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11 Abstract

12 South Asia is a major contributor to global methane (CHa4) emissions, yet its emissions remain poorly constrained,
13 limiting targeted mitigation. Current bottom-up inventories do not consistently capture the magnitude and
14 seasonality of CH4 emissions in this region, particularly during the monsoon. Here we quantify South Asian CHa
15 emissions for 2020 using column observations from TROPOMI, a Lagrangian transport model (FLEXPART),
16 and a Bayesian inversion system (FLEXINVERT+). We estimate a posteriori emission of 73.0 £ 0.5 Tg yr' for
17 South Asia, including 35.6 + 0.5 Tg yr! for India and 13.2 + 0.2 Tg yr ! for Bangladesh. Agriculture and wetlands
18 contribute substantially to the regional budget, with the flux increments coincident with rice-growing areas and
19 inundated lowlands. The inversion indicates pronounced monsoon-modulated seasonality: posterior fluxes are
20 higher than the prior during June—September by ~70% and lower during January—May by ~46%. Localized
21 enhancements seen over the lower Indus Basin align with runoff patterns, while the seasonal peaks here are absent
22 in inventories. By resolving monsoon seasonality with satellite constraints, our results point towards key
23 uncertainties in the South Asian CHs budget and underscore the need for process-based, seasonally responsive

24 inventories to inform mitigation strategies and reconcile bottom-up and top-down estimates.

25 1. Introduction

26 Methane (CH4) is a potent greenhouse gas with a global warming potential 85 times higher than that of carbon
27 dioxide over a 20-year period. Understanding and accurately quantifying methane emissions is therefore crucial
28  for developing effective climate mitigation strategies. South Asia (SA), with its diverse sources of methane
29  emissions, including agriculture, waste, wetlands, energy production and use, presents a unique and complex
30  domain for such studies. This region includes India, Pakistan, Bangladesh, Nepal, Bhutan and Sri Lanka. SA is
31  one of the biggest methane emission hotspots in the world [Stavert et al., 2020], with its total emissions rising
32 from 37 Tg yrtinthe 2000s to 75 Tg yr? in the 2010s [Belikov et al., 2024]. Patra et al. (2013) estimated 37+3.7
33 Tg yr during the 2000s and Wang et al. (2021) estimated 64.35 + 9.28 Tg yr! emissions from the year 2009 to
34 2018 over South Asia. Among Asian countries, this region contributes to about 25.6% of the total budget for
35  2001-2021 [lto et al., 2023]. As all of these are developing nations, their economic growth causes a notable rise

36 in anthropogenic emissions, particularly from agriculture.
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37 India, the largest economy of the region, contributes more than half of these emissions, and is the key region of
38  focus in this study. This region has been the focus of several country-scale studies (Fig. 1). Ganesan et al. (2017)
39  estimated average methane emissions of 22.0 (19.6-24.3) Tg yr? during 2010-2015, while Raju et al. (2022)
40 reported ~10.63 Tg yr* of methane emissions from Peninsular India (south of 21.5°N) for 2017-2018. More recent
41  satellite-based studies give higher values, with Worden et al. (2022) estimating 39.5 + (2.8-5.4) Tg yr? of
42  anthropogenic emissions for the year 2019 and Yu et al. (2023) reporting 36 (34-38) Tg yr* of anthropogenic
43 emissions for 2018-2019. India’s National Communication reports its anthropogenic greenhouse gas emissions
44 to UNFCCC in the form of Biennial Update Reports (BUR). These bottom-up reports estimate emissions of 19.8,
45 20.05, 19.55 and 18.8 Tg yr, respectively, for the years 2010, 2014, 2016 and 2020. The country's report also
46 includes the top-down anthropogenic methane estimate of 24.2+5.3 Tg yr- for the years 2011-2017, taken from
47 Janardanan et al. (2020). Figure 1 shows the estimation of methane emissions for India from various literature
48 reports. While there are not many studies over other regions of South Asia, Peters et al. (2017) report emissions
49  for Bangladesh in the range of 1.3 to 3.1 Tg yr* for the 2000s.
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51 Figure 1. Literature estimates of Indian methane (CH4) emissions. Shaded regions and bars indicate uncertainties,
52 where available. The estimates underscore significant heterogeneity across methodologies and observation periods.
53 In a situation where bottom-up emission inventories are highly uncertain, top-down methods based on atmospheric

54 measurements offer the possibility to verify or improve the bottom-up inventories. However, while regions like
55 Europe and North America are covered with relatively dense ground-based GHG monitoring networks, only a
56  few stations exist in South Asia. Moreover, access to high-quality data from the few existing sites is often limited

57 or difficult, further hindering reliable budget estimates.

58  The earliest satellite observations for methane were provided by the SCanning Imaging Absorption spectroMeter
59 for Atmospheric CHartographY (SCIAMACHY) instrument onboard the ENVISAT satellite, launched in 2002.
60 The launch of the first dedicated greenhouse gas monitoring satellite, GOSAT (Greenhouse Gases Observing
61 Satellite), in 2009 opened the possibility for monitoring carbon dioxide and methane emissions across the globe.
62 Since then, several other satellites have enhanced the GHG monitoring capabilities. The TROPOspheric
63 Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite, launched in October 2017, provides
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64  high-resolution, daily global observations of atmospheric methane. The TROPOMI data offer unprecedented
65  spatial and temporal coverage well suited for GHG estimation both on global and regional scales.

