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12 Short Summary

13 Accurate soil information is important. This study developed a new method that improves

14  existing soil maps by correcting their probability distributions using newly collected soil

15 measurements. By repeatedly adjusting previous predictions, the method makes soil

16 maps more accurate and more certain. The application in California improved the

17 performance of predictions for soil texture, organic matter, and bulk density. This method

18  can be further used for more soil properties and regions.

19

20  Abstract

21  Accurate mapping of soil properties is vital for many applications including precision

22 irrigation and fertilization. However, existing models for digital soil maps underestimate
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23 their spatial variability or prediction uncertainties, which introduces risk for applications
24 including agricultural irrigation and fertilization. This study introduces a hybrid approach
25  that combines prior soil predictions with iterative residual correction to improve soil

26  mapping performance using a Californian case study to demonstrate its application. We
27  first generate prior probabilistic soil property maps using a pruned hierarchical Random
28  Forest (pHRF) method. These prior estimates are then refined by integrating additional soil
29  profile data and iteratively adjusting residuals of distribution of soil properties (differences
30 between observation and prior predictions) pixel by pixel. It gradually adjusts the statistical
31 shape of soil property distributions and incrementally corrects bias of prior knowledge

32  with observed soilinformation. We evaluated soil mapping over California and at 1-km

33  resolution to test the methodology. For residual correction, we compiled laboratory-

34  measured soil profile data from three primary sources: the World Soil Information Service
35  (WoSIS), the National Soil Characterization Database (SCD), and field measurements

36 conducted by the University of California, Riverside (UCR) and the USDA-ARS United

37  States Salinity Laboratory. From the evaluations, the posterior soil texture predictions

38 show an RMSE of less than 10%, a 7% reduction compared to the priors (pHRF-derived soil
39  maps). For soil organic matter (SOM) and oven-dry bulk density (BD), the RMSE also

40 decreased, as the priors initially underestimated their spatial variation. Although posterior
41  SOM and BD predictions were less accurate than other soil properties, this was expected
42  since they are dynamic soil properties and their response to environment and

43 anthropogenic activities is more difficult to simulate. The residual correction also showed

44  reduced uncertainties, as demonstrated by narrower prediction intervals compared to the
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45  priors. This method also applied optimization with physical constraints, such as ensuring
46  the bounds of soil property values. This study presents a two-step framework that

47  improves accuracy and reduces uncertainty for DSM applications.

48

49 1 Introduction

50  Soils play an important role in regulating Earth’s water, energy, and nutrient cycles

51 (Vereecken et al., 2016). Soil maps guide agricultural practices, ecosystem management,
52 hydraulic modeling, and climate studies, such as crop modeling, flood risk assessment,
53  groundwater management, and climate change (Vereecken et al., 2022). The importance
54  of soilmaps has increased with the advent of precision agriculture, including site-specific
55  seeding, irrigation, and fertilization recommendations that intrinsically depend on high-
56  resolution soil properties (Jiang et al., 2011; Li et al., 2019; Mueller et al., 2001; Ortuani et
57 al.,, 2016). However, the accuracy and reliability of these management actions heavily

58 depend on the quality of soil maps as a critical decision-making input. Traditional soil

59  surveys involve field observations, laboratory analyses, and expert interpretation, but are
60 labor-intensive and expensive (Grunwald et al., 2011; Rossiter et al., 2022; Soil Survey Staff
61 etal., 2023). These limitations have driven the development of digital soil mapping (DSM)
62  techniques. DSM leverages decades of soil data collection and sharing, establishing

63  quantitative models to generate georeferenced soil maps.

64

65 Digital soil maps are typically derived from existing soil surveys, geostatistical models,

66  machine learning, or hybrid approaches. Soil survey-based soil mapping method, which
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67 use low, high, and representative values to describe soil property distributions for each soil
68 component (Soil Survey Staff et al., 2023). The method typically approximates each soil
69 component as a triangular distribution (Chaney et al., 2016; Soil survey staff, 2023),

70  potentially oversimplifying multi-modal distributions of soil properties in some cases

71 (Haghverdi et al., 2020; Nussbaum et al., 2023). Additionally, estimating soil properties

72 from synthetic sampling within a map unit could create artificial spatial patterns, adding
73 noises into the mapping results (Chaney et al., 2019). Developments such as hyper-Latin
74  sampling and landscape adaptive covariance functions have improved the representation
75  of spatial patterns of soil properties (Minasny and McBratney, 2006). Yet, soil survey-

76  based approaches remain valuable particularly in areas where soil profile data is limited
77  (Nauman et al., 2024). Geostatistical models, which rely on expert knowledge and

78  assumed spatial correlation functions, are often difficult to apply in areas with insufficient
79  field knowledge (Oliver and Webster, 2014). To address these challenges, non-parametric
80 models, such as Random Forest, trained with hybridized soil data that combine soil

81  surveys with georeferenced soil profiles show potentials in improving soil mapping,

82  particularly for large-scale maps (Nauman et al., 2024).

83

84  Map of soil properties have been observed with bias compared to field observations in

85  certain areas due to many factors (Hengl et al., 2017; Powers et al., 2011). At the

86  measurement level, sampling methods may favor certain landscape positions or soil

87  conditions, causing a clustered representation (Ramcharan et al., 2018). In areas with

