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Abstract. Indonesian peatlands store vast amounts of carbon that are highly vulnerable to fire during El Nifio-driven droughts.
When ignited, peats release large quantities of greenhouse gases and other species with significant environmental impacts,
including hydrogen cyanide (HCN), a sensitive tracer of smouldering combustion. In this work, we use satellite retrievals from
the Infrared Atmospheric Sounding Interferometer (IASI), TOMCAT atmospheric model simulations, hydrological informa-
tion, and fire activity observations to evaluate the factors driving trace gas emissions during the 2015, 2019, and 2023 El Nifio
events.

The 2015 El Nifio produced large burdens of HCN and CO unprecedented in the satellite observational era, driven by ex-
ceptionally low soil moisture, depressed groundwater levels, and deep burn depths. In contrast, the 2019 and 2023 events
exhibited markedly weaker emissions despite similar Oceanic Nifio Index (ONI) anomalies, reflecting more favourable hy-
drological conditions. Comparisons of the satellite trace gas observations with simulations of the TOMCAT model show that
burned-area-based inventories such as GFED substantially overestimate emissions from peat fires in 2015, while a new peat-
specific database, FINNpeatSM, better represents fire season timing and burn depth by incorporating soil moisture constraints.
From satellite-derived HCN:CO enhancement ratios, we provide new emission factors for HCN that offer benchmarks for new
emission inventories.

Our results show that peat fire intensity and emissions are driven not only by EI Nifio strength but also by local hydrolog-
ical conditions such as soil water content and precipitation. Integrating hydrological indicators with satellite observations of

atmospheric composition is therefore critical for improving fire emission inventories.

1 Introduction

During the South-East Asian dry season, El Nifio generally has a strong influence on the conditions driving widespread fires.
Fires are commonly used across the region for land clearing to manage fields and prepare the soil for the growing season.
However, much of the land in Kalimantan and Sumatra, Indonesia, is underlain by tropical peat soils that have been extensively

drained using a network of canals. Dry conditions and elevated temperatures, typical of the dry season, are particularly exac-
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erbated in the Indonesian environment during El Nifio, making man-made fires more difficult to control (Parker et al., 2016).
Under these conditions, vegetation fires can ignite the underlying carbon-rich peat soils, causing wildfires that are extremely
difficult to extinguish and that can burn for weeks.

Indonesian peatlands occupy about 55% of the tropical peatland carbon reservoir (Dargie et al., 2017; Page and Hooijer,
2016). They store extremely large amounts of partially decayed organic matter, and release substantial amounts of pyrogenic
trace gas species and particulate matter into the atmosphere when burned. The carbon stored can be emitted in the form of trace
gases such as carbon dioxide (CO3), carbon monoxide (CO) and hydrogen cyanide (HCN), the latter also badly affecting the
air quality across South-East Asia. In particular, during El Nifio years strong peaks in global HCN have been observed (Park
et al., 2021; Rosanka et al., 2021), suggesting that it is a good atmospheric tracer for peat fire (Pumphrey et al., 2018; Sheese
et al., 2017). Monitoring HCN emissions is therefore important in understanding severe peatland fires, and for understanding
global carbon accounting.

Peatlands are particularly vulnerable to smouldering fires, which are characterised by slow, low-temperature, flameless
combustion. Peat fires typically develop in three stages (Usup et al., 2004). In the first, surface peat is ignited due to a surface
fire event. In the second stage a smouldering front burns laterally and downward into the surface (up to 20 cm), and in the
third the smouldering extends into deeper peat layers below 20 cm in depth. It is the latter smouldering stages in which HCN
is primarily released. Ultimately, it is the peat soil moisture, in particular the ground water level (GWL), that determines the
ignition and spread of these smouldering fires.

During the period September to November 2015, under the influence of a strong El Nifio, Indonesia experienced the most
severe wildfire season of the last three decades. The intensity of the 2015-2016 El Nifio event (ONI: +2.6 deg C ) was compa-
rable to the 1997-1998 El Nifio (ONI: +2.4 deg C)(Anthony G. Bamston and Goldenberg, 1997; Huang et al., 2017), one of
the strongest recorded (Field et al., 2016; Santoso et al., 2017). The peatland fires lasted for about three months during which
more than 2.6 Mha of forest, peat and other land types were burned, and an equivalent of 5% of the global 2015 fossil fuel
CO4 emissions were released (Vetrita and Cochrane, 2020). In the period 1997-2016, fires in equatorial Asia and particularly
Indonesia produced about 8% of the global fire carbon emissions (van der Werf et al., 2017).

The 2023-2024 El Nifio period is currently the second strongest event of this century (ONI: 2.0 deg C), falling just behind
that of 2015-2016. However, as will be shown, there is a marked difference in the behaviour of the fire plumes and the amount of
HCN released. While previous studies have documented the role of El Nifio in intensifying Indonesian fire activity (Field et al.,
2016; Whitburn et al., 2017; Nurdiati et al., 2021), large uncertainties remain in quantifying trace gas emissions from peatland
combustion, particularly for hydrogen cyanide (HCN), a key tracer of peat fires. Existing fire inventories, such as Global
Fire Emissions Database (GFED), rely heavily on burned-area estimates that are poorly suited to capturing underground peat
burning and thus tend to misrepresent both the timing and magnitude of emissions. In this paper, we systematically compare
multiple El Nifio events to evaluate the influence of large-scale climate forcing and local hydrological parameters on peat
fire dynamics. We provide new satellite-based constraints on HCN emission factors, evaluate the performance of the GFED
emission inventory, introduce a new database based on the method developed for FINNpeatSM (Kiely et al., 2019), and assess

how variations in soil moisture and groundwater level influence interannual differences in wildfire dynamics and emissions.
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The paper is structured as follows. Section 2 describes the main datasets and models used in this study. In Section 3.1, we in-
vestigate HCN emissions during the 2015 Indonesian fire season using total columns retrieved from the University of Leicester
IASI Retrieval Scheme (ULIRS) (Moore et al., in Preparation), and compare with recent TOMCAT model simulations (Bruno
et al., 2022, 2023). In this section, we also propose a new estimate of HCN emission factors by calculating the enhancement
ratio between HCN and CO, ERgc N /CO- Section 3.2 discusses the differences between the 2015, 2019, and 2023 fire seasons
and explores their underlying causes, focusing on soil moisture and precipitation as the principal hydrological drivers of fire
activity, using the FINNpeatSM approach (Kiely et al., 2019). Finally, Section 4 synthesizes the main findings of this work and

highlights the implications of hydrological controls for peatland fire dynamics and trace gas emissions.

