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Abstract: Agricultural drought threatens China’s food and ecological security, and accurate spatio-13 

temporal monitoring is key for disaster mitigation. Soil moisture is critical for drought assessment, 14 

but the accuracy of existing remote sensing-based SM products in China remains to be improved. 15 

This study develops a framework that synergistically integrates a spatiotemporally adaptive gap-16 

filling algorithm with a machine learning-based downscaling approach, generating a seamless 0.05∘ 17 

monthly SM dataset for China from 2003 to 2023. The methodology harnesses the complementary 18 

strengths of random forest modeling and spatiotemporal reconstruction techniques to effectively 19 

fuse multi-source satellite observations, achieving dual improvements in SM data accuracy and 20 

spatial coverage. Using this dataset, the standardized soil moisture index was applied to characterize 21 

the spatio-temporal evolution of agricultural drought. Results demonstrate that (1) The downscaled 22 

SM dataset achieves significant improvements in both spatial resolution and accuracy, showing a 23 

2.3–34.4% reduction in ubRMSE and 1.2–52.7% improvement in correlation coefficients compared 24 

to benchmark datasets. (2) Drought characterization based on the downscaled SM dataset and SSI 25 

accurately identified the extent of agricultural drought, showing a significant spatiotemporal 26 

consistency with agricultural disaster area. (3) Agricultural drought intensified significantly across 27 

China during the study period, characterized by northward migration of drought center and spatially 28 

heterogeneous aridification patterns— decreasing severity from northwest to southeast while 29 

increasing from northeast to southwest. High-frequency drought zones were predominantly 30 

clustered in ecologically vulnerable regions, particularly the agro-pastoral ecotone of northern 31 

China. (4) Distinct intra-annual drought dynamics emerged, with a southwest-to-northeast 32 

expansion dominating from January to June, followed by bidirectional propagation from the Yellow 33 

River-Huaihe River Basin (YRB-HRB) to northwestern and southeastern regions from June to 34 

December. This study provides high-accuracy data support for agricultural drought monitoring and 35 

offers scientific insights for developing regional differentiated drought mitigation strategies, which 36 

are of great significance for ensuring national food security. 37 

Keywords: Drought monitoring, Soil moisture, Spatiotemporal analysis, China 38 

1.Introduction 39 

Drought, recognized as one of the most widespread and economically devastating natural disasters 40 

globally, is characterized by its prolonged duration, extensive spatial coverage, and severe impacts on 41 
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agricultural productivity and national economic stability (Yang et al., 2021). China, with its vast 42 

agricultural sector, remains particularly susceptible to recurrent droughts. Annually, approximately 3×10⁷ 43 

hm2 of cropland in China are affected by drought, leading to grain yield losses estimated at 3–5×10¹⁰ kg 44 

per year, which positions drought as one of most impactful natural disasters on agricultural production 45 

(Liu et al., 2021; Wang, 2010). Therefore, accurate monitoring of agricultural drought is essential for 46 

mitigating crop yield reduction and ensuring national food security. 47 

Agricultural drought assessment primarily relies on three categories of indicators: meteorological 48 

indices, soil moisture indices, and crop physiological-ecological indices (Sridhar et al., 2008; Bodner et 49 

al., 2015). Meteorological indices, predominantly derived from precipitation data, are effective 50 

detecting climatic anomalies. However, their poor correlation with actual crop water stress, largely 51 

due to their limited representation of land-atmosphere interactions, restricts their utility for 52 

agricultural drought assessment (Aiguo, 2011). While crop physiological-ecological indices directly 53 

quantify plant water status, their operational implementation is constrained by heavy reliance on 54 

intensive field measurements, posing challenges for generating spatially consistent and temporally 55 

continuous datasets (Hansen and Jones, 2000; White et al., 2012). In contrast, soil moisture (SM) 56 

indices are more directly linked to crop water availability, as root-zone soil water content directly 57 

governs plant water uptake. Therefore, SM is widely recognized as a key variable for quantifying 58 

agricultural drought severity (Dai, 2011). 59 

SM can primarily be estimated through two approaches: in-situ observations and remote sensing 60 

retrievals (Ochsner et al., 2013). While in-situ observations provide high accuracy measurements at 61 

specific sites, their sparse and uneven spatial distribution hinders comprehensive characterization 62 

of regional SM heterogeneity. Remote sensing retrievals have emerged as a dominant methodology 63 

for large-scale SM monitoring, owing to their unparalleled advantages in spatial coverage continuity 64 

and temporal observation persistence. Among various remote sensing modalities, microwave remote 65 

sensing, especially passive microwave techniques, has been widely utilized for acquiring SM data 66 

at both global and regional scales (Ding et al., 2024). This is attributed to their sensitivity to soil 67 

permittivity, all-day and all-weather operational capability, and moderate penetration through 68 

vegetation canopies and soil layers (Konings et al., 2019). For instance, the Advanced Microwave 69 

Scanning Radiometer- Earth Observing System (AMSR-E) generated global SM retrievals from 70 

2002 to 2011 through multi-frequency C/X-band observations (6.9–10.7 GHz) with dual-71 

polarization channels. Its successor, the Advanced Microwave Scanning Radiometer 2 (AMSR2), 72 

launched in 2012, continues to provide similar observations (Imaoka et al., 2010). Concurrently, the 73 

Soil Moisture and Ocean Salinity Mission (SMOS) has delivered continuous L-band (1.4 GHz) 74 

radiometric measurements since 2010, which are particularly valuable for SM estimation due to 75 

their reduced sensitivity to vegetation opacity. More recently, the Soil Moisture Active Passive 76 

(SMAP) mission, launched in 2015, combines L-band passive and active microwave observations 77 

(though the active component failed), further enhancing the quality and resolution of global SM 78 

products. However, passive microwave systems fundamentally detect the weak thermal emission 79 

(brightness temperature) from the land surface (Meng et al., 2024). This inherent characteristic 80 

necessitates large antenna sizes to achieve sufficient signal-to-noise ratio, consequently leading to 81 

observations with coarse spatial resolution (typically ranging from dozens of kilometers). This 82 

coarse resolution severely limits their applicability for agricultural drought monitoring, as fine-scale 83 

or file-scale SM information is crucial for accurate assessments and localized assessments (Piles et 84 

al., 2014). To address this inherent limitation, various spatial downscaling technologies have been 85 
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developed to enhance the spatial resolution of passive microwave SM products, typically to finer 86 

resolutions ranging from 25 to 50 km. These approaches are typically classified into three main 87 

categories: empirical methods, semi-empirical methods, and physical methods (Fuentes et al., 2022; 88 