88  coarse sampling density, models trained on unrepresentative data are likely to deviate
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89  from actual observations (Sharififar et al., 2019). Commonly used DSM models can show
90 bias. For example, Random Forest classifier favors the majority class (Chen et al., 2004),
91 and Random Forest regressors struggle to capture extreme values (Nauman et al., 2024).
92  Furthermore, certain areas may not be fully captured by the DSM model and the selected
93 feature space, such as areas with complex glacial pattern, parent material transitions, and
94  alluvial processes (unaddressed problem in SOLUS; SoilGrids 2.0; (Nauman et al., 2024;
95 Poggio et al., 2021)). Model-based solutions include using ensemble models to enhance
96 accuracy compared to a single model (Sylvain et al., 2021). Post-processing methods,
97  such asregression kriging and bias-corrected decision trees, can also be used (Hengl et
98 al., 2004). Yet, kriging-based methods have limitations in areas with high spatial
99  heterogeneity and abrupt transitions, where stationary assumptions do not meet. Non-
100  parametric models can be used for bias correction that overcome the limitation of making
101  presumed distributions.
102
103  Quantifying uncertainties in DSM is important for its practical applications (Schmidinger
104  and Heuvelink, 2023). DSM products represent soil properties as multi-dimensional
105  matrices showing vertical and horizontal soil variation (Vereecken et al., 2022), with each
106  pixel containing weighted possible values and their prediction uncertainties. These
107  uncertainties can be represented either as continuous values through prediction intervals
108  oras discrete classifications with associated class probabilities (Chaney et al., 2016,
109  2019; Henglet al., 2017; Ramcharan et al., 2018). Common quantification approaches

110  include geostatistical techniques like kriging, where the nugget term accounts for
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111 measurement errors while kriging variance reflects spatial uncertainty patterns (Chilés and
112 Delfiner, 2012; Takoutsing et al., 2022), and machine learning methods such as Quantile
113 Random Forest (QRF) which generates probability distributions from decision tree outputs
114  usingvalues of soil properties (Poggio et al., 2021; Shi et al., 2024). For discrete

115 classifications, uncertainty derives from soil raster probabilities during soil taxa

116  classification (Chaney et al., 2016; Odgers et al., 2015). Given the data-driven nature of
117  DSM and frequent limitations in soil profile availability, integrating multiple qualified data
118  sources improve the amount of soil data and reduce prediction uncertainties (Nauman et
119  al., 2024), particularly in regions where predictions must rely more heavily on legacy soil
120  data. Using soil raster probabilities can utilize existing soil taxonomy information from soil
121 surveys while also leverage soil profiles to correct bias for prior predictions.

122

123 Inthis study, we present a hybrid DSM approach combining pruned Hierarchical Random
124 Forest (pHRF) predictions with residual correction. The pHRF method leverages NCSS soil
125  survey data and georeferenced soil taxa information to generate prior distributions, while
126  additional soil profiles correct biases in posterior predictions. This method builds on

127  developmentin previous research while addressing specific limitations. Sylvain et al.

128  (2021) applied XGBoost (sequential decision trees) and ensemble models to correct

129  deterministic soil property maps, demonstrating reduced bias for many soil properties
130  (Sylvain et al., 2021). Zhang et al. (2010) introduced a bias-correction technique with

131 Random Forest models to mitigate their tendency to regress toward mean values, though

132 notin DSM contexts (Zhang and Lu, 2012). Our approach extends these concepts by
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133  probabilistically updating posterior distributions at each location through an iterative

134 correction process that continues until convergence across vertical intervals. Vertical

135  correlations are maintained through layer-by-layer residual correction, which preserves
136  inter-layer correlations while dynamically optimizing the feature space at each correction
137  step. Unlike methods requiring distributional assumptions, our non-parametric framework
138  adapts to diverse landscapes and data scenarios. The models implement residual

139  correction by minimizing the differences between priors and new observed to adjust

140  posterior distributions, with the entire process continuing until property variations stabilize
141  between iterations. This method aims to improve the accuracy and reliability of soil

142 property maps, supporting decision-making in relevant applications.

143

144 2 Methods

145  This study introduces a hybrid approach for DSM, combining prior soil property estimates
146  derived from the pruned hierarchical Random Forest (pHRF) method followed with an

147  iterative residual correction (IRC). The method integrates additional soil profiles to adjust
148  the distribution of prior estimates, correcting biases and improving the accuracy of soil
149  property predictions. The following sections describe the workflow of the pHRF method,
150  the steps for residual correction, and the generation of updated posterior soil property

151 maps.

152
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laboratory measurements of soil properties. We compiled soil profile data from three

primary sources: the World Soil Information Service (WoSIS), the National Soil

of soil property values are presented in Figure 1. Six soil properties are studied—sand
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Figure 1: Spatial distribution and statistical characteristics of soil properties

To correct the residuals as post processing, we only use georeferenced soil profiles with

Characterization Database (SCD), and field measurements conducted in California. During
preprocessing, we harmonized all soil data, which was originally reported at different soil

horizons, into standardized depth intervals. Location of soil profiles and their distribution

content, silt content, clay content, pH, soil organic matter (log-scaled), and bulk density.
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observations across California. The figure presents six soil parameters mapped using

an Albers Equal Area projection: (a) sand content (mass %), (b) silt content (mass %),
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166  (c) clay content (mass %), (d) pH, (e) soil organic matter (log-scaled mass %), and (f)
167  bulk density (g/cm?®). Each subplot displays sample locations as colored points.

168  Distribution histograms in the lower left corner of each subplot show the frequency
169  distribution of values, with blue dashed lines indicating median values. Distance

170  scale bar and compass rose are provided in the right corner.

171

172 2.1.1 World Soil Information Service (WoSIS)

173  The World Soil Information Service (WoSIS), managed by the International Soil Reference
174  and Information Centre (ISRIC), aggregates global soil data from diverse sources, including
175 national soil institutes, research organizations, and collaborative initiatives like the Global
176  Soil Partnership (GSP) and the International Network of Soil Information Institutions (INSII).
177  The database provides soil properties for multiple depth intervals, georeferenced in

178  decimal degrees (WGS84), and undergoes quality controls (Batjes et al., 2024). In

179  California, WoSIS typically offers 2,000 to over 5,000 soil observations for soil property of
180 interest. Samples below 1-meter depth are fewer than those from shallower layers.