2 Data
2.1 Atmospheric CO and HCN data
2.1.1 TASI

IASI is a hyperspectral sounder onboard the three polar-orbiting MetOp satellites, launched in 2006 (IASI-A, now decommis-
sioned), 2012 (IASI-B), and 2018 (IASI-C) jointly by CNES (Centre National d’Etudes Spatiales, French agency) and EU-
METSAT (European Organisation for the Exploitation of Meteorological Satellites). The main objective of IASI is to provide a
continuous and long-term collection of measurements to support meteorology, namely temperature and humidity tropospheric
profiles with high vertical resolution and precision, but it has also been used to monitor both the environment and climate on a
global scale through observations of atmospheric composition (Clerbaux et al., 2009; Hilton et al., 2012).

IASI measures the spectrally resolved thermal infrared radiation emitted by the Earth and the atmosphere system at the top
of the atmosphere (TOA). Due to its high spectral resolution and spectral sampling, IASI is able to measure a large number of
trace gases, including some species observed only sporadically in the measured spectra (Clerbaux et al., 2009; Clarisse et al.,
2011). These species include 10 gases with clear spectral signatures that are always present in the satellite measurements, COa,
N>O, CFC-11, CFC-12, OCS, H50, CHy, O3, CO and HNOj3 (Clarisse et al., 2011; Clerbaux et al., 2009) and 14 reactive
trace gases. Some of these reactive gases are the typical products of biomass burning, such as HCN, which has been assessed
in previous IASI studies, and is retrieved using the absorption band centered at 712 cm™! (v, band) (Coheur et al., 2009;
De Longueville et al., 2021; Duflot et al., 2015, 2013).

The sensitivity of IASI retrievals near the surface is limited and exhibits a strong dependence on thermal contrast (with large
differences between daytime and nighttime), which constrains the amount of vertical information that can be obtained. For
CO, the averaging kernels indicate two distinct vertical contributions: one from the lower troposphere, peaking on average at
about 5 km, and another from the upper troposphere, near 10 km. In contrast, HCN retrievals are primarily sensitive to the mid
to upper troposphere, with peak sensitivity between 9 and 12 km. The concentrations of HCN and CO during the 2015, 2019
and 2023 fire seasons were retrieved using the University of Leicester IASI Retrieval Scheme (ULIRS). A comprehensive

description of the retrieval methodology for both CO and HCN, along with their validation, is provided in Moore et al. (in
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Preparation). In essence, the ULIRS retrieves atmospheric trace gas partial and total column information from IASI top-of-
atmosphere radiances. To do this, the scheme incorporates an optimal estimation method (Rodgers, 2000) to constrain the
inversion with a priori information about the variables to be retrieved, in this case HCN, alongside HoO, CO- and temperature
(profile and surface). For CO, a single global average a priori profile was constructed with ACE v3.6 data (Bernath et al., 2021)
covering 2004 to 2018 for the stratospheric profile and one-sigma uncertainty (above 15 km) and merged with the troposphere
(below 15 km) using TOMCAT model data over the 2006 to 2015 period. For HCN, the a priori profile was constructed from
INTEX-B aircraft information (Singh et al., 2009) in the troposphere and ACE v4 data (Boone et al., 2020) in the stratosphere

over polluted scenes. A loose constraint on the HCN a priori uncertainty of 300% was assumed.
2.1.2 TOMCAT

The TOMCAT 3-D chemical transport model (CTM) is a global offline Eulerian model widely used for both tropospheric
and stratospheric chemistry studies. Originally developed as two separate models TOMCAT and SLIMCAT (Chipperfield
et al., 1993), the unified model (Chipperfield, 2006; Monks et al., 2017) has since been applied in numerous studies (Chipper-
field et al., 2018; Pope et al., 2020; Bruno et al., 2022). The model’s meteorological forcings — humidity, temperature, and
wind fields — are driven by ERA-Interim reanalysis data from the European Centre for Medium-Range Weather Forecasts
(ECMWE), provided at a 6-hour temporal resolution (Berrisford et al., 2011; Dee et al., 2011). These meteorological variables
are linearly interpolated to match the temporal resolution and spatial grid of the model. Surface emissions from both natural and
anthropogenic sources are incorporated at their original resolution and subsequently re-gridded to align with the model’s spatial
configuration. Hydrogen cyanide (HCN) emissions are derived from several key datasets: anthropogenic and oceanic emissions
are sourced from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016); biogenic emissions are
taken from a fixed annual dataset provided by the Chemistry-Climate Model Initiative (CCMI) (Morgenstern et al., 2017); and
biomass burning emissions are obtained from the Global Fire Emissions Database Version 4 (GFED4) (Randerson et al., 2017).
A complete description of the tracer version of TOMCAT adapted to simulate global atmospheric HCN distributions has been
extensively described in Bruno et al. (2022) and Bruno et al. (2023), and evaluated against independent measurements from

ACE-FTS. In this work, we compare TOMCAT outputs with IASI observations.
2.2 Precipitation data

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a NASA precipitation product developed under the joint
NASA-JAXA Global Precipitation Measurement (GPM) satellite mission. It provides global surface precipitation estimates at
0.1° spatial and 30-minute temporal resolution from June 2000 onward, using data from a constellation of passive microwave
sensors, intercalibrated against data from the Tropical Rainfall Measuring Mission (TRMM; 2000-2014) and the GPM Core
Observatory (2014—present). IMERG data covers the majority of the Earth’s surface and supports a range of applications
through three latency products: Early (~4 h), Late (~14 h), and Final (~4 months) (Pradhan et al., 2022).
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This study uses the IMERG Final Run daily product (Huffman et al., 2024), derived by averaging valid half-hourly rates and
scaling to 24 hours, which reduces the dry biases present in earlier versions. In particular, the data used here cover the period
2014-2023 over Indonesia.

2.3 Soil moisture data
2.3.1 SMAP

The Soil Moisture Active Passive (SMAP) mission, launched by NASA in 2015, is designed to provide global measurements
of surface soil moisture and freeze-thaw conditions every 2—3 days (Entekhabi et al., 2014). While the radar instrument ceased
operation shortly after launch, the radiometer continues to function reliably, enabling the generation of global soil moisture
maps. SMAP data support a better understanding of the Earth’s water, energy, and carbon cycles by quantifying the amount
of liquid water in the topsoil layer and distinguishing between frozen and unfrozen ground. These observations are essential
for improving weather forecasting, climate modeling, and environmental monitoring by capturing temporal changes in soil
moisture that influence land-atmosphere interactions and broader ecological processes.

