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 18 

Abstract  19 

Global shelf seas have experienced unprecedented marine heatwaves (MHWs) in recent decades. Although state-of-20 

the-art forecast systems show skilful prediction of MHWs in tropical regions, their limited performance elsewhere 21 

highlights the need for a more complete mechanistic understanding at regional scales. Here, we examine MHWs in 22 

the Northeastern Atlantic shelf, a region strongly influenced by multiple climate variabilities. Using a correlation-23 

based k-means clustering approach, we identified two distinct subregions with contrasting seasonal patterns. The 24 

southern North Sea (Cluster 1) exhibits increased MHW frequency, intensity, and duration in winter, primarily 25 

associated with a positive East Atlantic Pattern that typically follows a negative North Atlantic Oscillation in late 26 

autumn. These conditions intensify westerly winds and enhance warm Atlantic inflow through both atmospheric and 27 

oceanic pathways. In contrast, the northern North Sea (Cluster 2) shows enhanced MHW frequency and duration in 28 

summer, driven by teleconnections across multiple ocean basins. The Atlantic Multidecadal Variability modulates 29 

these linkages, with its positive phase strengthening Pacific-Atlantic connections via Rossby wave propagation. This 30 

north-south contrast demonstrates that different combinations of atmospheric and oceanic processes shape MHW 31 

variability across the shelf, providing a physical basis for improving regional MHW prediction. 32 

1 Introduction 33 

Marine heatwaves (MHWs), defined as anomalous warm seawater events (Pearce et al., 2011), have become 34 

more frequent, persistent, and intense over the past decades, with persistent temperature extremes significantly 35 

affecting marine ecosystems and commercial fisheries (Yan et al., 2020). These trends are largely attributed to 36 

anthropogenic global warming (Mohamed et al., 2024; Oliver, Donat, et al., 2018; Wang & Zhou, 2024). Beyond 37 

long-term warming trends, recent studies have highlighted the importance of large-scale climate variability in 38 

enhancing MHW characteristics globally through atmospheric and oceanic teleconnections (Holbrook et al., 2019; 39 

Wang & Zhou, 2024). For example, El Niño-Southern Oscillation (ENSO) influences MHWs over the tropical Pacific 40 

and Indian Oceans (Hamdeno et al., 2024; Liu et al., 2022; Mohamed et al., 2022; Oliver, Perkins-Kirkpatrick, et al., 41 

2018; Vivekanandan et al., 2008). During El Niño phases, the significant increases in sea surface temperature (SST) 42 

lead to prolonged MHWs in the eastern tropical Pacific (Podesta & Glynn, 2001). Similarly, the North Atlantic 43 

Oscillation (NAO) primarily affects the tropical and North Atlantic MHWs (Gröger et al., 2024; Holbrook et al., 2019; 44 

Mohamed et al., 2023; Scannell et al., 2016). Although current forecast systems show skills in predicting the 45 

occurrence of MHWs in the El Niño region (de Boisséson & Balmaseda, 2024), with prediction accuracy significantly 46 

improving during El Niño events (Jacox et al., 2022), the forecast accuracy remains poor in the Northeastern Atlantic 47 

Ocean influenced by NAO, particularly in the North Sea (de Boisséson & Balmaseda, 2024; McAdam et al., 2023). 48 

This limitation warrants further investigations into the mechanisms driving MHWs at the relevant spatio-temporal 49 

scales. 50 

 51 

The North Sea is a shelf sea located on the passive continental margin of northwest Europe, connecting the 52 

Baltic Sea to the Atlantic. The SST and MHW patterns in this region are influenced by large-scale North Atlantic 53 

climate variabilities, including NAO, the Atlantic Multidecadal Variability (AMV) and East Atlantic Pattern (EAP) 54 

(Mohamed et al., 2023; Scannell et al., 2016; van der Molen & Pätsch, 2022). Distinct seasonal differences of MHW 55 

mechanisms and climate variability responses in the North Sea have been documented (Gröger et al., 2024; Mohamed 56 

et al., 2023). Summer and winter exhibit contrasting patterns: during summer, MHWs are more frequent with higher 57 

intensity but shorter duration, while winter shows fewer events with lower intensity but longer duration. The NAO 58 

and EAP represent the two dominant modes of atmospheric circulation variability over the Euro-Atlantic region 59 

(Thornton et al., 2023), while AMV refers to large-scale multidecadal fluctuations in Atlantic SST (Kerr, 2000). These 60 

climate variabilities regulate westerly winds in the North Atlantic, affecting warm Atlantic inflow into the southern 61 

North Sea (van der Molen & Pätsch, 2022). Existing studies show that MHW frequency in the southern North Sea 62 

increases during the positive phase of AMV or EAP, while positive NAO primarily intensifies winter MHW 63 

occurrence (Mohamed et al., 2023; Scannell et al., 2016). The southern North Sea, characterized by shallow depths 64 

(Fig. 1a), experiences low-frequency, high-intensity, and long-duration MHWs. In contrast, the northern North Sea, 65 

which features larger water depth, exhibits more frequent and intense, but shorter MHWs (Chen & Staneva, 2024). 66 

However, the underlying dynamic mechanisms remain poorly understood (Mohamed et al., 2023).  67 

 68 
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Moreover, historical studies have indicated that climate variabilities in the Atlantic Ocean are interconnected 69 

(Börgel et al., 2020; Delworth & Zeng, 2016; Delworth et al., 2017; Sun et al., 2015). For example, the AMV alters 70 

the zonal position of NAO centers of action (Börgel et al., 2020), while the NAO-Atlantic Meridional Overturning 71 

Circulation interaction shapes the AMV (Delworth & Zeng, 2016; Delworth et al., 2017; Sun et al., 2015). These 72 