66  This study is one of the first to leverage TROPOM I satellite observations with a Lagrangian transport model to
67  constrain the methane budget over South Asia. The study is conducted for the year 2020 and employs the transport
68 model FLEXPART and the Bayesian inversion framework Flexinvert+ to estimate the methane fluxes. With this
69 setup, we seek to enhance our understanding of regional methane dynamics, address the discrepancies between
70  the bottom-up emission estimates and the observed atmospheric mole fractions and thereby contribute to the

71  development of more effective climate policies.
72 2. Data and Methods
73 2.1 Methane Observations

74  The TROPOMI instrument onboard the Sentinel-5P satellite is in a sun-synchronous orbit which uses the short-
75 wavelength infrared spectral region (2305-2385 nm) to detect CHa. It has a swath width of 2600 km and a spatial
76 resolution of 7 x 5.5 km?. The column-averaged dry-air mole fraction of methane, XCH., represents a measure of
77 the average methane mole fraction across the atmospheric column. This study uses the TROPOMI data based on
78 the  WFM-DOAS retrieval algorithm (TROPOMI/WFMD) version 1.8 [Schneising et al., 2023]. This least-
79  squares method fits a linearised radiative transfer model, together with a low-degree polynomial, to the logarithm
80  of the measured sun-normalised radiance through the scaling of previously selected atmospheric vertical profiles.
81 Fast retrievals are facilitated by a look-up table of tabulated reference spectra and their derivatives (weighting
82  functions) with respect to the fit parameters for a variety of typical atmospheric conditions. Since the look-up
83  table is limited to certain atmospheric conditions such as cloud-free scenes, a binary machine learning-based
84  quality filter was implemented, which was trained in a one-time process using quasi-simultaneous cloud
85 information from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi NPP and can
86 subsequently be applied independently of VIIRS data [Schneising et al., 2019]. TROPOMI/WFMD has
87 historically offered better coverage in certain regions and seems to be less affected by specific biases (e.g.,
88 concerning spectral albedo variability, striping artefacts, seasonal effects) compared with the operational data
89 product [Schneising et al., 2023; Lindqvist et al. 2024].

90 The data over the study domain (5° to 38°N and 60° to 98°E) comprises approximately 10,000 to 80,000 soundings
91 per day for the year 2020, with a maximum number in November and December and a minimum from June to
92 September (JJAS). The poorer data coverage in the JJAS period is due to the presence of monsoonal clouds. Figure
93 2 shows the spatial distribution of valid TROPOMI observations across the study domain for the four seasons
94  winter (JF), pre-monsoon (MAM), monsoon (JJAS) and post-monsoon (OND). The retrieved XCHa mole
95  fractions are highest from June to December, and the largest values are detected over northern and eastern parts
96  of India, Pakistan and Bangladesh.
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98 Figure 2. Seasonal mean TROPOMI methane column-averaged dry air mole fractions (XCHa), averaged over 0.5° X
99 0.5° grid cells over South Asia. White areas indicate grid cells without observations due to cloud cover and missing
100 retrievals over the ocean.

101 2.1.1 Selection of Observation

102  We only used satellite retrievals flagged as good quality (quality flag = 0). In addition, the column observations
103  over the Himalayan mountains are also excluded because the highly variable topography makes the retrievals
104  more uncertain. Figure 3(a) shows a time series of monthly mean TROPOMI observed XCH, over the study
105 domain. The second half of the year has higher methane mole fractions, likely reflecting increased methane
106 emissions due to the agricultural practices and inundation of wetlands after the monsoon rainfall. The total number
107  of retrievals for the whole domain after filtering amounts to approximately 9 million. This vast amount of data
108  would add a prohibitive computational load for the models used in the study, while often delivering redundant
109 information. In order to reduce the number of observations while preserving most of the information content, the
110 retrievals are aggregated and averaged spatially on a 0.25° x 0.25° and a 0.50° x 0.50° latitude/longitude variable
111 grid based on the spatial variability of methane mole fractions. Essentially, the mean and standard deviation of
112 the column mole fractions are calculated at the coarsest grid box (0.5°). When the standard deviation in the
113 coarsest grid exceeds a certain threshold (15ppb), the grid is further divided into a finer grid. This two-resolution
114  step approach is done to ensure that the grid cells with a higher variability of methane mole fractions are separately
115 taken into account. An example of such a variable grid is shown in Fig. 3(b). This method is explained in detail
116 in Thompson et al. (2025), and the aggregated observations from now are called super-observations.
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118 Figure 3. a) Seasonality of the observed TROPOMI methane column mole fractions (XCHa) averaged over the whole
119 domain. The blue boxes represent the interquartile range (IQR), the center line the median, the whiskers represent
120 the most extreme data points within 1.5 x IQR of the monthly mole fractions and the circles are outliers. Also shown
121 is the number of retrievals in each month (orange line). b) Observations aggregated on a variable resolution

122 latitude/longitude grid (0.25° x 0.25° and 0.50° x 0.50°) for a typical day in October. The black circle shows a region

123 where the fine grid is used with larger heterogeneity in mole fractions.
124 2.2 Methane Prior Fluxes

