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 11 

Short Summary 12 

Accurate soil information is important. This study developed a new method that improves 13 

existing soil maps by correcting their probability distributions using newly collected soil 14 

measurements. By repeatedly adjusting previous predictions, the method makes soil 15 

maps more accurate and more certain. The application in California improved the 16 

performance of predictions for soil texture, organic matter, and bulk density. This method 17 

can be further used for more soil properties and regions. 18 

 19 

Abstract 20 

Accurate mapping of soil properties is vital for many applications including precision 21 

irrigation and fertilization.  However, existing models for digital soil maps underestimate 22 
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their spatial variability or prediction uncertainties, which introduces risk for applications 23 

including agricultural irrigation and fertilization. This study introduces a hybrid approach 24 

that combines prior soil predictions with iterative residual correction to improve soil 25 

mapping performance using a Californian case study to demonstrate its application. We 26 

first generate prior probabilistic soil property maps using a pruned hierarchical Random 27 

Forest (pHRF) method. These prior estimates are then refined by integrating additional soil 28 

profile data and iteratively adjusting residuals of distribution of soil properties (differences 29 

between observation and prior predictions) pixel by pixel. It gradually adjusts the statistical 30 

shape of soil property distributions and incrementally corrects bias of prior knowledge 31 

with observed soil information.  We evaluated soil mapping over California and at 1-km 32 

resolution to test the methodology. For residual correction, we compiled laboratory-33 

measured soil profile data from three primary sources: the World Soil Information Service 34 

(WoSIS), the National Soil Characterization Database (SCD), and field measurements 35 

conducted by the University of California, Riverside (UCR) and the USDA-ARS United 36 

States Salinity Laboratory. From the evaluations, the posterior soil texture predictions 37 

show an RMSE of less than 10%, a 7% reduction compared to the priors (pHRF-derived soil 38 

maps). For soil organic matter (SOM) and oven-dry bulk density (BD), the RMSE also 39 

decreased, as the priors initially underestimated their spatial variation. Although posterior 40 

SOM and BD predictions were less accurate than other soil properties, this was expected 41 

since they are dynamic soil properties and their response to environment and 42 

anthropogenic activities is more difficult to simulate. The residual correction also showed 43 

reduced uncertainties, as demonstrated by narrower prediction intervals compared to the 44 
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priors. This method also applied optimization with physical constraints, such as ensuring 45 

the bounds of soil property values. This study presents a two-step framework that 46 

improves accuracy and reduces uncertainty for DSM applications. 47 

 48 

1 Introduction 49 

Soils play an important role in regulating Earth’s water, energy, and nutrient cycles 50 

(Vereecken et al., 2016). Soil maps guide agricultural practices, ecosystem management, 51 

hydraulic modeling, and climate studies, such as crop modeling, flood risk assessment, 52 

groundwater management, and climate change (Vereecken et al., 2022). The importance 53 

of soil maps has increased with the advent of precision agriculture, including site-specific 54 

seeding, irrigation, and fertilization recommendations that intrinsically depend on high-55 

resolution soil properties (Jiang et al., 2011; Li et al., 2019; Mueller et al., 2001; Ortuani et 56 

al., 2016).  However, the accuracy and reliability of these management actions heavily 57 

depend on the quality of soil maps as a critical decision-making input. Traditional soil 58 

surveys involve field observations, laboratory analyses, and expert interpretation, but are 59 

labor-intensive and expensive (Grunwald et al., 2011; Rossiter et al., 2022; Soil Survey Staff 60 

et al., 2023). These limitations have driven the development of digital soil mapping (DSM) 61 

techniques. DSM leverages decades of soil data collection and sharing, establishing 62 

quantitative models to generate georeferenced soil maps.  63 

 64 

Digital soil maps are typically derived from existing soil surveys, geostatistical models, 65 

machine learning, or hybrid approaches. Soil survey-based soil mapping method, which 66 

https://doi.org/10.5194/egusphere-2025-5107
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

use low, high, and representative values to describe soil property distributions for each soil 67 

component (Soil Survey Staff et al., 2023). The method typically approximates each soil 68 

component as a triangular distribution (Chaney et al., 2016; Soil survey staff, 2023), 69 

potentially oversimplifying multi-modal distributions of soil properties in some cases 70 

(Haghverdi et al., 2020; Nussbaum et al., 2023). Additionally, estimating soil properties 71 

from synthetic sampling within a map unit could create artificial spatial patterns, adding 72 

noises into the mapping results (Chaney et al., 2019). Developments such as hyper-Latin 73 

sampling and landscape adaptive covariance functions have improved the representation 74 

of spatial patterns of soil properties (Minasny and McBratney, 2006).  Yet, soil survey-75 

based approaches remain valuable particularly in areas where soil profile data is limited 76 

(Nauman et al., 2024). Geostatistical models, which rely on expert knowledge and 77 

assumed spatial correlation functions, are often difficult to apply in areas with insufficient 78 

field knowledge (Oliver and Webster, 2014). To address these challenges, non-parametric 79 

models, such as Random Forest, trained with hybridized soil data that combine soil 80 

surveys with georeferenced soil profiles show potentials in improving soil mapping, 81 

particularly for large-scale maps (Nauman et al., 2024).   82 

 83 

Map of soil properties have been observed with bias compared to field observations in 84 

certain areas due to many factors (Hengl et al., 2017; Powers et al., 2011). At the 85 

measurement level, sampling methods may favor certain landscape positions or soil 86 

conditions, causing a clustered representation (Ramcharan et al., 2018). In areas with 87 

coarse sampling density, models trained on unrepresentative data are likely to deviate 88 
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from actual observations (Sharififar et al., 2019). Commonly used DSM models can show 89 

bias. For example, Random Forest classifier favors the majority class (Chen et al., 2004), 90 

and Random Forest regressors struggle to capture extreme values (Nauman et al., 2024). 91 

Furthermore, certain areas may not be fully captured by the DSM model and the selected 92 

feature space, such as areas with complex glacial pattern, parent material transitions, and 93 

alluvial processes (unaddressed problem in SOLUS; SoilGrids 2.0; (Nauman et al., 2024; 94 