Song et al., 2024; Zhong et al., 2024). 89 

Empirical downscaling methods primarily rely on observed data and prior knowledge to 90 

establish statistical relationships between SM and scale factors. Common techniques include 91 

polynomial regression, geographically weighted regression (GWR) and spatial interpolation (Yao 92 

et al., 2013; Dong et al., 2020; Mohseni et al., 2023). Although these methods are computationally 93 

efficient and straightforward to implement, their lack of explicit physical constraints and the 94 

subjectivity in selecting or parameterizing the statistical relationships often limit their robustness 95 

and transferability across different regions or conditions. In contrast to empirical methods, semi-96 

empirical approaches attempt to integrate simplified physical principles into empirical frameworks 97 

by incorporating process-based constraints. A prominent example is the Disaggregation based on 98 

Physical and Theoretical Scale Change (DISPATCH) method, which synergizes physical insights 99 

with statistical formulations to enhance interpretability while maintaining operational efficiency 100 

(Malbéteau et al., 2016). Physically based downscaling techniques, compared to empirical and semi-101 

empirical methods, offer a more explicit representation of the interactions between surface variables 102 

and microwave signals. These methods typically involve the assimilation of coarse-resolution SM 103 

data into land surface or hydrological models augmented with high-resolution ancillary inputs 104 

(Merlin et al., 2012). Despite their strong mechanistic fidelity, the accuracy of these models can be 105 

significantly impacted by structural uncertainties and inaccuracies in input parameters (Peng et al., 106 

2017). 107 

Despite advancements in SM downscaling methodologies and the proliferation of global SM 108 

products, their application in agricultural drought monitoring across China remains hindered by 109 

several critical limitations (Liu et al., 2022; Song et al., 2022). Firstly, many downscaling algorithms 110 

are developed with specific surface characteristics or climatic regimes in mind, leading to strong 111 

regional dependencies that restrict their generalizability across China's diverse agro-ecological 112 

landscapes. Secondly, the spatio-temporal continuity of existing downscaled SM products is 113 

frequently compromised by orbital gaps, cloud contamination, and retrieval uncertainties, resulting 114 

in significant data discontinuities that undermine their operational utility. Thirdly, several global or 115 

continental SM datasets exhibit limited accuracy over China, further constraining their reliability 116 

for timely and precise drought monitoring. To address these limitations, we developed a novel 117 

integrative framework that synergizes multi-source satellite observations (AMSR-E/2, SMOS, 118 

MODIS) with in-situ measurements. This framework incorporates a spatiotemporally adaptive gap-119 

filling algorithm to ensure data continuity and a robust machine learning-based downscaling model 120 

to generate seamless 0.05° resolution monthly SM data spanning 2003–2023. We further used 121 

standardized soil moisture indices (SSI) to achieve accurate mapping from SM dynamics to 122 

agricultural drought characterization, and examined the spatiotemporal dynamics of agricultural 123 

drought in China. This research is anticipated to provides crucial scientific support for national 124 

drought risk assessment, inform adaptive agricultural management, and aid in developing effective 125 

drought mitigation strategies for China. 126 

https://doi.org/10.5194/egusphere-2025-5122
Preprint. Discussion started: 24 November 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

2.Materials and methods 127 

2.1. Study area 128 

China, has an area of 9.6×10⁶ km² and is in eastern Asia, encompassing a latitudinal range from 129 

6°19′N to 53°33′N and a longitudinal span from 73°33′E to 135°05′E. Its terrain exhibits a 130 

prominent west-to-east gradient of declining elevation, forming a distinct three-tiered topographic 131 

hierarchy that profoundly influences regional climate and hydrology. Climatically, China 132 

encompasses subtropical monsoonal, temperate continental, and alpine regimes, with precipitation 133 

patterns decreasing systematically from southeast to northwest. Given China’s vast geographical 134 

expanse and topographic complexity, pronounced spatial variations in temperature, precipitation, 135 

and SM exist across its diverse regions. To elucidate the agricultural drought characteristics across 136 

China, the study area was divided into nine river basins. This classification is guided by the spatial 137 

structure of river networks and informed by key geographic and climatic factors, including 138 

topography, precipitation patterns, and regional climate regimes. The delimited basins include the 139 

Song-Liao River Basin (SLRB), the Hai River Basin (HRB), the Yellow River Basin (YRB), the 140 

Huai River Basin (HRYB), the Yangtze River Basin (CRB), the Pearl River Basin (PRB), the 141 

Southeast Rivers Basin (SERB), the Southwest Rivers Basin (SWRB), and the Inland River Basin 142 

(NWRB). The spatial distribution of the nine basins is shown in Fig. 1. 143 

 144 

Fig. 1. Overview of the study area and nine major river basins in China, overlaid with in-situ SM 145 

distribution 146 

2.2. Data 147 

2.2.1. SM data  148 

To generate a continuous monthly SM dataset across China for the period 2002–2023, we 149 

integrated satellite- and ground-based observations. We used Level-3 monthly products from 150 

AMSR-E on-board the Aqua satellite (July 2002–September 2011) and AMSR2 on-board the 151 

GCOM-W1 satellite (July 2012–December 2023). Both datasets have a spatial resolution of 25 km 152 
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and are expressed in volumetric units (m³/m³). To bridge the observational gap between AMSR-E 153 

and AMSR2, we used the SMOS-IC V105 daily product (July 2011–December 2012), which was 154 

aggregated to a monthly scale. This product helps to fill the data gap during the transition period 155 

between the two main satellite datasets.  156 

For validation, we utilized in situ SM measurements obtained from the common application 157 

support platform for land observation satellite, China’s national meteorological stations and China’s 158 

agrometeorological and ecological observation network (January 2003–December 2023). Hourly 0–159 

10 cm depth observations were averaged across the four time points closest to satellite overpasses 160 

to derive monthly values, with outliers excluded through rigorous quality control. 161 

Two widely used reconstructed SM products were adopted as baseline datasets for accuracy 162 

comparison: (1) PI (Zhang et al., 2023): Developed by integrating multiple datasets and machine 163 

learning, this dataset delivers global daily SM data at a 1-km resolution (2000–2020), showing an 164 

unbiased root mean square error (ubRMSE) ranging from 0.033–0.048 m³/m³ with independent SM 165 

networks. (2) PII (Meng et al., 2021): Produced using a reconstruction model-based downscaling 166 

technique that integrates SM data from various passive microwave products, this dataset provides 167 

monthly SM estimates at a 0.25° resolution across China (2002–2018), with an ubRMSE ranging 168 

from 0.036 to 0.048 m³/m³ when compared to in situ measurements. 169 

2.2.2. Auxiliary data 170 

The multi-source geospatial datasets utilized in the SM downscaling model are summarized in 171 