125 To supply the inversion system with prior methane fluxes, we used bottom-up inventories for eight different
126 source categories: (1) anthropogenic emissions from Edgar version 8 [Crippa et al., 2023], (2) wetland emissions
127 from the NASA Earth Observation SIMulator version of the Lund-Potsdam-Jena Dynamic Global Vegetation
128 Model - LPJ EOSIM [Colligan et al., 2024], (3) fire emissions from Finn [Wiedinmyer et al., 2023], (4) geological
129 emissions [Etiope et al., 2019], (5) termite emissions from CAMS [Granier et al., 2019], (6) emissions from rivers
130 and streams [Rocher-Ros et al., 2023], (7) shallow coastal water ocean emissions [Weber et al., 2019], and (8)
131  soil sink from the Soil Methanotrophy Model - MeMo v1 [Murguia-Flores et al., 2018]. Annual mean maps of all
132 these fluxes are shown in Fig. 4 and total numbers are reported in Table 1. The sums of the fluxes from all source
133 categories were provided to the model at a spatial resolution of 0.5° x 0.5° and at monthly time steps. The net
134 global total methane flux from all these sectors together is 612.5 Tg yr, of which 66.3 Tg yr? are emitted in the
135 study region (5° to 38°N and 60° to 98°E). A breakdown of the methane flux sources reveals that anthropogenic
136  sources dominate the emissions over the study domain, contributing 50.64 Tg yr-, which accounts for over 76%
137 of the total regional methane budget of 66.3 Tg yr-. The sub-sectors of anthropogenic emissions include mainly
138 agriculture emissions (33.7 Tg yr™) and waste emissions (10.3 Tg yr*) followed by fuel production and usage in
139 industries, transport and buildings (Sup. Fig. 1). Wetlands contribute 13.2 Tg yr, making them the largest natural
140  source of methane in the region. Other sources such as fires (1.6 Tg yr?), geological sources (0.8 Tg yr?), and
141 termites (0.9 Tg yr?) contribute smaller but non-negligible portions to the total emissions. Emissions from rivers
142 (0.6 Tg yr') and oceans (0.3 Tg yr?) are relatively minor, while the soil sink (—1.7 Tg yr'*) represents a modest

143 removal flux.
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The spatial distribution of these fluxes shows anthropogenic emissions are dominant over the river plains of north-

eastern India, Bangladesh and Pakistan. Bangladesh also has high wetland emissions. Notably high landfill

emissions can also be found over the capital city of India, Delhi.

Global Total (Tg yr-| Study Domain Total
Methane Flux Dataset / Reference L L
) (Tgyr?)
Anthropogenic Edgar v8 — [Crippa et al., 2023] 352.70 50.64
NASA LPJ-EOSIM — [Colligan et al.,
Wetlands 187.10 13.19
2024]
Fire FINN — [Wiedinmyer et al., 2023] 25.98 1.58
Geological Etiope et al., 2019 36.04 0.82
Termites CAMS — [Granier et al., 2019] 19.65 0.92
Rivers [Rocher-Ros et al., 2023] 10.99 0.61
Ocean Weber et al., 2019 9.23 0.27
o MeMo v1.0 — [Murguia-Flores et al.,
Soil Sink -29.24 -1.69
2018]
Total — 612.45 66.34

Table 1. Total methane fluxes for the eight sectors used to construct our a priori emissions for the year 2020 globally
and for our study domain (5° to 38°N, 60° to 98°E).
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year 2020.
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152 2.3 Background Mole Fractions

153 Methane observed at any location is a combination of local emissions and contributions transported from distant
154  regions, commonly referred to as the background mole fraction. We calculate the modeled background mole
155  fraction as two components: (1) contribution of methane mole fractions present at the endpoints of the particle
156  trajectories - called the initial mole fraction, (2) contribution from the methane fluxes outside the study domain -
157 from here onwards termed as boundary mole fractions. In our study, the transport modeling (see section 2.4)
158  covers only 20 days backward from every observation. So the methane present in the atmosphere before that time
159 is accounted for in the initial mole fraction. For generating initial mole fractions, we tested two global methane
160 mole fraction products - CAMS global inversion-optimized greenhouse gas mole fractions, and the ECMWF
161 Atmospheric Composition reanalysis EGG4, to identify the dataset that has the smaller bias relative to TROPOMI
162 observations and thus provides a robust background for the inversion. The EGG4 dataset, which incorporates
163 additional bias correction steps, demonstrated the smaller overall bias (mean bias error reduction of ~ 98% relative
164  to CAMS data; MBE CAMS: -9.8 and MBE EGG4: 0.2) and was therefore adopted as the global initial mole
165 fraction field. To account for uncertainties in the background, we applied a relative background error of 0.3%—
166 0.7% in the inversions, corresponding to the order of magnitude of the RMSD of EGG4 against TROPOMI (~5

167  ppb), and ensuring consistency between the assumed error and the observational bias characteristics.
168 2.4 Transport Modeling

169  Thisstudy uses the Lagrangian Particle Transport model - Flexpart v10.4 to calculate the sensitivity of the column-
170  averaged dry air methane mole fractions to the emission fluxes and background mole fractions. For this, the model
171 is run in backward mode for 20 days from the time of the observations using ERA5 meteorology available at 0.5°
172 x 0.5° resolution. The sensitivity of the simulated column at the receptor to emission fluxes is called Source-
173 Receptor Relationship (SRR) [Seibert & Frank, 2004], and the sensitivity to the initial mole fraction field at the
174  trajectory end points is called Background-Receptor Relationship (BRR). The SRRs and BRRs were calculated at
175 0.5° x 0.5° resolution for the study domain (5° to 38°N and 60° to 98°E) and at 2° x 2° globally, and include
176  sensitivity reductions due to chemical reaction with the hydroxyl radical.