181

182  2.1.2 Soil Characterization Database (SCD)

183  The Soil Characterization Database (SCD) is a subset of the National Cooperative Soil

184  Survey (NCSS) database (National Cooperative Soil Survey, 2018). It records soil properties
185  for each soil horizon within a soil profile (pedon), including soil texture, bulk density, water
186  retention. The data are collected using standardized laboratory methods. In California,

187  SCD provides between 500 and over 1,000 soil samples per layer for the studied soil
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properties. Each soil profile is georeferenced (WGS84) and includes metadata such as site

location, land use, and sampling methods.

2.1.3 Ground truth soil sampling and measurements

Additional soil sampling was conducted to complement georeferenced soil profiles in
California for model training and evaluation. These data are reported in Scudiero et al.
(2024) and are briefly discussed here. Multiple fields located between Salinas and Soledad
in California’s Salinas Valley were selected to collect soil particle size fraction data (Figure
2). These fields, presented as red dots in Figure 2, were chosen because they were

accessible, unfarmed during the sampling period, and spread across different parts of the

valley.

Figure 2: Map of sampling fields in the Salinas Valley in California. Each red dot
represents a sampling field between Salinas and Soledad. Scale bar and direction

indicator are provided in the left corner. Basemap: Environmental Systems Research

10
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203  Institute (Esri) World Imagery, with imagery and data provided by Esri, Maxar,
204  Earthstar Geographics, and the GIS User Community.

205
206  Soil apparent electrical conductivity (ECa) was measured across fields using an

207  electromagnetic induction (EMI) sensor connected to a GPS receiver. Following the ECa-
208  directed soil sampling protocols of Corwin and Scudiero (Corwin and Scudiero, 2020), the
209  most representative soil samples were identified with ESAP software package and the

210  Response Surface Sampling Design algorithm (Lesch et al., 2000; Lesch, 2005). 0-0.8 and
211  0-1.6 m soil profiles were further analyzed and followed with the expectation that ECa was
212 aregional proxy for the field-scale variability of particle size fraction.

213

214  To measure particle size fraction, soil samples were then collected from multiple depths
215 (0-0.1, 0.1-0.4, and 0.4-1.2 m) across fields. After collection, the samples were air-dried,
216  ground, and sieved to remove particles larger than 2 mm; and then measured using the
217  Integral Suspension Pressure method (The improved integral suspension pressure method
218  (ISP+)for precise particle size analysis of soil and sedimentary materials; Wolfgang Durner,
219  Sascha C. Iden) using PARIO™ system (METER Group AG, Munich, Germany).

220

221 2.2 Residual Correction in DSM

222 Residual correction is implemented to address underestimated soil properties variation
223 (underestimate high values and overestimate low values). By applying residual correction
224 in post processing, we aim to improve the performance of resulting soil maps and address

225  theissue of bias in prior predictions. The schematic workflow is shown in Figure 3. There

11
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are three primary steps in the residual correction method (1) generating prior soil

properties maps, (2) preparing residuals correction, and (3) performing iterative residual

correction. Details are further explained in subsections.

(a)

(b)

(c)

pHRF-derived Prior Soil
Properties Maps

Preparation for
Residual Correction

Iterative Bias Correction

Soil I Soil pedons
covariates

|

Generate Harmonized
probabilistic soil
maps of soil properties

classes database

\_l_l

Generate
probabilistic

maps of soil

\ properties /

Add Match prior
additional soils with
soil profile new profil

Calculate residuals between
prior and new soil data (depth
by depth)

Prepare soil covariates for
residual correction at each

\ depth /

Apply bias correction to residuals at one unconverged depth

If yes: flag this
depth as converged

Check
convergence
of this depth

If no:
continue
residual

correction

Verify
convergence
across all
depths

| Generate updated probabilistic maps of soil properties ‘

Figure 3: Workflow for updating posterior soil properties maps. The process begins

with panel (a), the preparation of soil covariates and pedons to generate probabilistic

maps of soil classes and properties. As illustrated in panel (b), the preparation for

residual correction involves adding additional soil profiles, matching prior soils with

new profiles, calculating residuals depth by depth, and preparing soil covariates for

residual correction. Finally, as shown in panel (c), the iterative residual correction

step applies corrections across different depths, focusing on layers where residuals

have not yet stabilized. During each iteration, the model predicts residuals for one

depth at a time, randomly selecting an unstable layer. Once residuals for a given

depth converge, that layer is excluded from further updates, allowing the model to

concentrate on remaining depths until all achieve stability. After verifying

12
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241  convergence across all depths, the algorithm updates the posterior distribution of soil
242 properties and produces the final soil maps.

243

244  2.2.1 Prior Soil Properties

245  Prior soil properties maps were generated using a pruned hierarchical Random Forest

246  (pHRF) methodology (Xu et al., 2025). Figure 3A illustrates the workflow of the pHRF

247  method. The DSM method begins by integrating soil covariates and soil pedons with

248  taxonomic names to generate probabilistic maps of soil classes. These maps are then

249  linked to a harmonized soil properties database (Chaney et al., 2019), which estimates the
250  distribution of soil properties linked to each soil component. By combining these inputs,
251  the pHRF method produces probabilistic maps of soil properties, serving as the prior

252  distributions for subsequent residual correction. The pHRF method implements several
253  key features: (1) it efficiently incorporates soil covariates such as Sentinel-1 and Sentinel-2
254  satellite data, GOES land surface temperature, to capture detailed land heterogeneity; (2)
255 ituses a"moving polygon" algorithm to preserve natural landscape boundaries, ensuring
256  spatial consistency; (3) it integrates soil pedons and soil surveys with soil properties

257  estimates (harmonized soil properties database) to increase the availability of soil

258 information; and (4) it employs a hierarchical structure in soil classification and pruned
259 less plausible prediction that sharpens the prediction interval of prediction and reduces
260  uncertainties in soil property estimates (Xu et al., 2025). The method addresses data

261 imbalances, such as unevenly distributed soil observations and underrepresented soil

262  classes. While the pHRF-derived soil property maps have demonstrated effectiveness in

13
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263  reducing uncertainties, certain properties, such as bulk density, still exhibit bias (Xu et al.,
264  2025). This shows the need for further calibration. The pHRF method produces

265  probabilistic maps of soil properties. Each pixel contains prior distribution of soil property
266  values and their weights.

