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Abstract. Indonesian peatlands store vast amounts of carbon that are highly vulnerable to fire during El Niño-driven droughts.

When ignited, peats release large quantities of greenhouse gases and other species with significant environmental impacts,

including hydrogen cyanide (HCN), a sensitive tracer of smouldering combustion. In this work, we use satellite retrievals from

the Infrared Atmospheric Sounding Interferometer (IASI), TOMCAT atmospheric model simulations, hydrological informa-

tion, and fire activity observations to evaluate the factors driving trace gas emissions during the 2015, 2019, and 2023 El Niño5

events.

The 2015 El Niño produced large burdens of HCN and CO unprecedented in the satellite observational era, driven by ex-

ceptionally low soil moisture, depressed groundwater levels, and deep burn depths. In contrast, the 2019 and 2023 events

exhibited markedly weaker emissions despite similar Oceanic Niño Index (ONI) anomalies, reflecting more favourable hy-

drological conditions. Comparisons of the satellite trace gas observations with simulations of the TOMCAT model show that10

burned-area-based inventories such as GFED substantially overestimate emissions from peat fires in 2015, while a new peat-

specific database, FINNpeatSM, better represents fire season timing and burn depth by incorporating soil moisture constraints.

From satellite-derived HCN:CO enhancement ratios, we provide new emission factors for HCN that offer benchmarks for new

emission inventories.

Our results show that peat fire intensity and emissions are driven not only by El Niño strength but also by local hydrolog-15

ical conditions such as soil water content and precipitation. Integrating hydrological indicators with satellite observations of

atmospheric composition is therefore critical for improving fire emission inventories.

1 Introduction

During the South-East Asian dry season, El Niño generally has a strong influence on the conditions driving widespread fires.

Fires are commonly used across the region for land clearing to manage fields and prepare the soil for the growing season.20

However, much of the land in Kalimantan and Sumatra, Indonesia, is underlain by tropical peat soils that have been extensively

drained using a network of canals. Dry conditions and elevated temperatures, typical of the dry season, are particularly exac-
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erbated in the Indonesian environment during El Niño, making man-made fires more difficult to control (Parker et al., 2016).

Under these conditions, vegetation fires can ignite the underlying carbon-rich peat soils, causing wildfires that are extremely

difficult to extinguish and that can burn for weeks.25

Indonesian peatlands occupy about 55% of the tropical peatland carbon reservoir (Dargie et al., 2017; Page and Hooijer,

2016). They store extremely large amounts of partially decayed organic matter, and release substantial amounts of pyrogenic

trace gas species and particulate matter into the atmosphere when burned. The carbon stored can be emitted in the form of trace

gases such as carbon dioxide (CO2), carbon monoxide (CO) and hydrogen cyanide (HCN), the latter also badly affecting the

air quality across South-East Asia. In particular, during El Niño years strong peaks in global HCN have been observed (Park30

et al., 2021; Rosanka et al., 2021), suggesting that it is a good atmospheric tracer for peat fire (Pumphrey et al., 2018; Sheese

et al., 2017). Monitoring HCN emissions is therefore important in understanding severe peatland fires, and for understanding

global carbon accounting.

Peatlands are particularly vulnerable to smouldering fires, which are characterised by slow, low-temperature, flameless

combustion. Peat fires typically develop in three stages (Usup et al., 2004). In the first, surface peat is ignited due to a surface35

fire event. In the second stage a smouldering front burns laterally and downward into the surface (up to 20 cm), and in the

third the smouldering extends into deeper peat layers below 20 cm in depth. It is the latter smouldering stages in which HCN

is primarily released. Ultimately, it is the peat soil moisture, in particular the ground water level (GWL), that determines the

ignition and spread of these smouldering fires.

During the period September to November 2015, under the influence of a strong El Niño, Indonesia experienced the most40

severe wildfire season of the last three decades. The intensity of the 2015-2016 El Niño event (ONI: +2.6 deg C ) was compa-

rable to the 1997-1998 El Niño (ONI: +2.4 deg C)(Anthony G. Bamston and Goldenberg, 1997; Huang et al., 2017), one of

the strongest recorded (Field et al., 2016; Santoso et al., 2017). The peatland fires lasted for about three months during which

more than 2.6 Mha of forest, peat and other land types were burned, and an equivalent of 5% of the global 2015 fossil fuel

CO2 emissions were released (Vetrita and Cochrane, 2020). In the period 1997-2016, fires in equatorial Asia and particularly45

Indonesia produced about 8% of the global fire carbon emissions (van der Werf et al., 2017).

The 2023-2024 El Niño period is currently the second strongest event of this century (ONI: 2.0 deg C), falling just behind

that of 2015-2016. However, as will be shown, there is a marked difference in the behaviour of the fire plumes and the amount of

HCN released. While previous studies have documented the role of El Niño in intensifying Indonesian fire activity (Field et al.,

2016; Whitburn et al., 2017; Nurdiati et al., 2021), large uncertainties remain in quantifying trace gas emissions from peatland50

combustion, particularly for hydrogen cyanide (HCN), a key tracer of peat fires. Existing fire inventories, such as Global

Fire Emissions Database (GFED), rely heavily on burned-area estimates that are poorly suited to capturing underground peat

burning and thus tend to misrepresent both the timing and magnitude of emissions. In this paper, we systematically compare

multiple El Niño events to evaluate the influence of large-scale climate forcing and local hydrological parameters on peat

fire dynamics. We provide new satellite-based constraints on HCN emission factors, evaluate the performance of the GFED55

emission inventory, introduce a new database based on the method developed for FINNpeatSM (Kiely et al., 2019), and assess

how variations in soil moisture and groundwater level influence interannual differences in wildfire dynamics and emissions.
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The paper is structured as follows. Section 2 describes the main datasets and models used in this study. In Section 3.1, we in-

vestigate HCN emissions during the 2015 Indonesian fire season using total columns retrieved from the University of Leicester

IASI Retrieval Scheme (ULIRS) (Moore et al., in Preparation), and compare with recent TOMCAT model simulations (Bruno60

et al., 2022, 2023). In this section, we also propose a new estimate of HCN emission factors by calculating the enhancement

ratio between HCN and CO, ERHCN/CO. Section 3.2 discusses the differences between the 2015, 2019, and 2023 fire seasons

and explores their underlying causes, focusing on soil moisture and precipitation as the principal hydrological drivers of fire

activity, using the FINNpeatSM approach (Kiely et al., 2019). Finally, Section 4 synthesizes the main findings of this work and

highlights the implications of hydrological controls for peatland fire dynamics and trace gas emissions.65

2 Data

2.1 Atmospheric CO and HCN data

2.1.1 IASI

IASI is a hyperspectral sounder onboard the three polar-orbiting MetOp satellites, launched in 2006 (IASI-A, now decommis-

sioned), 2012 (IASI-B), and 2018 (IASI-C) jointly by CNES (Centre National d’Études Spatiales, French agency) and EU-70

METSAT (European Organisation for the Exploitation of Meteorological Satellites). The main objective of IASI is to provide a

continuous and long-term collection of measurements to support meteorology, namely temperature and humidity tropospheric

profiles with high vertical resolution and precision, but it has also been used to monitor both the environment and climate on a

global scale through observations of atmospheric composition (Clerbaux et al., 2009; Hilton et al., 2012).

