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 10 

Abstract 11 

South Asia is a major contributor to global methane (CH₄) emissions, yet its emissions remain poorly constrained, 12 

limiting targeted mitigation. Current bottom-up inventories do not consistently capture the magnitude and 13 

seasonality of CH₄ emissions in this region, particularly during the monsoon. Here we quantify South Asian CH₄ 14 

emissions for 2020 using column observations from TROPOMI, a Lagrangian transport model (FLEXPART), 15 

and a Bayesian inversion system (FLEXINVERT+). We estimate a posteriori emission of 73.0 ± 0.5 Tg yr⁻¹ for 16 

South Asia, including 35.6 ± 0.5 Tg yr⁻¹ for India and 13.2 ± 0.2 Tg yr⁻¹ for Bangladesh. Agriculture and wetlands 17 

contribute substantially to the regional budget, with the flux increments coincident with rice‑growing areas and 18 

inundated lowlands. The inversion indicates pronounced monsoon‑modulated seasonality: posterior fluxes are 19 

higher than the prior during June–September by ~70% and lower during January–May by ~46%. Localized 20 

enhancements seen over the lower Indus Basin align with runoff patterns, while the seasonal peaks here are absent 21 

in inventories. By resolving monsoon seasonality with satellite constraints, our results point towards key 22 

uncertainties in the South Asian CH₄ budget and underscore the need for process-based, seasonally responsive 23 

inventories to inform mitigation strategies and reconcile bottom-up and top-down estimates. 24 

1. Introduction 25 

Methane (CH₄) is a potent greenhouse gas with a global warming potential 85 times higher than that of carbon 26 

dioxide over a 20-year period. Understanding and accurately quantifying methane emissions is therefore crucial 27 

for developing effective climate mitigation strategies. South Asia (SA), with its diverse sources of methane 28 

emissions, including agriculture, waste, wetlands, energy production and use, presents a unique and complex 29 

domain for such studies. This region includes India, Pakistan, Bangladesh, Nepal, Bhutan and Sri Lanka. SA is 30 

one of the biggest methane emission hotspots in the world [Stavert et al., 2020], with its total emissions rising 31 

from 37 Tg yr-1 in the 2000s to 75 Tg yr-1 in the 2010s [Belikov et al., 2024]. Patra et al. (2013) estimated 37±3.7 32 

Tg yr-1 during the 2000s and Wang et al. (2021) estimated 64.35 ± 9.28 Tg yr-1 emissions from the year 2009 to 33 

2018 over South Asia.  Among Asian countries, this region contributes to about 25.6% of the total budget for 34 

2001-2021 [Ito et al., 2023]. As all of these are developing nations, their economic growth causes a notable rise 35 

in anthropogenic emissions, particularly from agriculture. 36 
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India, the largest economy of the region, contributes more than half of these emissions, and is the key region of 37 

focus in this study. This region has been the focus of several country-scale studies (Fig. 1). Ganesan et al. (2017) 38 

estimated average methane emissions of 22.0 (19.6–24.3) Tg yr-1 during 2010–2015, while Raju et al. (2022) 39 

reported ~10.63 Tg yr-1 of methane emissions from Peninsular India (south of 21.5°N) for 2017–2018. More recent 40 

satellite-based studies give higher values, with Worden et al. (2022) estimating 39.5 ± (2.8–5.4) Tg yr-1 of 41 

anthropogenic emissions for the year 2019 and Yu et al. (2023) reporting 36 (34–38) Tg yr-1 of anthropogenic 42 

emissions for 2018–2019. India’s National Communication reports its anthropogenic greenhouse gas emissions 43 

to UNFCCC in the form of Biennial Update Reports (BUR). These bottom-up reports estimate emissions of 19.8, 44 

20.05, 19.55 and 18.8 Tg yr-1, respectively, for the years 2010, 2014, 2016 and 2020.  The country's report also 45 

includes the top-down anthropogenic methane estimate of 24.2±5.3 Tg yr-1 for the years 2011-2017, taken from 46 

Janardanan et al. (2020). Figure 1 shows the estimation of methane emissions for India from various literature 47 

reports. While there are not many studies over other regions of South Asia, Peters et al. (2017) report emissions 48 

for Bangladesh in the range of 1.3 to 3.1 Tg yr-1 for the 2000s. 49 

 50 

Figure 1. Literature estimates of Indian methane (CH₄) emissions. Shaded regions and bars indicate uncertainties, 51 

where available. The estimates underscore significant heterogeneity across methodologies and observation periods. 52 

In a situation where bottom-up emission inventories are highly uncertain, top-down methods based on atmospheric 53 

measurements offer the possibility to verify or improve the bottom-up inventories. However, while regions like 54 

Europe and North America are covered with relatively dense ground-based GHG monitoring networks, only a 55 

few stations exist in South Asia. Moreover, access to high-quality data from the few existing sites is often limited 56 

or difficult, further hindering reliable budget estimates. 57 

The earliest satellite observations for methane were provided by the SCanning Imaging Absorption spectroMeter 58 

for Atmospheric CHartographY (SCIAMACHY) instrument onboard the ENVISAT satellite, launched in 2002. 59 

The launch of the first dedicated greenhouse gas monitoring satellite, GOSAT (Greenhouse Gases Observing 60 

Satellite), in 2009 opened the possibility for monitoring carbon dioxide and methane emissions across the globe. 61 

Since then, several other satellites have enhanced the GHG monitoring capabilities. The TROPOspheric 62 

Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite, launched in October 2017, provides 63 
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high-resolution, daily global observations of atmospheric methane. The TROPOMI data offer unprecedented 64 

spatial and temporal coverage well suited for GHG estimation both on global and regional scales. 65 