Atlantic climate variations also connect with Pacific Ocean patterns (Oshika et al., 2015). The AMV modulates the 73 

impact of Arctic Oscillation on ENSO and tropical climate variability (Chen et al., 2025; Xue et al., 2025). Conversely, 74 

ENSO-induced dipolar convection anomalies exert an influence on NAO and EAP (Brönnimann, 2007; Hou et al., 75 

2023; Jiménez-Esteve & Domeisen, 2018; Scaife et al., 2024; Wicker et al., 2024). Existing literature (Gröger et al., 76 

2024; Hamdeno et al., 2024; Liu et al., 2022; Mohamed et al., 2023) has focused primarily on the effects of individual 77 

climate variabilities on MHWs, leaving their synergistic influence largely unexplored. 78 

 79 

In this study, we aim to fill the knowledge gap in understanding synergistic impacts of climate variabilities 80 

on MHWs in shelf seas. We focus on the greater North Sea region, which is projected to warm as fast as global levels 81 

(Hobday & Pecl, 2014) but exhibits large climate variability caused by interactions between the Arctic and subtropical 82 

zones (Quante & Colijn, 2016). This makes it an ideal regional example for understanding how climate variabilities 83 

synergistically influence MHWs in complex shelf sea settings.  84 

 85 

 86 

Figure 1. (a) The research domain of the North Sea. The bathymetry (m) is shown on a logarithmic scale. (b) Power 87 

spectrum analysis of marine heatwave cumulative intensity (MHWCI) anomalies in the North Sea derived from 88 

OSTIA. Orange dots indicate periods exceeding the 90% confidence level (black dashed line), while blue dots 89 

represent periods below this threshold. 90 

 91 

2 Data and Methods 92 

2.1 Data  93 

Our analysis of MHWs in the North Sea (Fig. 2a) is based on high-resolution SST data (0.05°×0.05°, daily) 94 

from the Copernicus Marine Environment Monitoring Service (CMEMS). This dataset integrates multiple satellite 95 

measurements and in-situ observations by the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA 96 

(Good et al., 2020), covering the period 1982-2021. Another observation-based SST data used for validation is from 97 

the FerryBox (Macovei et al., 2021), which was developed by Helmholtz-Zentrum Hereon (Fig. A1).  98 

 99 

Atmospheric conditions were characterized using the ERA5 reanalysis dataset (Hersbach et al., 2020) from 100 

the European Centre for Medium-Range Weather Forecasts (ECMWF), which provides daily variables at 0.25°×0.25° 101 
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resolution from 1970 to present. These variables include 10-m wind components, 500-hPa geopotential height, 102 

precipitation, and heat flux. For oceanic variables, including potential temperature and current velocity, we used 103 

monthly data from the ECMWF Ocean Reanalysis System 5 (ORAS5). 104 

 105 

2.2 Cumulative intensity of MHW 106 

MHWs, which are categorized as a thermal event when their associated temperature is larger than the 90th 107 

percentile threshold for at least 5 days (Hobday et al., 2016), are detected by using the MATLAB Marine Heatwaves 108 

(M_MHW) toolbox (Zhao & Marin, 2019). The long-term warming trend was subtracted to better estimate the effects 109 

of climate variability (Liu et al., 2022). The MHW metrics include frequency, duration, mean intensity, and cumulative 110 

intensity. The potential impact of individual events on marine ecosystems is best represented by their cumulative 111 

intensity, combining the effect of duration and average intensity (Marin et al., 2021). In this study, the cumulative 112 

intensity was summed to derive the monthly cumulative intensity  (MHWCI), which represents the intensity over the 113 

duration of MHW events occurring within one month  (Gröger et al., 2024; Mohamed et al., 2023). 114 

 115 

2.3 K-means Clustering Analysis 116 

Distinct regional patterns of MHWCI variability in the North Sea were identified using a correlation-based 117 

K-means clustering approach (Jain, 2010; Lloyd, 1982). Unlike the conventional K-means that minimizes the 118 

Euclidean distance, the correlation-based version groups grid points according to the similarity in the shape of their 119 

normalized feature vectors, thereby emphasizing pattern similarity rather than absolute amplitude. Such correlation-120 

based K-means clustering has been successfully applied in gene expression data analyses (Loganantharaj et al., 2006) 121 

and brain connectivity dynamics (Allen et al., 2014), to identify regions with coherent temporal or spatial variability 122 

patterns.  123 

 124 

Given the pronounced seasonal variability of MHW in this region, this approach classifies areas according 125 

to their seasonal patterns of MHWCI interannual variability, reflecting different regional responses to large-scale 126 

climate forcing. For each grid point, MHWCI anomalies were computed for each season by subtracting the long-term 127 

seasonal climatology. The four seasons were defined as winter (December of the previous year and January–February 128 

of the current year, named as DJF), spring (from March to May, named as MAM), summer (from June to August, 129 

named as JJA), and autumn (from September to November, named as SON). The interannual variability during each 130 

season was quantified as the standard deviation of anomalies across the 40 years, yielding a four-component feature 131 

vector per grid point, with each component representing DJF, MAM, JJA, and SON variability. To reduce the 132 

influence of extreme values and ensure equal weighting among the four seasonal components, a logarithmic 133 

transformation followed by standardization was applied to the feature vectors. The dissimilarity between two grid 134 

points (Eq. 1) was defined as the correlation distance between their feature vectors: 135 