Poggio et al., 2021)). Model-based solutions include using ensemble models to enhance 95 

accuracy compared to a single model (Sylvain et al., 2021). Post-processing methods, 96 

such as regression kriging and bias-corrected decision trees, can also be used (Hengl et 97 

al., 2004). Yet, kriging-based methods have limitations in areas with high spatial 98 

heterogeneity and abrupt transitions, where stationary assumptions do not meet. Non-99 

parametric models can be used for bias correction that overcome the limitation of making 100 

presumed distributions. 101 

 102 

Quantifying uncertainties in DSM is important for its practical applications (Schmidinger 103 

and Heuvelink, 2023). DSM products represent soil properties as multi-dimensional 104 

matrices showing vertical and horizontal soil variation (Vereecken et al., 2022), with each 105 

pixel containing weighted possible values and their prediction uncertainties. These 106 

uncertainties can be represented either as continuous values through prediction intervals 107 

or as discrete classifications with associated class probabilities (Chaney et al., 2016, 108 

2019; Hengl et al., 2017; Ramcharan et al., 2018). Common quantification approaches 109 

include geostatistical techniques like kriging, where the nugget term accounts for 110 
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measurement errors while kriging variance reflects spatial uncertainty patterns (Chilès and 111 

Delfiner, 2012; Takoutsing et al., 2022), and machine learning methods such as Quantile 112 

Random Forest (QRF) which generates probability distributions from decision tree outputs 113 

using values of soil properties (Poggio et al., 2021; Shi et al., 2024). For discrete 114 

classifications, uncertainty derives from soil raster probabilities during soil taxa 115 

classification (Chaney et al., 2016; Odgers et al., 2015). Given the data-driven nature of 116 

DSM and frequent limitations in soil profile availability, integrating multiple qualified data 117 

sources improve the amount of soil data and reduce prediction uncertainties  (Nauman et 118 

al., 2024), particularly in regions where predictions must rely more heavily on legacy soil 119 

data. Using soil raster probabilities can utilize existing soil taxonomy information from soil 120 

surveys while also leverage soil profiles to correct bias for prior predictions. 121 

 122 

In this study, we present a hybrid DSM approach combining pruned Hierarchical Random 123 

Forest (pHRF) predictions with residual correction. The pHRF method leverages NCSS soil 124 

survey data and georeferenced soil taxa information to generate prior distributions, while 125 

additional soil profiles correct biases in posterior predictions. This method builds on 126 

development in previous research while addressing specific limitations. Sylvain et al. 127 

(2021) applied XGBoost (sequential decision trees) and ensemble models to correct 128 

deterministic soil property maps, demonstrating reduced bias for many soil properties 129 

(Sylvain et al., 2021). Zhang et al. (2010) introduced a bias-correction technique with 130 

Random Forest models to mitigate their tendency to regress toward mean values, though 131 

not in DSM contexts (Zhang and Lu, 2012).  Our approach extends these concepts by 132 
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probabilistically updating posterior distributions at each location through an iterative 133 

correction process that continues until convergence across vertical intervals. Vertical 134 

correlations are maintained through layer-by-layer residual correction, which preserves 135 

inter-layer correlations while dynamically optimizing the feature space at each correction 136 

step. Unlike methods requiring distributional assumptions, our non-parametric framework 137 

adapts to diverse landscapes and data scenarios. The models implement residual 138 

correction by minimizing the differences between priors and new observed to adjust 139 

posterior distributions, with the entire process continuing until property variations stabilize 140 

between iterations. This method aims to improve the accuracy and reliability of soil 141 

property maps, supporting decision-making in relevant applications.  142 

 143 

2 Methods 144 

This study introduces a hybrid approach for DSM, combining prior soil property estimates 145 

derived from the pruned hierarchical Random Forest (pHRF) method followed with an 146 

iterative residual correction (IRC). The method integrates additional soil profiles to adjust 147 

the distribution of prior estimates, correcting biases and improving the accuracy of soil 148 

property predictions. The following sections describe the workflow of the pHRF method, 149 

the steps for residual correction, and the generation of updated posterior soil property 150 

maps. 151 

 152 
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2.1 Soil Data 153 

To correct the residuals as post processing, we only use georeferenced soil profiles with 154 

laboratory measurements of soil properties. We compiled soil profile data from three 155 

primary sources: the World Soil Information Service (WoSIS), the National Soil 156 

Characterization Database (SCD), and field measurements conducted in California. During 157 

preprocessing, we harmonized all soil data, which was originally reported at different soil 158 

horizons, into standardized depth intervals. Location of soil profiles and their distribution 159 

of soil property values are presented in Figure 1. Six soil properties are studied—sand 160 

content, silt content, clay content, pH, soil organic matter (log-scaled), and bulk density. 161 

 162 

Figure 1: Spatial distribution and statistical characteristics of soil properties 163 

observations across California. The figure presents six soil parameters mapped using 164 

an Albers Equal Area projection: (a) sand content (mass %), (b) silt content (mass %), 165 
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(c) clay content (mass %), (d) pH, (e) soil organic matter (log-scaled mass %), and (f) 166 

bulk density (g/cm³). Each subplot displays sample locations as colored points. 167 

Distribution histograms in the lower left corner of each subplot show the frequency 168 

distribution of values, with blue dashed lines indicating median values. Distance 169 

scale bar and compass rose are provided in the right corner. 170 

 171 

2.1.1 World Soil Information Service (WoSIS) 172 

The World Soil Information Service (WoSIS), managed by the International Soil Reference 173 

and Information Centre (ISRIC), aggregates global soil data from diverse sources, including 174 

national soil institutes, research organizations, and collaborative initiatives like the Global 175 

Soil Partnership (GSP) and the International Network of Soil Information Institutions (INSII). 176 

The database provides soil properties for multiple depth intervals, georeferenced in 177 

decimal degrees (WGS84), and undergoes quality controls (Batjes et al., 2024). In 178 