177 Methane mixing ratios can be modeled with Flexpart using:
178 ymodel — Hf + Hiniyini (1)

179  where y™ is the model mole fraction, H is the sensitivity to emission fluxes (SRR), H™ is the sensitivity to
180 initial mole fractions (BRR), f are the a priori fluxes, and y™ are the background mole fractions. Here, the first
181  term (Hf) is the contribution from fluxes to the modeled CHy, total column, and the second term (H™y") is the
182 contribution from the initial mole fraction. For modeling total column mixing ratios, Thompson et al. (2025)
183 introduced an efficient framework that accounts for the averaging kernel used in the satellite retrieval. We follow
184  their methodology and, thus, give only a short description. To compare the model and satellite retrievals, we need
185  to consider the effect of the retrieval kernel on the model column mole fraction:

186 XW9 = xvri 4 N A, (Xmodel — xP ), @
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187  where X279 is the model column average mole fraction, XP is the prior column mole fraction used in the satellite
188 retrieval, A, is the averaging kernel sensitivity at layer n, X,m°% is the model mole fraction at layer n, X,"" is the
189  prior mole fraction at layer n, wy is the pressure weighting term, and N is the total number of vertical layers used
190 in the satellite retrieval. A total of 30000 particles were released per retrieval column. Inserting Eq. (1) into Eq.
191  (2) leads to:

192 X9 = xP 4 FN_ A (Haf +HPyint — X2 yw, ®)

193 Here, the term, X 4,Hnw, is the total column SRR. The calculation of column SRRs relies on sampling particles
194  in a grid cell and summing their contributions according to the retrieval layer from which they were released.
195  While, in principle, one could retain information on the specific retrieval layer each particle originated from,
196 Thompson et al. (2025) showed that this information can be incorporated more efficiently by carrying the product
197  of the averaging kernel and pressure weight (Anw,) into the particle mass. This allows the number of particles
198 released per layer to be varied according to P, = PA.w,, where P is the total number of particles released per
199 retrieval. Figure 5 illustrates a sample distribution, showing how the averaging kernel and pressure weighting
200 determine the vertical distribution of particles across the retrieval layers. This formulation leads to a simplified
201 expression equivalent to that used for point observations. The results are numerically consistent with the full layer
202 calculation but require substantially less computation, making it possible to treat total column observations with
203  the same efficiency as point measurements. More details on this method can be found in Thompson et al. (2025).
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205 Figure 5. Vertical distribution of particles for a sample retrieval. Blue bars show the averaging kernel values for each
206 retrieval layer, and the orange line indicates the corresponding number of particles released per layer after weighting
207 by the averaging kernel and pressure term.

208 2.5 Inverse Modeling

209 The Bayesian inversion method [Tarantola, 2005] corrects the prior flux estimates based on the available
210 observations, while accounting for uncertainties in both the measurements and the modeling system. This study
211 employs the Bayesian inverse modeling system - Flexinvert [Thompson and Stohl, 2014] to optimize the methane
212 emissions across South Asia. Here, we used the sensitivity fields derived from transport modeling to quantify the
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213 influence of surface emissions to the satellite-observed methane mole fractions, represented as the transport
214  operator H. The inversion then adjusts the prior fluxes to minimize the mismatch between the modeled and
215  observed mole fractions, resulting in posterior fluxes that are more consistent with the atmospheric measurements.
216 This is formulated as a cost function J(x) that balances deviations from both prior emissions and observational

217 constraints. The cost function is defined as:
1 1
218 J(x) = 3 (x—x,)" B2 (x — xp) + 3 (y — HX)TR™(y — Hx)

219 where Xy is the state vector of prior fluxes, y is the observation vector, H is the transport operator, B and R are the
220 error covariances associated with the prior errors and observation errors. The state vector is optimized at a 30-day
221 temporal resolution and at spatial resolutions ranging from 0.5° to 2.0°, depending on how strongly emissions in
222 a region influence the observations. The inversion was restricted to land regions, with only terrestrial fluxes being
223 optimized. The state vector further contains scalar parameters for the initial mole fraction field. These are specified
224 across four latitude bands (90°-30°N, 30°-0°N, 0°-30°S, and 30°-90°S) and three vertical layers (0—2000 m,
225  2000-10,000 m, and 10,000-50,000 m above ground level), and are optimized on a 30-day timescale. We used a
226 range of prior and background uncertainties for the inversions (see section 3.1). For the reference inversion, a
227  prior flux uncertainty of 100% and a background uncertainty of 0.3% are assumed. The prior error covariance
228 matrix B is constructed by assigning the variance in each grid cell as the square of its prior uncertainty, while the
229  covariances were defined using an exponential decay function with a correlation length of 250 km between grid
230  cells. Inaddition, temporal correlations were accounted for using an exponential decay with a correlation timescale
231 of 30 days. Observation errors were derived from the TROPOMI retrieval uncertainties. For each super-
232 observation, the uncertainty was computed as the root-sum-square of the individual retrieval uncertainties,
233 weighted by their respective ground pixel areas. The total observation space uncertainty includes both the super-
234 observation error and the error from background mole fractions. This uncertainty corresponds to an IQR of 14—
235 18 ppb with a mean of 16 ppb. The squares of these uncertainties were used as the variances in the observation
236  error covariance matrix R. The errors in the super-observations were assumed to be uncorrelated. The cost function
237 for the inversion can be solved either numerically or analytically. This study employs an analytical solution for
238  inversions:

239 Xq = xp + (B~ + HTR™*H)"* HTR™*(y — Hx,)
240  where X, is the posterior estimate.

241 3.1 Results and Discussion

10
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243 Figure 6. Scatter plot of observed TROPOMI CH. column-average mole fractions against FLEXPART model
244 estimates over South Asia. The left figure shows results with prior and the right with posterior emissions.