267

268  2.2.2 Updating Posterior Soil Properties Maps

269  Updating the posterior soil properties maps involves correcting prior soil property

270  estimates by incorporating additional soil profiles and correcting the residuals (the

271  differences between observed values and prior predictions). The process begins with the
272  preparation for residual correction (Figure 3B) — calculating residuals between additional
273  soil profiles and co-located prior soil data depth by depth. By adding these residuals to the
274  prior distributions, the statistical shape of the probability distribution is adjusted (updated
275  property; UP). Non-parametric model Random Forest regressors are selected for the

276  adjustments, as they can flexibly adapt to changes in the distribution shape without relying
277  on predefined assumptions. Additionally, soil covariates are prepared for residual

278  correction at each depth as feature space for predictive models.

279

280  The iterative residual correction method is further explained in Figure 4. Figure 4A shows a
281  3x3x3 matrix (latitude, longitude, and depth interval) indicating prior distributions from
282  randomly selected spatial points A and B, where additional soil profiles are located. Depth
283  2(D2;5-15cm)is randomly selected to initiate the process. Figure 4B details the iterative

284  optimization of the feature space, where weights and residuals at pixels A and B are

14
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285 calculated and updated iteratively. Figure 4C demonstrates the iterative residual

286  correction process, where residuals are added to the prior values to update the soil

287  property estimates until convergence is achieved. Convergence is defined as when the

288 median difference between updated and previous residuals falls below a predefined

289  threshold (customizable and dependent on the soil property of interest). The final posterior
290  soil properties are obtained by adding the last converged residuals to the prior soil property
291  values, generating updated posterior soil property maps.

292

293 2.2.2.1 Iterative Optimization of Feature Space

294  The feature space builds on the covariates used in the pHRF method and additional

295  features that capture vertical correlations and intra-pixel variations of soil properties.

296  These features include (Figure 4B):

297 (1) Soil covariates used in the pHRF methods: these capture spatial variations in soil-
298 forming factors. Most are remote sensing data.

299 (2) Depth information: median values of the soil horizon interval for this layer,

300 describing the vertical variation of soil properties.

301 (3) Representative soil property values (expected values): predicted values for each
302 pixelin the layer, representing the most probable soil property estimates.

303 (4) Top-probable soil properties values: current predictions at each pixel, reflecting soil
304 heterogeneity (both intra and inter-pixel variation) and their associated

305 probabilities.

15
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306 (5) Residuals between the target layer and other layers: difference in top-probable
307 predicted soil property values between layers, capturing vertical correlations and
308 aiding in the estimation of spatial patterns.

309

310 To capture incremental adjustments to previous predictions, the feature space is

311 iteratively optimized and interacted. In each iteration, residuals between soil observation
312  and current updated predictions (UP) are added, aiming to align predictions with the

313  observed distribution of soil properties. By updating residuals layer by layer and iteratively
314 refining the feature space, the next prediction retains prior knowledge while integrating
315 new information (soil heterogeneity and correcting bias; (Wu et al., 2025)). In addition, the
316 iterative optimization of feature space captures depth-specific information and vertical
317 relationships through feature interaction and improves potential inefficient training

318 inherent from previous predictions.

319

320 2.2.2.2 Convergence of Residual Correction

321 Residuals (or biases), defined as the differences between observed soil property values
322  and current predictions, are iteratively calculated and added to the previous predictions.
323  Previous predictions refer to predicted soil property values from a previous iterative

324  residual correction, while prior values refer to the pHRF-derived soil property values.

325 During each iteration (Figure 4C), residuals are computed for a specific depth layer and
326  usedto adjust the predictions. The updated predictions are then re-evaluated to determine

327  if further adjustments are needed, focusing on one layer at a time.

16
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328

329  Theresidual correction process continues until the median difference between updated
330 residuals and previous residuals falls below a predefined threshold. Convergence is

331 achieved when the residuals stabilize across multiple iterations, indicating that further
332  adjustments do not significantly change the predictions. This stability ensures that the
333 final posterior soil properties are reliable and consistent. The stopping criteriais a

334  customizable parameter. In this work, it was set to be 5" percentile of distribution of value
335 changes. To avoid over-correcting bias (overfitting), only the last converged residuals are
336 added to the prior prediction to generate the final posterior results. This method also

337 addresses evaluation bias by achieving convergence across multiple iterations.
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339  Figure 4: Schematic workflow of iterative residual correction (IRC) for Soil
340 Properties. The workflow have three main components: (a) prior soil properties
341 derived from the pruned hierarchical Random Forest (pHRF) method, (b) iterative

342  optimization of the feature space, where W,,W,,W; represent weights assigned to soil

17
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343  properties at each pixel; Ri,R2,R3 represent possible residuals at each pixel (observed
344  minus predicted soil property values); and Ri.; and R indicate updated and previous
345 residuals, respectively; A, and B in the table of feature space indicate that the

346 expected value remains the same for each pixel; while colored cells indicate intra-
347  variation within each pixel. And (c) iterative residual correction and convergence

348  check, where UP, to UP, represent updated property values in each iteration for a

349  specific layer; and R, to R, are their associated residuals values. Convergence is

350 achieved when the median difference between updated (Ri.1) and previous (Ri)

351 residuals falls below a predefined threshold. The final posterior soil properties are
352 obtained by adding the last converged residuals to the prior values.