California, WoSIS typically offers 2,000 to over 5,000 soil observations for soil property of 179 

interest. Samples below 1-meter depth are fewer than those from shallower layers. 180 

 181 

2.1.2 Soil Characterization Database (SCD) 182 

The Soil Characterization Database (SCD) is a subset of the National Cooperative Soil 183 

Survey (NCSS) database (National Cooperative Soil Survey, 2018). It records soil properties 184 

for each soil horizon within a soil profile (pedon), including soil texture, bulk density, water 185 

retention. The data are collected using standardized laboratory methods. In California, 186 

SCD provides between 500 and over 1,000 soil samples per layer for the studied soil 187 
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properties. Each soil profile is georeferenced (WGS84) and includes metadata such as site 188 

location, land use, and sampling methods. 189 

 190 

2.1.3 Ground truth soil sampling and measurements 191 

Additional soil sampling was conducted to complement georeferenced soil profiles in 192 

California for model training and evaluation. These data are reported in Scudiero et al. 193 

(2024) and are briefly discussed here.  Multiple fields located between Salinas and Soledad 194 

in California’s Salinas Valley were selected to collect soil particle size fraction data (Figure 195 

2). These fields, presented as red dots in Figure 2, were chosen because they were 196 

accessible, unfarmed during the sampling period, and spread across different parts of the 197 

valley.  198 

 199 

Figure 2: Map of sampling fields in the Salinas Valley in California. Each red dot 200 

represents a sampling field between Salinas and Soledad. Scale bar and direction 201 

indicator are provided in the left corner. Basemap: Environmental Systems Research 202 
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Institute (Esri) World Imagery, with imagery and data provided by Esri, Maxar, 203 

Earthstar Geographics, and the GIS User Community. 204 

 205 

Soil apparent electrical conductivity (ECa) was measured across fields using an 206 

electromagnetic induction (EMI) sensor connected to a GPS receiver. Following the ECa-207 

directed soil sampling protocols of Corwin and Scudiero (Corwin and Scudiero, 2020), the 208 

most representative soil samples were identified with ESAP software package and the 209 

Response Surface Sampling Design algorithm (Lesch et al., 2000; Lesch, 2005). 0-0.8 and 210 

0-1.6 m soil profiles were further analyzed and followed with the expectation that ECa was 211 

a regional proxy for the field-scale variability of particle size fraction.  212 

 213 

To measure particle size fraction, soil samples were then collected from multiple depths 214 

(0–0.1, 0.1–0.4, and 0.4–1.2 m) across fields. After collection, the samples were air-dried, 215 

ground, and sieved to remove particles larger than 2 mm; and then measured using the 216 

Integral Suspension Pressure method (The improved integral suspension pressure method 217 

(ISP+) for precise particle size analysis of soil and sedimentary materials; Wolfgang Durner, 218 

Sascha C. Iden) using PARIO™ system (METER Group AG, Munich, Germany). 219 

 220 

2.2 Residual Correction in DSM 221 

Residual correction is implemented to address underestimated soil properties variation 222 

(underestimate high values and overestimate low values). By applying residual correction 223 

in post processing, we aim to improve the performance of resulting soil maps and address 224 

the issue of bias in prior predictions. The schematic workflow is shown in Figure 3. There 225 
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are three primary steps in the residual correction method (1) generating prior soil 226 

properties maps, (2) preparing residuals correction, and (3) performing iterative residual 227 

correction. Details are further explained in subsections. 228 

 229 

Figure 3: Workflow for updating posterior soil properties maps. The process begins 230 

with panel (a), the preparation of soil covariates and pedons to generate probabilistic 231 

maps of soil classes and properties. As illustrated in panel (b), the preparation for 232 

residual correction involves adding additional soil profiles, matching prior soils with 233 

new profiles, calculating residuals depth by depth, and preparing soil covariates for 234 

residual correction. Finally, as shown in panel (c), the iterative residual correction 235 

step applies corrections across different depths, focusing on layers where residuals 236 

have not yet stabilized. During each iteration, the model predicts residuals for one 237 

depth at a time, randomly selecting an unstable layer. Once residuals for a given 238 

depth converge, that layer is excluded from further updates, allowing the model to 239 

concentrate on remaining depths until all achieve stability. After verifying 240 
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convergence across all depths, the algorithm updates the posterior distribution of soil 241 

properties and produces the final soil maps. 242 

 243 

2.2.1 Prior Soil Properties 244 

Prior soil properties maps were generated using a pruned hierarchical Random Forest 245 

(pHRF) methodology (Xu et al., 2025). Figure 3A illustrates the workflow of the pHRF 246 

method. The DSM method begins by integrating soil covariates and soil pedons with 247 

taxonomic names to generate probabilistic maps of soil classes. These maps are then 248 

linked to a harmonized soil properties database (Chaney et al., 2019), which estimates the 249 

distribution of soil properties linked to each soil component. By combining these inputs, 250 

the pHRF method produces probabilistic maps of soil properties, serving as the prior 251 

distributions for subsequent residual correction. The pHRF method implements several 252 

key features: (1) it efficiently incorporates soil covariates such as Sentinel-1 and Sentinel-2 253 

satellite data, GOES land surface temperature, to capture detailed land heterogeneity; (2) 254 

it uses a "moving polygon" algorithm to preserve natural landscape boundaries, ensuring 255 

spatial consistency; (3) it integrates soil pedons and soil surveys with soil properties 256 

estimates (harmonized soil properties database) to increase the availability of soil 257 

information; and (4) it employs a hierarchical structure in soil classification and pruned 258 

less plausible prediction that sharpens the prediction interval of prediction and reduces 259 

uncertainties in soil property estimates (Xu et al., 2025). The method addresses data 260 

imbalances, such as unevenly distributed soil observations and underrepresented soil 261 

classes. While the pHRF-derived soil property maps have demonstrated effectiveness in 262 
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reducing uncertainties, certain properties, such as bulk density, still exhibit bias (Xu et al., 263 