245 Figure 6 shows the agreement between observed and modeled column-averaged methane mole fractions before
246  and after the inversion. This plot gives a comprehensive view of the performance of the inversion system. The
247  correlation coefficient increases from 0.65 (prior) to 0.89 (posterior), indicating a substantial improvement in the
248  posterior estimates after assimilating the satellite observations. With the prior emissions, the slope between the
249  model and the observations is 0.86 and there is a large positive intercept of 262 ppb. With the posterior emissions,
250  the slope is close to 1 and the intercept nearly zero, indicating an almost unbiased fit. This validates that the
251 posterior emissions better reproduce the observed atmospheric mole fractions, demonstrating the effectiveness of
252 the inversion. However, since this validation is not against independent data, this shows only that the inversion is
253  performing as expected.

254  The South Asian region experiences a distinct seasonal pattern characterized by wet summers and dry winters.
255 During summer, from June to September, strong south-westerly winds prevail due to the South Asian monsoon,

256  while winter is dominated by dry continental winds predominantly from the north-east.
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258 Figure 7. Time series of observed and modeled prior and posterior methane (CHs) column-averaged dry air mole

259 fractions averaged over South Asia. Modeled prior and posterior background are also shown.

11
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260 Figure 7 shows the time series of the spatially averaged observed and modeled column-average mole fractions of
261  CHg4 for the reference inversion. The TROPOMI observations (blue line) show a strong increase in column-
262 average CH. dry air mole fractions during and after the monsoon season. The prior background mole fractions
263 (dashed purple line) are higher from October to February, due to the northerly winds carrying air which is enriched
264  in CHg4, and lower from June to September, due to the cleaner air arriving from the Southern Ocean during the
265 monsoon season. Our inversion simultaneously optimizes both the background methane mole fractions and the
266  prior emissions. The posterior background mole fractions (dashed grey line) are adjusted downward during
267  January to May and upward from June. The model prior mole fractions (orange line) significantly overestimate
268 the observations during the dry months from January to May and underestimate them during the wet period from
269  June to September. The posterior mole fractions (green line) show the inversion’s ability to bring the simulated
270 values closer to the observations. While this is partly due to a correction of the background values, a substantial
271 portion of the correction is due to increased emission contributions from South Asia during June to September
272 (Fig. 10). These results indicate that the bottom-up inventories misrepresent the seasonal dynamics of methane
273 emissions in South Asia.
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275 Figure 8. Spatial distribution of (a) prior and (b) posterior methane emission and their increments (c) (posterior minus
276 prior) across South Asia for the year 2020. Positive values (red) indicate regions where emissions were underestimated
277 in the prior inventories, while negative values (blue) indicate overestimation. The three marked boxes highlight regions
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278 of interest discussed in the text. Major river systems (Indus, Ganges, and others) are overlaid in green for geographical

279 context. (d) shows the uncertainty reduction across the region.

280 Figure 8 (a)-(b) shows the spatial distribution of the prior and posterior methane fluxes and Table 2 provides a
281  summary of the methane emissions for the different countries. The prior methane emissions from South Asia as a
282 whole are 66.34 + 2.58 Tg yr, with the top three emitters India, Bangladesh and Pakistan contributing 38.41 +
283 2.54,7.57 £ 0.36, and 8.00 + 0.22 Tg yr, respectively. The countries Afghanistan, Bhutan, Sri Lanka and Nepal
284 (referred to as ABSN from here onwards) together contribute only 2.04 Tg yr-t. Myanmar, which is only partially
285 in our inversion domain, contributes a total of 10.3 Tg yr™.

286 The inversion gives a total posterior methane flux of 73.01 + 0.53 Tg yr?, 6.7 Tg yr more than the prior estimate.
287  Of this, India accounts for 35.62 + 0.47 Tg yr* (a reduction of 7% from the prior), Bangladesh for 13.16 + 0.19
288 Tg yr? (an increase of 74%) and Pakistan for 6.55 + 0.09 Tg yr* (a reduction of 18%), respectively. Bangladesh
289  accounts for the majority of the regional increase. The posterior emissions from ABSN countries, 2.30 Tg yr (an

290 increase of 13%) remain relatively minor.