IASI measures the spectrally resolved thermal infrared radiation emitted by the Earth and the atmosphere system at the top75

of the atmosphere (TOA). Due to its high spectral resolution and spectral sampling, IASI is able to measure a large number of

trace gases, including some species observed only sporadically in the measured spectra (Clerbaux et al., 2009; Clarisse et al.,

2011). These species include 10 gases with clear spectral signatures that are always present in the satellite measurements, CO2,

N2O, CFC-11, CFC-12, OCS, H2O, CH4, O3, CO and HNO3 (Clarisse et al., 2011; Clerbaux et al., 2009) and 14 reactive

trace gases. Some of these reactive gases are the typical products of biomass burning, such as HCN, which has been assessed80

in previous IASI studies, and is retrieved using the absorption band centered at 712 cm−1 (ν2 band) (Coheur et al., 2009;

De Longueville et al., 2021; Duflot et al., 2015, 2013).

The sensitivity of IASI retrievals near the surface is limited and exhibits a strong dependence on thermal contrast (with large

differences between daytime and nighttime), which constrains the amount of vertical information that can be obtained. For

CO, the averaging kernels indicate two distinct vertical contributions: one from the lower troposphere, peaking on average at85

about 5 km, and another from the upper troposphere, near 10 km. In contrast, HCN retrievals are primarily sensitive to the mid

to upper troposphere, with peak sensitivity between 9 and 12 km. The concentrations of HCN and CO during the 2015, 2019

and 2023 fire seasons were retrieved using the University of Leicester IASI Retrieval Scheme (ULIRS). A comprehensive

description of the retrieval methodology for both CO and HCN, along with their validation, is provided in Moore et al. (in
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Preparation). In essence, the ULIRS retrieves atmospheric trace gas partial and total column information from IASI top-of-90

atmosphere radiances. To do this, the scheme incorporates an optimal estimation method (Rodgers, 2000) to constrain the

inversion with a priori information about the variables to be retrieved, in this case HCN, alongside H2O, CO2 and temperature

(profile and surface). For CO, a single global average a priori profile was constructed with ACE v3.6 data (Bernath et al., 2021)

covering 2004 to 2018 for the stratospheric profile and one-sigma uncertainty (above 15 km) and merged with the troposphere

(below 15 km) using TOMCAT model data over the 2006 to 2015 period. For HCN, the a priori profile was constructed from95

INTEX-B aircraft information (Singh et al., 2009) in the troposphere and ACE v4 data (Boone et al., 2020) in the stratosphere

over polluted scenes. A loose constraint on the HCN a priori uncertainty of 300% was assumed.

2.1.2 TOMCAT

The TOMCAT 3-D chemical transport model (CTM) is a global offline Eulerian model widely used for both tropospheric

and stratospheric chemistry studies. Originally developed as two separate models TOMCAT and SLIMCAT (Chipperfield100

et al., 1993), the unified model (Chipperfield, 2006; Monks et al., 2017) has since been applied in numerous studies (Chipper-

field et al., 2018; Pope et al., 2020; Bruno et al., 2022). The model’s meteorological forcings — humidity, temperature, and

wind fields — are driven by ERA-Interim reanalysis data from the European Centre for Medium-Range Weather Forecasts

(ECMWF), provided at a 6-hour temporal resolution (Berrisford et al., 2011; Dee et al., 2011). These meteorological variables

are linearly interpolated to match the temporal resolution and spatial grid of the model. Surface emissions from both natural and105

anthropogenic sources are incorporated at their original resolution and subsequently re-gridded to align with the model’s spatial

configuration. Hydrogen cyanide (HCN) emissions are derived from several key datasets: anthropogenic and oceanic emissions

are sourced from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016); biogenic emissions are

taken from a fixed annual dataset provided by the Chemistry-Climate Model Initiative (CCMI) (Morgenstern et al., 2017); and

biomass burning emissions are obtained from the Global Fire Emissions Database Version 4 (GFED4) (Randerson et al., 2017).110

A complete description of the tracer version of TOMCAT adapted to simulate global atmospheric HCN distributions has been

extensively described in Bruno et al. (2022) and Bruno et al. (2023), and evaluated against independent measurements from

ACE-FTS. In this work, we compare TOMCAT outputs with IASI observations.

2.2 Precipitation data

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a NASA precipitation product developed under the joint115

NASA–JAXA Global Precipitation Measurement (GPM) satellite mission. It provides global surface precipitation estimates at

0.1◦ spatial and 30-minute temporal resolution from June 2000 onward, using data from a constellation of passive microwave

sensors, intercalibrated against data from the Tropical Rainfall Measuring Mission (TRMM; 2000–2014) and the GPM Core

Observatory (2014–present). IMERG data covers the majority of the Earth’s surface and supports a range of applications

through three latency products: Early (∼4 h), Late (∼14 h), and Final (∼4 months) (Pradhan et al., 2022).120
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This study uses the IMERG Final Run daily product (Huffman et al., 2024), derived by averaging valid half-hourly rates and

scaling to 24 hours, which reduces the dry biases present in earlier versions. In particular, the data used here cover the period

2014-2023 over Indonesia.

2.3 Soil moisture data

2.3.1 SMAP125

The Soil Moisture Active Passive (SMAP) mission, launched by NASA in 2015, is designed to provide global measurements

of surface soil moisture and freeze-thaw conditions every 2–3 days (Entekhabi et al., 2014). While the radar instrument ceased

operation shortly after launch, the radiometer continues to function reliably, enabling the generation of global soil moisture

maps. SMAP data support a better understanding of the Earth’s water, energy, and carbon cycles by quantifying the amount

of liquid water in the topsoil layer and distinguishing between frozen and unfrozen ground. These observations are essential130

for improving weather forecasting, climate modeling, and environmental monitoring by capturing temporal changes in soil

moisture that influence land-atmosphere interactions and broader ecological processes.