𝐷(𝑥𝑖 , 𝑥𝑗) = 1 − 𝑟(𝑥𝑖 , 𝑥𝑗),                                               (1)         136 

where 𝑟(𝑥𝑖 , 𝑥𝑗)  is the Pearson correlation coefficient between the seasonal variability patterns of MHWCI, 137 

emphasizing the similarity in their seasonal variability structures. The total within-cluster dissimilarity was computed 138 

as the sum of squared correlation distances (WCSS), which decreases as the number of clusters 𝐾 increases. The 139 

number of clusters 𝐾 was determined using the Elbow Method, where the reduction in WCSS begins to level off 140 

(Syakur et al., 2018). In this study, 𝐾=2 was selected as the optimal number of clusters (Figure B1). Further validation 141 

of clustering robustness is provided in Appendix B. 142 

 143 

Based on the assessment, grid points were partitioned into two clusters by grouping them with similar 144 

seasonal patterns. Each cluster is characterized by its dominant season, defined as the season with the highest mean 145 

standardized variability, and the relative contributions of all four seasons. This approach identifies regions where 146 

MHWCI variability exhibits specific seasonal dependence, thereby revealing distinct spatial patterns that may be 147 

linked to different large-scale climate variations.  148 

 149 
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2.4 Heat budget analysis 150 

The physical processes driving MHWCI variations in the subregions identified by the K-means clustering 151 

were quantitatively examined through an upper-ocean heat budget analysis. After linearizing the variables, the 152 

perturbation equation of upper ocean heat anomalies (Eq. 2) can be described as: 153 

𝜕T𝑚
′

𝜕t
=

𝑄𝑛𝑒𝑡
′

𝜌𝐶𝑝h𝑚
− (u⃗ 𝑔 ⋅ ∇⃗⃗ T𝑚

′ + 𝑢⃗ 𝑔
′ ⋅ ∇⃗⃗ T𝑚) − (u⃗ 𝑒 ⋅ ∇⃗⃗ T𝑚

′ + 𝑢⃗ 𝑒
′ ⋅ ∇⃗⃗ T𝑚) − (w𝑒

(T𝑚−T𝑑)′

h𝑚
− w𝑒

′ (T𝑚−T𝑑)

h𝑚
) +154 

𝑅𝐸𝑆,                                                                                                                                                                             (2) 155 

where the overbar and prime denote monthly mean and anomaly, respectively. The left-hand side represents the sea 156 

surface temperature anomaly tendency. We calculated this tendency as the temperature difference between February 157 

and November for winter and between August and May for summer, respectively. The right-hand side comprises four 158 

main terms, namely the net heat flux, geostrophic heat advection, Ekman heat advection, and entrainment heat flux , 159 

respectively. The last term denotes the residual term (RES), which includes nonlinear heat advection and diffusion, 160 

etc. These terms are averaged over the respective seasonal periods. 𝑄𝑛𝑒𝑡
′  refers to the sea surface net heat flux anomaly, 161 

comprising the net shortwave and longwave radiative components, as well as the net latent and sensible heat fluxes. 162 

Positive values of 𝑄𝑛𝑒𝑡
′  indicate ocean gaining heat from the atmosphere. 𝜌 is the seawater density (1025 kg m-3), 𝐶𝑝 163 

is the specific heat capacity (3890 J kg-1 K-1), and ℎ𝑚 is the mixed layer depth (MLD), defined as the depth where 164 

temperature decreases by 0.5°C from the surface value (Monterey & Levitus, 1997).  The horizontal circulation in the 165 

surface layer can be divided into the Ekman current component 𝑢⃗ 𝑒 and the geostrophic current component 𝑢⃗ 𝑔. 𝑤𝑒 is 166 

the Ekman pumping (entrainment) velocity, with positive values indicating Ekman upwelling, pumping or divergence 167 

and negative values for Ekman downwelling or convergence, respectively. 𝑇𝑑 is the temperature below the base of the 168 

mixed layer. 169 

 170 

2.5 Horizontal wave activity flux 171 

Large-scale atmospheric teleconnections influence the formation and persistence of MHWs by modulating 172 

atmospheric circulation and surface heat fluxes. The Pacific-Atlantic teleconnection is closely linked to Rossby wave 173 

propagation (Hou et al., 2023). The propagation of these teleconnection signals was diagnosed using the wave activity 174 

flux (WAF, Eq. 3), which quantifies the direction and intensity of stationary Rossby wave energy propagation (Takaya 175 

& Nakamura, 2001). Hence, the horizontal WAF (unit: m² s⁻²) was calculated as follows: 176 

                          𝑊𝐴𝐹 =
𝑝cos 𝜑

2|𝑈|
{

𝑈

𝑎2cos2 𝜑
[(

𝜕𝜓′

𝜕𝜆
)
2

− 𝜓′ 𝜕2𝜓′

𝜕𝜆2 ] +
𝑉

𝑎2cos 𝜙
(
𝜕𝜓′

𝜕𝜆

𝜕𝜓′

𝜕𝜑
− 𝜓′ 𝜕2𝜓′

𝜕𝜆𝜕𝜑
)

𝑈

𝑎2cos 𝜑
(
𝜕𝜓′

𝜕𝜆

𝜕𝜓′

𝜕𝜑
− 𝜓′ 𝜕2𝜓′

𝜕𝜆𝜕𝜑
) +

𝑉

𝑎2 [(
𝜕𝜓′

𝜕𝜑
)
2

− 𝜓′ 𝜕2𝜓′

𝜕𝜑2 ]

              ,                    (3) 177 

where p is the pressure normalized to 1000 hPa, φ is the latitude, λ is the longitude, a is the radius of the Earth, ψ(=φ/f) 178 

is the geostrophic stream function, φ (m) is the geopotential height, f is the Coriolis parameter and ψ' is the perturbed 179 

stream function. | U |, U and V represent the averaged wind speed, zonal, and meridional wind velocity, respectively. 180 