Region Prior Emissions | Posterior Emissions | Absolute Change | Relative Change
(Tgyr?) (Tgyr?) (Tgyr?) (%)
India 38.41+254 35.62 £ 0.47 -2.79 -71.3%
Bangladesh 7.57+0.36 13.16 £ 0.19 +5.60 +74%
Pakistan 8.00 £ 0.22 6.55 +0.09 -1.45 -18.1%
Afghanistan 0.61 +0.02 1.07+£0.01 +0.46 +75.4%
Bhutan 0.03 0.03 0 0%
Sri Lanka 0.50 +0.03 0.56 + 0.02 +0.06 12%
Nepal 0.90 £ 0.06 0.65 +0.03 -0.25 -27.8%
Others 10.32 £ 0.22 15.38 £+ 0.14 +5.06 +49%
Total 66.34 £ 2.58 73.01+0.53 +6.67 +10%
291 Table 2. Prior and posterior methane emission estimates (Tg yr™* CHa) for South Asia and individual countries in
292 2020. The inversion increases the regional total from 66.34 £2.58 Tg yr to 73.01 + 0.53 Tg yr-, with the largest
293 upward adjustment over Bangladesh (+5.6 Tg yrt), while India shows a reduction of 2.8 Tg yr. Smaller
294 contributions come from Afghanistan, Bhutan, Sri Lanka, and Nepal (ABSN).
295 Figure 8 (c) shows the spatial distribution of the increments in the methane fluxes after the inversion (posterior -
296 prior) overlaid with major rivers in the region. Areas dominated by wetlands and agriculture (Fig. 4, Sup. Fig. 1)
297  show the strongest posterior-prior differences. The majority of these positive increments were observed in the
298  eastern Indo-Gangetic Plain and Bangladesh. This region, marked with a black box (22-26.5°N, 87.5-92°E) in
299 Fig. 8(c), alone has a posterior emission of 20.83 Tg yr of methane, an increase of +8.4 Tg yr* from prior
300 emissions, indicating that inventories substantially underestimate emissions in these densely irrigated and
301  wetland-rich areas. This is a region of focus in our study and detailed analysis is done later on in this section. The
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302 positive increments in the north-western India clearly align with the trajectory of the river Yamuna and Ganges,
303 indicating uncaptured emissions in inventories, possibly from the agriculture sector. Several studies have shown
304  rice cultivation as a key contributor to methane emissions here due to the use of nitrogen fertilizers, organic
305 manure, and livestock population in this region [Singh et al., 2021].

306 Most of the negative adjustments are seen over western India and Pakistan. A comparison with the prior flux maps
307 (Fig. 4) shows that these are mostly agricultural and waste-related emissions in the prior (Sup. Fig. 1). In the area
308 marked within the blue box, emission estimates are reduced by -2.4 Tg yr?, suggesting that bottom-up inventories
309  overestimate fluxes in these sparsely monitored regions. While the total methane emissions in Pakistan decrease
310 overall after the inversion, the region (marked with an orange box) within the Lower Indus Basin (LIB) shows an
311 increase of 0.5 Tg yr. A closer examination at this region reveals that, when the prior fluxes show an almost flat
312 seasonal cycle, the posterior fluxes capture a distinct seasonality with peaks in May and August (Fig. 9(b)). This
313 region is periodically wetted by the Indus River, whose flow is governed by both natural processes—such as
314 glacier and snowmelt from the northern mountains and monsoonal rainfall—and strong human regulation through
315 irrigation and agricultural diversions, particularly within the LIB. Previous studies, such as Baig et al. (2022),
316 have also reported a comparable dual-peak seasonality in river discharge in the Upper Indus Basin (UIB), driven
317 by glacier melt, snow and rainfall contributions. To examine this further, we analyzed runoff data from ERA5-
318 Land [Mufioz-Sabater et al., 2021], which combine surface and subsurface components resulting from rainfall,
319 melting snow, and soil drainage. The analysis reveals a strikingly similar spatial pattern in annual runoff (Fig.
320  9(a)) to the flux increments seen in the orange-box region. The runoff data also exhibit a dual-peak cycle in the
321 UIB, with maxima in June and September, while the lower Indus Basin shows only a single pronounced peak in
322 August (Fig. 9(b)). This difference likely reflects the strong influence of the Indus Basin Irrigation System, where
323 extensive human regulation and diversion for irrigation and agriculture modify the natural water flow (Janjua et
324 al., 2021), a process that may not be represented accurately in the river flow datasets (Liu et al., 2018). The
325 posterior methane fluxes in Fig. 9(b) tend to peak slightly earlier than the corresponding runoff peaks, indicating
326 a temporal lag between runoff data and methane emissions. This may be due to known uncertainties in Indus
327 discharge data, where mean annual biases of about 22% and monthly errors exceeding 200% have been reported
328 (Liu et al., 2018), potentially distorting both the timing and magnitude of seasonal peaks. Such discrepancies are
329  further amplified downstream by barrage operations and canal withdrawals in the Indus Basin Irrigation System
330 (Bhatti et al., 2019), while long-term analyses also indicate a progressive shift toward earlier streamflow timing
331 (Ali et al., 2023). Further, the grid cell corresponding to Karachi, Pakistan, also shows a positive increment, with
332 the highest posterior CH4 emissions occurring in September. Interestingly, this coincides with record monsoonal

333 rainfall that caused severe flooding in Karachi during late August 2020.
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335 Figure 9. (a) Spatial distribution of annual runoff from ERA5-Land in the Lower Indus Basin (LIB), with the orange

336 box indicating the analysis area. (b) Monthly methane fluxes (prior in orange, posterior in green) in the LI1B
337 compared with runoff time series for both the upper and lower Indus Basin. The posterior fluxes capture a clear
338 seasonal cycle with peaks in May and August, consistent with runoff variability, showing a similar pattern to runoff
339 variability in the basin.