This study is one of the first to leverage TROPOMI satellite observations with a Lagrangian transport model to 66 

constrain the methane budget over South Asia. The study is conducted for the year 2020 and employs the transport 67 

model FLEXPART and the Bayesian inversion framework Flexinvert+ to estimate the methane fluxes. With this 68 

setup, we seek to enhance our understanding of regional methane dynamics, address the discrepancies between 69 

the bottom-up emission estimates and the observed atmospheric mole fractions and thereby contribute to the 70 

development of more effective climate policies. 71 

2. Data and Methods 72 

2.1 Methane Observations  73 

The TROPOMI instrument onboard the Sentinel-5P satellite is in a sun-synchronous orbit which uses the short-74 

wavelength infrared spectral region (2305-2385 nm) to detect CH4. It has a swath width of 2600 km and a spatial 75 

resolution of 7 x 5.5 km2. The column-averaged dry-air mole fraction of methane, XCH₄, represents a measure of 76 

the average methane mole fraction across the atmospheric column. This study uses the TROPOMI data based on 77 

the  WFM-DOAS retrieval algorithm (TROPOMI/WFMD) version 1.8 [Schneising et al., 2023]. This least-78 

squares method fits a linearised radiative transfer model, together with a low-degree polynomial, to the logarithm 79 

of the measured sun-normalised radiance through the scaling of previously selected atmospheric vertical profiles. 80 

Fast retrievals are facilitated by a look-up table of tabulated reference spectra and their derivatives (weighting 81 

functions) with respect to the fit parameters for a variety of typical atmospheric conditions. Since the look-up 82 

table is limited to certain atmospheric conditions such as cloud-free scenes, a binary machine learning-based 83 

quality filter was implemented, which was trained in a one-time process using quasi-simultaneous cloud 84 

information from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi NPP and can 85 

subsequently be applied independently of VIIRS data [Schneising et al., 2019]. TROPOMI/WFMD has 86 

historically offered better coverage in certain regions and seems to be less affected by specific biases (e.g., 87 

concerning spectral albedo variability, striping artefacts, seasonal effects) compared with the operational data 88 

product [Schneising et al., 2023; Lindqvist et al. 2024]. 89 

The data over the study domain (5° to 38°N and 60° to 98°E) comprises approximately 10,000 to 80,000 soundings 90 

per day for the year 2020, with a maximum number in November and December and a minimum from June to 91 

September (JJAS). The poorer data coverage in the JJAS period is due to the presence of monsoonal clouds. Figure 92 

2 shows the spatial distribution of valid TROPOMI observations across the study domain for the four seasons 93 

winter (JF), pre-monsoon (MAM), monsoon (JJAS) and post-monsoon (OND). The retrieved XCH₄ mole 94 

fractions are highest from June to December, and the largest values are detected over northern and eastern parts 95 

of India, Pakistan and Bangladesh. 96 
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 97 

Figure 2. Seasonal mean TROPOMI methane column-averaged dry air mole fractions (XCH₄), averaged over 0.5° x 98 

0.5° grid cells over South Asia. White areas indicate grid cells without observations due to cloud cover and missing 99 

retrievals over the ocean.  100 

2.1.1 Selection of Observation 101 

We only used satellite retrievals flagged as good quality (quality flag = 0). In addition, the column observations 102 

over the Himalayan mountains are also excluded because the highly variable topography makes the retrievals 103 

more uncertain. Figure 3(a) shows a time series of monthly mean TROPOMI observed XCH4 over the study 104 

domain. The second half of the year has higher methane mole fractions, likely reflecting increased methane 105 

emissions due to the agricultural practices and inundation of wetlands after the monsoon rainfall. The total number 106 

of retrievals for the whole domain after filtering amounts to approximately 9 million. This vast amount of data 107 

would add a prohibitive computational load for the models used in the study, while often delivering redundant 108 

information. In order to reduce the number of observations while preserving most of the information content, the 109 

retrievals are aggregated and averaged spatially on a 0.25° x 0.25° and a 0.50° x 0.50° latitude/longitude variable 110 

grid based on the spatial variability of methane mole fractions. Essentially, the mean and standard deviation of 111 

the column mole fractions are calculated at the coarsest grid box (0.5°). When the standard deviation in the 112 

coarsest grid exceeds a certain threshold (15ppb), the grid is further divided into a finer grid. This two-resolution 113 

step approach is done to ensure that the grid cells with a higher variability of methane mole fractions are separately 114 

taken into account. An example of such a variable grid is shown in Fig. 3(b). This method is explained in detail 115 

in Thompson et al. (2025), and the aggregated observations from now are called super-observations. 116 
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 117 

Figure 3. a) Seasonality of the observed TROPOMI methane column mole fractions (XCH4) averaged over the whole 118 

domain. The blue boxes represent the interquartile range (IQR), the center line the median, the whiskers represent 119 

the most extreme data points within 1.5 × IQR of the monthly mole fractions and the circles are outliers. Also shown 120 

is the number of retrievals in each month (orange line). b) Observations aggregated on a variable resolution 121 

latitude/longitude grid (0.25° x 0.25° and 0.50° x 0.50°) for a typical day in October. The black circle shows a region 122 

where the fine grid is used with larger heterogeneity in mole fractions. 123 

2.2 Methane Prior Fluxes 124 

To supply the inversion system with prior methane fluxes, we used bottom-up inventories for eight different 125 

source categories:  (1) anthropogenic emissions from Edgar version 8 [Crippa et al., 2023], (2) wetland emissions 126 

from the NASA Earth Observation SIMulator version of the Lund-Potsdam-Jena Dynamic Global Vegetation 127 