Recent studies have further expanded the scientific utility of SMAP data. Nayak et al. (2025) demonstrated that SMAP-

derived surface soil moisture variability is a reliable predictor of subsurface water dynamics. Fang et al. (2024) validated

downscaled SMAP products at 1-km resolution using long-term in situ data, confirming their accuracy across heterogeneous135

landscapes. Additionally, Cho et al. (2024) improved SMAP’s performance in dense vegetation regions by calibrating retrieval

algorithms to reduce bias. Ma et al. (2024) also enhanced SMAP’s global utility by integrating the data with ASCAT ob-

servations through machine learning techniques, resulting in higher resolution and more temporally consistent soil moisture

estimates.

2.3.2 SWI140

The operational SWI is produced by the Copernicus Land Service from the surface soil moisture (SSM) measured by the

ASCAT scatterometer onboard the MetOp satellites and from Sentinel-1 C-band SAR. The SWI quantifies from these obser-

vations the moisture content of the soil with a spatial resolution of 0.1◦. It is a dimensionless index ranging from 0 (dry) to

1 (saturated relative to local climatology), at eight different depths as a function of the characteristic timelength T (1, 5, 10,

15, 20, 40, 60 and 100 days), a parameter expressed in units of time but proportional to the depth of the layer, as described in145

Bauer-Marschallinger et al. (2018).

Differently from other products such as SMAP, the SWI is more an indicator of the percentage of relative wetness than an

absolute soil water content, and it is not limited only to the surface soil moisture being able to evaluate water availability at

depths typical of the plant roots.
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2.4 Fire data150

2.4.1 GFED emission database

The Global Fire Emissions Database version 4 (GFED4) quantifies biomass burning emissions by coupling satellite-derived

burned area (MODIS), active fire detections, and biogeochemical models (van der Werf et al., 2017). The GFED framework

estimates dry matter (DM) consumption as a function of fuel load, combustion completeness, and fire activity across different

biomes on a monthly 0.25◦ global grid. The trace gas emissions are derived by applying biome-specific emission factors derived155

from field and lab measurements to the DM consumption (Akagi et al., 2011). The spatial distribution of the DM burned is then

determined by using satellite observations of BA in combination with biogeochemical modelling. Cloud cover and a limited

knowledge of the biome distribution and emission factors over Indonesia and other peat-dominated regions can cause frequent

errors in estimating fire emissions. Another limitation of the approach used to define GFED is its dependence on information

about peat consumption by fires — such as the rate, extent, and depth of peat burned — which cannot be easily determined160

from satellite data (Bruno, 2024).

2.4.2 FINNpeatSM emission database

FINNpeatSM (Fire Inventory from NCAR (FINNv1.5) New peat with Soil Moisture) (Kiely et al., 2019) is a bespoke regional

dataset for peat fire emissions in Indonesia. FINNpeatSM uses Fire Inventory from NCAR (FINNv1.5) (Wiedinmyer et al.,

2011) for fire detections of above ground vegetation fires. FINNv1.5 combines active fire detections from the Moderate Res-165

olution Imaging Spectroradiometer (MODIS), biomass burned and emission factors (EFs) to provide daily fire emissions at

1-km resolution (Wiedinmyer et al., 2011). However, FINNv1.5 only includes emissions from the combustion of above-ground

vegetation. Therefore, it does not include emissions from combustion of peat. Kiely et al. (2019) added the emissions from

the combustion of peat across Indonesia, to create FINNpeatSM. Details on the method can be found in Kiely et al. (2019).

In summary, to add emissions from peat combustion they use a 2-step process. First, they use a peatland distribution map to170

identify where a fire occurred on peatland. For each fire occurring on peatland they add additional emissions from the peat

burning using Eq 1:

Es = BA×BD× ρ×EFs (1)

where Es is the emissions of a species (s) from an individual fire that occurred on peatland, BA is the burned area and BD

is the burn depth, ρ is the peat density and EFs is the emissons factor of a species (s).175

The second step of the method was to scale burn depth relative to soil moisture (from the ESA CCI Soil Moisture Product

New Version Release (v04.4): ESA CCI SMv04.4). This step accounts for burn depth increasing as peat dries out and the water

table decreases. In FINNpeatSM burn depth is assumed to increase linearly between a minimum of 5 cm to a maximum of 37

cm. Kiely et al. (2019) used soil moisture from ESA CCI SMv04.4, which provided soil moisture retrievals up to 2018. To

extend the FINNpeatSM dataset to 2023, Graham et al. (2024) updated the method to use the SMAP level 4 product. In the180
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Level 4 dataset, SMAP measurements of soil moisture in the top 5 cm of the soil column are combined with estimates from

a land-surface model. This provides soil moisture in the top 1 m of the soil column. The SMAP is both spatially (9 km) and

temporally (3-hourly) complete, the 3-hourly data were aggregated to generate daily-mean values. Daily-mean SMAP values

are used to linearly scale the burn depth between a minimum soil moisture of 0.5 m3m−3 (5 cm burn depth) and 0.1 m3m−3

(37 cm burn depth). In this study, we use this version of FINNpeatSM to explore changes in fire burn depth and emissions185

between 2015, 2019 and 2023.

2.4.3 VIIRS VNP14IMG Fire Product

The Visible Infrared Imaging Radiometer Suite (VIIRS) active fire product (VNP14IMG) provides the latitude, longitude,

time, and a confidence flag for a fire detection pixel. The VNP14IMG product was developed from a MODIS thermal anomaly

algorithm which was able to detect fires at a 1 km spatial resolution. VIIRS fire products are provided at 375 m, a much higher190

spatial resolution compared to MODIS, and therefore VIIRS is able to detect small wildfires that MODIS is insensitive to.

Only nominal and high confidence fires during nighttime were included in this work.

3 Results

3.1 HCN emissions during the 2015 Indonesian fire season

3.1.1 Satellite observations of HCN in 2015195

IASI satellite observations are used to estimate the amount of HCN emitted from the Indonesian region during the 2015 wildfire

season; the plume of HCN emitted during the wildfire season is clearly visible in the right panel of Figure 1. In Section 3.2,

we compare these observations with those made during the more recent 2019 and 2023 burning seasons, which also occurred

during El Niño years.

Figure 1. IASI global distribution of HCN total column (molecules cm−2) as retrieved by ULIRS for (a, left) 1 November 2015 during

daytime and (b, right) the November 2015 monthly mean regridded on a 0.25◦ × 0.25◦ grid.
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According to the new peatland fire stages classification — stage 1 surface fire, stage 2 shallow peatland fire (depth < 20200

cm) and stage 3 deep peatland fire (depth > 20 cm) — proposed by Hayasaka et al. (2020), the Indonesian fires of 2015 were

classified as stage 2 for the second half of August and stage 3 from early September to the end of October. This is broadly

consistent with the averaged total column of the IASI HCN observations seen in Figure 2, where the highest HCN total columns

are observed in September and October. The HCN total columns peak in late October / early November, consistent with the

work of Nechita-Banda et al. (2018) on CO emissions from the same peat fires. Their results indicate a sudden increase in CO205

emissions for the latter half of October 2015.