2025). This shows the need for further calibration. The pHRF method produces 264 

probabilistic maps of soil properties. Each pixel contains prior distribution of soil property 265 

values and their weights. 266 

 267 

2.2.2 Updating Posterior Soil Properties Maps 268 

Updating the posterior soil properties maps involves correcting prior soil property 269 

estimates by incorporating additional soil profiles and correcting the residuals (the 270 

differences between observed values and prior predictions).  The process begins with the 271 

preparation for residual correction (Figure 3B) — calculating residuals between additional 272 

soil profiles and co-located prior soil data depth by depth. By adding these residuals to the 273 

prior distributions, the statistical shape of the probability distribution is adjusted (updated 274 

property; UP). Non-parametric model Random Forest regressors are selected for the 275 

adjustments, as they can flexibly adapt to changes in the distribution shape without relying 276 

on predefined assumptions. Additionally, soil covariates are prepared for residual 277 

correction at each depth as feature space for predictive models. 278 

 279 

The iterative residual correction method is further explained in Figure 4. Figure 4A shows a 280 

3×3×3 matrix (latitude, longitude, and depth interval) indicating prior distributions from 281 

randomly selected spatial points A and B, where additional soil profiles are located. Depth 282 

2 (D2; 5-15 cm) is randomly selected to initiate the process. Figure 4B details the iterative 283 

optimization of the feature space, where weights and residuals at pixels A and B are 284 
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calculated and updated iteratively. Figure 4C demonstrates the iterative residual 285 

correction process, where residuals are added to the prior values to update the soil 286 

property estimates until convergence is achieved. Convergence is defined as when the 287 

median difference between updated and previous residuals falls below a predefined 288 

threshold (customizable and dependent on the soil property of interest). The final posterior 289 

soil properties are obtained by adding the last converged residuals to the prior soil property 290 

values, generating updated posterior soil property maps. 291 

 292 

2.2.2.1 Iterative Optimization of Feature Space 293 

The feature space builds on the covariates used in the pHRF method and additional 294 

features that capture vertical correlations and intra-pixel variations of soil properties. 295 

These features include (Figure 4B): 296 

(1) Soil covariates used in the pHRF methods: these capture spatial variations in soil-297 

forming factors. Most are remote sensing data. 298 

(2) Depth information: median values of the soil horizon interval for this layer, 299 

describing the vertical variation of soil properties. 300 

(3) Representative soil property values (expected values): predicted values for each 301 

pixel in the layer, representing the most probable soil property estimates. 302 

(4) Top-probable soil properties values: current predictions at each pixel, reflecting soil 303 

heterogeneity (both intra and inter-pixel variation) and their associated 304 

probabilities. 305 
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(5) Residuals between the target layer and other layers: difference in top-probable 306 

predicted soil property values between layers, capturing vertical correlations and 307 

aiding in the estimation of spatial patterns. 308 

 309 

To capture incremental adjustments to previous predictions, the feature space is 310 

iteratively optimized and interacted. In each iteration, residuals between soil observation 311 

and current updated predictions (UP) are added, aiming to align predictions with the 312 

observed distribution of soil properties. By updating residuals layer by layer and iteratively 313 

refining the feature space, the next prediction retains prior knowledge while integrating 314 

new information (soil heterogeneity and correcting bias; (Wu et al., 2025)). In addition, the 315 

iterative optimization of feature space captures depth-specific information and vertical 316 

relationships through feature interaction and improves potential inefficient training 317 

inherent from previous predictions.  318 

 319 

2.2.2.2 Convergence of Residual Correction 320 

Residuals (or biases), defined as the differences between observed soil property values 321 

and current predictions, are iteratively calculated and added to the previous predictions. 322 

Previous predictions refer to predicted soil property values from a previous iterative 323 

residual correction, while prior values refer to the pHRF-derived soil property values. 324 

During each iteration (Figure 4C), residuals are computed for a specific depth layer and 325 

used to adjust the predictions. The updated predictions are then re-evaluated to determine 326 

if further adjustments are needed, focusing on one layer at a time. 327 
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 328 

The residual correction process continues until the median difference between updated 329 

residuals and previous residuals falls below a predefined threshold. Convergence is 330 

achieved when the residuals stabilize across multiple iterations, indicating that further 331 

adjustments do not significantly change the predictions. This stability ensures that the 332 

final posterior soil properties are reliable and consistent. The stopping criteria is a 333 

customizable parameter. In this work, it was set to be 5th percentile of distribution of value 334 

changes. To avoid over-correcting bias (overfitting), only the last converged residuals are 335 

added to the prior prediction to generate the final posterior results. This method also 336 

addresses evaluation bias by achieving convergence across multiple iterations. 337 

 338 

Figure 4: Schematic workflow of iterative residual correction (IRC) for Soil 339 

Properties. The workflow have three main components: (a) prior soil properties 340 

derived from the pruned hierarchical Random Forest (pHRF) method, (b) iterative 341 

optimization of the feature space, where W1,W2,W3  represent weights assigned to soil 342 
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properties at each pixel; R1,R2,R3 represent possible residuals at each pixel (observed 343 

minus predicted soil property values); and Ri+1 and Ri indicate updated and previous 344 

residuals, respectively; A2 and B2 in the table of feature space indicate that the 345 

expected value remains the same for each pixel; while colored cells indicate intra-346 

variation within each pixel. And (c) iterative residual correction and convergence 347 

check, where UPI to UPv represent updated property values in each iteration for a 348 

specific layer; and RI to Rv are their associated residuals values.  Convergence is 349 

achieved when the median difference between updated (Ri+1) and previous (Ri) 350 

residuals falls below a predefined threshold. The final posterior soil properties are 351 

obtained by adding the last converged residuals to the prior values. 352 

 353 

2.2.2.3 Optimization with Constraints 354 

During residual correction, a common issue arises where the addition of residuals to prior 355 

soil property values results in values that exceed physical bounds (such as sand content > 356 

100%). To address this, an optimization process with constraints is implemented. During 357 

the first iteration, residuals are first computed without constraints. The updated soil 358 

property values are then examined to ensure they fall within predefined bounds (such as 359 