Model - LPJ EOSIM [Colligan et al., 2024], (3) fire emissions from Finn [Wiedinmyer et al., 2023], (4) geological 128 

emissions [Etiope et al., 2019], (5) termite emissions from CAMS [Granier et al., 2019], (6) emissions from rivers 129 

and streams [Rocher-Ros et al., 2023], (7) shallow coastal water ocean emissions [Weber et al., 2019], and (8) 130 

soil sink from the Soil Methanotrophy Model - MeMo v1 [Murguia-Flores et al., 2018]. Annual mean maps of all 131 

these fluxes are shown in Fig. 4 and total numbers are reported in Table 1. The sums of the fluxes from all source 132 

categories were provided to the model at a spatial resolution of 0.5° x 0.5° and at monthly time steps. The net 133 

global total methane flux from all these sectors together is 612.5 Tg yr-1, of which 66.3 Tg yr-1 are emitted in the 134 

study region (5° to 38°N and 60° to 98°E). A breakdown of the methane flux sources reveals that anthropogenic 135 

sources dominate the emissions over the study domain, contributing 50.64 Tg yr-1, which accounts for over 76% 136 

of the total regional methane budget of 66.3 Tg yr-1. The sub-sectors of anthropogenic emissions include mainly 137 

agriculture emissions (33.7 Tg yr-1) and waste emissions (10.3 Tg yr-1) followed by fuel production and usage in 138 

industries, transport and buildings (Sup. Fig. 1). Wetlands contribute 13.2 Tg yr-1, making them the largest natural 139 

source of methane in the region. Other sources such as fires (1.6 Tg yr-1), geological sources (0.8 Tg yr-1), and 140 

termites (0.9 Tg yr-1) contribute smaller but non-negligible portions to the total emissions. Emissions from rivers 141 

(0.6 Tg yr-1) and oceans (0.3 Tg yr-1) are relatively minor, while the soil sink (−1.7 Tg yr-1) represents a modest 142 

removal flux.  143 
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The spatial distribution of these fluxes shows anthropogenic emissions are dominant over the river plains of north-144 

eastern India, Bangladesh and Pakistan. Bangladesh also has high wetland emissions. Notably high landfill 145 

emissions can also be found over the capital city of India, Delhi.  146 

Table 1. Total methane fluxes for the eight sectors used to construct our a priori emissions for the year 2020 globally 147 

and for our study domain (5° to 38°N, 60° to 98°E). 148 

Methane Flux Dataset / Reference 
Global Total (Tg yr-

1) 

Study Domain Total 

(Tg yr-1) 

Anthropogenic Edgar v8 – [Crippa et al., 2023] 352.70 50.64 

Wetlands 
NASA LPJ-EOSIM – [Colligan et al., 

2024] 
187.10 13.19 

Fire FINN – [Wiedinmyer et al., 2023] 25.98 1.58 

Geological Etiope et al., 2019 36.04 0.82 

Termites CAMS – [Granier et al., 2019] 19.65 0.92 

Rivers [Rocher-Ros et al., 2023] 10.99 0.61 

Ocean Weber et al., 2019 9.23 0.27 

Soil Sink 
MeMo v1.0 – [Murguia-Flores et al., 

2018] 
-29.24 -1.69 

Total — 612.45 66.34 
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 149 

Figure 4. Annual mean bottom-up methane fluxes for the eight sectors used to construct our a priori emissions for the 150 

year 2020. 151 
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2.3 Background Mole Fractions 152 

Methane observed at any location is a combination of local emissions and contributions transported from distant 153 

regions, commonly referred to as the background mole fraction. We calculate the modeled background mole 154 

fraction as two components: (1) contribution of methane mole fractions present at the endpoints of the particle 155 

trajectories - called the initial mole fraction, (2) contribution from the methane fluxes outside the study domain - 156 

from here onwards termed as boundary mole fractions. In our study, the transport modeling (see section 2.4) 157 

covers only 20 days backward from every observation. So the methane present in the atmosphere before that time 158 

is accounted for in the initial mole fraction. For generating initial mole fractions, we tested two global methane 159 

mole fraction products - CAMS global inversion-optimized greenhouse gas mole fractions, and the ECMWF 160 

Atmospheric Composition reanalysis EGG4, to identify the dataset that has the smaller bias relative to TROPOMI 161 

observations and thus provides a robust background for the inversion. The EGG4 dataset, which incorporates 162 

additional bias correction steps, demonstrated the smaller overall bias (mean bias error reduction of ~ 98% relative 163 

to CAMS data; MBE CAMS: -9.8 and MBE EGG4: 0.2) and was therefore adopted as the global initial mole 164 

fraction field. To account for uncertainties in the background, we applied a relative background error of 0.3%–165 

0.7% in the inversions, corresponding to the order of magnitude of the RMSD of EGG4 against TROPOMI (~5 166 

ppb), and ensuring consistency between the assumed error and the observational bias characteristics. 167 

2.4 Transport Modeling 168 

This study uses the Lagrangian Particle Transport model - Flexpart v10.4 to calculate the sensitivity of the column-169 

averaged dry air methane mole fractions to the emission fluxes and background mole fractions. For this, the model 170 

is run in backward mode for 20 days from the time of the observations using ERA5 meteorology available at 0.5° 171 

x 0.5° resolution. The sensitivity of the simulated column at the receptor to emission fluxes is called Source-172 

Receptor Relationship (SRR) [Seibert & Frank, 2004], and the sensitivity to the initial mole fraction field at the 173 

trajectory end points is called Background-Receptor Relationship (BRR). The SRRs and BRRs were calculated at 174 