Recent studies have further expanded the scientific utility of SMAP data. Nayak et al. (2025) demonstrated that SMAP-
derived surface soil moisture variability is a reliable predictor of subsurface water dynamics. Fang et al. (2024) validated
downscaled SMAP products at 1-km resolution using long-term in situ data, confirming their accuracy across heterogeneous
landscapes. Additionally, Cho et al. (2024) improved SMAP’s performance in dense vegetation regions by calibrating retrieval
algorithms to reduce bias. Ma et al. (2024) also enhanced SMAP’s global utility by integrating the data with ASCAT ob-
servations through machine learning techniques, resulting in higher resolution and more temporally consistent soil moisture

estimates.
2.3.2 SWI

The operational SWI is produced by the Copernicus Land Service from the surface soil moisture (SSM) measured by the
ASCAT scatterometer onboard the MetOp satellites and from Sentinel-1 C-band SAR. The SWI quantifies from these obser-
vations the moisture content of the soil with a spatial resolution of 0.1°. It is a dimensionless index ranging from 0 (dry) to
1 (saturated relative to local climatology), at eight different depths as a function of the characteristic timelength T (1, 5, 10,
15, 20, 40, 60 and 100 days), a parameter expressed in units of time but proportional to the depth of the layer, as described in
Bauer-Marschallinger et al. (2018).

Differently from other products such as SMAP, the SWI is more an indicator of the percentage of relative wetness than an
absolute soil water content, and it is not limited only to the surface soil moisture being able to evaluate water availability at

depths typical of the plant roots.
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2.4 Fire data
2.4.1 GFED emission database

The Global Fire Emissions Database version 4 (GFED4) quantifies biomass burning emissions by coupling satellite-derived
burned area (MODIS), active fire detections, and biogeochemical models (van der Werf et al., 2017). The GFED framework
estimates dry matter (DM) consumption as a function of fuel load, combustion completeness, and fire activity across different
biomes on a monthly 0.25° global grid. The trace gas emissions are derived by applying biome-specific emission factors derived
from field and lab measurements to the DM consumption (Akagi et al., 2011). The spatial distribution of the DM burned is then
determined by using satellite observations of BA in combination with biogeochemical modelling. Cloud cover and a limited
knowledge of the biome distribution and emission factors over Indonesia and other peat-dominated regions can cause frequent
errors in estimating fire emissions. Another limitation of the approach used to define GFED is its dependence on information
about peat consumption by fires — such as the rate, extent, and depth of peat burned — which cannot be easily determined

from satellite data (Bruno, 2024).
2.4.2 FINNpeatSM emission database

FINNpeatSM (Fire Inventory from NCAR (FINNv1.5) New peat with Soil Moisture) (Kiely et al., 2019) is a bespoke regional
dataset for peat fire emissions in Indonesia. FINNpeatSM uses Fire Inventory from NCAR (FINNv1.5) (Wiedinmyer et al.,
2011) for fire detections of above ground vegetation fires. FINNv1.5 combines active fire detections from the Moderate Res-
olution Imaging Spectroradiometer (MODIS), biomass burned and emission factors (EFs) to provide daily fire emissions at
1-km resolution (Wiedinmyer et al., 2011). However, FINNv1.5 only includes emissions from the combustion of above-ground
vegetation. Therefore, it does not include emissions from combustion of peat. Kiely et al. (2019) added the emissions from
the combustion of peat across Indonesia, to create FINNpeatSM. Details on the method can be found in Kiely et al. (2019).
In summary, to add emissions from peat combustion they use a 2-step process. First, they use a peatland distribution map to
identify where a fire occurred on peatland. For each fire occurring on peatland they add additional emissions from the peat

burning using Eq 1:

E,=BAxBD x px EF, (D

where E is the emissions of a species (s) from an individual fire that occurred on peatland, BA is the burned area and BD
is the burn depth, p is the peat density and EF; is the emissons factor of a species (s).

The second step of the method was to scale burn depth relative to soil moisture (from the ESA CCI Soil Moisture Product
New Version Release (v04.4): ESA CCI SMv04.4). This step accounts for burn depth increasing as peat dries out and the water
table decreases. In FINNpeatSM burn depth is assumed to increase linearly between a minimum of 5 cm to a maximum of 37
cm. Kiely et al. (2019) used soil moisture from ESA CCI SMv04.4, which provided soil moisture retrievals up to 2018. To
extend the FINNpeatSM dataset to 2023, Graham et al. (2024) updated the method to use the SMAP level 4 product. In the
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Level 4 dataset, SMAP measurements of soil moisture in the top 5 cm of the soil column are combined with estimates from
a land-surface model. This provides soil moisture in the top 1 m of the soil column. The SMAP is both spatially (9 km) and
temporally (3-hourly) complete, the 3-hourly data were aggregated to generate daily-mean values. Daily-mean SMAP values
are used to linearly scale the burn depth between a minimum soil moisture of 0.5 m*m~2 (5 cm burn depth) and 0.1 m®m—3
(37 cm burn depth). In this study, we use this version of FINNpeatSM to explore changes in fire burn depth and emissions

between 2015, 2019 and 2023.
2.4.3 VIIRS VNP14IMG Fire Product

The Visible Infrared Imaging Radiometer Suite (VIIRS) active fire product (VNP14IMG) provides the latitude, longitude,
time, and a confidence flag for a fire detection pixel. The VNP14IMG product was developed from a MODIS thermal anomaly
algorithm which was able to detect fires at a 1 km spatial resolution. VIIRS fire products are provided at 375 m, a much higher
spatial resolution compared to MODIS, and therefore VIIRS is able to detect small wildfires that MODIS is insensitive to.

Only nominal and high confidence fires during nighttime were included in this work.
3 Results
3.1 HCN emissions during the 2015 Indonesian fire season

3.1.1 Satellite observations of HCN in 2015

IASTI satellite observations are used to estimate the amount of HCN emitted from the Indonesian region during the 2015 wildfire
season; the plume of HCN emitted during the wildfire season is clearly visible in the right panel of Figure 1. In Section 3.2,
we compare these observations with those made during the more recent 2019 and 2023 burning seasons, which also occurred

during El Nifio years.
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Figure 1. IASI global distribution of HCN total column (molecules cm™?) as retrieved by ULIRS for (a, left) 1 November 2015 during
daytime and (b, right) the November 2015 monthly mean regridded on a 0.25° x 0.25° grid.
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According to the new peatland fire stages classification — stage 1 surface fire, stage 2 shallow peatland fire (depth < 20
cm) and stage 3 deep peatland fire (depth > 20 cm) — proposed by Hayasaka et al. (2020), the Indonesian fires of 2015 were
classified as stage 2 for the second half of August and stage 3 from early September to the end of October. This is broadly
consistent with the averaged total column of the IASI HCN observations seen in Figure 2, where the highest HCN total columns
are observed in September and October. The HCN total columns peak in late October / early November, consistent with the
work of Nechita-Banda et al. (2018) on CO emissions from the same peat fires. Their results indicate a sudden increase in CO

emissions for the latter half of October 2015.
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Figure 2. Comparison of the IASI measured HCN averaged total column time series (molecules cm™2) (black line), and HCN TOMCAT
model run using (i) monthly emissions from GFED v4.1 (blue line) and (ii) GFED v4.1 emissions with September values scaled to 25%
(orange line). The errors are defined as the standard deviation of the averaged total columns over Indonesia within the region 12°S-7°N and

90°E-127°E.