Figure 2. Comparison of the IASI measured HCN averaged total column time series (molecules cm−2) (black line), and HCN TOMCAT

model run using (i) monthly emissions from GFED v4.1 (blue line) and (ii) GFED v4.1 emissions with September values scaled to 25%

(orange line). The errors are defined as the standard deviation of the averaged total columns over Indonesia within the region 12◦S-7◦N and

90◦E-127◦E.

During neutral conditions, Indonesia is situated under one of the rising branches of the Walker circulation, linked to high

rainfall. However, during El Niño, the circulation shifts eastwards and the air over Indonesia tends to sink, resulting in below

average rainfall, higher surface pressure, and dryness. A plot of vertical winds at 0◦ latitude (Indonesia spans 95◦E-140◦E

longitude) derived from ERA5 for October 2015 (Figure 3) demonstrates this; the air mass over Indonesia is primarily de-210

scending. At the end of October / beginning of November, the circulation pattern suddenly changes to one in which the air is

predominantly being uplifted. This is clearly observed in the top panels of Figure 3, which shows the monthly mean ERA5

vertical wind vectors averaged along the equator for October 2015 and November 2015. The end result is that in late October,

HCN from the peat fires is more readily uplifted to higher altitudes, coinciding with the region of the atmosphere where the
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IASI sensitivity is greatest. In addition to the increased emissions at the end of October, this contributes to the plume appearing215

most prominent in the first days of November 2015.

The end of October 2015 also coincides with the onset of increased precipitation and an increase in soil moisture. Figure 4a

shows that Indonesian deep soil moisture (SWI at the lowest layer corresponding to the characteristic timelength T=100,

described in Section 2.3.2) for August - October 2015 was at its lowest level over the last decade, with a minimum at the end of

October. The choice of the parameter T=100, the lowest layer of SWI, allows us to evaluate the water availability at the plant220

root depth. This strongly suggests that the GWL during the 2015 El Nino season was at a lower level than in any other year

over the last decade. Precipitation for the same period was at the lower end of typical values for the given months as shown in

Figure 4b using IMERG data.

3.1.2 Evaluation of 2015 Indonesian HCN emissions using TOMCAT model simulations

In order to estimate the HCN emissions from the 2015 Indonesian peat fires, retrieved HCN total columns from IASI are225

compared with outputs of a tracer version of the TOMCAT 3D CTM.

This version of the model makes use of the best-fitting ocean uptake scheme defined in Bruno et al. (2023), the Li et al.

(2000) fluxes reduced by 75% and the reaction rates proposed by Kleinböhl et al. (2006) for HCN oxidation by OH radicals

and O(1D). Outputs for 2015 were simulated on a horizontal 2.8◦ × 2.8◦ (T42 Gaussian) grid on 60 terrain-following vertical

levels (surface to ∼60 km) for HCN. In order to compare the model output (T_HCN) with the IASI daily measurements over230

a short time period, the model was sampled daily and adapted for use with the monthly GFED v4.1 inputs for HCN biomass

burning emissions. The TOMCAT model reads the emissions as monthly means, which are then interpolated in time so that the

emissions vary smoothly during the model run.

TOMCAT total columns were constructed from the raw output using the approach proposed by Deeter (2002), in which

the model profiles are interpolated onto the ULIRS retrieval grid and smoothed by applying the ULIRS averaging kernels as235

xsmooth
TOMCAT = xa+A(xint

TOMCAT−xa), where xa is the a priori profile, A the retrieval averaging kernel matrix, and xint
TOMCAT

the model profile interpolated onto the retrieval grid.

Figure 2 compares the averaged total column time series of HCN, calculated over Indonesia in the regional box [12◦S-7◦N,

90◦E-127◦E] for both IASI measurements (black line) and the TOMCAT model outputs smoothed using the IASI averaging

kernels (blue line). The T_HCN model run does not compare very well with the IASI measurements, showing a large overes-240

timation of the HCN amount during the period between September and November 2015. In particular, the large peak observed

for T_HCN during the last week of September is completely absent from the IASI measurements. The left panel of Figure 6

shows the HCN total column distribution on 2 November 2015 produced from T_HCN. The HCN amount produced is globally

overestimated compared with the IASI measurements reported in Figure 1, in particular over the latitude band between 20◦

N and 40◦ S. The discrepancy observed between the HCN TOMCAT model and IASI measurements is seemingly caused by245

the HCN emissions used to drive the model, shown in Figure 5, which combine GFED v4.1 (the main component), CMIP6

and CCMI as described in Bruno et al. (2023). These emissions indicate an anomalously large peak of more than 4× 1011
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Figure 3. Monthly mean ERA5 vertical wind vectors (m s−1) averaged along the equator for (a) October 2015, (b) November 2015, (c)

October 2019, (d) November 2019, (e) October 2023, and (f) November 2023. Red (blue) areas indicate where, on average, the air is

descending (ascending) for that particular month.
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Figure 4. (a, top) Averaged Soil Water Index (SWI) T=100, over Indonesia in the period 2014-2023. (b, bottom) Daily accumulated precip-

itation (combined microwave-IR) averaged over Indonesia estimate from the Integrated Multi-satellitE Retrievals for GPM (IMERG) in the

period 2014-2023.

molecules cm−2 s−1 in September 2015. This value is more than double the October emissions, during which the largest HCN

concentrations were observed over Indonesia during the 2015 wildfire season.
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Figure 5. Monthly average HCN 2015 emissions (molecules cm−2 s+−1) based on GFED v4.1 used in the T_HCN TOMCAT model

experiment (blue line) compared with the scaled emissions used in the T_HCN0.25Emiss experiment (red dashed line).

In order to seek better agreement between model and observations, we performed a number of model sensitivity runs. These250

suggested that the most sensitive component for improving the model simulations was the September GFED HCN emissions.

For this reason, a new model run was performed (T_HCN0.25Emiss) in which the September 2015 emissions were reduced

by 75%. The orange line in Figure 2 indicates the averaged total column (smoothed by the IASI HCN averaging kernels)

over Indonesia for the T_HCN0.25Emiss model run, showing a substantial reduction in HCN concentration during September

and October and reaching a very good agreement with the IASI measurements. However, the background HCN values, e.g.255

in December, are underestimated in the model, possibly due to neglect of additional sources. The global HCN total column

distribution modelled on 2 November 2015, as shown in the bottom right panel of Figure 6, shows a significantly improved

agreement with the IASI measured HCN total columns in Figure 1.