Table 1, with detailed descriptions of data sources and spatiotemporal resolutions. MODIS monthly 172 

products (2003–2023), including land surface temperature (LST), leaf area index (LAI), and 173 

normalized difference vegetation index (NDVI), were obtained from National Aeronautics and 174 

Space Administration at a 0.05° resolution. These vegetation and land surface parameters were 175 

processed by averaging daytime and nighttime observations, removing outliers via first-order 176 

differencing, and interpolating missing values using Savitzky-Golay filtering to ensure temporal 177 

continuity (Kandasamy et al., 2013). Meteorological parameters (2m temperature, total evaporation, 178 

total precipitation, and surface net solar radiation) were obtained from the European Centre for 179 

Medium-Range Weather Forecasts (ECMWF) at a 0.1° spatial resolution and monthly temporal 180 

resolution (2003–2023). Topographic data comprised elevation from the Shuttle Radar Topography 181 

Mission (SRTM) 1 km digital elevation model (DEM), resampled to 0.05°, and slope derived 182 

through a 3×3 neighborhood gradient algorithm. Land cover data is the MODIS Collection 6 global 183 

land cover product. This dataset provides annual land cover maps at 500 m spatial resolution based 184 

on the 17-class International Geosphere Biosphere Program classification scheme. 185 

For validation, provincial-scale agricultural drought indicators (2003–2023) – including crop 186 

disaster areas and crop coverage - were extracted from the China National Statistical Yearbook and 187 

normalized against regional arable land statistics. 188 

Table 1 Overview of the datasets used in this study.  189 

Datsets Satellite 
Spatial 

coverage 

Spatial/tempora

l resolution 
Dates Notes 

AMSR-E L3 Aqua Global 0.25◦,1 monthy  2002 - 2011 SM 

AMSR-2 L3 GCOM-W1 Global 0.25◦,1 monthy  2012 - 2023 SM 

SMOS-IC SMOS Global 0.25◦,1 monthy 2011 - 2012 SM 

MYD11C3 Aqua Global 0.05◦,1 monthy 2003 - 2023 LST 

MYD13C2 Aqua Global 0.05◦,1 monthy 2003 - 2023 NDVI 
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MYD15 Aqua Global 0.05◦,1 monthy 2003 - 2023 LAI 

MCD12Q1 MODIS Global 500 m, yearly 2003 - 2023 Land cover 

ECMWF - Global 0.1◦,1 monthy  2003 - 2023 Auxiliary data 

SRTM - Global Resample 0.05◦ 2003 - 2023 DEM,Slope 

Station - China site data, daily 2003 - 2023 SM 

Validation 

Data 

- 

- 

China 

- 

- 

- 

2003 – 2023 

- 

Agricultural 

drought indicators 

PI  

PII 

- 

- 

Global 

China 

0.1◦, daily  

0.05◦, monthy 

2000 - 2020 

2002 - 2018 

benchmark dataset 

benchmark dataset 

3.Method 190 

Fig. 2 outlines the three-stage methodological framework designed to derive fine-resolution 191 

agricultural drought diagnostics. Stage 1: Gap-filling of passive microwave SM products – A 192 

spatiotemporally adaptive gap-filling algorithm was developed to address data gaps in multi-sensor 193 

passive microwave SM observations (AMSR-E, SMOS, and AMSR2). This algorithm 194 

synergistically couples the enhanced Savitzky-Golay filter for temporal smoothing, GWR for spatial 195 

consistency reconstruction, and least squares regression for fitted interpolation and cross-sensor 196 

calibration, generating a continuous SM dataset across China from 2003 to 2023. Stage 2: Data-197 

driven SM downscaling – A machine learning-based downscaling model was established by 198 

integrating SM-related environmental covariates, including vegetation dynamics, land surface 199 

parameters, meteorological parameters and topographic controls. Through iterative feature selection 200 

and random forest algorithm, the model produced monthly seamless SM datasets at 0.05° spatial 201 

resolution. Stage 3: Agricultural drought mapping – SSI was used to establish robust quantitative 202 

links between SM dynamics and agricultural drought patterns, enabling a systematic analysis of the 203 

spatio-temporal evolution of drought conditions across China during 2003-2023. 204 

 205 
Fig. 2. The overall methodological framework of this study. 206 
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3.1. Construction of spatio-temporally seamless SM Product  207 

3.1.1. Reconstruction of missing values in passive microwave remote sensing data 208 

To reconstruct missing SM pixels by leveraging spatio-temporal information, we implemented 209 

a three-step hybrid approach. First, an enhanced Savitzky-Golay filter and the GWR method were 210 

used to integrate spatio-temporal information for the preliminary reconstruction of missing SM 211 

values. Second, least squares regression was applied to optimize the initial reconstruction, which 212 

effectively minimized inter-sensor biases and recovered SM values. Finally, a harmonized SM 213 

dataset spanning 2003–2023 was constructed by merging AMSR-E, SMOS, and AMSR2 214 

observations, ensuring spatiotemporal continuity across heterogeneous landscapes. 215 

（1）enhanced Savitzky-Golay filtering algorithm 216 

Due to limitations in retrieval algorithms and atmospheric disturbances such as cloud cover, 217 

remotely sensed SM products commonly exhibit spatio-temporal discontinuities. Although monthly 218 

SM composites based on valid observations reduce missing data to some extent, substantial gaps 219 

still exist. The Savitzky-Golay filter, a local polynomial regression technique based on least-squares 220 

fitting within a moving window, has been widely used for reconstructing missing values in time-221 

series data. It fits a high-order polynomial over local windows to smooth the time series and estimate 222 

missing values for the preliminary reconstruction of missing SM data (Chen et al., 2021). However, 223 

traditional Savitzky-Golay filtering suffers from poor noise suppression beyond the cutoff frequency 224 

and generates significant artifacts near data boundaries. To overcome these limitations, we adopted 225 

an enhanced Savitzky-Golay filtering method (Schmid et al., 2022). This improved filter introduces 226 

two key modifications: (i) a window function is used as the fitting weight to enhance high-frequency 227 

noise suppression; and (ii) a convolution kernel based on the sinc function with Gaussian-like 228 

windowing is employed to reduce artifacts near data boundaries. For a given pixel time series 𝑌 229 

with missing SM values, the reconstructed time series 𝑌𝑗
∗ can be derived using formula (1).  230 