0% to 100% for particle size fractions). If a value exceeds the bounds, it is adjusted to the 360 

nearest bound (minimum or maximum), and the remaining residuals are redistributed to 361 

other bins. This ensures that the total residuals remain consistent with the expected 362 

values while maintaining physical plausibility. This constrained optimization approach 363 

guarantees that the final posterior soil property maps are physically realistic. In addition, 364 
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particle size fractions are treated as compositional data, ensuring their sum is 100% at 365 

each pixel. 366 

 367 

3 Results 368 

The iterative residual correction method is applied to pHRF-derived prior soil properties, 369 

including particle size fractions (sand, silt, clay), pH, oven-dry bulk density (BD), and soil 370 

organic matter (SOM). This correction addresses biases in the prior soil property maps and 371 

updates the posterior distributions of these properties. These soil properties are important 372 

for land management and serve as essential inputs for pedotransfer functions. The 373 

residual correction is performed across California, covering six depth intervals: 0-5 cm, 5-374 

15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm. 375 

 376 

3.1 Performance Evaluation of Posterior Soil Properties 377 

Table 1 presents the performance metrics for the posterior predictions of six key soil 378 

properties: sand, silt, clay, pH, oven-dry bulk density (BD), and soil organic matter (SOM). 379 

The metrics include the root mean square error (RMSE), coefficient of determination (R²), 380 

and correlation coefficient (ρ). For example, sand prediction shows an RMSE of 9.322, an 381 

R² of 0.841, and a correlation coefficient of 0.918. pH prediction shows an RMSE of 0.270, 382 

an R² of 0.945, and a correlation coefficient of 0.972. These metrics are computed using 383 

out-of-bag (OOB) samples from random forest regressors. OOB samples are data points 384 

not included in the bootstrap samples used to train each tree in the random forest. 385 
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Additionally, these metrics are evaluated by comparing the expected values of posterior 386 

predictions with co-located soil properties values; not computed on residuals. 387 

 388 

Table 1 also shows variations in performance across different soil properties. SOM and 389 

bulk density show slightly worse metrics compared to particle size fractions and pH. For 390 

instance, SOM predictions have an RMSE of 1.961, an R² of 0.608, and a correlation 391 

coefficient of 0.801, and bulk density predictions have an RMSE of 0.164, an R² of 0.704, 392 

and a correlation coefficient of 0.843. Two main reasons can result in their lower 393 

performance. First, these properties are more dynamic in nature compared to particle size 394 

fractions and pH. SOM and bulk density can change over time due to factors such as land 395 

use practices. The prior predictions are trained using soil survey data that are older, while 396 

the posterior soil profiles used for evaluation may come from a different period. Second, 397 

SOM and bulk density are more challenging to model accurately. SOM is influenced by 398 

complex biological and soil-forming processes, such as decomposition rates and organic 399 

matter inputs. Similarly, bulk density is affected by soil compaction, organic matter 400 

content, and soil structure. All of them can vary spatially and temporally. 401 

 402 

Table 1: Performance metrics (RMSE, R², and correlation coefficient ρ) for posterior 403 

predictions of soil properties, including sand, silt, clay, pH, oven-dry bulk density 404 

(BD), and soil organic matter (SOM). The table summarizes the range (minimum and 405 

maximum values) and accuracy metrics for each property averaged across all depth 406 

intervals. 407 
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Property Unit Min Max RMSE R2 𝝋 

Sand % mass 0.0 100.0 9.322 0.841 0.918 

Silt % mass 0.0 100.0 6.556 0.788 0.889 

Clay % mass 0.0 100.0 5.891 0.841 0.918 

pH log10([H+]) 3.0 10.0 0.270 0.945 0.972 

BD             
(oven-dry) 

g/cm3 0.5 2.0 0.164 0.704 0.843 

SOM % mass 0.0 100.0 1.961 0.608 0.801 

 408 

The posterior predictions of soil properties all align with the co-located observations and 409 

can capture the general trend of observations (Figure 5). Predictions of pH show the most 410 

concentrated clustering to the dashed line, indicating good agreement with observations 411 

across all depths. SOM and bulk density show relatively weaker performance compared to 412 

other predicted soil properties. And this pattern of reduced accuracy persists throughout 413 

all depths. 414 

 415 

As Figure 5 shows, the performance of the model tends to decline with increasing soil 416 

depth, except for SOM. This decline is primarily due to several reasons. First, the 417 

availability of soil data is often greater for shallower layers compared to deeper layers 418 

(such as > 1m), which limits the model's ability to learn patterns in deep layers. Second, 419 

remote sensing-derived soil covariates can only observe surface properties. Predictions 420 
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for deeper layers rely on soil horizon information, soil profiles, geology, and parent 421 

material-related features. The certainty and quantity of them are less than easily 422 

measurable surface covariates. However, SOM shows better performance in deeper layers 423 

compared to surface layers. This is likely because surface SOM is highly variable due to 424 

factors like residue, land use, and management practices, while deeper SOM tends to be 425 

more stable.  426 

 427 

Figure 5: Evaluating posterior predictions with observations for six soil properties: (a) 428 

sand, (b) silt, (c) clay, (d) pH, (e) bulk density (BD), and (f) log-scaled soil organic 429 

matter (SOM). The left side shows scatter plots of posterior predictions versus 430 

observations across six depth intervals, with each depth represented by a distinct 431 

color. The dashed black line represents perfect prediction.  432 

 433 
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3.2 Comparison of Prior and Posterior Soil Predictions 434 

Prior and posterior predictions of soil properties are compared against co-located 435 

observations to assess the added value of residual correction. The radar plots in Figure 6 436 

illustrate the improvements achieved through the residual correction method using three 437 

normalized metrics: 1-normalized absolute bias (1-|Bias|), coefficient of determination 438 

(R²), and 1-normalized RMSE by ranges of soil variability (1-nRMSE). These metrics are 439 

computed with values of soil properties, instead of on their residuals. Values in Figure 6 440 

closer to the outer edge of each plot indicate better model performance. Overall, all soil 441 

properties maintain reasonable normalized bias, with nRMSE values consistently less than 442 