During neutral conditions, Indonesia is situated under one of the rising branches of the Walker circulation, linked to high
rainfall. However, during El Nifo, the circulation shifts eastwards and the air over Indonesia tends to sink, resulting in below
average rainfall, higher surface pressure, and dryness. A plot of vertical winds at 0° latitude (Indonesia spans 95°E-140°E
longitude) derived from ERAS for October 2015 (Figure 3) demonstrates this; the air mass over Indonesia is primarily de-
scending. At the end of October / beginning of November, the circulation pattern suddenly changes to one in which the air is
predominantly being uplifted. This is clearly observed in the top panels of Figure 3, which shows the monthly mean ERAS
vertical wind vectors averaged along the equator for October 2015 and November 2015. The end result is that in late October,

HCN from the peat fires is more readily uplifted to higher altitudes, coinciding with the region of the atmosphere where the
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TASI sensitivity is greatest. In addition to the increased emissions at the end of October, this contributes to the plume appearing
most prominent in the first days of November 2015.

The end of October 2015 also coincides with the onset of increased precipitation and an increase in soil moisture. Figure 4a
shows that Indonesian deep soil moisture (SWI at the lowest layer corresponding to the characteristic timelength T=100,
described in Section 2.3.2) for August - October 2015 was at its lowest level over the last decade, with a minimum at the end of
October. The choice of the parameter T=100, the lowest layer of SWI, allows us to evaluate the water availability at the plant
root depth. This strongly suggests that the GWL during the 2015 El Nino season was at a lower level than in any other year
over the last decade. Precipitation for the same period was at the lower end of typical values for the given months as shown in

Figure 4b using IMERG data.
3.1.2 Evaluation of 2015 Indonesian HCN emissions using TOMCAT model simulations

In order to estimate the HCN emissions from the 2015 Indonesian peat fires, retrieved HCN total columns from IASI are
compared with outputs of a tracer version of the TOMCAT 3D CTM.

This version of the model makes use of the best-fitting ocean uptake scheme defined in Bruno et al. (2023), the Li et al.
(2000) fluxes reduced by 75% and the reaction rates proposed by Kleinbohl et al. (2006) for HCN oxidation by OH radicals
and O(!D). Outputs for 2015 were simulated on a horizontal 2.8° x 2.8° (T42 Gaussian) grid on 60 terrain-following vertical
levels (surface to ~60 km) for HCN. In order to compare the model output (T_HCN) with the IASI daily measurements over
a short time period, the model was sampled daily and adapted for use with the monthly GFED v4.1 inputs for HCN biomass
burning emissions. The TOMCAT model reads the emissions as monthly means, which are then interpolated in time so that the
emissions vary smoothly during the model run.

TOMCAT total columns were constructed from the raw output using the approach proposed by Deeter (2002), in which
the model profiles are interpolated onto the ULIRS retrieval grid and smoothed by applying the ULIRS averaging kernels as
aooth = 2o+ A2 o ar — Ta), Where T, is the a priori profile, A the retrieval averaging kernel matrix, and 5% /o ap
the model profile interpolated onto the retrieval grid.

Figure 2 compares the averaged total column time series of HCN, calculated over Indonesia in the regional box [12°S-7°N,
90°E-127°E] for both IASI measurements (black line) and the TOMCAT model outputs smoothed using the IASI averaging
kernels (blue line). The T_HCN model run does not compare very well with the IASI measurements, showing a large overes-
timation of the HCN amount during the period between September and November 2015. In particular, the large peak observed
for T_HCN during the last week of September is completely absent from the IASI measurements. The left panel of Figure 6
shows the HCN total column distribution on 2 November 2015 produced from T_HCN. The HCN amount produced is globally
overestimated compared with the IASI measurements reported in Figure 1, in particular over the latitude band between 20°
N and 40° S. The discrepancy observed between the HCN TOMCAT model and IASI measurements is seemingly caused by
the HCN emissions used to drive the model, shown in Figure 5, which combine GFED v4.1 (the main component), CMIP6

and CCMI as described in Bruno et al. (2023). These emissions indicate an anomalously large peak of more than 4 x 10'!
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Figure 3. Monthly mean ERA5 vertical wind vectors (m s~ ') averaged along the equator for (a) October 2015, (b) November 2015, (c)
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10



https://doi.org/10.5194/egusphere-2025-5109
Preprint. Discussion started: 12 November 2025 EG U
© Author(s) 2025. CC BY 4.0 License. Sp here

[o)]
[8)]

1 1 1 1 1
—2014 —2015—2016 —2017 —2018 2019 2020 2021 2022 —2023

100 [%]
o
|

w w A A~ U U1 O
ul 651

o

N
U © U1 O

o
T
|

Averaged Soil Water Index T

= =N
o wv
T
|

1 1 1 1 1
Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01
Time 2015

w
o

T T T T
—2014 —2015—2016 —2017 —2018 2019 2020 2021 2022 —2023

N
w
T
|

N
o
T
1

=
u

Daily precipitation [mm]
(=]
o

0
Jan 01 Nov 01
i 2015

Figure 4. (a, top) Averaged Soil Water Index (SWI) T=100, over Indonesia in the period 2014-2023. (b, bottom) Daily accumulated precip-
itation (combined microwave-IR) averaged over Indonesia estimate from the Integrated Multi-satellitE Retrievals for GPM (IMERG) in the

period 2014-2023.

2

molecules cm~2 s~1 in September 2015. This value is more than double the October emissions, during which the largest HCN

concentrations were observed over Indonesia during the 2015 wildfire season.
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Figure 5. Monthly average HCN 2015 emissions (molecules cm ™2 s+—1) based on GFED v4.1 used in the T_HCN TOMCAT model

experiment (blue line) compared with the scaled emissions used in the T_HCNy .25 gmiss experiment (red dashed line).