𝑌𝑗
∗ =

∑ 𝑊𝑖𝐶𝑖𝑌𝑗+𝑖
𝑚
𝑖=−𝑚

𝑁
(1) 231 

where 𝑊𝑖 denotes the weight of the Gaussian window function, 𝐶𝑖 represents the modified filter 232 

coefficient, 𝑚 is the half-width of the moving window, and 𝑁 is the number of convolution terms, 233 

equal to the full window size (2𝑚 + 1). 234 

（2）GWR model 235 

GWR constructs localized regression models for each observation point based on its 236 

surrounding neighboring values, and has been widely recognized as a robust approach for estimating 237 

missing spatial data (Cao et al., 2021). We adopted the GWR approach to reconstruct missing pixels 238 

once their locations were identified. By incorporating local spatial relationships and neighboring 239 

pixel values into the regression framework, GWR enables the interpolation of missing SM data, 240 

effectively filling gaps in the dataset while preserving the spatial heterogeneity of soil moisture 241 

patterns. The GWR model estimates the missing SM value 𝑦𝑖  at location (𝑢𝑖 , 𝑣𝑖)  using the 242 

following form: 243 

𝑦𝑖 = 𝛽0(𝑢𝑖，𝑣𝑖) +∑𝛽𝑘(𝑢𝑖 , 𝑣𝑖)

𝑝

𝑘=1

𝑥𝑖𝑘 + 𝜀𝑖 (2) 244 

Where 𝑥𝑖𝑘 represents the SM value of the 𝑘𝑡ℎ neighboring pixel within a local spatial window 245 

(15×15 pixels centered on the target), 𝛽0(𝑢𝑖 , 𝑣𝑖) is the local intercept, 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) denotes the local 246 

slope corresponding to the 𝑘𝑡ℎ  neighbor, and 𝜀𝑖  is the residual error. Model parameters are 247 
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estimated using a weighted least squares method: 248 

𝛽(𝑢𝑖，𝑣𝑖) = (𝑋
𝑇𝑊(𝑢𝑖，𝑣𝑖)𝑋)

−1
𝑋𝑇𝑊(𝑢𝑖，𝑣𝑖)𝑌 (3) 249 

Where 𝛽(𝑢𝑖 , 𝑣𝑖) is the vector of locally estimated regression coefficients. 𝑊(𝑢𝑖 , 𝑣𝑖) is the spatial 250 

weighting matrix. 𝑋  and 𝑌  denote the explanatory and response variables within the local 251 

neighborhood. The weight of each neighboring pixel decreases with increasing distance from the 252 

focal cell, reflecting spatial dependence. 253 

An in-depth analysis of SM data revealed that spatially adjacent pixels with similar 254 

meteorological conditions tend to exhibit consistent SM dynamics, allowing for more reliable 255 

estimations based on their collective information (Peng et al., 2017). To ensure higher reconstruction 256 

accuracy, we assessed the environmental similarity of pixels within the window and assigned greater 257 

weights to similar pixels. Through sensitivity tests conducted on selected similar pixels, we found 258 

that setting the parameter 𝑀𝑔 = 3 during calculations yielded more accurate estimations of the SM 259 

values for missing pixels. This optimal value of Mg strikes a balance between incorporating enough 260 

similar pixels to capture the underlying spatial patterns and avoiding the inclusion of too many 261 

dissimilar ones that could introduce noise. Consequently, the weights were determined using 262 

Formulas 4 and 5. 263 

𝐷 = √(𝑢𝑖 − 𝑢𝑘)2 + (𝑣𝑖 − 𝑣𝑘)2 (4) 264 

𝑊𝑘 =

𝑀𝑐

𝐷𝑘

∑
𝑀𝑐

𝐷𝑘
+ ∑

𝑀𝑔

𝐷𝑗
𝑛
𝑗=1

𝑚
𝑘=1

 𝑊𝑗 =

𝑀𝑔

𝐷𝑗

∑
𝑀𝑐

𝐷𝑘
+ ∑

𝑀𝑔

𝐷𝑗
𝑛
𝑗=1

𝑚
𝑘=1

(5) 265 

Where 𝐷 is the Euclidean distance between a neighboring pixel and the missing target. 𝑗 and 𝑘 266 

denote similar and general neighbors within the window. 𝑊𝑗  and 𝑊𝑘  are their corresponding 267 

weights, and 𝑀𝑔 = 3,𝑀𝑐 = 1 are the fixed weighting factors for similar and non-similar neighbors, 268 

respectively. 269 

（3）Optimizing refined reconstruction outcomes of the enhanced Savitzky-Golay Filtering 270 

Algorithm and GWR model  271 

To further improve the accuracy of SM reconstruction, we integrated the spatio-temporal 272 

information derived from the Savitzky-Golay filtering and GWR methods through a weighted least-273 

squares fusion strategy. The final reconstructed SM value 𝑇′ was expressed as a linear combination 274 

of the GWR and Savitzky-Golay derived values: 275 

T′ = α𝑇𝑔 + 𝛽𝑇𝑠 (6) 276 

Where 𝑇′ denotes the integrated SM estimate. 𝑇𝑔 and 𝑇𝑠 are the SM values reconstructed using 277 

the GWR and Savitzky-Golay methods, respectively. and 𝛼  and 𝛽  are the corresponding 278 

weighting coefficients. 279 

To estimate the optimal values of 𝛼 and 𝛽, we selected a subset of valid pixels from each 280 

image. These pixels were interpolated using both GWR and Savitzky-Golay methods. Subsequently, 281 

the least squares method was applied to fit the data obtained from the two methods, yielding the 282 

fitting coefficients (Formula 7). 283 

∆T(α, β) =∑[𝑇𝑖 − 𝑇𝑖
′]2

𝑛

𝑖=1

(7) 284 

where 𝑇𝑖 is the valid SM value at pixel 𝑖, and 𝑇𝑖
′ is the reconstructed value based on the weighted 285 
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combination. The optimal coefficients were derived by minimizing ∆𝑇 using the following partial 286 

derivatives: 287 

𝜕∆𝑇(𝛼, 𝛽)