0.5° x 0.5° resolution for the study domain (5° to 38°N and 60° to 98°E) and at 2° x 2° globally, and include 175 

sensitivity reductions due to chemical reaction with the hydroxyl radical.  176 

Methane mixing ratios can be modeled with Flexpart using: 177 

    𝑦𝑚𝑜𝑑𝑒𝑙  =  H𝑓 +  H𝑖𝑛𝑖𝑦𝑖𝑛𝑖      (1) 178 

where ymodel is the model mole fraction, H is the sensitivity to emission fluxes (SRR), Hini is the sensitivity to 179 

initial mole fractions (BRR), f are the a priori fluxes, and yini are the background mole fractions. Here, the first 180 

term (Hf) is the contribution from fluxes to the modeled CH4 total column, and the second term (Hiniyini) is the 181 

contribution from the initial mole fraction. For modeling total column mixing ratios, Thompson et al. (2025) 182 

introduced an efficient framework that accounts for the averaging kernel used in the satellite retrieval. We follow 183 

their methodology and, thus, give only a short description. To compare the model and satellite retrievals, we need 184 

to consider the effect of the retrieval kernel on the model column mole fraction: 185 

 𝑋𝑎𝑣𝑔  = 𝑋𝑝𝑟𝑖  +  ∑ 𝐴𝑛( 𝑋𝑛
𝑚𝑜𝑑𝑒𝑙 − 𝑋𝑛

𝑝𝑟𝑖
  ) 𝑤𝑛

𝑁
𝑛=1      (2) 186 
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where Xavg is the model column average mole fraction, Xpri is the prior column mole fraction used in the satellite 187 

retrieval, An is the averaging kernel sensitivity at layer n, Xn
model is the model mole fraction at layer n, Xn

pri is the 188 

prior mole fraction at layer n, wn is the pressure weighting term, and N is the total number of vertical layers used 189 

in the satellite retrieval. A total of 30000 particles were released per retrieval column. Inserting Eq. (1) into  Eq. 190 

(2) leads to: 191 

  𝑋𝑎𝑣𝑔  = 𝑋𝑝𝑟𝑖  +  ∑ 𝐴𝑛( Hn𝑓 + Hn
ini𝑦𝑛

𝑖𝑛𝑖  − 𝑋𝑛
𝑝𝑟𝑖

  ) 𝑤𝑛
𝑁
𝑛=1      (3) 192 

Here, the term, Σ AnHnwn is the total column SRR. The calculation of column SRRs relies on sampling particles 193 

in a grid cell and summing their contributions according to the retrieval layer from which they were released. 194 

While, in principle, one could retain information on the specific retrieval layer each particle originated from, 195 

Thompson et al. (2025) showed that this information can be incorporated more efficiently by carrying the product 196 

of the averaging kernel and pressure weight (Anwn) into the particle mass. This allows the number of particles 197 

released per layer to be varied according to Pn = PAnwn, where P is the total number of particles released per 198 

retrieval. Figure 5 illustrates a sample distribution, showing how the averaging kernel and pressure weighting 199 

determine the vertical distribution of particles across the retrieval layers. This formulation leads to a simplified 200 

expression equivalent to that used for point observations. The results are numerically consistent with the full layer 201 

calculation but require substantially less computation, making it possible to treat total column observations with 202 

the same efficiency as point measurements. More details on this method can be found in Thompson et al. (2025). 203 

 204 

Figure 5. Vertical distribution of particles for a sample retrieval. Blue bars show the averaging kernel values for each 205 

retrieval layer, and the orange line indicates the corresponding number of particles released per layer after weighting 206 

by the averaging kernel and pressure term. 207 

2.5 Inverse Modeling  208 

The Bayesian inversion method [Tarantola, 2005] corrects the prior flux estimates based on the available 209 

observations, while accounting for uncertainties in both the measurements and the modeling system. This study 210 

employs the Bayesian inverse modeling system - Flexinvert [Thompson and Stohl, 2014] to optimize the methane 211 

emissions across South Asia. Here, we used the sensitivity fields derived from transport modeling to quantify the 212 
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influence of surface emissions to the satellite-observed methane mole fractions, represented as the transport 213 

operator H. The inversion then adjusts the prior fluxes to minimize the mismatch between the modeled and 214 

observed mole fractions, resulting in posterior fluxes that are more consistent with the atmospheric measurements. 215 

This is formulated as a cost function J(x) that balances deviations from both prior emissions and observational 216 

constraints. The cost function is defined as: 217 

𝐽(𝑥) =
1

2
 (𝑥 − 𝑥𝑏)𝑇 B−1(𝑥 − 𝑥𝑏)  +

1

2
 (𝑦 − H𝑥)𝑇R−1(𝑦 − H𝑥)  218 

where xb is the state vector of prior fluxes, y is the observation vector, H is the transport operator, B and R are the 219 

error covariances associated with the prior errors and observation errors. The state vector is optimized at a 30-day 220 

temporal resolution and at spatial resolutions ranging from 0.5° to 2.0°, depending on how strongly emissions in 221 

a region influence the observations. The inversion was restricted to land regions, with only terrestrial fluxes being 222 

optimized. The state vector further contains scalar parameters for the initial mole fraction field. These are specified 223 

across four latitude bands (90°–30°N, 30°–0°N, 0°–30°S, and 30°–90°S) and three vertical layers (0–2000 m, 224 