In order to seek better agreement between model and observations, we performed a number of model sensitivity runs. These
suggested that the most sensitive component for improving the model simulations was the September GFED HCN emissions.
For this reason, a new model run was performed (T_HCNj 25gmiss) in which the September 2015 emissions were reduced
by 75%. The orange line in Figure 2 indicates the averaged total column (smoothed by the TAST HCN averaging kernels)
over Indonesia for the T_HCNg 25 gmiss model run, showing a substantial reduction in HCN concentration during September
and October and reaching a very good agreement with the IASI measurements. However, the background HCN values, e.g.
in December, are underestimated in the model, possibly due to neglect of additional sources. The global HCN total column
distribution modelled on 2 November 2015, as shown in the bottom right panel of Figure 6, shows a significantly improved
agreement with the IASI measured HCN total columns in Figure 1.

The study of CO emissions from the 2015 Indonesian wildfire season by Nechita-Banda et al. (2018) found that GFED is not
good at reproducing emissions from large peat fires. GFED estimates monthly fire emissions from satellite-observed burned
area and temporally disaggregates them within each month using fire radiative power as a proxy for combustion intensity and
timing. For peat-dominated fires, burned area is more sensitive to the initial burning stages and less sensitive to peat burning

that occurs underground. Our work supports this conclusion with respect to emissions of HCN from peat fires.
3.1.3 Enhancement ratios and emission factors

The Indonesian peatland fires from 2015 present an opportunity to estimate the HCN wildfire emission factors from satellite

data. The fires burned for several months over a limited area, with the prevailing wind conditions resulting in the emitted
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Figure 6. Global distribution of HCN total column (molecules cm™2) on 2 November 2015 produced from (a, top left) T_HCN and (b, top
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plumes being predominantly transported over the Indian Ocean. The relatively long lifetimes of HCN and CO, of the order
of 2-5 months, allow us to take advantage of satellite measurements over the ocean, where surface emissivity is reasonably
homogeneous, and where the polluted air has been uplifted to higher altitudes, corresponding to the maximum sensitivity of
IASI to HCN and CO perturbations. Changes in thermal heating over land between day and night cause a change in vertical
sensitivity of IASI to HCN and CO. The effect over the oceans is much smaller due to the larger heat capacity of water. As
such, in this work we use an average from both IASI daytime and night time measurements to maximise coverage and reduce
the random uncertainty of the results.

The emission factor (EFx) is a quantity defined as the mass of a trace gas (X) emitted per kilogram of biomass burned (g
kg! dry matter). In order to derive EFy, it is first necessary to derive a related parameter called the enhancement ratio (ER)
which can be determined directly from satellite measurements. The ERycen/co is defined as a ratio of the emitted number of

molecules of HCN over the emitted number of molecules of CO (Goode et al., 2000; Whitburn et al., 2017),

[HON]smoke - [HCN] background

E = 2
Rucnyco [COlsmoke — [CO)packground ”
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CO is chosen as the reference gas in this work as it has a similar lifetime to HCN and is emitted from similar sources. The
excellent daily coverage of IASI allows a daily estimation of ERyenyco to be performed. We have chosen the region 12°S-
7°N, 90°E-127°E, located downwind of the Indonesian emissions from Sumatra and Kalimantan; only data with a correlation
coefficient greater than 0.3 are included in our analysis. There is no clear trend in the ER across the September 2015 to
December 2015 period (Figure 7), although there is some variability with lower ER in early September, where the correlation
between HCN and CO measurements is less than 0.4. The phase of fire is a key factor in the emission of pyrogenic species.
HCN and CO emissions are generally higher during the smouldering phase of fire (lower FRP) with smouldering peat fire
emission factors being approximately 10 times those of flaming savanna fires (Hu et al., 2018). Peat fires generate weakly
buoyant smoke plumes (Hu et al., 2019) that generally accumulate close to the ground, although the emissions can migrate
great distances via the prevailing winds. The lower ER in early September may be due to the fact that the fires were only
recently ignited and high HCN (and CO) levels were closer to the ground. TASI is more sensitive to near surface CO than HCN,
so HCN is likely underestimated at that time. Throughout October, the HCN:CO relationship shows correlation coefficients
greater than 0.4. By early November, the fire activity ended abruptly, but the correlation remains greater than 0.3 throughout
most of November, until the HCN levels drop below the sensitivity of the IASI instrument.

It is estimated that 90% of fire emissions from the late 2015 fire events were dominated by emissions from peat soils
(Whitburn et al., 2017), with the remaining 10% from tropical forest. Using a range of ERs derived for differing correlation
coefficients, we are able to estimate HCN emission factors, EFgcnyco, from the derived ERpgenyco. Since we are investigating
a region close to the emissions, and are not influenced by transport from other regions, the two parameters are related by the

equation

MMycn
EF =F ————— X EFco.
HCON Ryonyco x Moo < Eleo (3)

The quantities MMycn (27.0253 g/mol) and MMco (28.01 g/mol) are the molar masses of HCN and CO, respectively. There
are a number of datasets of EF¢o for peat over Indonesia (Table 1). Stockwell et al. (2016) measured EF¢q in situ (291£49 g
kg~1), noting that their measurements were solely from smouldering combustion. Huijnen et al. (2016) also measured EFco
in situ (255439), but noted a few smoke measurements involved occasional contributions from small clumps of ignited dry
vegetation, which may account for the smaller value of EFco. More recently, Yokelson et al. (2022) revisited Kalimantan in
2019, during El Nino conditions, to sample fires burning only peat and measured a 50% larger EFco compared to the Stockwell
et al. (2016) work in a similar region. Both Christian et al. (2003) and Stockwell et al. (2016) took samples from Sumatra and
Kalimantan respectively and burned the samples in the lab, both deriving significantly lower EFco values. The final source
is from a meta-analyses study by Rodriguez Vasquez et al. (2021) who use the data from the in situ and laboratory studies
previously listed to derive an updated EF g based on methodological differences in measurements and weighted to account for

different sample sizes.
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Table 1. Emission factors, EFpon, in g kg’1 dry Matter derived from the calculated ER ¢ n/co and various CO EFs from the literature.

EF ¢ is presented for increasing correlation coefficients of HCN:CO total column measurements over the box [12°S-7°N, 90°E-127°E].