 181 

3 Results  182 

3.1 Seasonal-to-decadal variability of MHWs 183 

Power spectrum analysis of the detrended monthly MHWCI reveals two distinct temporal patterns, namely 184 

a seasonal variation and an interannual variation, both significant at the 90% confidence level (Fig. 1b). Based on the 185 

seasonal patterns of MHWCI interannual variability, the K-means clustering analysis identified two distinct 186 

subregions (named as Cluster 1 and 2, respectively) in the North Sea (Fig. 2a). Cluster 1 mainly covers the central and 187 

southern parts of the North Sea, while Cluster 2 includes the deeper northern part. Seasonal differences between the 188 

two clusters were quantified by calculating the relative contribution of each season, expressed as the percentage of its 189 

spatially averaged interannual variability intensity (VI) relative to all four seasons within each cluster. Positive values 190 

of VI indicate seasons that contribute more strongly to the total variability of that cluster, while negative values indicate 191 

weaker contributions. 192 
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 193 

Cluster 1 shows the highest variability in winter (VI = 0.66) and autumn (VI = 0.41), but lower variability in 194 

summer (VI = -0.28) and spring (VI = 0.07) (Fig. 2b). In contrast, Cluster 2 exhibits strong variability in summer (VI 195 

= 0.57) and moderate variability in spring (VI = 0.24), while autumn (VI = -0.08) and winter (VI = -0.30) are 196 

characterized by low variability. These results highlight spatially distinct seasonal responses showing that interannual 197 

variability in the central-southern shallow regions (Cluster 1) predominantly occurs in winter, whereas in the northern 198 

deeper areas (Cluster 2) interannual variability mainly occurs in summer. 199 

 200 

The relationship between regional differences and large-scale climate variabilities was examined using the 201 

time series of domain-averaged MHWCI extracted for each cluster. Consistent with the identified seasonal dominance, 202 

the winter series was analyzed for Cluster 1 and the summer series for Cluster 2. 203 

 204 

In Cluster 1 (mainly central and southern North Sea), negative NAO phases in late autumn (October, blue 205 

shading in Fig. 2c) are frequently followed by a positive winter EAP, which is significantly correlated with enhanced 206 

winter MHWCI (r = 0.64, 95% confidence interval). For Cluster 2 (mainly northern North Sea), the summer-averaged 207 

MHWCI demonstrates distinct responses depending on the phase of the AMV. During the negative AMV phase (1982-208 

1994, blue shading in Fig. 2d), MHWCI exhibits relatively weak intensity. In contrast, during the positive AMV phase 209 

(1994-2013, red shading in Fig. 2d), MHWCI shows notable enhancement, with its interannual variability strongly 210 

correlated with both ENSO and the Interdecadal Pacific Oscillation (IPO) (r = 0.69 and 0.70, respectively). However, 211 

this teleconnection substantially weakens after 2013, with correlations becoming statistically insignificant (p > 0.1), 212 

indicating a substantial reduction in Pacific influence on North Sea MHWs. 213 

 214 

These results indicate that the dominant climate drivers of MHWCI variability differ across regions and 215 

timescales: Cluster 1 is primarily shaped by late autumn NAO in combination with winter EAP, while Cluster 2 is 216 

modulated by summer Pacific telecommunications that vary with AMV phase. This spatial and temporal diversity 217 

suggests that MHWCI in the southern and northern parts of the North Sea is driven by distinct atmospheric circulation 218 

patterns and associated oceanic processes. 219 

 220 

 221 
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Figure 2.  K-means clustering of marine heatwave cumulative intensity (MHWCI) in the North Sea and associated 222 

climate variability. (a) Spatial distribution of two clusters based on the seasonal patterns of interannual MHWCI 223 

variability. (b) Seasonal variability of each cluster. Positive values indicate seasons with stronger contributions to 224 

interannual variability, while negative values indicate weaker contributions. (c) Normalized time series of domain-225 

averaged MHWCI for Cluster 1 during winter (black) and the East Atlantic Pattern (EAP, red); blue shading denotes 226 

negative NAO phases in October of the preceding year. (d) Normalized time series of domain-averaged MHWCI for 227 

Cluster 2 during summer (black) and Interdecadal Pacific Oscillation (IPO) index (red); blue and red shading indicate 228 

negative and positive phases of Atlantic Multidecadal Variability (AMV), respectively. The blue bar from 2013-2015 229 

indicates the Atlantic “cold blob” event. 230 

 231 

Composite analysis of MHW frequency, intensity, and duration anomalies during positive MHWCI periods 232 

highlights the underlying mechanisms (Fig. 3). In Cluster 1, the winter MHWCI increase is driven jointly by higher 233 

frequency, intensity, and duration (Fig. 3a-c). In Cluster 2, summer MHWCI enhancement is characterized by 234 

increased frequency and duration but decreased intensity (Fig. 3d-f), indicating that summer conditions promote 235 

persistent but less intense MHWs in the northern North Sea. 236 

 237 

 238 

Figure 3. Composite anomalies of MHW characteristics during positive phases of the cluster-specific time series in 239 

winter (a-c) and summer (d-f). (a, d) MHW number, (b, e) MHW intensity (°C), and (c, f) MHW duration (days). 240 

 241 

3.2 Cluster 1: Winter Mechanisms in the Central and Southern North Sea  242 

The influence of climate variability on winter MHWCI in Cluster 1 through atmospheric processes was 243 

examined by compositing atmospheric variables during periods of enhanced MHWCI (positive phase of black line in 244 

Fig. 2c), including 500-hPa geopotential height, wind stress, WAF, and heat flux anomalies.  245 

 246 

In October, the geopotential height anomalies exhibit pronounced negative anomalies over the subpolar 247 