2000–10,000 m, and 10,000–50,000 m above ground level), and are optimized on a 30-day timescale. We used a 225 

range of prior and background uncertainties for the inversions (see section 3.1). For the reference inversion, a 226 

prior flux uncertainty of 100% and a background uncertainty of 0.3% are assumed. The prior error covariance 227 

matrix B is constructed by assigning the variance in each grid cell as the square of its prior uncertainty, while the 228 

covariances were defined using an exponential decay function with a correlation length of 250 km between grid 229 

cells. In addition, temporal correlations were accounted for using an exponential decay with a correlation timescale 230 

of 30 days. Observation errors were derived from the TROPOMI retrieval uncertainties. For each super-231 

observation, the uncertainty was computed as the root-sum-square of the individual retrieval uncertainties, 232 

weighted by their respective ground pixel areas. The total observation space uncertainty includes both the super-233 

observation error and the error from background mole fractions. This uncertainty corresponds to an IQR of 14–234 

18 ppb with a mean of 16 ppb. The squares of these uncertainties were used as the variances in the observation 235 

error covariance matrix R. The errors in the super-observations were assumed to be uncorrelated. The cost function 236 

for the inversion can be solved either numerically or analytically. This study employs an analytical solution for 237 

inversions: 238 

𝑥𝑎 = 𝑥𝑏 + (B−1 + HTR−1H)−1 HTR−1(𝑦 − H𝑥𝑏) 239 

where xa  is the posterior estimate. 240 

3.1 Results and Discussion 241 
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 242 

Figure 6. Scatter plot of observed TROPOMI CH₄ column-average mole fractions against FLEXPART model 243 

estimates over South Asia. The left figure shows results with prior and the right with posterior emissions. 244 

Figure 6 shows the agreement between observed and modeled column-averaged methane mole fractions before 245 

and after the inversion. This plot gives a comprehensive view of the performance of the inversion system. The 246 

correlation coefficient increases from 0.65 (prior) to 0.89 (posterior), indicating a substantial improvement in the 247 

posterior estimates after assimilating the satellite observations. With the prior emissions, the slope between the 248 

model and the observations is 0.86 and there is a large positive intercept of 262 ppb. With the posterior emissions, 249 

the slope is close to 1 and the intercept nearly zero, indicating an almost unbiased fit. This validates that the 250 

posterior emissions better reproduce the observed atmospheric mole fractions, demonstrating the effectiveness of 251 

the inversion. However, since this validation is not against independent data, this shows only that the inversion is 252 

performing as expected. 253 

The South Asian region experiences a distinct seasonal pattern characterized by wet summers and dry winters. 254 

During summer, from June to September, strong south-westerly winds prevail due to the South Asian monsoon, 255 

while winter is dominated by dry continental winds predominantly from the north-east. 256 

257 
Figure 7. Time series of observed and modeled prior and posterior methane (CH₄) column-averaged dry air mole 258 

fractions averaged over South Asia. Modeled prior and posterior background are also shown. 259 
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Figure 7 shows the time series of the spatially averaged observed and modeled column-average mole fractions of 260 

CH4 for the reference inversion. The TROPOMI observations (blue line) show a strong increase in column-261 

average CH4 dry air mole fractions during and after the monsoon season. The prior background mole fractions 262 

(dashed purple line) are higher from October to February, due to the northerly winds carrying air which is enriched 263 

in CH4, and lower from June to September, due to the cleaner air arriving from the Southern Ocean during the 264 

monsoon season. Our inversion simultaneously optimizes both the background methane mole fractions and the 265 

prior emissions. The posterior background mole fractions (dashed grey line) are adjusted downward during 266 

January to May and upward from June. The model prior mole fractions (orange line) significantly overestimate 267 

the observations during the dry months from January to May and underestimate them during the wet period from 268 

June to September. The posterior mole fractions (green line) show the inversion’s ability to bring the simulated 269 

values closer to the observations. While this is partly due to a correction of the background values, a substantial 270 

portion of the correction is due to increased emission contributions from South Asia during June to September 271 

(Fig. 10). These results indicate that the bottom-up inventories misrepresent the seasonal dynamics of methane 272 

emissions in South Asia. 273 

 274 

Figure 8. Spatial distribution of (a) prior and (b) posterior methane emission and their increments (c) (posterior minus 275 

prior) across South Asia for the year 2020. Positive values (red) indicate regions where emissions were underestimated 276 

in the prior inventories, while negative values (blue) indicate overestimation. The three marked boxes highlight regions 277 
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of interest discussed in the text. Major river systems (Indus, Ganges, and others) are overlaid in green for geographical 278 

context. (d) shows the uncertainty reduction across the region. 279 

Figure 8 (a)-(b) shows the spatial distribution of the prior and posterior methane fluxes and Table 2 provides a 280 

summary of the methane emissions for the different countries. The prior methane emissions from South Asia as a 281 

whole are 66.34 ± 2.58 Tg yr-1, with the top three emitters India, Bangladesh and Pakistan contributing 38.41 ± 282 

2.54, 7.57 ± 0.36, and 8.00 ± 0.22 Tg yr-1, respectively. The countries Afghanistan, Bhutan, Sri Lanka and Nepal 283 

(referred to as ABSN from here onwards) together contribute only 2.04 Tg yr-1. Myanmar, which is only partially 284 

in our inversion domain, contributes a total of 10.3 Tg yr-1. 285 

The inversion gives a total posterior methane flux of 73.01 ± 0.53 Tg yr-1, 6.7 Tg yr-1 more than the prior estimate. 286 

Of this, India accounts for 35.62 ± 0.47 Tg yr-1 (a reduction of 7% from the prior), Bangladesh for 13.16 ± 0.19 287 

Tg yr-1 (an increase of 74%) and Pakistan for 6.55 ± 0.09 Tg yr-1 (a reduction of 18%), respectively. Bangladesh 288 

accounts for the majority of the regional increase. The posterior emissions from ABSN countries, 2.30 Tg yr-1 (an 289 

increase of 13%) remain relatively minor. 290 

Table 2. Prior and posterior methane emission estimates (Tg yr-1 CH₄) for South Asia and individual countries in 291 