Measurement EFco (g kg’1 EFucn 1 | EFgen 1 | EFgen 1 | EFgen T
Author study area

type DM) >0.5 >0.6 >0.7 >0.8
Yokelson et al. (2022) Kalimantan In situ 315449 1.66+0.76 | 1.87+£0.80 | 2.414+0.80 | 2.50+£0.55
Rodriguez Vasquez et al.
2021) N/A Meta-analyses | 258.68+15.34 1.3340.50 | 1.5040.52 | 1.954+0.47 | 2.04+0.26
Stockwell et al. (2016) Kalimantan In situ 291449 1.54+0.72 | 1.73+£0.76 | 2.23+0.77 | 2.324+0.54
Huijnen et al. (2016)
2016 Kalimantan In situ 255439 1.354£0.61 | 1.514+0.64 | 1.95+0.64 | 2.03+0.44
Stockwell et al. (2014) Kalimantan Laboratory 233+72 1.2940.74 | 1.4440.80 | 1.83+0.86 | 1.8740.69
Christian et al. (2003) Sumatra Laboratory 210.3 1.06+0.34 | 1.204+0.35 | 1.56+0.29 | 1.66+0.11

Examining the relationship between HCN and CO total column amounts in Figure 7, the correlation coefficient between the
two species varies between 0.3 and 0.8 over most of the September to November 2015 period. Generally the lower correlation
coefficients are associated with lower ER values. The effect on estimating EFycn by including only measured data exceeding
a chosen correlation coefficient threshold is shown in Table 1. The highest EFycn values are derived where the correlation
coefficient exceeds 0.8, ranging between 1.66 and 2.32 g kg~! depending on which value is used for EFcg. Where the cor-
relation coefficient HCN:CO is greater than 0.5, we see that the EFycn estimates decrease, ranging between 1.06 and 1.54 g
kgfl. Both ends of the estimates are lower than the (surface) in situ and lab-based estimates of EFycn. We know that the IASI
HCN sensitivity is in the upper troposphere between 8 and 12 km, with very low sensitivity to high concentrations below 4 km.
Field et al. (2016) show that the MLS CO at 215 hPa (~12 km) increased steadily through September with a rapid increase
to CO exceeding 400 ppbv at the end of October. The highest correlation HCN:CO in our results is during this late October
period, where we see enhanced vertical uplift of both gases and therefore increased sensitivity to the HCN emissions. Before

mid-October, we likely underestimate the HCN amounts as plumes are closer to the surface.
3.2 Comparison of the 2015 Indonesian fire season with the 2019 and 2023

According to the ONI, the 2015 EI Nifio event was one of the strongest in the satellite era. ONI is the de-facto standard used
by NOAA for classifying El Nifio events. Defined as a running 3-month mean sea-surface-temperature anomaly for the Nifio
3.4 region (5°N-5°S, 120° -170°W), El Nifio events are defined as 5 consecutive overlapping 3-month periods above +0.5°.
Figure 9 shows a plot of ONI as a function of time since 1990. It indicates that the recent 2023 burning season in Indonesia,
also occurring during an El Nifio event, peaked at the third strongest ONI value since 1990, behind only the 1997 and 2015
events. The 2019 event was comparatively weak.

In order to compare fire activity in Indonesia during the last three El Nifio events, in late 2015, 2019 and 2023, we use the

375 m resolution fire product (VNP14IMG) measured by the VIIRS sensor on the Suomi-National Polar-Orbiting Partnership
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Figure 7. Daily HCN enhancement ratios (ER) relative to CO calculated from the slope of the linear regression of HCN against CO total
columns between 1 September and 1 December 2015, over the Indian Ocean (12°S-7°N, 90°E-127°E). The error bars correspond to the

standard errors on the regression slope. Any data with a correlation coefficient <0.3 for the slope have been excluded.

(S-NPP) satellite. This product provides information on fire geolocation (latitude, longitude) with a confidence flag; here we
use only information scenes with nominal and high confidence flags. The VNP14IMG product is a development of the MODIS
thermal anomaly algorithm and several studies have now shown (Schroeder et al., 2014; Zhang et al., 2017) that it is capable
of detecting small fires which MODIS does not have the sensitivity to measure. In this study, we selected the VNP14IMG fire
product across the whole 2012 to 2023 period and look at the total fire activity across all of the Indonesian islands. Cumulative
monthly fire radiative power over Indonesia is plotted in Figure 11, and indicates that even during a notably strong El Nino
phase, the fire activity in 2023 was almost eight times less than in 2015. Specifically in 2023 the fire activity was below the
seasonal 2012-2023 average across the whole July-December period. For 2019, we observe significant fires in mid-September
and a comparable increase in fire power to 2015 between early September and late September. From late September 2019, the
fire activity abruptly ends, whereas 2015 maintains a steady increase in fire cumulative power until an abrupt end in fire activity
in late October 2015.

We can use the ULIRS HCN to further investigate the emissions from the Indonesian peat fires. Figure 8 represents a 3-day
simple moving average total burden HCN (in Gg) for the three El Nino years. The total mass was calculated over the region
12°S-7°N, 90°E-127°E, and shows the highest values are towards the end of October 2015. Comparing all three years used
in this study, we see the highest HCN values across the September to November period always occur in 2015. The HCN
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concentrations increase in early September 2015 and are shown to be coincident with an increase in fire activity during the
same period (Figure 11), rapidly exceeding 500 Gg by 25 September. After this period we see the largest increase in HCN
between 22 October and 30 October, to approximately 600 Gg of HCN, peaking at 1125 Gg on 29 October. This increase can
also be linked to increasing fire power over that period, although we note that the increase in fire power is also conducive to
extra lofting of the elevated HCN to altitudes where the IASI instrument is more sensitive to HCN changes (i.e. the upper
troposphere). After 1 November, concentrations decrease for the remainder of 2015. For 2019, the pattern in early September
mirrors that in 2015 with a sudden increase of 0.24 Gg of HCN between 3 September and 26 September. After that, HCN
concentrations decrease back to the 0.3 baseline by 9 October and stay at these lower levels for the rest of 2019. In 2023, we

observe no significant enhancements in HCN across the August to December period, relative to the 300 Gg baseline.

1500

1000

HCN burden [Gg]

500

0 | | | ]
Aug Sep Oct Nov Dec

Figure 8. Daily Infrared Atmospheric Sounding Interferometer (IASI) derived HCN burden (Gg) between the 1 August and 31 December
for three years: 2015 (blue line), 2019 (yellow line), and 2023 (red line). This is calculated for the region 12°S-7°N, 90°E-127°E.