0.02 for both prior and posterior predictions. However, the prior predictions tend to 443 

underestimate the variability of soil properties. As a result, the normalized metrics for prior 444 

and posterior predictions are similar, while the R² values show some differences. 445 

 446 

For all soil properties, posterior predictions consistently outperform prior predictions 447 

across all metrics. For particle size fractions, R² values show the largest improvements: 448 

sand increases from 0.35 to 0.84, silt from 0.19 to 0.79, and clay from 0.25 to 0.84. The 449 

nRMSE metric also shows improvements. Sand decreases from 0.19 to 0.09, silt from 0.14 450 

to 0.07, and clay from 0.16 to 0.07, showing reductions in prediction errors using the 451 

residual correction. 452 

 453 

Figure 6 also shows different degrees of improvement across different soil properties. Prior 454 

pH predictions already demonstrate reasonable accuracy, with an R² of 0.54 and nRMSE of 455 
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0.11. After the residual correction, these metrics improve to 0.94 for R² and 0.04 for 456 

nRMSE. Bulk density and SOM show the biggest gains. For bulk density, the R² increasing 457 

from 0.16 to 0.70 and nRMSE reducing from 0.18 to 0.11. Prior SOM are underfitted with a 458 

low R² value. With the residual correction, the posterior SOM show a positive R² of 0.61. 459 

The nRMSE for SOM also improves from 0.07 to 0.04.  460 

 461 

Figure 6: Radar plots comparing the performance metrics of prior and posterior 462 

predictions for six soil properties: (a) sand, (b) silt, (c) clay, (d) pH, (e) oven-dry bulk 463 

density (BD), and (f) soil organic matter (SOM). Each plot presents three metrics: 1-464 

normalized absolute bias (1-|Bias|), coefficient of determination (R²), and 1-465 

normalized RMSE by ranges of soil variability (1-nRMSE). Prior predictions are shown 466 

in blue, and posterior predictions in green. All metrics are scaled from 0 to 1, where 467 
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values closer to the outer edge of the plot indicate better model performance. The 468 

green shaded area highlights the improvement achieved by the posterior predictions 469 

over prior estimates. 470 

 471 

Horizontal spatial patterns of the six soil properties are presented in Figure 7. In the 472 

Central Valley California, soils are mostly medium textured with about 30% silt and lower 473 

sand content compared to surrounding areas. In the Mojave and Colorado Deserts, high 474 

sand contents (> 60%) with low clay contents are observed. SOM contents are also low in 475 

these areas. The histograms show how residual correction adjusts the distribution of soil 476 

properties.  477 

 478 

For SOM and bulk density, the prior predictions often underestimate the observed 479 

variation. Figure 7 shows that the residual correction processes add noticeable spatial 480 

variations between prior and posterior soil maps. Prior bulk density values are often 481 

clustered around 1.5 g/cm³, whereas the posterior histogram presents a broader range, 482 

spanning from 1.25 g/cm³ to 1.6 g/cm³, capturing more heterogeneity of bulk density.  483 

Similarly, the residual correction adds soil heterogeneity to SOM. The posterior SOM can 484 

delineate water bodies, where SOM content is abruptly lower than the surrounding areas. 485 

Additionally, the posterior SOM maps present hill features in the desert areas. 486 
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487 

Figure 7: Spatial distribution of six soil properties (sand, silt, clay content, pH, bulk 488 
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density, and soil organic matter) across California. Maps of prior and posterior soil 489 

properties are compared. The corresponding frequency distributions of these soil 490 

properties are displayed in the right corner. Dashed polygons represent the 491 

continental part of California. In the histograms, the blue and red dashed lines 492 

represent the mean and median values, respectively. The maps labeled D0 to D5 493 

correspond to the first vertical layer down to the deepest layer. Note the map and 494 

distribution of soil organic matter (SOM) is log-scaled. Mean and median values are 495 

computed from the original SOM data. 496 

 497 

Soil profiles used for evaluating residual correction are grouped according to their 498 

corresponding pixel's land use classification from the National Land Cover Database 499 

(NLCD). Figure 8 presents selected vertical soil profiles of sand content, oven-dry bulk 500 

density, and SOM across three land use categories: forest, cultivated crops, and wetland. 501 

The number of samples varies by land use, with forests having the most, cultivated crops 502 

approximately half as many, and wetlands the fewest across California. To ensure a 503 

balanced visualization, a similar number of profiles are selected from each category. Sand 504 

content is chosen due to its broader range of variation (0-100%) compared to silt and clay 505 

(< 60% range). SOM and bulk density, which show relatively lower performance metrics, 506 

are included to assess the model's ‘lower-bound performance’. These vertical profiles 507 

were not used during model training. 508 

 509 
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In Figure 8, solid lines represent the mean soil profiles for sand content, oven-dry bulk 510 

density, and SOM across forest, cultivated crops, and wetland land use categories. Blue 511 

lines, red lines, and green lines indicate prior, observation, and posterior predictions. 512 

Comparing the solid lines, the posterior predictions align more closely with the observed 513 

data compared to the prior estimates. However, the degree of alignment varies by soil 514 

property. For sand content and SOM, the posterior predictions show better agreement with 515 

observations, while bulk density predictions exhibit greater discrepancies, particularly in 516 

cultivated areas. 517 

 518 

For sand content, the residual correction process improves estimates, especially in 519 

wetlands, with RMSE decreasing from 7.68 to 0.77 (%). Bulk density predictions perform 520 

better in forested and wetland areas. In cultivated crops, the posterior predictions show 521 

larger discrepancies. This suggests that bulk density is more challenging to predict in 522 

agricultural lands, particularly in shallow layers, likely due to agricultural activities. For 523 