340  The year 2020 marked an above-normal monsoonal rainfall in South Asia, with India receiving 109% of its Long
341 Period Average (LPA). This marked the second consecutive year of above-normal monsoon rainfall in India,
342  following 2019's 110% of LPA - a pattern not observed since 1958 and 1959. Concurrently, Bangladesh faced
343 historic flooding, with approximately a quarter of the country submerged. Almost a million homes were inundated,

344  and more than 1,500 square kilometers of farmland were damaged across the country.

345  Tounderstand the role of the monsoon in the emissions, their key natural drivers such as rainfall and soil moisture
346 were compared with monthly prior and posterior methane fluxes. Rainfall data is taken from the Global
347 Precipitation Climatology Project [Adler et al., 2019] and soil wetness from ERA5-Land [Hersbach et al., 2018],
348 with the top four layers (~3 m depth) averaged. Figure 10 shows prior and posterior fluxes alongside rainfall and
349 soil wetness for the South Asia full domain (top) and the Bangladesh-focused black box region (bottom). The
350 figure highlights a strong seasonal contrast. During the early part of the year (Jan—May), the inversion reduced
351  fluxes by 46% relative to the prior (10.5 Tg yr). In the monsoon months (Jun-Sep), posterior fluxes showed a
352 70% upward adjustment (19.3 Tg yr?), coinciding with peak rainfall and soil wetness, and reflecting the strong
353 hydrological forcing on emissions (Sup. Fig.2). The largest increments occur in July—August, when rainfall and
354  soil wetness reach their maxima. In the post-monsoon period (Oct-Dec), posterior emissions were 13% lower
355  than the prior (2 Tg yr?), with the retreat of rainfall and soil saturation. The seasonal amplitude is strongest within

356  the box region, consistent with the historic flooding in Bangladesh.
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358 Figure 10. Monthly prior (blue) and posterior (orange) methane fluxes for the full South Asia domain (top) and the
359 Bangladesh focus region (bottom), shown together with monthly mean rainfall, runoff and soil wetness.

360  To assess this link statistically, we calculated the spatio-temporal Pearson correlation of methane fluxes before
361  and after the inversion with the hydrological drivers. This analysis revealed that soil wetness shows a correlation
362  of 0.28 with the prior fluxes, which increases to 0.31 after inversion, corresponding to a 25% rise in the explained
363  variance. For rainfall, the correlation increases from 0.48 to 0.53 (+22% in explained variance). The rainfall
364 correlation was calculated with a one-month lag to reflect the delayed response of emissions to precipitation-
365 induced inundation. The relationship with runoff strengthens from 0.23 in the prior to 0.32 in the posterior fluxes
366 - an increase of about 94% in the variance explained. Together, these results indicate a systematic enhancement

367 in the linear relationship between the posterior methane fluxes and hydrological variability.

368  Thus, it seems that the strong South Asian monsoon and associated extensive flooding were at least partly causal
369 in driving our positive flux increments in this region. Studies such as Peng et al. (2022) identified wetland
370  emissions as the major reason for the 2020 global methane growth. According to NASA Earth Observatory (2022),
371  half of the surge in atmospheric methane in 2020 was driven by wetland emissions. Fueled by the strong South
372 Asian monsoon in 2020, wetlands in Bangladesh and possibly all of South Asia appear to have contributed
373  substantially to this global increase. Niwa et al. (2025), also emphasized that wetlands and agricultural activities
374  are key drivers of biogenic methane emissions in this region, substantially contributing to the global methane

375 increase observed from 2020 to 2022. These regions of spatial mismatch between prior and posterior fluxes would
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376  be of prime interest for targeted field campaigns or improved process models (hydrology, rice paddies) to
377  effectively reduce inventory uncertainty.
378 An uncertainty reduction map is calculated as one minus the ratio of posterior to prior uncertainties (Fig. 8 (d)).
379  The inversion could achieve a maximum of 70% uncertainty reduction in some regions with a median uncertainty
380  reduction close to 40% in most of the area. The maximum uncertainty reduction is mostly achieved in the regions
381  with higher emissions and higher data coverage.
382 3.2 Ensemble of Inversions
383  To quantify the sensitivity of our inversion to the uncertainty assumptions, we performed nine inversions
384 combining three levels of prior flux uncertainty (50 %, 100 %, 200 %) with three background error settings (0.3%,
385 0.5%, 0.7%). Posterior fluxes for South Asia range from 65.16 to 74.62 Tg yr-, with an ensemble mean of 70.97
386  Tg yr, a standard deviation of 3.16 Tg yr?, and an ensemble spread of 9.46 Tg yr' (~13 % of the mean),
387 illustrating the uncertainty introduced by our prior choices (Fig. 11). For the simulations with the lowest prior
388  uncertainty (50%) and the highest prior uncertainty (200%), increasing the background error from 0.3% to 0.7%
389 reduces the posterior fluxes, whereas for the simulations with the moderate prior uncertainty (100%), posterior
390  fluxes show a slight increase from 73.0 to 73.8 Tg yr?, but are remarkably stable (<1 Tg yr? change). This
391  demonstrates a robust solution under moderate changes of a-priori background uncertainty.
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393 Figure 11. Posterior CHs flux estimates as a function of prior-flux uncertainty (50 %, 100 %, 200 %) and three
394 background-error settings (0.3% in blue, 0.5% in orange, 0.7% in green). The reference inversion is indicated with a
395 black outline.
396 Figure 12 presents the monthly ensemble means of posterior fluxes compared with the priors, with the error bars
397  (*! o) indicating one-sigma spread across the nine inversion experiments. The darker shaded bars correspond to
398 the full South Asia domain, while lighter shades represent the Bangladesh focus region. Across all ensembles, the
399  posterior fluxes exhibit a consistent and robust seasonal cycle. Posterior flux adjustments are negative during
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400 January to May and again in October to December. The ensemble spread remains very small during this period,
401  whenthe number of TROPOMI observations is large (Fig. 3). In contrast, June to September shows strong positive
402 increments, particularly in the Bangladesh focus region where posterior fluxes nearly triple the priors, reflecting
403 the severe flooding and widespread wetland inundation. The ensemble spread is largest during June to August,
404  reaching +2 Tg yr! for the full domain and +0.8 Tg yr* for the focus region, coinciding with reduced satellite
405  coverage under cloudy monsoon conditions. Importantly, the increments are not only consistent in time but also
406  across space, with all ensemble members showing a coherent increase in emissions over the same regions. The
407  persistence of these adjustments across all ensemble members highlights the robustness of the inversion in