353

354  2.2.2.3 Optimization with Constraints

355 Duringresidual correction, a common issue arises where the addition of residuals to prior
356 soil property values results in values that exceed physical bounds (such as sand content >
357 100%). To address this, an optimization process with constraints is implemented. During
358 thefirstiteration, residuals are first computed without constraints. The updated soil

359  property values are then examined to ensure they fall within predefined bounds (such as
360 0% to 100% for particle size fractions). If a value exceeds the bounds, it is adjusted to the
361 nearest bound (minimum or maximum), and the remaining residuals are redistributed to
362  other bins. This ensures that the total residuals remain consistent with the expected

363  values while maintaining physical plausibility. This constrained optimization approach

364 guarantees that the final posterior soil property maps are physically realistic. In addition,
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365 particle size fractions are treated as compositional data, ensuring their sum is 100% at
366 each pixel.

367

368 3 Results

369 Theterative residual correction method is applied to pHRF-derived prior soil properties,
370 including particle size fractions (sand, silt, clay), pH, oven-dry bulk density (BD), and soil
371  organic matter (SOM). This correction addresses biases in the prior soil property maps and
372  updates the posterior distributions of these properties. These soil properties are important
373  forland management and serve as essential inputs for pedotransfer functions. The

374  residual correction is performed across California, covering six depth intervals: 0-5 cm, 5-
375 15¢cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm.

376

377 3.1 Performance Evaluation of Posterior Soil Properties

378 Table 1 presents the performance metrics for the posterior predictions of six key soil

379  properties: sand, silt, clay, pH, oven-dry bulk density (BD), and soil organic matter (SOM).
380  The metrics include the root mean square error (RMSE), coefficient of determination (R?),
381 and correlation coefficient (p). For example, sand prediction shows an RMSE of 9.322, an
382 R?0f0.841, and a correlation coefficient of 0.918. pH prediction shows an RMSE of 0.270,
383  an R®0f0.945, and a correlation coefficient of 0.972. These metrics are computed using
384  out-of-bag (OOB) samples from random forest regressors. OOB samples are data points

385 notincluded in the bootstrap samples used to train each tree in the random forest.
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386  Additionally, these metrics are evaluated by comparing the expected values of posterior
387  predictions with co-located soil properties values; not computed on residuals.

388

389 Table 1 also shows variations in performance across different soil properties. SOM and
390 bulk density show slightly worse metrics compared to particle size fractions and pH. For
391 instance, SOM predictions have an RMSE of 1.961, an R® of 0.608, and a correlation

392 coefficient of 0.801, and bulk density predictions have an RMSE of 0.164, an R? of 0.704,
393  and a correlation coefficient of 0.843. Two main reasons can result in their lower

394  performance. First, these properties are more dynamic in nature compared to particle size
395 fractions and pH. SOM and bulk density can change over time due to factors such as land
396  use practices. The prior predictions are trained using soil survey data that are older, while
397 the posterior soil profiles used for evaluation may come from a different period. Second,
398  SOM and bulk density are more challenging to model accurately. SOM is influenced by
399  complex biological and soil-forming processes, such as decomposition rates and organic
400  matterinputs. Similarly, bulk density is affected by soil compaction, organic matter

401  content, and soil structure. All of them can vary spatially and temporally.

402

403  Table 1: Performance metrics (RMSE, R?, and correlation coefficient p) for posterior
404  predictions of soil properties, including sand, silt, clay, pH, oven-dry bulk density
405 (BD), and soil organic matter (SOM). The table summarizes the range (minimum and
406 maximum values) and accuracy metrics for each property averaged across all depth

407 intervals.
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Property Unit Min Max RMSE R? P
Sand % mass 0.0 100.0 9.322 0.841 0.918
Silt % mass 0.0 100.0 6.556 0.788 0.889
Clay % mass 0.0 100.0 5.891 0.841 0.918
pH log10([H*]) 3.0 10.0 0.270 0.945 0.972
BD g/cm?® 0.5 2.0 0.164 0.704 0.843
(oven-dry)
SOM % mass 0.0 100.0 1.961 0.608 0.801

408

409  The posterior predictions of soil properties all align with the co-located observations and
410  cancapture the general trend of observations (Figure 5). Predictions of pH show the most
411  concentrated clustering to the dashed line, indicating good agreement with observations
412  across all depths. SOM and bulk density show relatively weaker performance compared to
413  other predicted soil properties. And this pattern of reduced accuracy persists throughout
414  all depths.

415

416  As Figure 5 shows, the performance of the model tends to decline with increasing soil
417  depth, except for SOM. This decline is primarily due to several reasons. First, the

418 availability of soil data is often greater for shallower layers compared to deeper layers
419  (suchas>1m), which limits the model's ability to learn patterns in deep layers. Second,

420  remote sensing-derived soil covariates can only observe surface properties. Predictions
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for deeper layers rely on soil horizon information, soil profiles, geology, and parent

material-related features. The certainty and quantity of them are less than easily

measurable surface covariates. However, SOM shows better performance in deeper layers

compared to surface layers. This is likely because surface SOM is highly variable due to

factors like residue, land use, and management practices, while deeper SOM tends to be

more stable.
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Figure 5: Evaluating posterior predictions with observations for six soil properties: (a)

sand, (b) silt, (c) clay, (d) pH, (e) bulk density (BD), and (f) log-scaled soil organic

matter (SOM). The left side shows scatter plots of posterior predictions versus

observations across six depth intervals, with each depth represented by a distinct

color. The dashed black line represents perfect prediction.
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434 3.2 Comparison of Prior and Posterior Soil Predictions

435  Prior and posterior predictions of soil properties are compared against co-located

436  observations to assess the added value of residual correction. The radar plots in Figure 6
437  illustrate the improvements achieved through the residual correction method using three
438  normalized metrics: 1-normalized absolute bias (1-|Bias]), coefficient of determination
439  (R?), and 1-normalized RMSE by ranges of soil variability (1-nRMSE). These metrics are

440 computed with values of soil properties, instead of on their residuals. Values in Figure 6
441  closerto the outer edge of each plot indicate better model performance. Overall, all soil
442  properties maintain reasonable normalized bias, with nRMSE values consistently less than
443  0.02for both prior and posterior predictions. However, the prior predictions tend to

444  underestimate the variability of soil properties. As a result, the normalized metrics for prior
445  and posterior predictions are similar, while the R® values show some differences.

