significant heterogeneity, with a general pattern of higher frequency in the
531  northwest and lower frequency in the southeast, aligning closely with the climate gradient where
532  precipitation decreases from southeast to northwest (Xu et al., 2015). High-frequency drought areas
533 are primarily concentrated in the NWRB, HRB, and YRB, where the annual drought occurrence
534  frequency exceeds 48%. In specific regions such as the middle and upper reaches of Ningxia, central
535  and western Inner Mongolia, and northern Shanxi, the frequency can reach up to 75%. Drought
536 frequencies in the SLRB, HRYB, PRB, and SWRB range from 42% to 50% annually. The CRB and
537  SERB exhibit the lowest frequencies, with the central and eastern CRB experiencing drought
538  occurrence rates of approximately 15%. Notably, areas with high drought frequency (>50%) overlap
539  significantly with China’s key agro-pastoral transition zones and ecologically vulnerable regions, a
540  pattern likely linked to anomalies in westerly winds and reduced monsoon precipitation (Fang et al.,
541 2020), highlighting the increased vulnerability of these regions to drought stress.
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543 Fig. 10. Spatiotemporal characteristics of annual agricultural drought frequency in China (2003-2023).

544  5.Discussion and conclusion

545 Agricultural drought directly affects regional agricultural productivity and livelihoods. As a
546  key indicator of agricultural drought, SM plays a critical role in determining monitoring accuracy.
547  Although the temporal resolution of global remote sensing SM datasets continues to improve, they
548  often suffer from spatiotemporal gaps due to factors such as orbital limitations and cloud cover
549  (Albergel et al., 2012; Korpela et al., 2012). Our study addresses these limitations by integrating
550  multi-source SM data with a spatiotemporally adaptive reconstruction framework and machine
551 learning-based downscaling, generating a seamless 0.05° resolution SM product for China from
552 2003 to 2023. The dataset demonstrates significant improvements over conventional products, with
553  a25-59% reduction in ubRMSE and enhanced capacity to resolve subgrid features such as urban
554  and forest edges. Validation against 2,411 in situ stations confirms robust accuracy (R=0.89,
555  ubRMSE = 0.029 m*/m?), particularly in ecologically fragile transition zones where global datasets
556  fail to capture localized moisture gradients.

557 Using the SSI, we identified a bimodal seasonal drought pattern: spring (March-May) and
558  autumn-winter (October—December) peaks, may be driven by monsoon delays in the north and
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559  subtropical high retreat in the south (Xu et al., 2015). In addition, agricultural drought in China has
560  shown a general intensifying trend since 2003, with drought severity generally decreasing from
561  northwest to southeast, and increasing from northeast to southwest. High-frequency drought zones
562  were predominantly clustered in ecologically vulnerable regions, particularly the agro-pastoral
563  ecotone of northern China. Although northwest China has exhibited a “warming and wetting” trend
564  in recent years, this effect is largely confined to northern Xinjiang. In contrast, regions such as
565  southern Xinjiang and Gansu still experience potential evapotranspiration that far exceeds
566  precipitation, resulting in a continued trend toward intensifying drought (Deng et al., 2022). Notably,
567  drought cores have migrated northward since 2003, aligning with monsoon belt shifts and
568 intensified groundwater depletion in the Yellow River Basin and North China Plain (Yang et al.,
569  2015; Chen et al., 2023; Zhou et al., 2023). These findings highlight the urgent need for regionally
570  adaptive drought management strategies, particularly in spring-drought-prone northern plains and
571  ecologically fragile ecotones where groundwater overexploitation exacerbates moisture stress.

572 Although using SSI and generated SM product achieved quantitative mapping from SM to
573  drought severity, and validation based on regional drought-affected areas suggests that the method
574  effectively captures spatial drought characteristics across China. However, the study remains
575  constrained by input parameter quality and static SSI thresholds, particularly in regions with
576  complex terrain and mixed land cover. Future advancements in high-resolution environmental
577  covariates (e.g., evapotranspiration, irrigation maps) could further refine SM estimates and help to
578  develop dynamic drought thresholds.

579
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