𝜕𝛽
= −2∑(𝑇𝑖 − 𝛼𝑇𝑔 − 𝛽𝑇𝑘)𝑇𝑔

𝑛

𝑖=1

= 0 (8) 288 

𝜕∆𝑇(𝛼, 𝛽)

𝜕𝛽
= −2∑(𝑇𝑖 − 𝛼𝑇𝑔 − 𝛽𝑇𝑘)𝑇𝑘

𝑛

𝑖=1

= 0 (9) 289 

（4）Discrepancy correction of multi-source SM products 290 

To mitigate inconsistencies among passive microwave SM products from different satellite 291 

missions, we applied a pixel-wise linear regression correction using AMSR-E as the reference 292 

dataset. This approach harmonized SMOS and AMSR2 observations, resulting in a temporally 293 

consistent and spatially continuous SM dataset spanning 2003–2023, which was subsequently used 294 

for downscaling. The corrected SM value 𝑌∗ was calculated as: 295 

𝑌∗ = 𝜇𝑋 + (𝑌 − 𝜇𝑌)𝐶𝑌 (10) 296 

where 𝑋 is the reference dataset (AMSR-E). 𝑌 is the original dataset (SMOS or AMSR2). 𝜇𝑋 297 

and 𝜇𝑌 are the temporal means of 𝑋 and 𝑌, respectively. The scaling factor 𝐶𝑌 is defined as: 298 

𝐶𝑌 = 𝜌𝑋𝑌𝜎𝑋𝜎𝑌 (11) 299 

Here, 𝜎𝑋  and 𝜎𝑌  are the standard deviations of 𝑋  and 𝑌 , respectively, and 𝜌𝑋𝑌  is the Pearson 300 

correlation coefficient between the two datasets. 301 

3.1.2. Downscaling of passive microwave remote sensing data 302 

The temperature-vegetation dryness index (TVDI) serves as a robust proxy for SM 303 

estimation, with demonstrated efficacy in SM retrieval and downscaling applications. Meng 304 

et al. (2021) leveraged the negative correlation between TVDI and SM to develop a spatial 305 

weight decomposition (SWD) model based on TVDI, ultimately constructing a fine -306 

resolution SM dataset for China. However, it is important to note that the relationship between 307 

TVDI and SM is inherently modulated by local climatic and topographic conditions (Meng 308 

et al., 2021). To account for the potential modulating effects of heterogeneous climatic and 309 

environmental covariates, including precipitation regimes, thermal gradients, topographic variations, 310 

vegetation, and insolation patterns, on the TVDI-SM relationship, we implemented a random forest 311 

(RF) algorithm. The RF model was trained using coarse-resolution TVDI observations and 312 

corresponding SM measurements across diverse bioclimatic zones to capture non-linear 313 

interactions between hydroclimatic drivers and SM dynamics. Subsequently, this optimized 314 

model was applied to fine-scale TVDI data integrated with high-resolution climatic and 315 

environmental covariates, enabling the generation of spatially enhanced SM estimates 316 

through feature-based downscaling. 317 

（1）Calculation of the TVDI 318 

TVDI derived from the triangular/trapezoidal feature space between LST and NDVI (Fig. 3), 319 

serves as a robust SM proxy by capturing soil moisture dynamics through the inverse coupling of 320 

thermal and vegetation signals (Meng et al., 2021; Huang et al., 2025). TVDI is mathematically 321 

defined as: 322 

𝑇𝑉𝐷𝐼 =
𝑇𝑠 − (𝑎2 × 𝑁𝐷𝑉𝐼 + 𝑏2)

(𝑎1 × 𝑁𝐷𝑉𝐼 + 𝑏1) − (𝑎2 × 𝑁𝐷𝑉𝐼 + 𝑏2)
(12) 323 
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where 𝑇𝑠  represents pixel-level LST. 𝑎1 , 𝑏1  and 𝑎2 , 𝑏2  denote the dry-edge and wet-edge 324 

regression coefficients, respectively. TVDI values range from 0 to 1, quantitatively reflecting SM 325 

variability across spatial gradients. 326 

 327 

Fig. 3. LST and NDVI feature space diagram 328 

（2）Construction of the RF 329 

RF algorithm, an ensemble learning method grounded in bootstrap aggregation (bagging) and 330 

randomized feature subspace optimization, was implemented to model the non-linear interactions 331 

between SM and its environmental determinants, including TVDI, LAI, precipitation, 2m 332 

temperature, DEM, slope, evaporation, surface net solar radiation, and land cover (Breiman, 2001). 333 

During training, 500 decorrelated decision trees were constructed, each trained on a bootstrapped 334 

subset (80% of coarse-resolution data from 2003–2020) with node splits determined by optimal 335 

partitioning of a random feature subset. Hyperparameter tuning via grid search identified robust 336 

configurations: a minimum of 5 samples per leaf and unlimited tree depth to resolve complex SM-337 

environment couplings (Biau, 2012). The model demonstrated high predictive accuracy, with an 338 

out-of-bag (OOB) 𝑅2of 0.956 and mean absolute error (MAE) of 0.027 m³/m³ on validation data. 339 

Permutation importance analysis identified TVDI, precipitation, surface net solar radiation, LAI, 340 

and land cover as dominant predictors. 341 

For downscaling, the trained RF ingested high-resolution (0.05°) TVDI and environmental 342 

layers, generating fine-scale SM estimates through ensemble averaging. To ensure scale consistency 343 

between training (0.25°) and prediction (0.05°) domains, a multi-resolution feature alignment 344 

strategy was implemented: high-resolution covariates were aggregated to match the coarse training 345 

resolution using spatial averaging prior to model training, while native-resolution data were retained 346 

for prediction. 347 

3.2. Identification and analysis of agricultural drought 348 

（1）mapping of agricultural drought using SSI 349 

SSI is recognized as one of the most effective indicators for assessing agricultural drought (Xu 350 

et al., 2018). To compute the SSI, pixel-wise time series analysis was conducted on the 2003–2023 351 

China SM dataset. Five probability distribution functions—gamma, normal, log-normal, 352 

generalized extreme value, and pearson-III—were systematically evaluated for their fit to SM data 353 

using the Kolmogorov–Smirnov test (Svensson et al., 2017). The results indicated that the normal 354 

distribution provided the best fit for most SM time series across the study area (p > 0.05). The SSI 355 
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was calculated as: 356 