Atlantic, with positive anomalies observed over the subtropical and polar regions (Fig. 4a). This atmospheric 248 

configuration corresponds to a negative NAO phase, characterized by a weakened Azores High and intensified 249 

Icelandic Low. The resulting cyclonic wind anomalies decrease SST over the central North Atlantic (Fig. 5a). 250 

 251 

In November, the system enters a transition phase. SST cooling extends northward (Fig. 5b) under the 252 

influence of cyclonic circulation anomalies. Meanwhile, negative geopotential height anomalies over the subpolar and 253 
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polar Atlantic intensify, while positive anomalies extend northeastward. An eastward-propagating Rossby wave train 254 

develops, with WAF originating from the North American coast and propagating toward western Europe (Fig. 4b). 255 

 256 

By December, the wave train includes both eastward and westward-propagating components across the North 257 

Atlantic. This WAF configuration generates strong convergence over the subpolar region, significantly reinforcing 258 

the negative geopotential height anomalies there. Consequently, the atmospheric pattern transitions to a positive EAP 259 

phase. The geopotential height field displays a distinct tripole structure, reflecting intensified Azores High and 260 

Icelandic Low systems, accompanied by a strengthened high-pressure system over western Europe (Fig. 4c). The 261 

associated cyclonic winds maintain reduced SST in the subpolar region (Fig. 5c). This configuration persists into 262 

January (Fig. 4d), sustaining southwesterly wind anomalies over the northeastern North Atlantic (Fig. 5d). 263 

 264 

 265 

Figure 4. Composite anomalies of 500-hPa geopotential height (shading, m2/s2) and horizontal wave activity flux 266 

(WAF, vector, m2/s2) from October of the preceding year to January of the following year, based on winters with 267 

positive values in the cluster-specific time series. The anomalous WAF flux is shown only when its magnitude is 268 

larger than 0.1 m2/s2. 269 

 270 
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 271 
Figure 5. Composite anomalies of sea surface temperature (shading, ºC) and wind stress (vectors, N/m2) from October 272 

of the preceding year to January of the following year, based on winters with positive values in the cluster-specific 273 

time series. 274 

 275 

These southwesterly winds enhance sensible heat loss from the ocean to the atmosphere, which serves as the 276 

primary contributor to negative net heat flux anomalies (blue bar in Fig. 6). By contrast, these southwesterly wind 277 

anomalies modify the ocean current convergence over the southern North Sea (Fig. 7b), enhancing SST. To further 278 

investigate the ocean response, circulation anomalies were composited during periods of enhanced MHWCI. The 279 

strengthened subtropical westerlies since late autumn enhance the transport of warm North Atlantic waters (Fig. 7a), 280 

increasing northward heat transport into the North Sea through the English Channel (Mohamed et al., 2023; van der 281 

Molen & Pätsch, 2022), and raising SST in the southern North Sea. After entering the North Sea, anomalous 282 

southwesterly winds drive this warm water northward, enhancing both meridional and zonal overturning circulations 283 

(MOC and ZOC) in the central North Sea (Fig. 7d, e). These strengthen oceanic downwelling and heat content (Fig. 284 

7c), further offsetting the cooling from reduced net heat flux, illustrating the combined atmospheric and oceanic 285 

mechanisms driving winter MHWCI in Cluster 1. Additionally, the warm water inflow reduces cold outflow from the 286 

Baltic Sea. 287 

 288 

 289 

Figure 6. Composite anomalies of net heat flux and its components (W/m2) in the North Sea during winters (blue bars) 290 

and summers (red bars) with positive values in the cluster-specific time series. Components include shortwave (Q𝑠𝑤) 291 

and longwave (𝑄𝑙𝑤) radiation, as well as the net latent (𝑄𝑙𝑎) and sensible (𝑄𝑠𝑒𝑛) heat flux anomalies. Positive values 292 

indicate ocean heat gain from the atmosphere, while negative values indicate heat loss. 293 

 294 
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 295 
Figure 7. Composite anomalies of oceanic variables during positive phases of the cluster-specific time series in winter 296 

(a-e) and summer (f-j). (a), (f) Geostrophic oceanic current (vectors, m/s), (b), (g) convergence and divergence of 297 

advection (s-1), (c), (h) ocean heat content (J), (d), (i) zonal overturning circulations (ZOC, Sv), (e), (j) meridional 298 

overturning circulations (MOC, Sv). The black arrow-headed lines represent the direction of flow. 299 

 300 

The upper-ocean heat budget for Cluster 1 was examined to evaluate the relative contributions of different 301 

mechanisms. Result shows that winter warming in the southern-central North Sea is primarily driven by geostrophic 302 

heat advection (Fig. 8), consistent with the enhanced Atlantic inflow through the English Channel (Fig. 7a). These 303 

results indicate that winter MHW frequency, intensity and duration in Cluster 1 are largely influenced by the North 304 

Atlantic climate variabilities through both atmospheric and oceanic pathways via enhanced westerly winds and 305 

strengthened Atlantic inflow. 306 

 307 

 308 
Figure 8. Quantitative contribution (˚C/season) of atmospheric and oceanic processes to the upper ocean temperature 309 

anomaly tendency for two clusters identified by the K-means algorithm. The atmospheric and oceanic variables are 310 

shown as composite patterns during positive phases of the cluster-specific time series in winter (blue) and summer 311 

(red). The temperature tendency (dT’/dt) represents the difference in the sea surface temperature anomaly between 312 

February and November for winter and between August and May for summer, respectively. Contributions from the 313 

net heat flux anomaly (Qnet), geostrophic heat advection (AdvGeo), Ekman heat advection (AdvEk), entrainment heat 314 

flux (EHF), and residual term (RES), averaged over the same periods, are also shown. 315 