408 capturing the influence of the South Asian monsoon and hydrology on methane emissions.

Ensemble mean of Posterior Flux

Prior
15.0 B Posterior (mean=+std)
Prior (focus region)
12.5 Posterior (mean=std, focus region)
N
;lOAO
o
< 75
T
O
5.0 1 L
BIRTRIE | | | |
0.0 I - - . - . -
Jan Feb M Jul A Dec

ar Apr May Jun

409 ug Sep Oct Nov
410 Figure 12. Ensemble mean monthly CHs fluxes (Tg Yr* CHa), showing prior estimates (orange) and posterior means
411 (green) with =1 ¢ error bars across nine inversion experiments.

412 4. Conclusion

413  This study demonstrates the value of assimilating TROPOMI satellite observations into a Bayesian inversion
414  framework to constrain regional methane emissions over South Asia. The inversion substantially improves the
415 agreement between observed and modeled mole fractions, as seen by the increase in correlation from 0.65 to 0.89
416  and the shift toward an unbiased fit. Posterior fluxes reveal substantial underestimations in the inventories over
417 wetland-rich and intensively cultivated regions like eastern India and Bangladesh as well as in the Indus river
418 basin. The inversion estimates a total of 73.0 Tg yr'* CHs emissions for South Asia in 2020, which is 6.7 Tg yr*
419 higher than the prior estimate. Within this increase, Bangladesh alone contributes +5.6 Tg yr, while the black-
420 box region covering eastern India and Bangladesh accounts for +8.4 Tg yr* of the regional increment. In contrast,
421 western India and northern Pakistan show negative adjustments, suggesting overestimation of fluxes in the prior
422 inventories. However, a localized region within the Lower Indus Basin shows a notable positive increment (~0.5
423 Tgyr?), with the posterior fluxes capturing a distinct dual-peak seasonality (May and August) absent in the prior
424 estimates. This enhanced seasonality coincides with the runoff cycle of the Indus River, which is modulated by
425  both glacier and snowmelt from the Upper Indus and by monsoonal rainfall and irrigation in the lower basin.

426 Importantly, the prior emissions overestimate methane during the early part of the year (January—May, by 46%)
427 as well as during November-December (by 13%), while underestimating it during June—September (by 70%) - a
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428 seasonal mismatch corrected by the inversion. Most of the spatial and temporal corrections coincide with the
429 regions of heavy monsoonal rainfall. Further analysis shows increased correlation between posterior fluxes and
430 key environmental drivers like precipitation, soil moisture, and runoff. These analyses suggest that the 2020 rise
431 in methane emissions is strongly linked to biogenic processes driven by glacial melt (in the Indus river basin),
432 heavy monsoonal rainfall and enhanced inundation (both in the Indus river basin and in Bangladesh). These
433 findings are consistent with earlier studies (e.g., Peng et al., (2022), Niwa et al., (2025)) that identify wetlands and
434  agriculture as dominant contributors to the regional and global methane budget in recent years. However,
435 inventories do not reproduce the important seasonal variability of emissions in the large river systems - a finding

436 that may apply also to other regions than South Asia.

437 A nine-member ensemble of inversions provides a robust sensitivity analysis, quantifying the spread introduced
438 by varying prior flux and background mole fraction errors. The posterior emissions vary within a ~9.5 Tg yr*
439 range, with the most stable results achieved under moderate a priori uncertainty (100%). Seasonal patterns in all
440  posterior ensembles show enhanced emissions during the monsoon months. The spread across ensemble members
441 was low during the dry months, indicating robust agreement when observational coverage was sufficient. The
442  ensemble results highlight the critical role of prior uncertainty settings in inverse modeling and demonstrate the
443 necessity of ensemble approaches for deriving robust uncertainty estimates. Overall, this work provides a refined
444  top-down constraint on South Asia’s methane emissions for the year 2020 and highlights key spatial and seasonal
445 discrepancies in existing inventories, offering guidance for future improvements in emission reporting and

446 process-based modeling.
447  Code and Data availability

448 The TROPOMI/WFMD methane retrievals and documentation are publicly available from the University of

449 Bremen: https://www.iup.uni-bremen.de/carbon_gha/products/tropomi_wfmd/. The source codes for the

450 FLEXPART Lagrangian transport model and the FLEXINVERT Bayesian inversion system used in this study
451 can be accessed through the GitLab repository:_https:/qgit.nilu.no/flexpart.
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