The study of CO emissions from the 2015 Indonesian wildfire season by Nechita-Banda et al. (2018) found that GFED is not

good at reproducing emissions from large peat fires. GFED estimates monthly fire emissions from satellite-observed burned260

area and temporally disaggregates them within each month using fire radiative power as a proxy for combustion intensity and

timing. For peat-dominated fires, burned area is more sensitive to the initial burning stages and less sensitive to peat burning

that occurs underground. Our work supports this conclusion with respect to emissions of HCN from peat fires.

3.1.3 Enhancement ratios and emission factors

The Indonesian peatland fires from 2015 present an opportunity to estimate the HCN wildfire emission factors from satellite265

data. The fires burned for several months over a limited area, with the prevailing wind conditions resulting in the emitted
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Figure 6. Global distribution of HCN total column (molecules cm−2) on 2 November 2015 produced from (a, top left) T_HCN and (b, top

right) T_HCN0.25Emiss. The bottom panels shows the total column difference between the two runs and the IASI measurements regridded

on the TOMCAT grid.

plumes being predominantly transported over the Indian Ocean. The relatively long lifetimes of HCN and CO, of the order

of 2-5 months, allow us to take advantage of satellite measurements over the ocean, where surface emissivity is reasonably

homogeneous, and where the polluted air has been uplifted to higher altitudes, corresponding to the maximum sensitivity of

IASI to HCN and CO perturbations. Changes in thermal heating over land between day and night cause a change in vertical270

sensitivity of IASI to HCN and CO. The effect over the oceans is much smaller due to the larger heat capacity of water. As

such, in this work we use an average from both IASI daytime and night time measurements to maximise coverage and reduce

the random uncertainty of the results.

The emission factor (EFX) is a quantity defined as the mass of a trace gas (X) emitted per kilogram of biomass burned (g

kg-1 dry matter). In order to derive EFX, it is first necessary to derive a related parameter called the enhancement ratio (ER)275

which can be determined directly from satellite measurements. The ERHCN/CO is defined as a ratio of the emitted number of

molecules of HCN over the emitted number of molecules of CO (Goode et al., 2000; Whitburn et al., 2017),

ERHCN/CO =
[HCN ]smoke− [HCN ]background

[CO]smoke− [CO]background
. (2)
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CO is chosen as the reference gas in this work as it has a similar lifetime to HCN and is emitted from similar sources. The

excellent daily coverage of IASI allows a daily estimation of ERHCN/CO to be performed. We have chosen the region 12◦S-280

7◦N, 90◦E-127◦E, located downwind of the Indonesian emissions from Sumatra and Kalimantan; only data with a correlation

coefficient greater than 0.3 are included in our analysis. There is no clear trend in the ER across the September 2015 to

December 2015 period (Figure 7), although there is some variability with lower ER in early September, where the correlation

between HCN and CO measurements is less than 0.4. The phase of fire is a key factor in the emission of pyrogenic species.

HCN and CO emissions are generally higher during the smouldering phase of fire (lower FRP) with smouldering peat fire285

emission factors being approximately 10 times those of flaming savanna fires (Hu et al., 2018). Peat fires generate weakly

buoyant smoke plumes (Hu et al., 2019) that generally accumulate close to the ground, although the emissions can migrate

great distances via the prevailing winds. The lower ER in early September may be due to the fact that the fires were only

recently ignited and high HCN (and CO) levels were closer to the ground. IASI is more sensitive to near surface CO than HCN,

so HCN is likely underestimated at that time. Throughout October, the HCN:CO relationship shows correlation coefficients290

greater than 0.4. By early November, the fire activity ended abruptly, but the correlation remains greater than 0.3 throughout

most of November, until the HCN levels drop below the sensitivity of the IASI instrument.

It is estimated that 90% of fire emissions from the late 2015 fire events were dominated by emissions from peat soils

(Whitburn et al., 2017), with the remaining 10% from tropical forest. Using a range of ERs derived for differing correlation

coefficients, we are able to estimate HCN emission factors, EFHCN/CO, from the derived ERHCN/CO. Since we are investigating295

a region close to the emissions, and are not influenced by transport from other regions, the two parameters are related by the

equation

EFHCN = ERHCN/CO ×
MMHCN

MMCO
×EFCO. (3)

The quantities MMHCN (27.0253 g/mol) and MMCO (28.01 g/mol) are the molar masses of HCN and CO, respectively. There

are a number of datasets of EFCO for peat over Indonesia (Table 1). Stockwell et al. (2016) measured EFCO in situ (291±49 g300

kg−1), noting that their measurements were solely from smouldering combustion. Huijnen et al. (2016) also measured EFCO

in situ (255±39), but noted a few smoke measurements involved occasional contributions from small clumps of ignited dry

vegetation, which may account for the smaller value of EFCO. More recently, Yokelson et al. (2022) revisited Kalimantan in

2019, during El Nino conditions, to sample fires burning only peat and measured a 50% larger EFCO compared to the Stockwell

et al. (2016) work in a similar region. Both Christian et al. (2003) and Stockwell et al. (2016) took samples from Sumatra and305

Kalimantan respectively and burned the samples in the lab, both deriving significantly lower EFCO values. The final source

is from a meta-analyses study by Rodriguez Vasquez et al. (2021) who use the data from the in situ and laboratory studies

previously listed to derive an updated EFCO based on methodological differences in measurements and weighted to account for

different sample sizes.

310
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Table 1. Emission factors, EFHCN , in g kg−1 dry Matter derived from the calculated ERHCN/CO and various CO EFs from the literature.

EFHCN is presented for increasing correlation coefficients of HCN:CO total column measurements over the box [12◦S-7◦N, 90◦E-127◦E].

Author study area
Measurement

type

EFCO (g kg-1

DM)

EFHCN r

> 0.5

EFHCN r

> 0.6

EFHCN r

> 0.7

EFHCN r

> 0.8

Yokelson et al. (2022) Kalimantan In situ 315±49 1.66±0.76 1.87±0.80 2.41±0.80 2.50±0.55

Rodriguez Vasquez et al.