 316 
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3.3 Cluster 2: Summer Mechanisms in the Northern North Sea  317 

We identified the synergetic impact of AMV and Pacific telecommunications on the summer MHWCI in the 318 

North Sea. Comparison of atmospheric variable regression patterns onto the IPO index reveals stronger atmospheric 319 

responses in the North Pacific Ocean during strong positive AMV phases (1994-2012). The possible underlying 320 

mechanism can be explained through a sequence of atmospheric interactions. First, positive AMV induces anomalous 321 

ascent over the North Atlantic and anomalous descent over the North Pacific, which forms a dipole pattern of 322 

geopotential height with positive anomalies over the subpolar Pacific and negative anomalies over the subtropical 323 

Pacific (Fig. 9a). These interactions induce easterly wind anomalies between these regions (Lin et al., 2023). As a 324 

result, an anomalous cyclonic wind pattern emerges over the subtropical Pacific, strengthening ENSO-associated 325 

westerly winds and enhancing SST in the tropical Pacific Ocean (Hou et al., 2023). The associated warming along the 326 

North American west coast is consistent with the positive IPO phase (Fig. 10a). 327 

 328 

The enhanced tropical and subtropical Pacific responses are transmitted across ocean basins through Rossby 329 

wave energy propagation. The WAF vectors clearly indicate the propagation of Rossby wave energy from the Pacific 330 

toward the North Atlantic, particularly under the positive AMV phase (Fig. 9a). This intensified wave propagation 331 

facilitates more efficient transmission of atmospheric perturbations from the Pacific, across North America, and into 332 

the Atlantic region. As part of this teleconnection pattern, northeasterly wind anomalies develop over the Caribbean 333 

Sea, reducing precipitation and SST in this region (Fig. 10b). The suppressed convection modifies the regional Rossby 334 

wave source, contributing to the maintenance of the anticyclonic pattern over the subtropical western North Atlantic. 335 

The associated southeasterly wind anomalies over the northwestern North Sea suppress Atlantic moisture transport, 336 

reducing cloud cover the over the northern North Sea (Fig. 10c), which increases downward shortwave radiation (red 337 

bars in Fig. 5), further contributing to enhanced downward net surface heat flux.  338 

 339 

Heat budget analysis further confirms that in summer the MHW response in Cluster 2 is predominated by the 340 

surface heat flux and the RES term, whereas horizontal and vertical advection are comparatively weak (Fig. 8). During 341 

summer, the MLD is extremely shallow in Cluster 2 (13.2 m on average, decreasing to 12.5 m during positive phases), 342 

in contrast to much deeper winter MLD in Cluster 1 (88.9 m on average, and 84.9 m for positive phases). This shallow, 343 

strongly stratified surface layer enables short-lived radiative anomalies to trigger and prolong MHWs, while limited 344 

oceanic heat advection constrains subsurface heat storage, consistent with the absence of notable intensification in 345 

MHW intensity. 346 

 347 

The easterly wind anomalies counter the prevailing climatological southwesterly winds. The resulting wind 348 

weakening generates cyclonic circulation anomalies in the northern North Sea (Fig. 7f), causing anomalous 349 

convergence of horizontal flows (Fig. 7g). These anomalous eastward inflows entering the North Sea produce positive 350 

ZOC anomalies (Fig. 7i), increasing ocean heat content (Fig. 7h). Although these circulation changes contribute locally 351 

to heat accumulation, their contribution to the overall heat budget is minor, indicating that geostrophic advection exerts 352 

only a limited influence on MHWCI variability in the Cluster 2 region (Fig. 8). 353 

 354 

After 2013, the cold anomaly developed in the Atlantic Ocean (Mooney, 2015), coinciding with a weakening 355 

AMV signal (Frajka-Williams et al., 2017). During this period, the tropical and subtropical Pacific exhibit markedly 356 

diminished atmospheric responses (Fig. 10d-f). Tropical Pacific SST anomalies weaken substantially compared to 357 

1994-2012, accompanied by the reductions in precipitation. Moreover, the geopotential height anomalies in the North 358 

Pacific weaken significantly (Fig. 9b), and the dipole circulation pattern between subpolar and subtropical Pacific 359 

substantially weakens. WAF analysis reveals a marked disruption of Rossby wave energy propagation from the Pacific 360 

to the Atlantic (Fig. 9b).  361 

 362 

 This Pacific-Atlantic teleconnection weakens even further during the negative AMV phase. The geopotential 363 

height dipole in the Pacific is much less pronounced (Fig. 9c), further diminishing the dipole circulation and reducing 364 

zonal wind anomalies between these regions. The SST anomaly distribution remains inconsistent with the IPO spatial 365 

pattern, with the North American coastal warming signature nearly absent (Fig. 10g). Correspondingly, the westerly 366 
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wind anomalies over the tropical Pacific are substantially more suppressed. This also suppresses the Rossby wave 367 

source, leading to a marked reduction of eastward Rossby wave energy flux into the Atlantic region (Fig. 9c). The 368 

diminished atmospheric response produces minimal impacts on North Atlantic circulation and limited modification 369 

of North Sea (Fig. 10 h-i). 370 

 371 
Figure 9. Summer Composite patterns of 500-hPa geopotential height anomalies (shading, m2/s2) and horizontal WAF 372 

(vector, m2/s2) during (a) positive AMV phase (1994-2012), (b) positive AMV phase (2013-2021), and (c) negative 373 