SOM, the residual correction effectively improves estimates, especially in the surface 524 

layers of wetlands. 525 

 526 

Dashed lines in Figure 8 represent individual soil profiles. Prior predictions often 527 

underestimated the variability in soil properties, struggling to capture extreme values. After 528 

the residual correction, the posterior predictions are better able to approximate these 529 

extremes. However, the correction process sometimes introduces additional noise. For 530 

example, some low SOM values (such as 0.001 g/cm³) were generated during residual 531 
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correction, even though such values are not presented in the observed data. It is likely due 532 

to that we used the van Bemmelen factor (1.724) to convert the prior soil organic matter to 533 

soil organic carbon. 534 
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  535 
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Figure 8: Vertical distribution of soil properties (sand content, oven-dry bulk density, 536 

and soil organic matter SOM) across three land use categories: forest, cultivated 537 

crops, and wetland. Prior estimates (blue), posterior estimates (green), and 538 

observations (red) are shown as depth profiles. Dashed lines represent individual 539 

measurements, and solid lines show mean values. RMSE is computed elementwise to 540 

evaluate model performance across all depths. X-axis and Y-axis represent value 541 

ranges of a soil property and vertical depth intervals, respectively. 542 

 543 

3.3 Uncertainty Analysis 544 

Figure 9 shows the differences between 5% — 95% posterior and prior prediction interval 545 

widths (PIWs) for six soil properties—sand, silt, clay, pH, bulk density, and SOM—from 546 

surface to 2-m deep. The differences are calculated by subtracting the prior PIWs from the 547 

posteriors. Red areas present a reduction in posterior PIW, indicating the residual 548 

correction has reduced uncertainties of soil properties predictions. Blue pixels suggest the 549 

opposite. White areas represent regions where the prior and posterior uncertainties are 550 

similar.  551 

 552 

In Figure 9, most pixels show reduced uncertainty for sand content after residual 553 

correction, particularly in agricultural and desert regions. This improvement is attributed to 554 

the inclusion of additional soil profile data from these areas. For clay content, the posterior 555 

predictions consistently show reduced uncertainty across the Sierra Nevada Mountain 556 

ranges. For SOM, the posterior PIWs improved in shallower layers (0-15 cm) over both the 557 

https://doi.org/10.5194/egusphere-2025-5107
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



32 

 

Coastal Ranges and the Sierra Nevada Mountains, with the coastal line showing notably 558 

narrower PIWs. For pH, the results present a mixed pattern of PIWs after residual 559 

correction, with some areas showing reduced uncertainty and others showing the 560 

opposite. Similarly, bulk density exhibits a mixed pattern, though deeper layers (60 cm to 2 561 

m) generally show reduced uncertainty in the Central Valley, California.  562 
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 563 

Figure 9: Differences of 5% — 95% posterior and prior prediction interval widths (PIWs) 564 

for soil properties across different depths. Each column represents a specific soil 565 

property and rows show different depths. Black polygons represent the continental 566 

part of California. Differences between posterior and prior PIWs are in a red-to-blue 567 

https://doi.org/10.5194/egusphere-2025-5107
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



34 

 

color scale. Red pixels indicate a decrease in posterior PIW, indicating residual 568 

correction reduces uncertainties. Vice versa for blue pixels. White areas indicate 569 

similar extent of uncertainties. The left colorbar corresponds to sand, silt, clay with 570 

wider ranges of PIW differences. The right colorbar represents other properties with 571 

smaller PIW changes. 572 

 573 

4 Discussion 574 

4.1 Limitations in Soil Profile Data 575 

The effectiveness of residual correction depends on the spatial and vertical distribution of 576 

soil profiles used to calculate residuals. In regions with sparse sampling, such as 577 

California's desert areas (Figure 1), the limited number of profiles leads to interpolating the 578 

entire area using limited observations. If soil heterogeneity is not captured by these limited 579 

samples, the residual correction would overlook it. For soil texture, most data collected by 580 

staff working on multiple projects under the National Institute of Food and Agriculture 581 

(NIFA) and the Sustainable Agricultural Systems (SAS) programs range from the surface to 582 

1.1 meters deep (additional field measurements used in this work). We use spline 583 

interpolation to predict soil texture data beyond 1.1-m depths. It assumes vertical 584 

continuity in soil properties, which may not reflect abrupt changes in subsurface layers. 585 

 586 

Uncertainty also arises from converting some soil organic carbon (SOC) data to soil 587 

organic matter (SOM). We used the van Bemmelen factor (1.724) to convert SOC to SOM 588 

profiles. This factor does not hold true in scenarios such as organic-rich soils. Adding data 589 
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quality controls—such as filtering profiles based on metadata (such as soil type, land 590 

use)—could filter out samples that are not suitable for this conversion. However, this 591 

conversion still has uncertainties, since even for mineral soils, this factor still has a certain 592 

extent of variation depending on the organic matter composition (lower for soils with more 593 

decomposed organic matter), soil types (forest soils or wetland soils with anaerobic 594 

decomposition), and environmental influences (such as microbial activity). 595 

 596 

4.2 Computational Challenges 597 

The iterative residual correction process on distributions requires computational 598 

resources, particularly when applied to large-extent or high-resolution datasets. This 599 

process involves adjusting multiple values for each pixel, as each pixel represents a 600 

distribution of soil properties. This process can be approached in two ways. The first 601 

method involves correcting the residual values for each pixel, adding these residuals to 602 

update the posterior values of soil properties, and then converting these updated values to 603 

generate a posterior distribution of soil properties. The second method first converts all 604 

pixel values into the same histogram bins and then corrects the shape of these histogram 605 

bins for each pixel. Thus, the number of values retained per pixel affects computational 606 

expense. Based on our experience, using method two, especially for soil texture, requires 607 

100-bin histograms. Using method one with 20 most probable prior property values for 608 

residual correction can achieve comparable results while reducing memory usage. 609 