(2021)
N/A Meta-analyses 258.68±15.34 1.33±0.50 1.50±0.52 1.95±0.47 2.04±0.26

Stockwell et al. (2016) Kalimantan In situ 291±49 1.54±0.72 1.73±0.76 2.23±0.77 2.32±0.54

Huijnen et al. (2016)

2016
Kalimantan In situ 255±39 1.35±0.61 1.51±0.64 1.95±0.64 2.03±0.44

Stockwell et al. (2014) Kalimantan Laboratory 233±72 1.29±0.74 1.44±0.80 1.83±0.86 1.87±0.69

Christian et al. (2003) Sumatra Laboratory 210.3 1.06±0.34 1.20±0.35 1.56±0.29 1.66±0.11

Examining the relationship between HCN and CO total column amounts in Figure 7, the correlation coefficient between the

two species varies between 0.3 and 0.8 over most of the September to November 2015 period. Generally the lower correlation

coefficients are associated with lower ER values. The effect on estimating EFHCN by including only measured data exceeding

a chosen correlation coefficient threshold is shown in Table 1. The highest EFHCN values are derived where the correlation

coefficient exceeds 0.8, ranging between 1.66 and 2.32 g kg−1 depending on which value is used for EFCO. Where the cor-315

relation coefficient HCN:CO is greater than 0.5, we see that the EFHCN estimates decrease, ranging between 1.06 and 1.54 g

kg−1. Both ends of the estimates are lower than the (surface) in situ and lab-based estimates of EFHCN. We know that the IASI

HCN sensitivity is in the upper troposphere between 8 and 12 km, with very low sensitivity to high concentrations below 4 km.

Field et al. (2016) show that the MLS CO at 215 hPa (∼12 km) increased steadily through September with a rapid increase

to CO exceeding 400 ppbv at the end of October. The highest correlation HCN:CO in our results is during this late October320

period, where we see enhanced vertical uplift of both gases and therefore increased sensitivity to the HCN emissions. Before

mid-October, we likely underestimate the HCN amounts as plumes are closer to the surface.

3.2 Comparison of the 2015 Indonesian fire season with the 2019 and 2023

According to the ONI, the 2015 El Niño event was one of the strongest in the satellite era. ONI is the de-facto standard used

by NOAA for classifying El Niño events. Defined as a running 3-month mean sea-surface-temperature anomaly for the Niño325

3.4 region (5◦N-5◦S, 120◦ -170◦W), El Niño events are defined as 5 consecutive overlapping 3-month periods above +0.5◦.

Figure 9 shows a plot of ONI as a function of time since 1990. It indicates that the recent 2023 burning season in Indonesia,

also occurring during an El Niño event, peaked at the third strongest ONI value since 1990, behind only the 1997 and 2015

events. The 2019 event was comparatively weak.

In order to compare fire activity in Indonesia during the last three El Niño events, in late 2015, 2019 and 2023, we use the330

375 m resolution fire product (VNP14IMG) measured by the VIIRS sensor on the Suomi-National Polar-Orbiting Partnership
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Figure 7. Daily HCN enhancement ratios (ER) relative to CO calculated from the slope of the linear regression of HCN against CO total

columns between 1 September and 1 December 2015, over the Indian Ocean (12◦S-7◦N, 90◦E-127◦E). The error bars correspond to the

standard errors on the regression slope. Any data with a correlation coefficient <0.3 for the slope have been excluded.

(S-NPP) satellite. This product provides information on fire geolocation (latitude, longitude) with a confidence flag; here we

use only information scenes with nominal and high confidence flags. The VNP14IMG product is a development of the MODIS

thermal anomaly algorithm and several studies have now shown (Schroeder et al., 2014; Zhang et al., 2017) that it is capable

of detecting small fires which MODIS does not have the sensitivity to measure. In this study, we selected the VNP14IMG fire335

product across the whole 2012 to 2023 period and look at the total fire activity across all of the Indonesian islands. Cumulative

monthly fire radiative power over Indonesia is plotted in Figure 11, and indicates that even during a notably strong El Nino

phase, the fire activity in 2023 was almost eight times less than in 2015. Specifically in 2023 the fire activity was below the

seasonal 2012-2023 average across the whole July-December period. For 2019, we observe significant fires in mid-September

and a comparable increase in fire power to 2015 between early September and late September. From late September 2019, the340

fire activity abruptly ends, whereas 2015 maintains a steady increase in fire cumulative power until an abrupt end in fire activity

in late October 2015.

We can use the ULIRS HCN to further investigate the emissions from the Indonesian peat fires. Figure 8 represents a 3-day

simple moving average total burden HCN (in Gg) for the three El Nino years. The total mass was calculated over the region

12◦S-7◦N, 90◦E-127◦E, and shows the highest values are towards the end of October 2015. Comparing all three years used345

in this study, we see the highest HCN values across the September to November period always occur in 2015. The HCN
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concentrations increase in early September 2015 and are shown to be coincident with an increase in fire activity during the

same period (Figure 11), rapidly exceeding 500 Gg by 25 September. After this period we see the largest increase in HCN

between 22 October and 30 October, to approximately 600 Gg of HCN, peaking at 1125 Gg on 29 October. This increase can

also be linked to increasing fire power over that period, although we note that the increase in fire power is also conducive to350

extra lofting of the elevated HCN to altitudes where the IASI instrument is more sensitive to HCN changes (i.e. the upper

troposphere). After 1 November, concentrations decrease for the remainder of 2015. For 2019, the pattern in early September

mirrors that in 2015 with a sudden increase of 0.24 Gg of HCN between 3 September and 26 September. After that, HCN

concentrations decrease back to the 0.3 baseline by 9 October and stay at these lower levels for the rest of 2019. In 2023, we

observe no significant enhancements in HCN across the August to December period, relative to the 300 Gg baseline.355

Figure 8. Daily Infrared Atmospheric Sounding Interferometer (IASI) derived HCN burden (Gg) between the 1 August and 31 December

for three years: 2015 (blue line), 2019 (yellow line), and 2023 (red line). This is calculated for the region 12◦S-7◦N, 90◦E-127◦E.

Comparing the circulation patterns across the equator in October 2015 and 2023 in Figure 3, it is clear that the regimes are

quite different, with the descending air over Indonesia in 2015 replaced by more neutral conditions in October 2023. These

conditions are less conducive to prolonged dry periods, which would allow peat fires to establish if left unchecked. Over the

western Pacific Ocean itself, October 2023 showed much less wide-scale descent of air compared to 2015, suggesting that the

Walker circulation did not weaken significantly in late 2023. The circulation patterns across the Eastern Indian Ocean (60◦E-360

110◦E) in October 2015 and October 2019 are remarkably consistent. Over Indonesia itself (100◦E-120◦E) the vertical winds

exhibit very different behaviour between 2015 and 2019, with 2019 conditions more conductive to convection and increased

rainfall, which would likely suppress fire activity.
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Figure 4b indicates that the precipitation levels in August to October for the El Nino years 2015, 2019 and 2023 were very

similar. However, Figure 4a demonstrates that the SWI in the lowest soil layer towards the end of 2019 and 2023 was quite365

typical of values over the last decade, unlike 2015 which was significantly drier. This is consistent with previous work showing

that peat moisture, in particular the GWL, is a major factor in determining the ignition and spread of peat fires (Hayasaka et al.,

2020).