AMV phase. All fields are regressed onto the IPO index. Only significant anomalies at the 90% confidence level are 374 

shown. 375 
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 376 
Figure 10. Summer atmospheric patterns regressed to the IPO index during different AMV phases. Composite 377 

anomalies during positive AMV phase (1994-2012) (a-c), positive AMV phase (2013-2021) (d-f), and negative AMV 378 

phase (g-i): (a), (d), (g) wind stress (vectors, N/m2) and sea surface temperature (SST, shading, °C), (b), (e), (h) 379 

precipitation (cm), and (c), (f), (i) cloud cover. Only significant anomalies at the 90% confidence level are shown. 380 

 381 

4 Discussion 382 

4.1 Contrasting climate influences in MHWs across the North Sea 383 

Our analysis of observed SST data demonstrates how multiple climate variabilities interact to influence 384 

MHWs at a regional scale through seasonally distinct mechanisms. Different from previous studies that mainly applied 385 

clustering analysis to group heatwaves based on common characteristics (Artana et al., 2024; Chauhan et al., 2023), 386 

location (Hansen, 2024), and underlying dynamic drivers (Vogt et al., 2022), this study employed a correlation-based 387 

k-means clustering approach to further explore their spatial and temporal coherence. Our analysis identified two 388 

distinct regions in the North Sea, a southern shallow region and a northern deep region, each dominated by different 389 

climate variations and seasonal dynamics. Similar north-south spatial contrasts in MHW-induced stratification 390 

associated with water depth have also been reported in the North Sea (Chen et al., 2022). 391 

 392 

In the central-southern shallow North Sea (Cluster 1), enhanced MHWCI is closely linked to positive winter 393 

EAP conditions, typically following a negative late-autumn NAO. Previous studies have shown that MHW frequency 394 

in the southern North Sea increases during positive phases of either NAO or EAP (Mohamed et al., 2023). Similar 395 

NAO-related influences have also been reported in the adjacent Baltic Sea (Gröger et al., 2024). Our results refine this 396 

understanding by identifying the positive winter EAP as the primary driver, enhancing not only the frequency but also 397 

intensity and duration.  398 

 399 
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Recent research also indicates that AMO plays a more important role than the NAO in influencing the 400 

frequency of summer MHWs in the southern North Sea (Mohamed et al., 2023). However, its role in the northern 401 

North Sea has received little attention. Our results show that in Cluster 2, representing the deeper northern North Sea, 402 

the enhanced MHW frequency and duration in summer is linked to the synergistic influence of the AMV and Pacific 403 

climate variabilities. These teleconnections propagated from the Pacific to the North Sea through Rossby wave energy 404 

propagation, which is consistent with studies emphasizing the role of Pacific teleconnections in shaping the North 405 

Atlantic atmospheric pattern (Hou et al., 2023).  406 

 407 

To exclude the influence of long-term warming, the SST data were linearly detrended before computing the 408 

MHW metrics. Even after detrending, Cluster 2 exhibits increasing frequency and duration accompanied by a slight 409 

decrease in intensity during positive MHWCI periods. This result is consistent with basin-wide observations from 410 

1993 to 2022, which show a declining trend of MHW intensity but increasing frequency and duration (Chen & Staneva, 411 

2024). Such change is attributed to large-scale atmospheric circulation changes and regional oceanic processes rather 412 

than global warming. The reduction in intensity has been proposed to be related to the weakening of the North Atlantic 413 

Jet Stream and more frequent atmospheric blocking events (Woollings et al., 2018), which promote stagnant 414 

atmospheric conditions and persistent but less intense warm anomalies over the North Sea, while freshwater-salt 415 

exchange, stratification changes, and Baltic Sea inflow also modulate regional SST responses (Mathis & Pohlmann, 416 

2014). As an additional possible mechanism, the interannual-decadal variability linked to the AMV and Pacific 417 

teleconnections could modulate the summer North Atlantic atmospheric pattern, which then changes MHW intensity 418 

in the northern North Sea.  419 

 420 

4.2 Global implications and future perspectives 421 
 422 

Current MHW forecast systems exhibit highest skill in the El Niño region, the Caribbean, the wider tropics, 423 

the north-eastern extra-tropical Pacific, and southwest of the extra-tropical basins. However, the skill is much lower 424 

in the western Mediterranean and rather poor in the North Sea whatever the forecast range (de Boisséson & Balmaseda, 425 

2024; Jacox et al., 2022). This is likely due to the impact of unresolved atmospheric variability, limited representation 426 

of teleconnections and climate modes (Ardilouze et al., 2017; Patterson et al., 2022). Since climate indices serve as 427 

important forecasting factors influencing these events (Jacox et al., 2022; Mi et al., 2025), incorporating synergistic 428 

climate interactions into forecasting frameworks could enhance predictive skill for MHWs. 429 

 430 

Similar teleconnection mechanisms have been documented in other shelf seas and marginal seas, including 431 

the Baltic Sea (Gröger et al., 2024) and South China Sea (Deng et al., 2022). For instance, the Indian Ocean Basin-432 

Wide index has been identified as a key predictor of long-term MHWs occurrence in the South China Sea (Mi et al., 433 

2025), while including ENSO-related variability in the tropical Pacific may extend the duration of skillful forecasts 434 

of atmospheric patterns over the North Atlantic (Shackelford et al., 2025). Our results reveal clear regional and 435 

seasonal contrasts in how large-scale climate variations influence MHW variability across the North Sea. These 436 

contrasts highlight that MHW predictability in shelf seas depends on the timing, location, and combined effects of 437 

multiple climate drivers rather than their individual strength alone. Incorporating these spatially and seasonally 438 

varying relationships into forecast systems would allow models to improve the ability to forecast when and where 439 

MHWs are most likely to occur. 440 

 441 

5 Conclusions 442 

By applying a correlation-based k-means clustering approach, this study revealed coherent spatial and 443 

temporal patterns of MHWCI variability in the North Sea and their connections to large-scale climate variations. The 444 

results show that multiple interacting climate variabilities jointly drive MHWCI variability on the northeastern 445 