2020. The inversion increases the regional total from 66.34 ± 2.58 Tg yr-1 to 73.01 ± 0.53 Tg yr-1, with the largest 292 

upward adjustment over Bangladesh (+5.6 Tg yr-1), while India shows a reduction of –2.8 Tg yr-1. Smaller 293 

contributions come from Afghanistan, Bhutan, Sri Lanka, and Nepal (ABSN). 294 

Figure 8 (c) shows the spatial distribution of the increments in the methane fluxes after the inversion (posterior - 295 

prior) overlaid with major rivers in the region. Areas dominated by wetlands and agriculture (Fig. 4, Sup. Fig. 1) 296 

show the strongest posterior-prior differences. The majority of these positive increments were observed in the 297 

eastern Indo-Gangetic Plain and Bangladesh. This region, marked with a black box (22–26.5°N, 87.5–92°E) in 298 

Fig. 8(c), alone has a posterior emission of 20.83 Tg yr-1 of methane, an increase of +8.4 Tg yr-1 from prior 299 

emissions, indicating that inventories substantially underestimate emissions in these densely irrigated and 300 

wetland-rich areas. This is a region of focus in our study and detailed analysis is done later on in this section. The 301 

Region 
Prior Emissions 

(Tg yr-1) 

Posterior Emissions 

(Tg yr-1) 

Absolute Change 

(Tg yr-1) 

Relative Change 

(%) 

India 38.41 ± 2.54 35.62 ± 0.47 -2.79 -7.3% 

Bangladesh 7.57 ± 0.36 13.16 ± 0.19 +5.60 +74% 

Pakistan 8.00 ± 0.22 6.55 ± 0.09 -1.45 -18.1% 

Afghanistan 0.61 ± 0.02 1.07 ± 0.01 +0.46 +75.4% 

Bhutan 0.03 0.03 0 0% 

Sri Lanka 0.50 ± 0.03 0.56 ± 0.02 +0.06 12% 

Nepal 0.90 ± 0.06 0.65 ± 0.03 -0.25 -27.8% 

Others 10.32 ± 0.22 15.38 ± 0.14 +5.06 +49% 

Total 66.34 ± 2.58 73.01 ± 0.53 +6.67 +10% 

13

https://doi.org/10.5194/egusphere-2025-5108
Preprint. Discussion started: 14 November 2025
c© Author(s) 2025. CC BY 4.0 License.



positive increments in the north-western India clearly align with the trajectory of the river Yamuna and Ganges, 302 

indicating uncaptured emissions in inventories, possibly from the agriculture sector. Several studies have shown 303 

rice cultivation as a key contributor to methane emissions here due to the use of nitrogen fertilizers, organic 304 

manure, and livestock population in this region [Singh et al., 2021]. 305 

Most of the negative adjustments are seen over western India and Pakistan. A comparison with the prior flux maps 306 

(Fig. 4) shows that these are mostly agricultural and waste-related emissions in the prior (Sup. Fig. 1). In the area 307 

marked within the blue box, emission estimates are reduced by -2.4 Tg yr-1, suggesting that bottom-up inventories 308 

overestimate fluxes in these sparsely monitored regions. While the total methane emissions in Pakistan decrease 309 

overall after the inversion, the region (marked with an orange box) within the Lower Indus Basin (LIB) shows an 310 

increase of 0.5 Tg yr-1. A closer examination at this region reveals that, when the prior fluxes show an almost flat 311 

seasonal cycle, the posterior fluxes capture a distinct seasonality with peaks in May and August (Fig. 9(b)). This 312 

region is periodically wetted by the Indus River, whose flow is governed by both natural processes—such as 313 

glacier and snowmelt from the northern mountains and monsoonal rainfall—and strong human regulation through 314 

irrigation and agricultural diversions, particularly within the LIB. Previous studies, such as Baig et al. (2022), 315 

have also reported a comparable dual-peak seasonality in river discharge in the Upper Indus Basin (UIB), driven 316 

by glacier melt, snow and  rainfall contributions. To examine this further, we analyzed runoff data from ERA5-317 

Land [Muñoz-Sabater et al., 2021], which combine surface and subsurface components resulting from rainfall, 318 

melting snow, and soil drainage. The analysis reveals a strikingly similar spatial pattern in annual runoff (Fig. 319 

9(a)) to the flux increments seen in the orange-box region. The runoff data also exhibit a dual-peak cycle in the 320 

UIB, with maxima in June and September, while the lower Indus Basin shows only a single pronounced peak in 321 

August (Fig. 9(b)). This difference likely reflects the strong influence of the Indus Basin Irrigation System, where 322 

extensive human regulation and diversion for irrigation and agriculture modify the natural water flow (Janjua et 323 

al., 2021), a process that may not be represented accurately in the river flow datasets (Liu et al., 2018). The 324 

posterior methane fluxes in Fig. 9(b) tend to peak slightly earlier than the corresponding runoff peaks, indicating 325 

a temporal lag between runoff data and methane emissions. This may be due to known uncertainties in Indus 326 

discharge data, where mean annual biases of about 22% and monthly errors exceeding 200% have been reported 327 

(Liu et al., 2018), potentially distorting both the timing and magnitude of seasonal peaks. Such discrepancies are 328 

further amplified downstream by barrage operations and canal withdrawals in the Indus Basin Irrigation System 329 

(Bhatti et al., 2019), while long-term analyses also indicate a progressive shift toward earlier streamflow timing 330 