Figure 9. Time series from 1990-2023 of ONI index, with warm (red shaded area) and cold (blue shaded area) periods based on a threshold

of ±0.5◦ C.

Figure 10. Comparison of the IASI measured CO averaged total column time series for August-December 2015 (blue line), 2019 (yellow

line) and 2023 (red line). The errors are defined as the standard deviation of the total column in the box and the averaged total columns are

calculated over Indonesia in a box [12◦S-7◦N, 90◦E-127◦E].
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Figure 11. Total cumulative monthly fire radiative power (MW) over Indonesia measured by VIIRS. The fire activity in 2023 (red line) is

almost eight times smaller than in 2015 (blue line), and falls below the seasonal long-term (2012-2023) mean (black dotted line).

3.2.1 HCN emission database fusing the FINNpeatSM method

To explore the drivers of differences in HCN retrievals between 2015, 2019 and 2023 we examine fire detections (from VI-370

IRS fire hotpots) and Soil Moisture Active Passive Data (SMAP, ONeill et al. (2021)) over Indonesia peatlands. Using the

FINNpeatSM method (Kiely et al., 2019), we can combine these datasets to estimate the burn depth of fires in 2015, 2019 and

2023.

Daily VIIRS temperature hotspots are only used if there is a medium or high confidence in the retrieval (Wiedinmyer et

al., 2023) and if the fire occurred on peatland in Indonesia. For each retained fire detection, the nearest-neighbour daily mean375

soil moisture pixel (from SMAP) is determined. The associated soil moisture from an individual fire detection can be used to

estimate the burn depth, and emissions, of the fire. The emissions in FINNpeatSM are linearly related to burn depth, so that the

deeper a fire burns the higher the emissions.

First, we consider daily mean soil moisture from SMAP across all Indonesian, Kalimantan, and Sumatra peatlands for 2015,

2019 and 2023 (Figure 12). We consider Kalimantan and Sumatra peatlands in addition to all Indonesian peatlands since these380

regions dominate fire emissions. In 2015 62% of total emissions were from Kalimantan and 33% were from Sumatra (Kiely

et al., 2019). Soil moisture is shown for 1 June to 31 December, with the dry season (1 August to 31 October) shaded in grey,

since the dry season is when fires are most likely to occur. Across Indonesia and both Kalimantan and Sumatra soil moisture

in 2015, 2019 and 2023 were similar from June-July (0.58-0.61 m3 m−3). However, from July to August, soil moisture across

all regions in 2015 and 2019 begins to decrease rapidly (from 0.52-0.55 m3 m−3 to 0.46-0.48 m3 m−3), while in 2023 soil385
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moisture remains high (0.59 to 0.54 m3 m−3). From August to mid-September soil moisture continues to decrease across

Indonesia, driven by reductions in soil moisture in Kalimantan in 2015 and 2019 (Indonesia from 0.46-0.48 to 0.36-0.39 m3

m−3 and Kalimatan from 0.39-0.44 to 0.27-0.29 m3 m−3). In contrast, over the same period in 2023, soil moisture remains

high across Indonesia (decreasing from 0.54 to 0.50 m3 m−3), driven by high soil moisture in Sumatra peatlands. From mid-

September to mid-October soil moisture continues to decrease in 2015 (from 0.39 to 0.33 m3 m−3), while in 2019 there is an390

abrupt increase in soil moisture (from 0.36 to 0.47 m3 m−3), closer to the 2023 values (from 0.50 to 0.54 m3 m−3). Overall,

soil moisture is lowest throughout the dry season in 2015 (1 August to 31 October mean of 0.40 m3 m−3), while in 2019 soil

moisture is very low at the start of the dry season but then increases in the late dry season (1 August to 31 October mean of

0.43 m3 m−3). In contrast, soil moisture in 2023 is the highest of the 3 years (1 August to 31 October mean of 0.52 m3 m−3),

in agreement with what was observed in SWI data (Figure 4a).395

The collocated daily mean soil moisture and daily total number of fire hotspots (from VIIRS) for the same time period (1

June to 31 December 2015, 2019 and 2023) is shown in Figure 13. This clearly indicates that 2015 had the highest number

of fire hotspots (>40 collocated pixels with 1,000-10,000 fire hotspots) occurring in areas where soil moisture was low (0.15-

0.35 m3 m−3). However, in 2019, there are fewer fire pixels with a high number of hotspots (24 pixels with 1,000-10,000 fire

hotspots) and they generally had higher soil moisture (0.25-0.31 m3 m−3). In 2023, there were both fewer pixels with a high400

number of fire hotspots (peaking at 100-1,000 fire hotspots), and the soil moisture where fire hotspots occurred was higher

(0.21-0.4 m3 m−3).

The soil moisture at each fire location can be used to calculate peat burn depth of the fire, using the method developed by

Kiely et al. (2019). Figure 14 indicates the burn depth of fires, and the date they occurred. As shown in Figure 13, 2015 has the

highest number of fires (up to 25,000 fires) that occur in low soil moisture areas (0.3 m). Figure 14 indicates that these fires405

burn deep into the peat below (0.25-0.3 m) and occur between September and mid-October 2015 (in line with Figure 12). In

contrast, in 2019, there are fewer fires (0-15000), the burn depth is shallower (0-0.25 m), and the fires that burn the deepest

occur earlier in the dry season (mid-September) when soil moisture is higher than 2015 (Figure 12). In 2023, far fewer fires

(0-5000 fires) burn deep into the peat below (0.05-0.25 m) and deep burning occurs in mid-September to early-October, in line

with increased soil moisture in 2023 (Figure 12).410

The accumulated daily burn depth of all Indonesian peatland fires from 1 June to 31 December is shown in Figure 15. This

plot accounts for both the number of fire hotspots and the burn depth of individual fire hotspots. At the start of the dry season

(August to mid-September) the accumulated burn depth in 2015 and 2019 is similar (500-1000 m), compared with <100 m in

2023. This is likely because soil moisture at the start of the dry season (August to mid-September) is similar in both years,

and both years have a similar number of fire hotspots at this time. However, from mid-September, 2015 and 2019 deviate.415

Accumulated burn depth remains high in October 2015, whereas it substantially decreases in 2019. This is likely driven by the

large decrease in both fire hotspots and peatland soil moisture in 2019, compared with 2015 where the number of fire hotspots

remains high and the peatland soil moisture remains low.
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Figure 12. Timeseries of daily mean SMAP soil moisture (m3 m−3) for all Indonesian peatlands, Kalimantan peatlands and Sumatra peat-

lands for 2015 (blue), 2019 (yellow) and 2023 (red) for the period 1 June to 31 December in years 2015, 2019 and 2023.