446

447  For all soil properties, posterior predictions consistently outperform prior predictions

448  across all metrics. For particle size fractions, R® values show the largest improvements:
449  sand increases from 0.35 to 0.84, silt from 0.19to 0.79, and clay from 0.25 to 0.84. The

450  nRMSE metric also shows improvements. Sand decreases from 0.19 to 0.09, silt from 0.14
451 t0 0.07, and clay from 0.16 to 0.07, showing reductions in prediction errors using the

452  residual correction.

453

454  Figure 6 also shows different degrees of improvement across different soil properties. Prior

455  pH predictions already demonstrate reasonable accuracy, with an R* of 0.54 and nRMSE of
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456  0.11. After the residual correction, these metrics improve to 0.94 for R?and 0.04 for

457  nRMSE. Bulk density and SOM show the biggest gains. For bulk density, the R? increasing
458  from 0.16 to 0.70 and nRMSE reducing from 0.18 to 0.11. Prior SOM are underfitted with a
459  low R?value. With the residual correction, the posterior SOM show a positive R* of 0.61.
460  The nRMSE for SOM also improves from 0.07 to 0.04.

Sand Silt
1-|Bias| 1-|Bias|
1.0 1.0

1-nRM%

—&— Prior
—&— Posterior

pH BD SOM
1-|Bias| 1-|Bias| 1-|Bias|
1.0 1.0 1.0

461

462  Figure 6: Radar plots comparing the performance metrics of prior and posterior

463  predictions for six soil properties: (a) sand, (b) silt, (c) clay, (d) pH, (e) oven-dry bulk
464 density (BD), and (f) soil organic matter (SOM). Each plot presents three metrics: 1-
465 normalized absolute bias (1-|Bias|), coefficient of determination (R?), and 1-

466 normalized RMSE by ranges of soil variability (1-nRMSE). Prior predictions are shown

467 in blue, and posterior predictions in green. All metrics are scaled from 0 to 1, where

24



https://doi.org/10.5194/egusphere-2025-5107
Preprint. Discussion started: 21 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

468 values closer to the outer edge of the plot indicate better model performance. The
469 green shaded area highlights the improvement achieved by the posterior predictions
470  over prior estimates.

471

472  Horizontal spatial patterns of the six soil properties are presented in Figure 7. In the

473  Central Valley California, soils are mostly medium textured with about 30% silt and lower
474  sand content compared to surrounding areas. In the Mojave and Colorado Deserts, high
475  sand contents (> 60%) with low clay contents are observed. SOM contents are also low in
476  these areas. The histograms show how residual correction adjusts the distribution of soil
477  properties.

478

479  For SOM and bulk density, the prior predictions often underestimate the observed

480  variation. Figure 7 shows that the residual correction processes add noticeable spatial
481  variations between prior and posterior soil maps. Prior bulk density values are often

482  clustered around 1.5 g/cm®, whereas the posterior histogram presents a broader range,
483  spanning from 1.25 g/cm®to 1.6 g/cm®, capturing more heterogeneity of bulk density.

484  Similarly, the residual correction adds soil heterogeneity to SOM. The posterior SOM can
485  delineate water bodies, where SOM content is abruptly lower than the surrounding areas.

486  Additionally, the posterior SOM maps present hill features in the desert areas.
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489  density, and soil organic matter) across California. Maps of prior and posterior soil
490 properties are compared. The corresponding frequency distributions of these soil
491  properties are displayed in the right corner. Dashed polygons represent the

492  continental part of California. In the histograms, the blue and red dashed lines

493  represent the mean and median values, respectively. The maps labeled DO to D5

494  correspond to the first vertical layer down to the deepest layer. Note the map and
495  distribution of soil organic matter (SOM) is log-scaled. Mean and median values are
496 computed from the original SOM data.

497

498  Soil profiles used for evaluating residual correction are grouped according to their

499  corresponding pixel's land use classification from the National Land Cover Database

500 (NLCD). Figure 8 presents selected vertical soil profiles of sand content, oven-dry bulk
501 density, and SOM across three land use categories: forest, cultivated crops, and wetland.
502  The number of samples varies by land use, with forests having the most, cultivated crops
503 approximately half as many, and wetlands the fewest across California. To ensure a

504  balanced visualization, a similar number of profiles are selected from each category. Sand
505 contentis chosen due to its broader range of variation (0-100%) compared to silt and clay
506 (<60% range). SOM and bulk density, which show relatively lower performance metrics,
507 areincluded to assess the model's ‘lower-bound performance’. These vertical profiles
508  were not used during model training.

509
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510 InFigure 8, solid lines represent the mean soil profiles for sand content, oven-dry bulk
511 density, and SOM across forest, cultivated crops, and wetland land use categories. Blue
512 lines, red lines, and green lines indicate prior, observation, and posterior predictions.
513  Comparing the solid lines, the posterior predictions align more closely with the observed
514  data compared to the prior estimates. However, the degree of alignment varies by soil
515  property. For sand content and SOM, the posterior predictions show better agreement with
516  observations, while bulk density predictions exhibit greater discrepancies, particularly in
517  cultivated areas.

518

519  For sand content, the residual correction process improves estimates, especially in

520  wetlands, with RMSE decreasing from 7.68 to 0.77 (%). Bulk density predictions perform
521 better in forested and wetland areas. In cultivated crops, the posterior predictions show
522  larger discrepancies. This suggests that bulk density is more challenging to predictin
523  agricultural lands, particularly in shallow layers, likely due to agricultural activities. For
524  SOM, the residual correction effectively improves estimates, especially in the surface
525 layers of wetlands.