𝑆𝑆𝐼 =
𝑆𝑀 − 𝜇

𝜎
(13) 357 

Where 𝜇 and 𝜎 represent the pixel-specific mean and standard deviation of monthly SM values 358 

over the 2003–2023 baseline period. Following world meteorological organization guide lines and 359 

regional agricultural vulnerability thresholds (Svoboda et al., 2012), drought severity was classified 360 

into five categories (Table 2). 361 

Table 2 SSI-based drought severity classification 362 

SSI Range Drought Category 

SSI > 0 Non dryness 

-1.0 < SSI ≤ 0 Mild dryness 

-1.5 < SSI ≤ -1.0 Moderate dryness 

-2.0 < SSI ≤ -1.5 Severe dryness 

SSI ≤ -2.0 Extreme dryness 

（2）Analysis of drought trends and characteristics 363 

Agricultural drought trends across China were quantified using the non-parametric Sen's slope 364 

estimator and Mann-Kendall (M–K) test, a robust approach for detecting monotonic trends in 365 

climate time series (Han et al., 2023).  366 

(i) Sen's slope estimation 367 

The Sen's slope estimator determines the median rate of change between all pairwise 368 

combinations in a time series, offering resistance to outliers and distribution-free computation. For 369 

a time series of n observations (𝑥1, 𝑥2, … , 𝑥𝑛), the slope is calculated as:  370 

𝑆𝑙𝑜𝑝𝑒 = Median(
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
), ∀1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (14) 371 

Where 𝑥𝑖  and 𝑥𝑗  denote the 𝑖𝑡ℎ and 𝑗𝑡ℎ  observations of the time series, respectively. 372 

𝑀𝑒𝑑𝑖𝑎𝑛 denotes the median function. The estimated slope indicates the average rate of change. A 373 

positive slope suggests an increasing trend, a negative slope indicates a decreasing trend, and a slope 374 

of zero implies no significant trend. 375 

(ii) M–K trend test 376 

The M–K test is a non-parametric method used to detect monotonic trends in time series data, 377 

which does not assume any specific distribution and is insensitive to a few outliers. The null 378 

hypothesis assumes that the observations𝑥1, 𝑥2, … , 𝑥𝑛 are independent and identically distributed, 379 

while the alternative hypothesis posits the existence of a monotonic trend. The test statistic 𝑆 is 380 

calculated as: 381 

𝑆 = ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

(15) 382 

where the sign function is defined as: 383 

sgn(𝑥𝑗 − 𝑥𝑘) = {

   1       ( 𝑥𝑗 − 𝑥𝑘 > 0)

   0      ( 𝑥𝑗 − 𝑥𝑘 = 0)

−1      ( 𝑥𝑗 − 𝑥𝑘 < 0)

(16) 384 

Under the null hypothesis, 𝑆 approximately follows a normal distribution with mean zero and 385 

variance: 386 
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Var(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
(17) 387 

For n > 10, the standardized test statistic 𝑍 is given by: 388 

𝑍 =

{
 
 

 
 
𝑆 − 1

√Var(𝑆)
      (𝑆 > 0)

        0        (𝑆 = 0)
𝑆 + 1

√Var(𝑆)
      (𝑆 < 0)

(18) 389 

At a given significance level 𝛼, if ∣ 𝑍 ∣≥ 𝑍1−𝛼/2, the null hypothesis is rejected, indicating a 390 

statistically significant trend. A positive 𝑍 denotes an increasing trend, while a negative Z indicates 391 

a decreasing trend. Specifically, ∣ 𝑍 ∣≥ 1.96 and ∣ 𝑍 ∣≥ 2.58 correspond to significance levels of 392 

95% and 99%, respectively. 393 

4.Result 394 

4.1. Evaluation and validation of downscaled SM 395 

The downscaled SM product (with a 0.05° resolution) preserved the spatial pattern of the 396 

original 0.25° dataset, including the dominant northwest-to-southeast moisture gradient, while 397 

significantly enhancing the representation of localized hydrological heterogeneity (Fig. 4). For 398 

instance, along the 28.9°N latitudinal transect, the downscaled SM data effectively capture the west-399 

to-east fluctuations and exhibit heightened sensitivity to small-scale variations. Furthermore, 400 

exhibits a more detailed texture and sharper gradient transitions, particularly in heterogeneous zones 401 

like the cropland-forest ecotone, where it provides a more accurate reflection of soil moisture's 402 

spatial heterogeneity. As shown in the zoomed-in area of Fig. 4, critical subgrid features that were 403 

previously obscured in passive microwave observations are now resolved with a precision of 0.038 404 

m³/m³. 405 
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 406 

Fig. 4. Comparison of original images and downscaled SM images. 407 

The accuracy of the downscaled SM product was rigorously evaluated across nine major river 408 

basins using the correlation coefficient (R), unbiased root mean square error (ubRMSE), and bias 409 

(Fig. 5). The downscaled SM exhibited strong agreement with in-situ observations, with ubRMSE 410 

values ranging from 0.022 to 0.039 m³/m³ and R values from 0.777 to 0.919. More than 92% of 411 

validation points were tightly clustered along the 1:1 line, indicating a high level of accuracy in 412 

capturing ground-based SM variability. However, due to the strong spatial heterogeneity of SM in 413 

the study area, a single ground observation site is insufficient to fully represent the true SM 414 

conditions at the 0.05° grid scale. This scale effect leads to deviations of some validation points 415 

from the 1:1 line, particularly in regions with complex vegetation cover and significant topographic 416 

variation. 417 
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 418 
Fig. 5. Validation of downscaled SM against in situ measurements across nine major river basins. 419 

Scatterplot points are colored by kernel density estimates, with the red solid line indicating linear 420 

regression and the black dashed line representing the 1:1 relationship. 421 

A comparative analysis was conducted to further evaluate the performance of the downscaled 422 

SM product against the original 0.25°-resolution product (PIII) and two benchmark datasets: Zhang 423 

et al., (2023)’s global 1 km-resolution SM product (PI) and Meng et al., (2021)’s 0.05°-resolution 424 

SM product (PII). The downscaling algorithm significantly enhanced SM accuracy across all land 425 

cover types, reducing the ubRMSE by 5.6–43.4% (e.g., from 0.053 to 0.030 m³ m⁻³ in shrublands 426 

areas) and improving the R by 4.2–50% (p<0.05, paired t-test) compared to PIII. Notably, our 427 

product outperformed PII across all seven land cover classes, achieving significant ubRMSE 428 

reductions in complex surfaces: urban (11.9%), shrubland (14.3%), grassland (14.3%), and barren 429 