As illustrated in Figure 16, the time series of accumulated daily burn depth, along with the averaged total column of HCN

and CO, exhibit similar temporal patterns, a progressive increase from August through October, reaching a peak in late October,420

and subsequently declining sharply in November.

A cross-correlation analysis between the accumulated daily burn depth and the total column concentrations of CO and HCN

provides insights into the temporal dynamics of plume transport. As shown in Figure 17, both HCN and CO exhibit maximum
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Figure 13. Daily Indonesian peatland fire count (from VIIRS) and collocated daily soil moisture (m3 m−3) for the period 1 June to 31

December in years 2015 (blue triangles), 2019 (yellow stars) and 2023 (red circles).

positive correlations with the burn depth at non-zero lag times, indicating a delay between fire activity at the surface and

the appearance of enhanced trace gas signals at the altitudes most sensitive to the IASI instrument. Specifically, the cross-425

correlation peaks at a lag of approximately 10 days for both species, suggesting that this is the typical timescale required for

emissions from peatland fires to be transported and mixed into the mid- to upper-tropospheric layers, where IASI’s sensitivity

to HCN and CO is greatest.

The cross-correlation function (XCF) for HCN (black line) and CO (orange line) displays a broadly similar temporal struc-

ture, with both curves rising steadily from negative lag values, peaking near +10 days, and subsequently declining into negative430

correlation at higher lag values. The slightly larger peak for CO may reflect differences in vertical transport dynamics or sen-

sitivity profiles, given that CO exhibits dual sensitivity in both the lower and upper troposphere, whereas HCN is primarily

sensitive to the mid-troposphere (∼10–12 km) (Moore et al., in Preparation). These results support the interpretation that the

observed trace gas enhancements are closely linked to fire activity and that the lag time to maximum correlation can serve as

an estimate of the average vertical and horizontal transport time of the emission plume.435

4 Conclusions

This study has provided a comprehensive assessment of Indonesian peatland fire emissions during recent El Niño events, with

a particular focus on hydrogen cyanide (HCN) as a tracer of smouldering combustion during peat fires. By integrating IASI
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Figure 14. Weekly mean burn depth (m) of Indonesia peat fires between 1 June and 31 December in years 2015 (triangles), 2019 (stars) and

2023 (circles).

satellite retrievals with TOMCAT model simulations, precipitation and soil moisture observations, and fire activity datasets,

we have quantified both the magnitude and variability of HCN emissions and identified the key drivers underlying interannual440

differences. The results provide strong evidence that the magnitude of trace gas emissions from Indonesian peatlands is not gov-

erned solely by the strength of El Niño but instead arises from the interaction between large-scale ocean–atmosphere dynamics

and local hydrological conditions. The 2015 El Niño event, one of the strongest in recent decades, produced exceptionally large

atmospheric concentration of HCN and CO, reflecting a combination of extremely low soil moisture, depressed groundwater

levels, and deep burn depths in peatlands. The resulting emissions were unprecedented in the observational record, with IASI445

retrievals showing marked enhancements that were sustained through October and November.

In contrast, the 2019 and 2023 El Niño events, despite also being associated with positive Oceanic Niño Index (ONI)

anomalies, resulted in markedly lower HCN burdens related to higher ground water content and atmospheric dynamics that

make intense peat fires less favourable. The 2023 event, in particular, occurred under atmospheric circulation regimes that did

not sustain prolonged dryness, resulting in fire activity that was nearly an order of magnitude almost eight times weaker than450

in 2015.

Using IASI total column measurements we also derive new satellite-based emission factors (EFs) for HCN enhancement

ratios with CO during the 2015 dry season. These values provide independent, observation-based constraints that can improve

the representation of peat fire emissions in models and inventories.
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Figure 15. Accumulated daily burn depth of Indonesian peatland fires in 2015 (blue), 2019 (yellow) and 2023 (red) between 1 June and 31

December.

Comparisons between IASI-derived HCN total columns and TOMCAT model simulations simulations revealed that standard455

GFED-based emission inventories substantially overestimate HCN emissions from peat fires during the 2015 dry season,

particularly in September. A revised model run, applying a 75% reduction to September emissions, produced much better

agreement with satellite observations. This finding suggests that current fire emission inventories underestimate the contribution

of peat smouldering processes to trace gas release, as burned-area based definitions used in GFED are poorly suited to capturing

the subsurface dynamics of peatland combustion. The analysis also confirms that the new FINNpeatSM approach, which460

explicitly links burn depth to soil moisture, offers a more accurate description of the dynamics of peat fire emissions.

Hydrological conditions emerged as a dominant control on fire intensity and emissions across all three El Niño events.

Soil moisture and groundwater level determine not only the susceptibility of peatlands to ignition but also the persistence of

smouldering fires and the total mass of peat carbon released to the atmosphere. When soils are dried, the peat layer can ignite

and burn deeply, releasing large quantities of HCN and CO that are transported into the mid- to upper- troposphere within465

about 10 days. Conversely, higher soil water content suppresses combustion depth and limits the emissions. The strong cross-

correlation between accumulated burn depth and satellite-observed HCN and CO concentrations further supports the close

coupling between hydrology, fire behavior, and wildfire emissions.

The comparison of 2015, 2019, and 2023 further highlights that fire intensity and trace gas burdens are not determined

solely by the strength of El Niño events, but rather emerge from the importance of the local drought intensity, soil moisture470

deficits, and atmospheric circulation patterns. This underscores the critical role of groundwater and soil moisture in regulating

24

https://doi.org/10.5194/egusphere-2025-5109
Preprint. Discussion started: 12 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 16. IASI measured HCN (red line) and CO (blue line) averaged total column and accumulated daily burn depth (black line) of all

Indonesia peatland fires from 1 August to 31 December 2015.

peatland vulnerability to ignition, smouldering persistence, and total emissions. Our results therefore emphasize the need for

next-generation emission inventories that explicitly account for soil moisture and groundwater dynamics to better reproduce the

peatland fire dynamics. Integrating satellite-derived products of atmospheric composition (e.g. IASI) and soil hydrology (e.g.,

SMAP, ASCAT, SWI) offers a valuable constrain for emissions and predictions of future fire behavior under changing climate475

conditions. Such integrated approaches can reduce uncertainties in global fire emission estimates, improve the representation

of smouldering combustion in chemical transport models, and enhance the predictive capacity for El Niño–induced fires during

the dry seasons across Indonesia peat-dominated ecosystems. These advances are essential for understanding the contribution

of peatland fires to regional air quality, global atmospheric composition, and the carbon–climate feedback system.
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Figure 17. Cross-correlation between the IASI HCN total column and the accumulated daily burned depth (black line) and between the IASI

CO total column and the accumulated daily burned depth (red line).
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