526

527 Dashed lines in Figure 8 represent individual soil profiles. Prior predictions often

528 underestimated the variability in soil properties, struggling to capture extreme values. After
529  theresidual correction, the posterior predictions are better able to approximate these
530 extremes. However, the correction process sometimes introduces additional noise. For

531  example, some low SOM values (such as 0.001 g/cm?®) were generated during residual
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532  correction, even though such values are not presented in the observed data. It is likely due
533  tothatwe used the van Bemmelen factor (1.724) to convert the prior soil organic matter to

534  soil organic carbon.
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536  Figure 8: Vertical distribution of soil properties (sand content, oven-dry bulk density,
537 and soil organic matter SOM) across three land use categories: forest, cultivated

538 crops, and wetland. Prior estimates (blue), posterior estimates (green), and

539 observations (red) are shown as depth profiles. Dashed lines represent individual

540 measurements, and solid lines show mean values. RMSE is computed elementwise to
541 evaluate model performance across all depths. X-axis and Y-axis represent value

542 ranges of a soil property and vertical depth intervals, respectively.

543

544 3.3 Uncertainty Analysis

545  Figure 9 shows the differences between 5% — 95% posterior and prior prediction interval
546  widths (PIWs) for six soil properties—sand, silt, clay, pH, bulk density, and SOM—from

547  surface to 2-m deep. The differences are calculated by subtracting the prior PIWs from the
548  posteriors. Red areas present a reduction in posterior PIW, indicating the residual

549  correction has reduced uncertainties of soil properties predictions. Blue pixels suggest the
550 opposite. White areas represent regions where the prior and posterior uncertainties are
551  similar.

552

553 InFigure 9, most pixels show reduced uncertainty for sand content after residual

554  correction, particularly in agricultural and desert regions. This improvement is attributed to
555 theinclusion of additional soil profile data from these areas. For clay content, the posterior
556  predictions consistently show reduced uncertainty across the Sierra Nevada Mountain

557  ranges. For SOM, the posterior PIWs improved in shallower layers (0-15 cm) over both the

31



https://doi.org/10.5194/egusphere-2025-5107
Preprint. Discussion started: 21 November 2025 EG U
© Author(s) 2025. CC BY 4.0 License. Sp here

558 Coastal Ranges and the Sierra Nevada Mountains, with the coastal line showing notably
559  narrower PIWSs. For pH, the results present a mixed pattern of PIWs after residual

560 correction, with some areas showing reduced uncertainty and others showing the

561  opposite. Similarly, bulk density exhibits a mixed pattern, though deeper layers (60 cm to 2

562  m) generally show reduced uncertainty in the Central Valley, California.
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Figure 9: Differences of 5% — 95% posterior and prior prediction interval widths (PIWs)
for soil properties across different depths. Each column represents a specific soil
property and rows show different depths. Black polygons represent the continental

part of California. Differences between posterior and prior PIWs are in a red-to-blue
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568 color scale. Red pixels indicate a decrease in posterior PIW, indicating residual

569 correction reduces uncertainties. Vice versa for blue pixels. White areas indicate

570  similar extent of uncertainties. The left colorbar corresponds to sand, silt, clay with
571  wider ranges of PIW differences. The right colorbar represents other properties with
572  smaller PIW changes.

573

574 4 Discussion

575 4.1 Limitations in Soil Profile Data

576  The effectiveness of residual correction depends on the spatial and vertical distribution of
577  soil profiles used to calculate residuals. In regions with sparse sampling, such as

578  California's desert areas (Figure 1), the limited number of profiles leads to interpolating the
579  entire area using limited observations. If soil heterogeneity is not captured by these limited
580 samples, the residual correction would overlook it. For soil texture, most data collected by
581 staff working on multiple projects under the National Institute of Food and Agriculture

582  (NIFA) and the Sustainable Agricultural Systems (SAS) programs range from the surface to
583 1.1 meters deep (additional field measurements used in this work). We use spline

584  interpolation to predict soil texture data beyond 1.1-m depths. It assumes vertical

585  continuity in soil properties, which may not reflect abrupt changes in subsurface layers.
586

587  Uncertainty also arises from converting some soil organic carbon (SOC) data to soil

588  organic matter (SOM). We used the van Bemmelen factor (1.724) to convert SOC to SOM

589  profiles. This factor does not hold true in scenarios such as organic-rich soils. Adding data
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590 quality controls—such as filtering profiles based on metadata (such as soil type, land

591  use)—could filter out samples that are not suitable for this conversion. However, this

592 conversion still has uncertainties, since even for mineral soils, this factor still has a certain
593  extent of variation depending on the organic matter composition (lower for soils with more
594  decomposed organic matter), soil types (forest soils or wetland soils with anaerobic

595 decomposition), and environmental influences (such as microbial activity).

596

597 4.2 Computational Challenges

598 Theterative residual correction process on distributions requires computational

599  resources, particularly when applied to large-extent or high-resolution datasets. This

600 process involves adjusting multiple values for each pixel, as each pixel represents a

601  distribution of soil properties. This process can be approached in two ways. The first

602 method involves correcting the residual values for each pixel, adding these residuals to
603 update the posterior values of soil properties, and then converting these updated values to
604  generate a posterior distribution of soil properties. The second method first converts all
605  pixelvalues into the same histogram bins and then corrects the shape of these histogram
606  bins for each pixel. Thus, the number of values retained per pixel affects computational
607  expense. Based on our experience, using method two, especially for soil texture, requires
608  100-bin histograms. Using method one with 20 most probable prior property values for

609 residual correction can achieve comparable results while reducing memory usage.

610
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611 The iterative process of updating features and correcting residuals also plays a role. In our
612  simulations, we observed that subsequent residual corrections generally align with

613  previous ones. To ensure consistency, we require the corrections to converge more than
614 three times across different depths. For example, residual correction for a 1-km soil

615 property map over California takes approximately two hours after preprocessing the input
616 data. However, processing higher-resolution datasets, such as those at a 10-meter scale,
617 candemand significantly more computational resources. This highlights the trade-off

618 between resolution and computational efficiency in DSM projects.