Atlantic shelf, emphasizing the need to consider combined effects rather than individual forcing mechanisms. The 446 

relative importance and mechanisms of these large-scale drivers vary regionally and seasonally: the EAP exerts 447 

stronger control in the southern North Sea during winter, through two pathways, namely an atmospheric bridge via 448 

enhanced southwesterly winds and an oceanic pathway through strengthened Atlantic inflow (Fig. 11a).  449 
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 450 

In contrast, the AMV and Pacific-related teleconnections dominate in the northern region during summer. 451 

During positive AMV phases, the dipole geopotential height pattern along the North American west coast, reinforces 452 

IPO-like structures and strengthens Pacific-Atlantic teleconnections. These teleconnections, propagated from the 453 

tropical and subtropical Pacific to the North Atlantic through Rossby wave energy propagation, ultimately influence 454 

cloud cover over the North Sea and alter sea-air heat fluxes (Fig. 11b). When the AMV is in transitions to neutral or 455 

negative phases, the weakening of IPO-like patterns reduces Pacific-Atlantic coupling, thereby diminishing their 456 

influence on the region. Together, these regionally and seasonally distinct mechanisms provide a clear physical basis 457 

for how large-scale climate variability modulates MHWs in shelf seas. 458 

 459 

These findings have practical implications for enhancing process-based prediction and for understanding how 460 

MHW characteristics may respond to future changes in large-scale climate variability. Future research should test 461 

whether similar interaction patterns occur in other shelf seas, evaluate the potential of climate indices to improve 462 

MHW prediction skill, and investigate how the underlying mechanisms may change under future climate conditions. 463 

 464 

 465 
Figure 11. Schematic illustration of two distinct cluster patterns showing the synergistic impacts of climate variability 466 

on MHWCI in the Northwestern European shelf. (a) Winter pattern characterized by a combined negative NAO phase 467 

in late autumn and a positive EAP phase in winter. (b) Summer pattern characterized by simultaneous positive phases 468 

of AMV, PDO, and El Niño. Purple arrows indicate wind anomalies. Red and yellow circles denote high and low-469 

pressure systems, respectively: AH refers to the Azores High, WEH to the West European High, and IL to the Icelandic 470 

Low. The red box over the North Sea highlights regions of enhanced MHWCI. Red upward and blue downward arrows 471 

represent increases and decreases in the associated variables. Blue cloud shapes denote cloud cover (CC), while white 472 

cloud shapes represent precipitation (Pre). Qsw indicates the downward shortwave heat flux. Green arrows mark 473 

horizontal flow convergence or the Meridional Overturning Circulation (MOC). 474 

 475 

Appendices A: Validation of SST Data  476 

In Sect. 2.1, The high-resolution SST data from OSTIA (Good et al., 2020) is validated by the FerryBox 477 

(Macovei et al., 2021), which was developed by Helmholtz-Zentrum Hereon. The FerryBox, installed on commercial 478 

vessels, records measurements every 20 seconds along fixed routes, providing data at approximately 100-meter spatial 479 

resolution. Our validation is focused on two specific routes: “Hafnia20160120” (0.2˚W-8.7˚E, 52.6-54.9˚N) and 480 
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“Lysbris20170407” (0.2˚W-12.8˚E, 51.3-59.4˚N). Figure A1 shows high consistency between these two datasets with 481 

root mean square error (RMSE) of 0.7 and 1.3 degrees for the year 2016 and 2017, respectively.  482 

 483 

Figure. A1. Comparison of SST from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset 484 

(blue line) with FerryBox in-situ measurements (red dots). Our validation focused on two specific routes: (a) 485 

“Hafnia20160120” (0.2˚W-8.7˚E, 52.6-54.9˚N) and (b) “Lysbris20170407” (0.2˚W-12.8˚E, 51.3-59.4˚N). 486 

 487 

Appendices B: Clustering validation  488 

 The stability and interpretability of the correlation-based K-means clustering results were assessed through 489 

two complementary analyses: the elbow method and silhouette coefficient. The elbow curve method runs k-means 490 

clustering on the dataset for a range of K (from 1 to 10). For each of the K values, the total within-cluster sum of 491 

squared correlation distances (WCSS) (Lloyd, 1982) was computed. The optimal K corresponds to the point at which 492 

the decrease in distance becomes substantially less pronounced, indicating that further partitioning does not 493 

significantly improve intra-cluster cohesion. As shown in Figure B1, the elbow occurs at K = 2, suggesting that two 494 

clusters sufficiently capture the dominant spatial patterns of MHWCI variability in the region. 495 

 496 

Figure. B1. Elbow method validation of K-means clustering of marine heatwave cumulative intensity (MHWCI) in 497 

the North Sea. The within-cluster sum of squared correlation distances (WCSS) is shown as a function of cluster 498 

numbers. The red circle indicates the optimal number of clusters determined by the Elbow method. 499 

 500 

https://doi.org/10.5194/egusphere-2025-5105
Preprint. Discussion started: 30 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 17 / 21 

 

The mean silhouette coefficient (Rousseeuw, 1987) was then calculated for each 𝐾 using the same correlation 501 

distance metric. For a given observation i, the silhouette coefficient is defined as: 502 

𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
,                                                 (4)                                                                503 

where 𝑎(𝑖) is the average correlation distance between a point and all others in its own cluster, 𝑏(𝑖) is the minimum 504 

average distance to points in another cluster. The silhouette coefficient ranges from -1 to +1, with higher values 505 

indicating better separation. It yielded a favorable score of 0.563 for k = 2, confirming the stability and physical 506 

interpretability of the two-cluster partition. 507 

 508 
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