(12.8%) regions. Compared to PI, although our product has a coarser resolution (0.05° vs. 1 km), it 430 

demonstrated comparable or even superior accuracy in several areas due to regionally optimized 431 

parameters that account for China-specific hydroclimatic drivers. This underscores the critical role 432 

of localized algorithm calibration in mitigating biases from generic global models. Overall, the 433 

validation results indicate that the developed downscaled SM product offers high accuracy and 434 

broad applicability across China, supporting its potential for use in fine-scale agricultural drought 435 

monitoring. 436 
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437 
Fig. 6. Accuracy comparison of the downscaled SM product against three benchmark datasets—PI 438 

(Zhang et al., 2023), PII (Meng et al., 2021), and PIII (original coarse-resolution product)—across 439 

land cover types and river basins. Left: R, Right: ubRMSE (m³ m⁻³). Inner labels represent land cover 440 

categories (F: Forests, SH: Shrublands, SA: Savannas, G: Grasslands, U: Urban, C: Croplands, B: 441 

Barren).  442 

4.2. Evaluation of drought index  443 

As the primary victims of agricultural drought, crops serve as a direct and effective indicator 444 

for evaluating the accuracy of drought monitoring indices (Raza et al., 2019). In this study, the 445 

applicability of the SSI for agricultural drought monitoring was assessed by comparing its temporal 446 

dynamics with officially reported crop drought-affected areas across representative provinces 447 

(including municipalities and autonomous regions) within China’s nine major river basins (Fig. 7). 448 

Temporal analysis revealed significant negative correlations between area-averaged SSI and 449 

governmental crop drought-affected areas (Pearson’s R=0.015 to 0.277, p<0.05), with years of 450 

widespread drought (e.g., 2006, 2008, 2013, 2018, and 2022 in Hubei province) consistently 451 

coinciding with SSI minima (SSI<−2.0). These results demonstrate that the SSI derived from 452 

downscaled SM data can effectively capture agricultural drought patterns across China. 453 
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 454 

Fig. 7. Interannual variability of SSI and officially reported crop drought-affected areas (2003–2023) in 455 

selected provinces across nine major river basins in China. The subplot labels (a–i) correspond to the 456 

following river basins: (a) CRB, (b) PRB, (c) SWRB, (d) NWRB, (e) YRB, (f) SLRB, (g) HRB, (h) 457 

HRYB, and (i) SERB. Province-level administrative units spanning multiple basins are denoted by 458 

combined letters (e.g., abe= overlap of CRB, PRB and YRB). 459 

4.3. SSI-based drought characterization 460 

Fig. 8 depicts the spatiotemporal evolution of agricultural drought across China from 2003 to 461 

2023, quantified through the annual mean SSI and drought-affected cropland area. Nationally 462 

aggregated SSI exhibited a “decline-rise-decline” trajectory (Fig. 8a), with a net decrease of 0.26 463 

over the study period (p < 0.05), signaling progressive drought intensification. Spatially, Sen’s slope 464 

estimation combined with M-K trend tests revealed heterogeneous drying patterns (Fig. 8b): 465 

significant SSI declines (p < 0.1) dominated the YRB, HRB, NWRB, and southwestern part of YRB, 466 

peaking at the HRB-YRB-SLRB tri-junction (-0.056 yr⁻¹, p < 0.05). Contrastingly, northeastern part 467 

of SLRB and the southwestern part of PRB showed SSI increases (p < 0.05), indicating localized 468 

moisture recovery. These trends formed distinct spatial gradients—a weakening northwest-to-469 

southeast drying gradient (from -0.124 yr⁻¹ in arid zones to 0.053 yr⁻¹ in humid coasts) and an 470 

intensifying northeast-to-southwest aridity trend aligned with monsoonal boundary shifts. The tri-471 

junction hotspot’s accelerated drying correlated with compounding drivers: The tri-junction 472 

hotspot’s accelerated drying is correlated with compounding drivers: significant groundwater 473 

depletion (−2.37 mm/yr from 2002 to 2023), substantial irrigation expansion in the region, and 474 

warming rates that exceed national averages (Liang et al., 2024). This spatial heterogeneity 475 
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underscores the imperative for regionally adaptive drought management strategies under changing 476 

hydroclimatic regimes. 477 

 478 

Fig. 8. Spatiotemporal evolution of agricultural drought across China from 2003 to 2023. (a) Interannual 479 

variation of annual mean SSI in China, (b) Sen’s slope estimation and Mann–Kendall trend test of SSI, 480 
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(c) interannual variations in drought-affected cropland area categorized by severity levels (mild, 481 

moderate, severe, extreme), and (d–e) four characteristic stages of drought evolution. 482 

The hierarchical structure of drought severity (Fig. 8c) revealed persistent dominance of mild 483 

droughts (43% of total affected area), which expanded significantly at 0.677 × 10³ kha/yr (p< 0.05), 484 

while severe and extreme droughts collectively accounted for 30% but declined slightly at -0.258 × 485 

10³ kha/yr (p< 0.05). The proportional contributions of different drought severity categories 486 

followed a 4:3:2:1 ratio (mild: moderate: severe: extreme), reflecting a pyramidal drought severity 487 

distribution. Drought evolution from 2003 to 2023 progressed through four distinct phases (Figures 488 

8d–e): (1) 2003–2006 (drought intensification phase): Droughts were predominantly concentrated 489 

in southern China, particularly in the PRB, SERB, and the northern part of the CRB, exhibiting a 490 

spatial pattern of higher drought prevalence in the south than in the north, with weaker severity in 491 

the west and stronger severity in the east. (2) 2006–2009 (drought outbreak phase): Annual drought-492 

affected areas exceeded 32.8 ×10⁴ km², with severe and extreme droughts accounting for over 26%, 493 

mainly concentrated in northern major grain-producing regions such as SLRB, YRB, and HRB. (3) 494 

2009–2016 (drought transition phase): Mild drought area fluctuated downward, while moderate and 495 

severe drought areas increased by 12% and 9%, respectively. Extreme droughts remained stable at 496 

around 4%, and the drought center shifted toward HRYB agricultural core. (4) 2016–2023 (drought 497 

intensification phase): All drought categories increased, with mild droughts expanding most rapidly 498 

(accounting for ~51%). Compared to the previous phase, the drought center migrated further 499 

northward. 500 

The intra-annual variation of the SSI across China (Fig. 9a) exhibits a bimodal seasonal pattern, 501 

characterized by two distinct drought peaks in spring (March–May) and late autumn to early winter 502 