619

620 4.3 Temporal and Spatial Constraints

621  The current method does not account for temporal changes in soil properties, limiting its
622  applicability to dynamic properties like soil organic matter or bulk density. Incorporating
623  temporal covariates (such as seasonal land surface temperature, recent land-use

624  changes) or stratifying soil profiles by collection date could address this. However, such
625 improvements rely on the availability of temporally resolved soil data, which are often

626 limited in quantities and sampling frequency.

627

628  Spatial clustering of soil samples poses another challenge. While duplicate profiles were
629 removed during data preprocessing, nearby samples may still share a certain level of

630  similarity due to spatial autocorrelation. This could lead to overly optimistic evaluation of

631 residual correction performance. Two methods can help address this issue:
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632 (1) Cross-validation with spatial considerations: Implement a cross-validation

633 method for splitting training and validation sets with attention to sample locations.
634 Ensure a minimum distance between training samples and evaluation data.

635

636 (2) Independent dataset evaluation: Use independent datasets to evaluate the

637 model. CONUS-wide instrumental network, such as the U.S. Climate Reference
638 Network and the National Ecological Observatory Network, provide independent
639 soil data. However, these datasets have limitations as they were collected with
640 clustering to certain landscapes, potentially introducing bias in the evaluation.

641

642 4.4 Similar Studies

643  Several continental-scale DSM products (or methods) are compared, including the Soil
644  Survey Geographic Database (SSURGO), the Gridded National Soil Survey Geographic

645  Database (gNATSGO), the Probabilistic Layers for the Assessment of Soils (POLARIS), Soil-
646 Landscape Unified Synthesis (SOLUS), and the pruned Hierarchical Random Forest with
647 iterative bias correction (pHRF with IRC) soil properties. SSURGO is a traditional, polygon-
648  based product derived from expert field surveys and remains widely used in agricultural
649  applications (Soil Survey Staff et al., 2023). gNATSGO mainly builds on SSURGO by

650 rasterizing its map units to improve spatial coverage. And its estimation of soil properties
651 still rely on utilizing metadata of legacy soil data (Soil survey staff, 2023). These two still
652  inherit legacy data’s limitations, such as scale inconsistency between soil map units and

653 derived soil maps, inconsistencies with field observations, and report distribution of soil
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654  properties with only three values (low end value, representative value, and high end value)
655  (Rossiter et al., 2022; Soil Survey Staff, 2025; Xu et al., 2025).

656

657 Development of the following DSM products incorporates quantitative models in their

658 methodology. POLARIS produces probabilistic soil property maps using machine learning
659 and the DSMART algorithm (Chaney et al., 2016, 2019; Odgers et al., 2015), while the

660  uncertainties in the DSMART algorithm can propagate into POLARIS. SOLUS integrates

661 legacy soil data with georeferenced field observations and employs linear adjusted

662 Random Forest to predict soil properties (Nauman et al., 2024). SOLUS hierarchizes soil
663  data with different qualities into its training dataset, giving more attention to georeferenced
664  observations. However, since it also uses resampled soil data derived from polygon-based
665  soil map units, this process may introduce additional uncertainties into the final product.
666  The pHRF with IRC follows a different approach. Unlike most DSM methods that directly
667  predict soil properties from input data, this approach works in two steps: first, it generates
668  aprior estimate of soil taxa and property values, then iteratively adjusts these estimates to
669 improve model performance. In future work, the pHRF with IRC method will be applied on
670 large scale and assessed with more soil properties to evaluate its generalizability.

671

672 5 Conclusion

673  The study introduces an iterative residual correction method for post processing used in a
674  Digital Soil Mapping (DSM) framework. The method integrates additional soil profile data

675 and iteratively optimizes the feature space to refine the distribution of soil properties until
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676  theresidual correction model converges. Convergence is achieved when the median

677 difference between updated and previous predictions falls below a predefined threshold,
678  ensuring consistent predictions. The proposed DSM method operates through two primary
679  steps: (1) generating prior soil property maps using the pruned hierarchical Random Forest
680 (pHRF) approach, and (2) performing iterative residual correction on the priors. Residuals
681 (differences between observed values and prior predictions) are calculated and added to
682  the prior distributions to adjust the statistical shape of the probability distribution pixel-by-
683 pixel. The feature space, which includes soil covariates, depth information, and vertical
684  correlations, is iteratively optimized to capture incremental adjustments to subsequent
685  predictions.

686

687  Using this method, we updated posterior distribution of soil properties for sand, silt, clay
688  content, soil pH, oven-dry bulk density, and soil organic matter over California. The results
689  show improvements in the accuracy of soil properties predictions, as shown by multiple
690 metrics including RMSE, R?, and correlation coefficients. Furthermore, the iterative

691 residual correction model reduced prediction uncertainties, presenting narrower

692  prediction intervals compared to the priors.

693

694  Severalinnovations contribute to the method's improvements. First, the integration of

695  additional soil profiles allows the model to further learn from georeferenced soil

696 information, complementing prior soil property estimates derived from traditional

697  surveys. Second, the iterative optimization of feature space captures both spatial and
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698 vertical soil heterogeneity through a carefully selected combination of soil covariates and
699  vertical correlations among soil profile observations. Third, the convergence-based

700 approach to residual correction ensures stable output of posterior predictions while

701  avoiding overfitting since only converged residuals are added to the priors. Fourth, the
702  implementation of physical constraints and compositional data handling maintains the
703 realism of predicted soil properties. Future research could explore the application of this
704  framework to other soil properties and environmental contexts, such as soil hydraulic
705  properties and CONUS-wide simulation, to test the framework’s generalization, supporting
706  informed decision-making in soil-related applications.

707
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