 610 
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The iterative process of updating features and correcting residuals also plays a role. In our 611 

simulations, we observed that subsequent residual corrections generally align with 612 

previous ones. To ensure consistency, we require the corrections to converge more than 613 

three times across different depths. For example, residual correction for a 1-km soil 614 

property map over California takes approximately two hours after preprocessing the input 615 

data. However, processing higher-resolution datasets, such as those at a 10-meter scale, 616 

can demand significantly more computational resources. This highlights the trade-off 617 

between resolution and computational efficiency in DSM projects. 618 

 619 

4.3 Temporal and Spatial Constraints 620 

The current method does not account for temporal changes in soil properties, limiting its 621 

applicability to dynamic properties like soil organic matter or bulk density. Incorporating 622 

temporal covariates (such as seasonal land surface temperature, recent land-use 623 

changes) or stratifying soil profiles by collection date could address this. However, such 624 

improvements rely on the availability of temporally resolved soil data, which are often 625 

limited in quantities and sampling frequency. 626 

 627 

Spatial clustering of soil samples poses another challenge. While duplicate profiles were 628 

removed during data preprocessing, nearby samples may still share a certain level of 629 

similarity due to spatial autocorrelation. This could lead to overly optimistic evaluation of 630 

residual correction performance. Two methods can help address this issue:  631 
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(1) Cross-validation with spatial considerations: Implement a cross-validation 632 

method for splitting training and validation sets with attention to sample locations. 633 

Ensure a minimum distance between training samples and evaluation data.   634 

 635 

(2) Independent dataset evaluation: Use independent datasets to evaluate the 636 

model. CONUS-wide instrumental network, such as the U.S. Climate Reference 637 

Network and the National Ecological Observatory Network, provide independent 638 

soil data. However, these datasets have limitations as they were collected with 639 

clustering to certain landscapes, potentially introducing bias in the evaluation. 640 

 641 

4.4 Similar Studies 642 

Several continental-scale DSM products (or methods) are compared, including the Soil 643 

Survey Geographic Database (SSURGO), the Gridded National Soil Survey Geographic 644 

Database (gNATSGO), the Probabilistic Layers for the Assessment of Soils (POLARIS), Soil-645 

Landscape Unified Synthesis (SOLUS), and the pruned Hierarchical Random Forest with 646 

iterative bias correction (pHRF with IRC) soil properties. SSURGO is a traditional, polygon-647 

based product derived from expert field surveys and remains widely used in agricultural 648 

applications (Soil Survey Staff et al., 2023). gNATSGO mainly builds on SSURGO by 649 

rasterizing its map units to improve spatial coverage. And its estimation of soil properties 650 

still rely on utilizing metadata of legacy soil data (Soil survey staff, 2023). These two still 651 

inherit legacy data’s limitations, such as scale inconsistency between soil map units and 652 

derived soil maps, inconsistencies with field observations, and report distribution of soil 653 
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properties with only three values (low end value, representative value, and high end value) 654 

(Rossiter et al., 2022; Soil Survey Staff, 2025; Xu et al., 2025).  655 

 656 

Development of the following DSM products incorporates quantitative models in their 657 

methodology. POLARIS produces probabilistic soil property maps using machine learning 658 

and the DSMART algorithm (Chaney et al., 2016, 2019; Odgers et al., 2015), while the 659 

uncertainties in the DSMART algorithm can propagate into POLARIS. SOLUS integrates 660 

legacy soil data with georeferenced field observations and employs linear adjusted 661 

Random Forest to predict soil properties (Nauman et al., 2024). SOLUS hierarchizes soil 662 

data with different qualities into its training dataset, giving more attention to georeferenced 663 

observations. However, since it also uses resampled soil data derived from polygon-based 664 

soil map units, this process may introduce additional uncertainties into the final product. 665 

The pHRF with IRC follows a different approach. Unlike most DSM methods that directly 666 

predict soil properties from input data, this approach works in two steps: first, it generates 667 

a prior estimate of soil taxa and property values, then iteratively adjusts these estimates to 668 

improve model performance. In future work, the pHRF with IRC method will be applied on 669 

large scale and assessed with more soil properties to evaluate its generalizability. 670 

 671 

5 Conclusion 672 

The study introduces an iterative residual correction method for post processing used in a 673 

Digital Soil Mapping (DSM) framework. The method integrates additional soil profile data 674 

and iteratively optimizes the feature space to refine the distribution of soil properties until 675 
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the residual correction model converges. Convergence is achieved when the median 676 

difference between updated and previous predictions falls below a predefined threshold, 677 

ensuring consistent predictions. The proposed DSM method operates through two primary 678 

steps: (1) generating prior soil property maps using the pruned hierarchical Random Forest 679 

(pHRF) approach, and (2) performing iterative residual correction on the priors. Residuals 680 

(differences between observed values and prior predictions) are calculated and added to 681 

the prior distributions to adjust the statistical shape of the probability distribution pixel-by-682 

pixel. The feature space, which includes soil covariates, depth information, and vertical 683 

correlations, is iteratively optimized to capture incremental adjustments to subsequent 684 

predictions.   685 

 686 

Using this method, we updated posterior distribution of soil properties for sand, silt, clay 687 

content, soil pH, oven-dry bulk density, and soil organic matter over California. The results 688 

show improvements in the accuracy of soil properties predictions, as shown by multiple 689 

metrics including RMSE, R2, and correlation coefficients. Furthermore, the iterative 690 

residual correction model reduced prediction uncertainties, presenting narrower 691 

prediction intervals compared to the priors. 692 

 693 

Several innovations contribute to the method's improvements. First, the integration of 694 

additional soil profiles allows the model to further learn from georeferenced soil 695 

information, complementing prior soil property estimates derived from traditional 696 

surveys. Second, the iterative optimization of feature space captures both spatial and 697 
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vertical soil heterogeneity through a carefully selected combination of soil covariates and 698 

vertical correlations among soil profile observations. Third, the convergence-based 699 

approach to residual correction ensures stable output of posterior predictions while 700 

avoiding overfitting since only converged residuals are added to the priors. Fourth, the 701 

implementation of physical constraints and compositional data handling maintains the 702 

realism of predicted soil properties. Future research could explore the application of this 703 

framework to other soil properties and environmental contexts, such as soil hydraulic 704 

properties and CONUS-wide simulation, to test the framework’s generalization, supporting 705 

informed decision-making in soil-related applications. 706 
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