(October–December). Drought intensity tends to escalate progressively throughout these periods. 503 

Monthly mean SSI values range from -0.2 to 0.33, with mild drought conditions dominating 504 

nationally. SSI values fall below the drought threshold (SSI<0) in seven months, with the lowest 505 

values observed in April (-0.193) and December (-0.172), marking the driest periods of the year. In 506 

contrast, during June to September, enhanced summer monsoon precipitation contributes to wetter 507 

conditions, as reflected by predominantly positive SSI values and markedly reduced drought 508 

frequency. The spatio–temporal distribution of drought demonstrates considerable regional 509 

heterogeneity (Fig. 9b). From January to June, drought patterns expand from southwest to northeast, 510 

while during the second half of the year, the dry zones extend from the YRB–HRB toward the 511 

northwest and southeast. The southern part of the NWRB, SWRB, and northern part of the CRB 512 

exhibit a seasonal cycle of “winter–spring drought and summer–autumn wetness,” primarily driven 513 

by limited winter–spring precipitation and increased evapotranspiration across highland regions 514 

(Zhu et al., 2015). The SLRB experiences frequent large-scale drought events during late autumn to 515 

early winter and again in late spring to early summer, with May and November showing the most 516 

pronounced dryness. The HRYB, HRB, and YRB are characterized by spring drought dominance. 517 

In contrast, droughts in the eastern CRB and SERB mainly occur in summer and autumn, with 518 

October exhibiting the lowest SSI values of the year, indicating heightened risk of moderate to 519 

severe drought events. The PRB is predominantly affected by drought during late autumn and early 520 

winter, with a high likelihood of moderate droughts occurring during this transitional period. 521 
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 522 
Fig. 9. Intra-annual variability and spatiotemporal evolution of agricultural drought in China (2003–523 

2023) based on the SSI. (a) Boxplots of intra-annual variation of multi-year mean SSI across China, 524 

(b) Temporal evolution of spatial patterns of agricultural drought in China. 525 

Fig. 10 illustrates the spatial distribution of annual agricultural drought frequency across China 526 

from 2003 to 2023. Approximately 92% of the territory experienced agricultural drought events 527 

during this period, with drought frequencies ranging from 32% to 52%, indicating a high 528 
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spatiotemporal prevalence of agricultural droughts in China. The spatial distribution of agricultural 529 

droughts exhibits significant heterogeneity, with a general pattern of higher frequency in the 530 

northwest and lower frequency in the southeast, aligning closely with the climate gradient where 531 

precipitation decreases from southeast to northwest (Xu et al., 2015). High-frequency drought areas 532 

are primarily concentrated in the NWRB, HRB, and YRB, where the annual drought occurrence 533 

frequency exceeds 48%. In specific regions such as the middle and upper reaches of Ningxia, central 534 

and western Inner Mongolia, and northern Shanxi, the frequency can reach up to 75%. Drought 535 

frequencies in the SLRB, HRYB, PRB, and SWRB range from 42% to 50% annually. The CRB and 536 

SERB exhibit the lowest frequencies, with the central and eastern CRB experiencing drought 537 

occurrence rates of approximately 15%. Notably, areas with high drought frequency (>50%) overlap 538 

significantly with China’s key agro-pastoral transition zones and ecologically vulnerable regions, a 539 

pattern likely linked to anomalies in westerly winds and reduced monsoon precipitation (Fang et al., 540 

2020), highlighting the increased vulnerability of these regions to drought stress. 541 

 542 

Fig. 10. Spatiotemporal characteristics of annual agricultural drought frequency in China (2003-2023).  543 

5.Discussion and conclusion 544 

Agricultural drought directly affects regional agricultural productivity and livelihoods. As a 545 

key indicator of agricultural drought, SM plays a critical role in determining monitoring accuracy. 546 

Although the temporal resolution of global remote sensing SM datasets continues to improve, they 547 

often suffer from spatiotemporal gaps due to factors such as orbital limitations and cloud cover 548 

(Albergel et al., 2012; Korpela et al., 2012). Our study addresses these limitations by integrating 549 

multi-source SM data with a spatiotemporally adaptive reconstruction framework and machine 550 

learning-based downscaling, generating a seamless 0.05° resolution SM product for China from 551 

2003 to 2023. The dataset demonstrates significant improvements over conventional products, with 552 

a 25–59% reduction in ubRMSE and enhanced capacity to resolve subgrid features such as urban 553 

and forest edges. Validation against 2,411 in situ stations confirms robust accuracy (R=0.89, 554 

ubRMSE = 0.029 m³/m³), particularly in ecologically fragile transition zones where global datasets 555 

fail to capture localized moisture gradients. 556 

Using the SSI, we identified a bimodal seasonal drought pattern: spring (March–May) and 557 

autumn-winter (October–December) peaks, may be driven by monsoon delays in the north and 558 
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subtropical high retreat in the south (Xu et al., 2015). In addition, agricultural drought in China has 559 

shown a general intensifying trend since 2003, with drought severity generally decreasing from 560 

northwest to southeast, and increasing from northeast to southwest. High-frequency drought zones 561 

were predominantly clustered in ecologically vulnerable regions, particularly the agro-pastoral 562 

ecotone of northern China. Although northwest China has exhibited a “warming and wetting” trend 563 

in recent years, this effect is largely confined to northern Xinjiang. In contrast, regions such as 564 

southern Xinjiang and Gansu still experience potential evapotranspiration that far exceeds 565 

precipitation, resulting in a continued trend toward intensifying drought (Deng et al., 2022). Notably, 566 

drought cores have migrated northward since 2003, aligning with monsoon belt shifts and 567 

intensified groundwater depletion in the Yellow River Basin and North China Plain (Yang et al., 568 

2015; Chen et al., 2023; Zhou et al., 2023). These findings highlight the urgent need for regionally 569 

adaptive drought management strategies, particularly in spring-drought-prone northern plains and 570 

ecologically fragile ecotones where groundwater overexploitation exacerbates moisture stress. 571 

Although using SSI and generated SM product achieved quantitative mapping from SM to 572 

drought severity, and validation based on regional drought-affected areas suggests that the method 573 

effectively captures spatial drought characteristics across China. However, the study remains 574 

constrained by input parameter quality and static SSI thresholds, particularly in regions with 575 

complex terrain and mixed land cover. Future advancements in high-resolution environmental 576 

covariates (e.g., evapotranspiration, irrigation maps) could further refine SM estimates and help to 577 

develop dynamic drought thresholds. 578 

  579 
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