Comparing the circulation patterns across the equator in October 2015 and 2023 in Figure 3, it is clear that the regimes are
quite different, with the descending air over Indonesia in 2015 replaced by more neutral conditions in October 2023. These
conditions are less conducive to prolonged dry periods, which would allow peat fires to establish if left unchecked. Over the
western Pacific Ocean itself, October 2023 showed much less wide-scale descent of air compared to 2015, suggesting that the
Walker circulation did not weaken significantly in late 2023. The circulation patterns across the Eastern Indian Ocean (60°E-
110°E) in October 2015 and October 2019 are remarkably consistent. Over Indonesia itself (100°E-120°E) the vertical winds
exhibit very different behaviour between 2015 and 2019, with 2019 conditions more conductive to convection and increased

rainfall, which would likely suppress fire activity.
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Figure 4b indicates that the precipitation levels in August to October for the El Nino years 2015, 2019 and 2023 were very
similar. However, Figure 4a demonstrates that the SWI in the lowest soil layer towards the end of 2019 and 2023 was quite
typical of values over the last decade, unlike 2015 which was significantly drier. This is consistent with previous work showing
that peat moisture, in particular the GWL, is a major factor in determining the ignition and spread of peat fires (Hayasaka et al.,

2020).
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Figure 9. Time series from 1990-2023 of ONI index, with warm (red shaded area) and cold (blue shaded area) periods based on a threshold
of +0.5° C.
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Figure 10. Comparison of the IASI measured CO averaged total column time series for August-December 2015 (blue line), 2019 (yellow
line) and 2023 (red line). The errors are defined as the standard deviation of the total column in the box and the averaged total columns are

calculated over Indonesia in a box [12°S-7°N, 90°E-127°E].
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Figure 11. Total cumulative monthly fire radiative power (MW) over Indonesia measured by VIIRS. The fire activity in 2023 (red line) is
almost eight times smaller than in 2015 (blue line), and falls below the seasonal long-term (2012-2023) mean (black dotted line).

3.2.1 HCN emission database fusing the FINNpeatSM method

To explore the drivers of differences in HCN retrievals between 2015, 2019 and 2023 we examine fire detections (from VI-
IRS fire hotpots) and Soil Moisture Active Passive Data (SMAP, ONeill et al. (2021)) over Indonesia peatlands. Using the
FINNpeatSM method (Kiely et al., 2019), we can combine these datasets to estimate the burn depth of fires in 2015, 2019 and
2023.

Daily VIIRS temperature hotspots are only used if there is a medium or high confidence in the retrieval (Wiedinmyer et
al., 2023) and if the fire occurred on peatland in Indonesia. For each retained fire detection, the nearest-neighbour daily mean
soil moisture pixel (from SMAP) is determined. The associated soil moisture from an individual fire detection can be used to
estimate the burn depth, and emissions, of the fire. The emissions in FINNpeatSM are linearly related to burn depth, so that the
deeper a fire burns the higher the emissions.

First, we consider daily mean soil moisture from SMAP across all Indonesian, Kalimantan, and Sumatra peatlands for 2015,
2019 and 2023 (Figure 12). We consider Kalimantan and Sumatra peatlands in addition to all Indonesian peatlands since these
regions dominate fire emissions. In 2015 62% of total emissions were from Kalimantan and 33% were from Sumatra (Kiely
et al., 2019). Soil moisture is shown for 1 June to 31 December, with the dry season (1 August to 31 October) shaded in grey,
since the dry season is when fires are most likely to occur. Across Indonesia and both Kalimantan and Sumatra soil moisture
in 2015, 2019 and 2023 were similar from June-July (0.58-0.61 m3 m~3). However, from July to August, soil moisture across

all regions in 2015 and 2019 begins to decrease rapidly (from 0.52-0.55 m3 m~3 to 0.46-0.48 m® m—3), while in 2023 soil
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moisture remains high (0.59 to 0.54 m® m—2). From August to mid-September soil moisture continues to decrease across
Indonesia, driven by reductions in soil moisture in Kalimantan in 2015 and 2019 (Indonesia from 0.46-0.48 to 0.36-0.39 m?
m~2 and Kalimatan from 0.39-0.44 to 0.27-0.29 m® m~3). In contrast, over the same period in 2023, soil moisture remains
high across Indonesia (decreasing from 0.54 to 0.50 m? m~3), driven by high soil moisture in Sumatra peatlands. From mid-
September to mid-October soil moisture continues to decrease in 2015 (from 0.39 to 0.33 m3® m~2), while in 2019 there is an
abrupt increase in soil moisture (from 0.36 to 0.47 m® m—3), closer to the 2023 values (from 0.50 to 0.54 m® m~3). Overall,
soil moisture is lowest throughout the dry season in 2015 (1 August to 31 October mean of 0.40 m® m~3), while in 2019 soil
moisture is very low at the start of the dry season but then increases in the late dry season (1 August to 31 October mean of
0.43 m® m~3). In contrast, soil moisture in 2023 is the highest of the 3 years (1 August to 31 October mean of 0.52 m*® m~—3),
in agreement with what was observed in SWI data (Figure 4a).

The collocated daily mean soil moisture and daily total number of fire hotspots (from VIIRS) for the same time period (1
June to 31 December 2015, 2019 and 2023) is shown in Figure 13. This clearly indicates that 2015 had the highest number
of fire hotspots (>40 collocated pixels with 1,000-10,000 fire hotspots) occurring in areas where soil moisture was low (0.15-
0.35 m® m—3). However, in 2019, there are fewer fire pixels with a high number of hotspots (24 pixels with 1,000-10,000 fire
hotspots) and they generally had higher soil moisture (0.25-0.31 m® m~3). In 2023, there were both fewer pixels with a high
number of fire hotspots (peaking at 100-1,000 fire hotspots), and the soil moisture where fire hotspots occurred was higher
(0.21-0.4 m® m™3).

The soil moisture at each fire location can be used to calculate peat burn depth of the fire, using the method developed by
Kiely et al. (2019). Figure 14 indicates the burn depth of fires, and the date they occurred. As shown in Figure 13, 2015 has the
highest number of fires (up to 25,000 fires) that occur in low soil moisture areas (0.3 m). Figure 14 indicates that these fires
burn deep into the peat below (0.25-0.3 m) and occur between September and mid-October 2015 (in line with Figure 12). In
contrast, in 2019, there are fewer fires (0-15000), the burn depth is shallower (0-0.25 m), and the fires that burn the deepest
occur earlier in the dry season (mid-September) when soil moisture is higher than 2015 (Figure 12). In 2023, far fewer fires
(0-5000 fires) burn deep into the peat below (0.05-0.25 m) and deep burning occurs in mid-September to early-October, in line
with increased soil moisture in 2023 (Figure 12).

The accumulated daily burn depth of all Indonesian peatland fires from 1 June to 31 December is shown in Figure 15. This
plot accounts for both the number of fire hotspots and the burn depth of individual fire hotspots. At the start of the dry season
(August to mid-September) the accumulated burn depth in 2015 and 2019 is similar (500-1000 m), compared with <100 m in
2023. This is likely because soil moisture at the start of the dry season (August to mid-September) is similar in both years,
and both years have a similar number of fire hotspots at this time. However, from mid-September, 2015 and 2019 deviate.
Accumulated burn depth remains high in October 2015, whereas it substantially decreases in 2019. This is likely driven by the
large decrease in both fire hotspots and peatland soil moisture in 2019, compared with 2015 where the number of fire hotspots

remains high and the peatland soil moisture remains low.
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Figure 12. Timeseries of daily mean SMAP soil moisture (m® m~?) for all Indonesian peatlands, Kalimantan peatlands and Sumatra peat-

lands for 2015 (blue), 2019 (yellow) and 2023 (red) for the period 1 June to 31 December in years 2015, 2019 and 2023.