(Ali et al., 2023). Further, the grid cell corresponding to Karachi, Pakistan, also shows a positive increment, with 331 

the highest posterior CH4 emissions occurring in September. Interestingly, this coincides with record monsoonal 332 

rainfall that caused severe flooding in Karachi during late August 2020. 333 
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 334 

Figure 9.  (a) Spatial distribution of annual runoff from ERA5-Land in the Lower Indus Basin (LIB), with the orange 335 

box indicating the analysis area. (b) Monthly methane fluxes (prior in orange, posterior in green) in the LIB 336 

compared with runoff time series for both the upper and lower Indus Basin. The posterior fluxes capture a clear 337 

seasonal cycle with peaks in May and August, consistent with runoff variability, showing a similar pattern to runoff 338 

variability in the basin. 339 

The year 2020 marked an above-normal monsoonal rainfall in South Asia, with India receiving 109% of its Long 340 

Period Average (LPA). This marked the second consecutive year of above-normal monsoon rainfall in India, 341 

following 2019's 110% of LPA - a pattern not observed since 1958 and 1959. Concurrently, Bangladesh faced 342 

historic flooding, with approximately a quarter of the country submerged. Almost a million homes were inundated, 343 

and more than 1,500 square kilometers of farmland were damaged across the country.  344 

To understand the role of the monsoon in the emissions, their key natural drivers such as rainfall and soil moisture 345 

were compared with monthly prior and posterior methane fluxes. Rainfall data is taken from the Global 346 

Precipitation Climatology Project [Adler et al., 2019] and soil wetness from ERA5-Land [Hersbach et al., 2018], 347 

with the top four layers (~3 m depth) averaged. Figure 10 shows prior and posterior fluxes alongside rainfall and 348 

soil wetness for the South Asia full domain (top) and the Bangladesh-focused black box region (bottom). The 349 

figure highlights a strong seasonal contrast. During the early part of the year (Jan–May), the inversion reduced 350 

fluxes by 46% relative to the prior (10.5 Tg yr-1). In the monsoon months (Jun–Sep), posterior fluxes showed a 351 

70% upward adjustment (19.3 Tg yr-1), coinciding with peak rainfall and soil wetness, and reflecting the strong 352 

hydrological forcing on emissions (Sup. Fig.2). The largest increments occur in July–August, when rainfall and 353 

soil wetness reach their maxima. In the post-monsoon period (Oct–Dec), posterior emissions were 13% lower 354 

than the prior (2 Tg yr-1), with the retreat of rainfall and soil saturation. The seasonal amplitude is strongest within 355 

the box region, consistent with the historic flooding in Bangladesh. 356 
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 357 

Figure 10. Monthly prior (blue) and posterior (orange) methane fluxes for the full South Asia domain (top) and the 358 

Bangladesh focus region (bottom), shown together with monthly mean rainfall, runoff and soil wetness. 359 

To assess this link statistically, we calculated the spatio-temporal Pearson correlation of methane fluxes before 360 

and after the inversion with the hydrological drivers. This analysis revealed that soil wetness shows a correlation 361 

of 0.28 with the prior fluxes, which increases to 0.31 after inversion, corresponding to a 25% rise in the explained 362 

variance. For rainfall, the correlation increases from 0.48 to 0.53 (+22% in explained variance). The rainfall 363 

correlation was calculated with a one-month lag to reflect the delayed response of emissions to precipitation-364 

induced inundation. The relationship with runoff strengthens from 0.23 in the prior to 0.32 in the posterior fluxes 365 

- an increase of about 94% in the variance explained. Together, these results indicate a systematic enhancement 366 

in the linear relationship between the posterior methane fluxes and hydrological variability.  367 

Thus, it seems that the strong South Asian monsoon and associated extensive flooding were at least partly causal 368 

in driving our positive flux increments in this region. Studies such as Peng et al. (2022) identified wetland 369 

emissions as the major reason for the 2020 global methane growth. According to NASA Earth Observatory (2022), 370 

half of the surge in atmospheric methane in 2020 was driven by wetland emissions. Fueled by the strong South 371 

Asian monsoon in 2020, wetlands in Bangladesh and possibly all of South Asia appear to have contributed 372 

substantially to this global increase. Niwa et al. (2025), also emphasized that wetlands and agricultural activities 373 

are key drivers of biogenic methane emissions in this region, substantially contributing to the global methane 374 

increase observed from 2020 to 2022. These regions of spatial mismatch between prior and posterior fluxes would 375 
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be of prime interest for targeted field campaigns or improved process models (hydrology, rice paddies) to 376 

effectively reduce inventory uncertainty. 377 

An uncertainty reduction map is calculated as one minus the ratio of posterior to prior uncertainties (Fig. 8 (d)). 378 

The inversion could achieve a maximum of 70% uncertainty reduction in some regions with a median uncertainty 379 

reduction close to 40% in most of the area. The maximum uncertainty reduction is mostly achieved in the regions 380 

with higher emissions and higher data coverage. 381 

3.2 Ensemble of Inversions 382 

To quantify the sensitivity of our inversion to the uncertainty assumptions, we performed nine inversions 383 

combining three levels of prior flux uncertainty (50 %, 100 %, 200 %) with three background error settings (0.3%, 384 

0.5%, 0.7%). Posterior fluxes for South Asia range from 65.16 to 74.62 Tg yr-1, with an ensemble mean of 70.97 385 