As illustrated in Figure 16, the time series of accumulated daily burn depth, along with the averaged total column of HCN

and CO, exhibit similar temporal patterns, a progressive increase from August through October, reaching a peak in late October,

and subsequently declining sharply in November.

A cross-correlation analysis between the accumulated daily burn depth and the total column concentrations of CO and HCN

provides insights into the temporal dynamics of plume transport. As shown in Figure 17, both HCN and CO exhibit maximum
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Figure 13. Daily Indonesian peatland fire count (from VIIRS) and collocated daily soil moisture (m*® m~2) for the period 1 June to 31

December in years 2015 (blue triangles), 2019 (yellow stars) and 2023 (red circles).

positive correlations with the burn depth at non-zero lag times, indicating a delay between fire activity at the surface and
the appearance of enhanced trace gas signals at the altitudes most sensitive to the TASI instrument. Specifically, the cross-
correlation peaks at a lag of approximately 10 days for both species, suggesting that this is the typical timescale required for
emissions from peatland fires to be transported and mixed into the mid- to upper-tropospheric layers, where IAST’s sensitivity
to HCN and CO is greatest.

The cross-correlation function (XCF) for HCN (black line) and CO (orange line) displays a broadly similar temporal struc-
ture, with both curves rising steadily from negative lag values, peaking near +10 days, and subsequently declining into negative
correlation at higher lag values. The slightly larger peak for CO may reflect differences in vertical transport dynamics or sen-
sitivity profiles, given that CO exhibits dual sensitivity in both the lower and upper troposphere, whereas HCN is primarily
sensitive to the mid-troposphere (~10-12 km) (Moore et al., in Preparation). These results support the interpretation that the
observed trace gas enhancements are closely linked to fire activity and that the lag time to maximum correlation can serve as

an estimate of the average vertical and horizontal transport time of the emission plume.

4 Conclusions

This study has provided a comprehensive assessment of Indonesian peatland fire emissions during recent El Nifio events, with

a particular focus on hydrogen cyanide (HCN) as a tracer of smouldering combustion during peat fires. By integrating IASI
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satellite retrievals with TOMCAT model simulations, precipitation and soil moisture observations, and fire activity datasets,
we have quantified both the magnitude and variability of HCN emissions and identified the key drivers underlying interannual
differences. The results provide strong evidence that the magnitude of trace gas emissions from Indonesian peatlands is not gov-
erned solely by the strength of El Nifio but instead arises from the interaction between large-scale ocean—atmosphere dynamics
and local hydrological conditions. The 2015 El Nifio event, one of the strongest in recent decades, produced exceptionally large
atmospheric concentration of HCN and CO, reflecting a combination of extremely low soil moisture, depressed groundwater
levels, and deep burn depths in peatlands. The resulting emissions were unprecedented in the observational record, with IAST
retrievals showing marked enhancements that were sustained through October and November.

In contrast, the 2019 and 2023 El Nifio events, despite also being associated with positive Oceanic Nifio Index (ONI)
anomalies, resulted in markedly lower HCN burdens related to higher ground water content and atmospheric dynamics that
make intense peat fires less favourable. The 2023 event, in particular, occurred under atmospheric circulation regimes that did
not sustain prolonged dryness, resulting in fire activity that was nearly an order of magnitude almost eight times weaker than
in 2015.

Using IASI total column measurements we also derive new satellite-based emission factors (EFs) for HCN enhancement
ratios with CO during the 2015 dry season. These values provide independent, observation-based constraints that can improve

the representation of peat fire emissions in models and inventories.
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Comparisons between IASI-derived HCN total columns and TOMCAT model simulations simulations revealed that standard
GFED-based emission inventories substantially overestimate HCN emissions from peat fires during the 2015 dry season,
particularly in September. A revised model run, applying a 75% reduction to September emissions, produced much better
agreement with satellite observations. This finding suggests that current fire emission inventories underestimate the contribution
of peat smouldering processes to trace gas release, as burned-area based definitions used in GFED are poorly suited to capturing
the subsurface dynamics of peatland combustion. The analysis also confirms that the new FINNpeatSM approach, which
explicitly links burn depth to soil moisture, offers a more accurate description of the dynamics of peat fire emissions.

Hydrological conditions emerged as a dominant control on fire intensity and emissions across all three El Nifio events.
Soil moisture and groundwater level determine not only the susceptibility of peatlands to ignition but also the persistence of
smouldering fires and the total mass of peat carbon released to the atmosphere. When soils are dried, the peat layer can ignite
and burn deeply, releasing large quantities of HCN and CO that are transported into the mid- to upper- troposphere within
about 10 days. Conversely, higher soil water content suppresses combustion depth and limits the emissions. The strong cross-
correlation between accumulated burn depth and satellite-observed HCN and CO concentrations further supports the close
coupling between hydrology, fire behavior, and wildfire emissions.

The comparison of 2015, 2019, and 2023 further highlights that fire intensity and trace gas burdens are not determined
solely by the strength of El Niflo events, but rather emerge from the importance of the local drought intensity, soil moisture

deficits, and atmospheric circulation patterns. This underscores the critical role of groundwater and soil moisture in regulating
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Indonesia peatland fires from 1 August to 31 December 2015.

peatland vulnerability to ignition, smouldering persistence, and total emissions. Our results therefore emphasize the need for
next-generation emission inventories that explicitly account for soil moisture and groundwater dynamics to better reproduce the
peatland fire dynamics. Integrating satellite-derived products of atmospheric composition (e.g. IASI) and soil hydrology (e.g.,
SMAP, ASCAT, SWI) offers a valuable constrain for emissions and predictions of future fire behavior under changing climate
conditions. Such integrated approaches can reduce uncertainties in global fire emission estimates, improve the representation
of smouldering combustion in chemical transport models, and enhance the predictive capacity for El Nifio—induced fires during
the dry seasons across Indonesia peat-dominated ecosystems. These advances are essential for understanding the contribution

of peatland fires to regional air quality, global atmospheric composition, and the carbon—climate feedback system.

Data availability. The VNP14IMG product is available from the Level-1 and Atmosphere Archive & Distribution System Distributed Active
Archive Center (LAADS DAAC) which archives a number of data archives on Earth atmosphere products for NASA, NOAA and European
Space Administration missions. The TOMCAT model data are available at https://zenodo.org/doi/10.5281/zenodo.17194011 (Bruno et al.,
2025a) and at https://zenodo.org/doi/10.5281/zenodo.17194064 (Bruno et al., 2025b).
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