Tg yr-1, a standard deviation of 3.16 Tg yr-1, and an ensemble spread of 9.46 Tg yr-1 (∼13 % of the mean), 386 

illustrating the uncertainty introduced by our prior choices (Fig. 11). For the simulations with the lowest prior 387 

uncertainty (50%) and the highest prior uncertainty (200%), increasing the background error from 0.3% to 0.7% 388 

reduces the posterior fluxes, whereas for the simulations with the moderate prior uncertainty (100%), posterior 389 

fluxes show a slight increase from 73.0 to 73.8 Tg yr-1, but are remarkably stable (<1 Tg yr-1 change). This 390 

demonstrates a robust solution under moderate changes of a-priori background uncertainty.  391 

 392 

Figure 11. Posterior CH₄ flux estimates as a function of prior‐flux uncertainty (50 %, 100 %, 200 %) and three 393 

background‐error settings (0.3% in blue, 0.5% in orange, 0.7% in green). The reference inversion is indicated with a 394 

black outline. 395 

Figure 12 presents the monthly ensemble means of posterior fluxes compared with the priors, with the error bars 396 

(±1 σ) indicating one-sigma spread across the nine inversion experiments. The darker shaded bars correspond to 397 

the full South Asia domain, while lighter shades represent the Bangladesh focus region. Across all ensembles, the 398 

posterior fluxes exhibit a consistent and robust seasonal cycle. Posterior flux adjustments are negative during 399 
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January to May and again in October to December. The ensemble spread remains very small during this period, 400 

when the number of TROPOMI observations is large (Fig. 3). In contrast, June to September shows strong positive 401 

increments, particularly in the Bangladesh focus region where posterior fluxes nearly triple the priors, reflecting 402 

the severe flooding and widespread wetland inundation. The ensemble spread is largest during June to August, 403 

reaching ±2 Tg yr-1 for the full domain and ±0.8 Tg yr-1 for the focus region, coinciding with reduced satellite 404 

coverage under cloudy monsoon conditions. Importantly, the increments are not only consistent in time but also 405 

across space, with all ensemble members showing a coherent increase in emissions over the same regions. The 406 

persistence of these adjustments across all ensemble members highlights the robustness of the inversion in 407 

capturing the influence of the South Asian monsoon and hydrology on methane emissions. 408 

 409 

Figure 12. Ensemble mean monthly CH₄ fluxes (Tg yr-1 CH₄), showing prior estimates (orange) and posterior means 410 

(green) with ±1 σ error bars across nine inversion experiments. 411 

4. Conclusion 412 

This study demonstrates the value of assimilating TROPOMI satellite observations into a Bayesian inversion 413 

framework to constrain regional methane emissions over South Asia. The inversion substantially improves the 414 

agreement between observed and modeled mole fractions, as seen by the increase in correlation from 0.65 to 0.89 415 

and the shift toward an unbiased fit. Posterior fluxes reveal substantial underestimations in the inventories over 416 

wetland-rich and intensively cultivated regions like eastern India and Bangladesh as well as in the Indus river 417 

basin. The inversion estimates a total of 73.0 Tg yr-1 CH₄ emissions for South Asia in 2020, which is 6.7 Tg yr-1 418 

higher than the prior estimate. Within this increase, Bangladesh alone contributes +5.6 Tg yr-1, while the black-419 

box region covering eastern India and Bangladesh accounts for +8.4 Tg yr-1 of the regional increment. In contrast, 420 

western India and northern Pakistan show negative adjustments, suggesting overestimation of fluxes in the prior 421 

inventories. However, a localized region within the Lower Indus Basin shows a notable positive increment (~0.5 422 

Tg yr-1), with the posterior fluxes capturing a distinct dual-peak seasonality (May and August) absent in the prior 423 

estimates. This enhanced seasonality coincides with the runoff cycle of the Indus River, which is modulated by 424 

both glacier and snowmelt from the Upper Indus and by monsoonal rainfall and irrigation in the lower basin.  425 

Importantly, the prior emissions overestimate methane during the early part of the year (January–May, by 46%) 426 

as well as during November-December (by 13%), while underestimating it during June–September (by 70%) - a 427 
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seasonal mismatch corrected by the inversion. Most of the spatial and temporal corrections coincide with the 428 

regions of heavy monsoonal rainfall. Further analysis shows increased correlation between posterior fluxes and 429 

key environmental drivers like precipitation, soil moisture, and runoff. These analyses suggest that the 2020 rise 430 

in methane emissions is strongly linked to biogenic processes driven by glacial melt (in the Indus river basin), 431 

heavy monsoonal rainfall and enhanced inundation (both in the Indus river basin and in Bangladesh). These 432 

findings are consistent with earlier studies (e.g., Peng et al., (2022), Niwa et al., (2025)) that identify wetlands and 433 

agriculture as dominant contributors to the regional and global methane budget in recent years. However, 434 

inventories do not reproduce the important seasonal variability of emissions in the large river systems - a finding 435 

that may apply also to other regions than South Asia. 436 

A nine-member ensemble of inversions provides a robust sensitivity analysis, quantifying the spread introduced 437 

by varying prior flux and background mole fraction errors. The posterior emissions vary within a ~9.5 Tg yr -1 438 

range, with the most stable results achieved under moderate a priori uncertainty (100%). Seasonal patterns in all 439 

posterior ensembles show enhanced emissions during the monsoon months. The spread across ensemble members 440 

was low during the dry months, indicating robust agreement when observational coverage was sufficient. The 441 

ensemble results highlight the critical role of prior uncertainty settings in inverse modeling and demonstrate the 442 

necessity of ensemble approaches for deriving robust uncertainty estimates. Overall, this work provides a refined 443 

top-down constraint on South Asia’s methane emissions for the year 2020 and highlights key spatial and seasonal 444 

discrepancies in existing inventories, offering guidance for future improvements in emission reporting and 445 

process-based modeling. 446 
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